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ABSTRACT

Endoglin plays a crucial role in pathophysiological processes such as

hereditary hemorrhagic telangiectasia (HHT), preeclampsia and

cancer. Endoglin expression is upregulated during the monocyte-to-

macrophage transition, but little is known about its regulation and

function in these immune cells. Two different alternatively spliced

isoforms of endoglin have been reported, L-endoglin and S-endoglin.

Although L-endoglin is the predominant variant, here, we found that

there was an increased expression of the S-endoglin isoform during

senescence of the myeloid lineage in human and murine models. We

performed a stable isotope labelling of amino acids in cell culture

(SILAC) analysis of both L-endoglin and S-endoglin transfectants in

the human promonocytic cell line U937. Analysis of differentially

expressed protein clusters allowed the identification of cellular

activities affected during aging. S-endoglin expression led to

decreased cellular proliferation and a decreased survival response

to granulocyte-macrophage colony-stimulating factor (GM-CSF)-

induced apoptosis, as well as increased oxidative stress. Gene

expression and functional studies suggested that there was a non-

redundant role for each endoglin isoform in monocyte biology. In

addition, we found that S-endoglin impairs themonocytic differentiation

into the pro-inflammatory M1 phenotype and contributes to the

compromised status of macrophage functions during aging.
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INTRODUCTION
Endoglin (also known as CD105) is a type I homodimeric

transmembrane glycoprotein that can act as an auxiliary receptor

for members of the TGF-b superfamily (Cheifetz et al., 1992;

Bellón et al., 1993). Structurally, endoglin belongs to the zona

pellucida (ZP) family of proteins that share a ZP domain of ,260

amino acid residues at their juxtamembrane extracellular region

(Llorca et al., 2007). Endoglin also contains, at its N-terminal

extracellular region, an orphan domain, comprising ,325 amino

acids whose sequence is not homologous to any other protein;

however, this domain has recently been identified as the minimal

active endoglin domain needed for partner recognition (Llorca

et al., 2007; Castonguay et al., 2011; Alt et al., 2012).

Endoglin expression and function has been widely described in

the context of endothelial cells and vascular physiology (Bernabeu

et al., 2007; López-Novoa and Bernabeu, 2010), playing a key role

in many pathological processes, including hereditary hemorrhagic

telangiectasia (HHT), cancer angiogenesis, preeclampsia or

hypertension (Bernabeu et al., 2009; Shovlin, 2010; Kapur et al.,

2012; Rana et al., 2012; Valbuena-Diez et al., 2012). In addition,

increased levels of the membrane and soluble forms of endoglin

have been linked to inflammatory processes, such as wound

healing, atherosclerosis, psoriasis and rheumatoid arthritis (Rulo

et al., 1995; Conley et al., 2000; Torsney et al., 2002; López-Novoa

and Bernabeu, 2010).

There are two different isoforms of endoglin that share an

identical extracellular domain but differ from each other in the

length and composition of their cytoplasmic tail (Cheifetz et al.,

1992; Bellón et al., 1993). The endoglin gene (ENG) is

predominantly expressed as a long isoform (L-endoglin), but its

pre-mRNA can be alternatively spliced by a mechanism of intron

retention, yielding a less abundant form, known as short endoglin

(S-endoglin). This intron retention is driven by the SRSF1 splicing

factor, which physically competes with the minor spliceosome for

the elimination of the last intron between exons 13 and 14 (Blanco

and Bernabeu, 2011; Blanco and Bernabeu, 2012). When

transcribed, the last intron of ENG bears an early stop codon that

affects the open reading frame and truncates the mature protein at

the cytoplasmic region (Blanco et al., 2008). So far, most studies

published about endoglin have focused on L-endoglin. The

expression of the short variant (S-endoglin) was first described in

humans (Bellón et al., 1993) and later in mice (Pérez-Gómez et al.,

2005). Specific transcripts for L-endoglin and S-endoglin have been

detected in placenta, lung, heart, epidermis and liver, as well as in

epithelial, endothelial and monocytic cells (Bellón et al., 1993;

Pérez-Gómez et al., 2005). The cytoplasmic region of human L-

endoglin is composed of 47 amino acids with a high content of

serine and threonine residues that are susceptible to phosphorylation

(Lastres et al., 1994). In addition, the sequence Ser-Met-Ala (SMA)

in the C-terminal end of L-endoglin is a docking site for proteins

with a PDZ domain and is involved in cytoskeleton organization

(Koleva et al., 2006). By contrast, the sequence of the S-endoglin

cytoplasmic tail is only 14 amino acids long, the last seven residues

being specific for this isoform. These structural differences might

account for the distinct functional effects of L-endoglin and S-

endoglin (Blanco et al., 2008; Velasco et al., 2008).

Interestingly, a role for S-endoglin during endothelial

senescence has been described (Blanco et al., 2008). Thus, the

S-endoglin:L-endoglin ratio is increased during senescence of

human endothelial cells in vitro, as well as during aging of mice

in vascularized tissues. The switch between L-endoglin and S-

endoglin affects the TGF-b-mediated cell signalling, promoting
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the ALK5 (TGFBR1)–Smad3 pathway instead of the ALK1
(ACVRL1)–Smad1 route. This is due to the preferential affinity

of the short cytoplasmic domain for ALK5, which promotes the
expression of target genes such as SERPINE1 (PAI-1) and PTGS2

(cyclooxygenase-2, COX-2) and inhibits NOS3 (nitric oxide
synthase 3, eNOS). Furthermore, transgenic mice overexpressing

S-endoglin show hypertension, a decreased hypertensive response
to NO inhibition, a decreased vasodilatory response to TGF-b1
administration and decreased eNOS expression in lungs and

kidneys, supporting the involvement of S-endoglin in the NO-
dependent vascular homeostasis (Blanco et al., 2008). Taken
together, these results suggest that S-endoglin is induced during

endothelial senescence and that it might contribute to age-
dependent vascular pathology.

During aging, immune and inflammatory responses are impaired

in a general immunosenescence process where macrophage
functions are compromised (Cassado Ados et al., 2011; Mahbub
et al., 2012). Aged macrophages show reduced functional activity,
leading to accumulation of unphagocytosed cellular debris, chronic

inflammation and exacerbation of tissue damage and aging (Shaw
et al., 2010; Li, 2013). Two physically and functionally distinct
macrophage subsets have been described in the mouse peritoneal

cavity (Ghosn et al., 2010), which represent different senescence
stages. Thus, the long-term resident large peritoneal macrophages
(LPMs) exhibit morphological and functional characteristics

described in senescent cells, including large size, prominent
vacuolization, reduced phagocytic capacity and low expression of
MHC class II molecules. In steady-state conditions, .90% of

peritoneal macrophages are LPMs and the remaining ones are
small peritoneal macrophages (SPMs, young macrophages derived
from newly recruited blood monocytes). Upon inflammatory
stimuli, the loss of LPMs correlates with the cell renewal of the

peritoneal cavity, which is characterized by the enrichment of
SPMs. All these data suggest that the peritoneal cavity is a useful
tool to analyse macrophage immunosenescence in these two cell

subsets (Cassado Ados et al., 2011). Macrophages participate in the
immune response according to a preferential M1 or M2
polarization, which is involved not only in the response to

pathogens, tumour progression and angiogenesis, but also in tissue
homeostasis, autoimmunity and fibrosis (Sunderkötter et al., 1994;
Werner and Alzheimer, 2006; Benoit et al., 2008). Although many
studies on endoglin have focused on endothelial cells, endoglin

expression has also been detected in some myeloid precursors and
macrophages. Thus, endoglin acts as a crucial regulator of
hematopoietic development, in part by modulating the signalling

involving members of the TGF-b superfamily (Borges et al., 2012).
Later in development, endoglin is present at low levels on
monocytes, but it is markedly upregulated during the monocyte–

macrophage transition (Lastres et al., 1992; O’Connell et al.,
1992). Moreover, in the human monocytic line U937, ectopic
expression of endoglin counteracts TGF-b1-dependent cellular

responses (Lastres et al., 1996). Overall, the role of endoglin in the
myeloid lineage is poorly understood, especially regarding the
individual function of each isoform. Although endoglin expression
in human macrophages has been detected in several tissues (Lastres

et al., 1992; O’Connell et al., 1992), nothing is known about the
regulation and function of the individual endoglin isoforms in
macrophages or their contribution to disease. Here, we show that S-

endoglin is a marker of macrophage senescence, and both endoglin
isoforms contribute to the monocyte-to-macrophage transition
and polarization during immunosenescence, thus modulating the

system responses due to aging.

RESULTS
Transcript expression of endoglin isoforms in monocytes
and macrophages
Endoglin is expressed at low levels on monocytes, but it is
markedly upregulated during the monocyte–macrophage
transition (Lastres et al., 1992; O’Connell et al., 1992). Both L-

endoglin and S-endoglin isoforms have been detected in
monocytic cell lines treated with phorbol esters (Bellon et al.,
1993), but the regulation of these isoforms in primary cultures of

macrophages has not been studied. Because S-endoglin is a
marker of cellular senescence (Blanco et al., 2008), we assessed
the mRNA expression of both endoglin isoforms in monocytes

and macrophages with a senescence-like stage that were
subjected to oxidative stress. First, macrophages were obtained
from the peritoneal cavity of 2-month-old mice. Most of these

cells correspond to the myeloid lineage, mainly to tissue-resident
LPMs (Cassado Ados et al., 2011). As a biomarker of
macrophage senescence, we used b-galactosidase activity
(Cassado Ados et al., 2011). A large proportion of the LPMs

were positive for the senescence-associated b-galactosidase
staining (Fig. 1A) and there was a marked increase in the
percentage of senescent macrophages after hydrogen peroxide

(H2O2) treatment (Fig. 1B). In addition, increased levels of S-
endoglin were observed upon oxidative stress, as shown by semi-
quantitative RT-PCR analysis of endoglin transcripts (Fig. 1C).

In addition, oxidative-stress-induced senescence in activated
monocytes from four human different donors demonstrated a
clear increase in the transcript levels of the senescence markers S-

endoglin and PAI-1, whereas L-endoglin levels underwent a
much lower increase (Fig. 1D). Zymosan particles prepared
from yeast cell walls (Saccharomyces cerevisiae) and their
intraperitoneal injection in mice is commonly used to enrich the

peritoneal cavity in macrophages. To assess the effect of in vivo

aging, LPMs and recruited SPMs were analysed upon zymosan
treatment (Fig. 1E,F). S-endoglin levels were clearly increased in

both LPMs and SPMs in mice that were 6 and 12 months old (up
to 16-fold), relative to 2-month-old animals. Moreover, the
senescence marker PAI-1 showed a statistically significant

increase in LPMs (at 12 months), whereas L-endoglin transcript
levels were augmented in LPMs (at 6 and 12 months) and SPMs
(at 12 months), although at lower levels than S-endoglin. Of note,
the upregulation of S-endoglin preceded that of PAI-1 in LPMs

(Fig. 1E), and no significant changes of PAI-1 levels in
infiltrating SPMs during aging were observed (Fig. 1F).
Unfortunately, there are no appropriate antibodies able to

distinguish between L-endoglin and S-endoglin proteins for
these studies. Human S-endoglin and L-endoglin proteins vary
from each other in their cytoplasmic tails that contain 14 and 47

amino acids, respectively, with only a sequence of seven residues
being specific for S-endoglin (López-Novoa and Bernabeu,
2010). Similar differences are also present in murine endoglin

isoforms. These small structural differences explain the lack of
appropriate tools to clearly distinguish between L-endoglin and
S-endoglin proteins. Taken together, these results suggest that S-
endoglin is a marker of macrophage senescence that is

upregulated during in vitro oxidative-stress-induced senescence
and in vivo aging.

Identification of differentially expressed proteins in
monocytic endoglin transfectants
To assess the impact of the two endoglin isoforms in the monocytic

proteome, stable transfectants of U937 cells overexpressing human
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L-endoglin or S-endoglin, as well as mock transfectants, were used

(Lastres et al., 1996). Although this experimental approach does
not necessarily reflect the in vivo situation, it represents a useful
tool to specifically dissect the individual contribution of endoglin.

Protein expression of both endoglin isoforms is markedly enhanced
in respect to the basal levels of mock transfectants, as shown by
immunofluorescence flow cytometry (Fig. 2A). The presence of L-
endoglin and S-endoglin transcripts could be detected by

qualitative RT-PCR analysis in all transfectants (Fig. 2B).
Proteomics analysis using stable isotope labelling of amino acids
in cell culture (SILAC) technology was applied to quantify

differences in protein expression level among transfected U937
cells. A schematic illustration of the experimental outline is shown
in supplementary material Fig. S1A–C. After metabolic labelling

with different isotopes, equal numbers of cells were mixed, and

subcellular fractions were subjected to SDS-PAGE followed by
trypsin digestion (supplementary material Fig. S1A). Samples were
processed as described in the Materials and Methods and we were

able to identify and quantify a set of 890 differentially expressed
proteins in the three subcellular fractions from endoglin
transfectants (supplementary material Table S1). A summary of
the top ten downregulated and upregulated proteins in both L-

endoglin and S-endoglin transfectants is shown in supplementary
material Table S2. Interestingly, many of these proteins (marked
with an asterisk) were deregulated in both types of transfectants.

The Venn diagram representation in Fig. 3 depicts the numbers of
upregulated and downregulated proteins compared to values in
mock transfectants. This representation shows that both endoglin

Fig. 1. Expression of endoglin isoforms in monocytes and macrophages upon oxidative-stress-induced senescence and during aging.
(A–C) Oxidative-stress-induced senescence in mouse peritoneal macrophages (Mø). Resident LPMs obtained from the peritoneal cavity of 2-month-old mice
were incubated in the absence or the presence of hydrogen peroxide (150 mM H2O2) for 1 h and stained for the senescence-associated b-galactosidase
activity (A). The positivity for this marker is significantly higher in H2O2-treated cells compared to controls (B). Cells cultured under oxidative stress conditions
present higher levels of S-endoglin than untreated cells, as shown by semi-quantitative RT-PCR; S, S-endoglin; L, L-endoglin (C). (D) Quantitative PCR of
oxidative stress-induced senescent human macrophages. Human monocytes were purified from PBMCs by magnetic cell sorting using anti-CD14 and were
cultured for 3 days. Adherent cells were incubated in the absence or the presence of 150 mM H2O2 and transcript levels were measured. Results are expressed
as fold-induction values with respect to untreated cells. Upon oxidative stress, activated monocytes show an increase in both S-endoglin and PAI-1 senescence
markers. (E,F) Effect of aging on large and small mouse peritoneal macrophages. Mouse LPMs and SPMs were isolated from untreated (E) and zymosan-
treated (F) animals, respectively. Cells were collected from 2-month-old (2m), 6-month-old (6m) and 12-month-old (12m) old mice. Total RNA was extracted
and subjected to quantitative RT-PCR to measure S-endoglin (S-Eng), L-endoglin (L-Eng) or PAI-1 transcript levels. Results were normalized to those in
2-month-old animals. Increased levels of S-endoglin in both LPM and newly recruited SPM (due to zymosan) were observed. The statistical significance of 6-
month and 12-month samples with respect to 2-month-old mice are indicated. *P,0.05; **P,0.01; ***P,0.001.
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isoforms produced the same effect in some of the regulated
proteins, suggesting that this regulation is mediated by their shared

extracellular domain (Fig. 3). In fact, the same regulatory effect
was observed for 166 proteins (26 upregulated and 140
downregulated). By contrast, six proteins showed an opposite
regulation between L-endoglin and S-endoglin transfectants

(upregulated in L-endoglin and downregulated in S-endoglin
cells). Of note, there were a large number of proteins (546) with a
different behaviour in either L-endoglin (106 upregulated and 143

downregulated) or S-endoglin (36 upregulated and 261

downregulated) transfectants, suggesting that this effect depends
on the endoglin cytoplasmic region.

Validation studies and functional pathways analysis of the
proteome list
To confirm the results from the SILAC analysis, we decided to

validate some of the differentially expressed proteins. Nine
representative proteins were selected for this purpose: Smad3, a
transcription factor that mediates TGF-b signalling and whose

activity is modulated by endoglin (Bernabeu et al., 2007);
calmodulin, a Ca2+-binding messenger protein that regulates
inflammation, cell cycle, apoptosis and immune responses

(Racioppi and Means, 2012); and CD13, a myeloid-specific cell
surface alanyl aminopeptidase (Ansorge et al., 2009). In addition,
superoxide dismutase 2 (SOD2), peroxiredoxin-1 (PRDX1),

proline-serine-threonine phosphatase-interacting protein 1
(PSTPIP1), cyclin-dependent kinase 8 (CDK8), integrin a1 and
cathepsin G were also selected. Among these, cathepsin G,
PSTPIP1 and SOD2 are within the top three, top ten and top 16

dysregulated proteins, respectively (supplementary material
Tables S1, S2). Analysis of the differentially expressed protein
list showed that each of these proteins underwent a distinct

regulation (supplementary material Table S1; Fig. 4A).
Validation studies confirmed a similar behaviour by western
blot and flow cytometry experiments (Fig. 4B). Thus, decreased

protein levels of Smad3 and integrin a1 were detected in both
endoglin transfectants, calmodulin and peroxiredoxin 1 protein
levels did not change in L-endoglin transfectants, but were

repressed in S-endoglin cells, and the protein expression of CD13,
cathepsin G and PSTPIP1 was markedly increased in both
endoglin transfectants compared with the mock condition.

Next, we investigated the possible biological functions affected

by endoglin overexpression. The SILAC protein list was subjected
to the bio-informatic Ingenuity pathways analysis (IPA) using the
Ingenuity knowledge base (genes only) as a reference set. The top

25 significantly altered biofunctions are shown for L-endoglin and
S-endoglin U937 transfectants with respect to mock controls in
supplementary material Fig. S2. Among the cellular processes

affected in both types of endoglin transfectants are cellular growth
and proliferation, immune cell trafficking, cell death and survival,
as well as homeostasis of free radicals, all of which are
compromised during aging. To assess whether these cellular

functions were indeed affected in endoglin transfectants, specific
functional assays were carried out. Both endoglin transfectants
show an altered ‘cell trafficking’ profile in the bioinformatics

analysis, most likely due to the marked reduction of integrin levels,
including those of the a1, a5, b1 and b2 subunits (Fig. 5A;
supplementary material Table S1). Integrins are involved in cell

adhesion, a process impaired during cellular senescence. Among
the modulated integrins, integrin a5 is the one that showed the
highest reduction (log2 ratios: L-endoglin, 20.827; S-endoglin,

20.881). Thus, we postulated that the decreased SILAC expression
ratio of integrin a5 would lead to weaker cell adhesion to
fibronectin. Indeed, cell adhesion assays clearly demonstrated an
impaired binding of both endoglin transfectants to fibronectin

compared to mock controls (Fig. 5B). Furthermore, the decreased
cell adhesion could be observed at different adhesion time points
(5–60 min). These data suggest that protein expression of both

endoglin isoforms in monocytic cells reduces their adhesion to the
extracellular matrix.

When cells enter senescence they undergo an arrest during the

cell cycle and lose their capacity to proliferate. The IPA results

Fig. 2. Endoglin expression analysis in U937 transfectants. Stable U937
cell transfectants ectopically expressing L-endoglin (L-Eng), S-endoglin
(S-Eng) as well as mock transfectants (Mock) were analysed by
immunofluorescence flow cytometry with anti-endoglin antibodies (A); the
percentage of positive cells is indicated by the horizontal bar. Semi-
quantitative RT-PCR analysis shows the presence of L-endoglin and S-
endoglin transcripts in transfectants (B).

Fig. 3. Venn diagram representation of the protein identification
summary of all subcellular fractions from L-endoglin and S-endoglin
transfectants. Upregulated and downregulated protein levels are
compared to values in mock transfectants. The same regulatory effect in both
isoforms is observed for 166 proteins (26 upregulated and 140
downregulated). Six of the proteins show an opposite regulation between L-
endoglin and S-endoglin transfectants (upregulated in L-endoglin and
downregulated in S-endoglin cells). A large number of proteins (546) showed
an regulation either by only L-endoglin (106 upregulated and 143
downregulated) or by only S-endoglin (36 upregulated and 261
downregulated) transfectants.
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also yielded ‘cell cycle’ as one of the compromised biological
functions, although the statistical significance was much higher in
S-endoglin (lowest P-value, 4.7661026) than L-endoglin (lowest

P-value, 3.9961024) transfectants. This is in agreement with the
decreased protein expression in S-endoglin, but not in L-endoglin,
transfectants of cyclin-dependent kinases CDK1, CDK7 or

CDK8, as well as in the cell cycle regulators cell division cycle
20 homolog (CDC20) and calmodulin (Fig. 5C; Fig. 4B). Indeed,

the growth rate was significantly slower in S-endoglin
transfectants compared to mock controls or L-endoglin
transfectants (Fig. 5D). This retarded proliferation could be

detected after 24 h of culture and was more evident 48 h after
culture synchronization.

According to the IPA analysis, cell death and survival is

affected in both the endoglin transfectants, although in opposite
ways regarding apoptosis. Thus, pro-apoptotic proteins such as

Fig. 4. Validation of SILAC analysis at individual protein level. (A) SILAC ratio obtained from the proteomic analysis of superoxide dismutase 2 (SOD2),
peroxiredoxin 1, proline-serine-threonine phosphatase-interacting protein 1 (PSTPIP1), Smad3, cathepsin G (Cath-G), CDK8, calmodulin (CaM),
aminopeptidase N (CD13) and integrin a1. The data has been adapted from supplementary material Table S1 and ratios are represented in a linear scale.
Ratios within the 1.5–0.8 range are not included. (B) Western blot and immunofluorescence flow cytometry (bottom row) analyses of mock, S-endoglin (S-Eng)
and L-endoglin (L-Eng) U937 transfectants using specific antibodies. Protein levels were quantified by densitometry of the specific bands relative to b-actin (bA)
in western blot analyses and by measuring the expression index in flow cytometry analyses. Values are represented in the histograms where an arbitrary
value of 1 is given to mock transfectants. The statistical significance with respect to mock cells is indicated. *P,0.05; **P,0.01; ***P,0.001.
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BH3-interacting domain death agonist (BID), DNA fragmentation
factor subunit a (DFFA) or mammalian STE20-like protein
kinase 4 (MST4) have lower expression in L-endoglin, but not in

S-endoglin, transfectants, whereas pro-survival and apoptosis-
protective proteins like gelsolin (GSN) or mitochondrial antiviral

signalling (MAVS) have a higher expression in L-endoglin, but not
S-endoglin, transfectants compared to mock controls (Fig. 5E). By
contrast, in S-endoglin, but not in L-endoglin, transfectants, levels

of pro-survival and anti-apoptosis proteins peroxiredoxin-1
(PRDX1), thioredoxin (TXN), ubiquitin-conjugating enzyme E2

Fig. 5. Functional validation of the pathway analysis. (A,B) Integrin levels and cell adhesion. (A) SILAC ratio obtained from the proteomic analysis of b1
(ITGA1), a5 (ITGA5) and b2 (ITGB2) integrins (supplementary material Table S1) in a logarithmic scale. In both endoglin transfectants, these three integrin
members showed a reduction in their expression levels, with a5 displaying the highest reduction (ITGA5; L-endoglin, 20.827 and S-endoglin, 20.881). (B) Cell
adhesion to fibronectin. Plates were coated with fibronectin or BSA, as indicated. L-endoglin, S-endoglin and mock U937 transfectants were labelled with CFSE,
loaded in the wells and incubated for different times. Each assay was performed in triplicate. The statistical significance of endoglin transfectants versus
mock cells is indicated. *P,0.05. (C,D) Cell-cycle-related proteins and cellular proliferation. (C) SILAC ratio obtained from the proteomic analysis of
cell-cycle-related proteins CDK8, CDK7, cell division cycle 20 homolog (CDC20) and CDK1 (supplementary material Table S1). (D) The proliferation rate of S-
endoglin-overexpressing U937 cells is decreased compared to mock or L-endoglin transfectants. The differences are statistically significant at 24 h (255.67 in
mock and 249.00 in L-endoglin versus 182.33 in S-endoglin; *P,0.05) and at 48 h (551.67 in mock and 566.00 in L-endoglin versus 392.33 in S-endoglin;
***P,0.001). (E,F) Cell survival, apoptosis and proteins involved. (E) SILAC ratio (log2) obtained from the proteomic analysis of BH3-interacting domain death
agonist (BID), DNA fragmentation factor subunit a (DFFA), mammalian STE20-like protein kinase 4 (MST4), gelsolin (GSN), mitochondrial antiviral signalling
(MAVS), peroxiredoxin-1 (PRDX1), thioredoxin (TXN), ubiquitin-conjugating enzyme E2 variant 1 (UBE2V1) and unconventional prefoldin RPB5 interactor 1
(URI1), which are involved in cell survival and apoptosis (supplementary material Table S1). (F) U937 cells were treated with increasing concentrations of GM-
CSF for 4 days and cell survival was determined using an MTT assay. (G,H) Reactive oxygen species and proteins involved. (G) SILAC ratio obtained from the
proteomic analysis of apoptosis-inducing factor mitochondrion-associated 1 (AIFM1), peroxiredoxin-6 (PRDX6), cytochrome b-245 b (CYBB) and
superoxide dismutase 2 (SOD2), which are involved in the homeostasis of free radicals (supplementary material Table S1). (H) U937 cells were incubated with
the ROS indicator H2DCFDA for 30 min in the dark at room temperature, lysed and their fluorescence was measured in a Varioskan Flash reader. Results are
relative to mock transfectants (arbitrary value).
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variant 1 (UBE2V1) and unconventional prefoldin RPB5 interactor
1 (URI1) are reduced compared to mock controls. These data

suggest that S-endoglin transfectants might exhibit a decreased
survival in response to pro-apoptotic stimuli. To test this
hypothesis, the granulocyte-macrophage colony-stimulating
factor (GM-CSF)-induced pro-apoptotic effect in U937 cells

(Okuma et al., 2000) was assessed. As shown in Fig. 5F, S-
endoglin transfectants showed a decreased survival rate in response
to three different doses of the pro-apoptotic cytokine, whereas L-

endoglin transfectants showed a slightly higher, but not significant,
survival rate than control cells.

The SILAC analysis also suggested that the metabolism of

reactive oxygen species (ROS) was affected in both endoglin
transfectants, as illustrated in Fig. 5G. Thus, the redox-
homeostasis-maintaining protein apoptosis-inducing factor

mitochondrion-associated 1 (AIFM1) and the antioxidant
protein peroxiredoxin-6 (PRDX6) were downregulated, whereas
the NADPH oxidase cytochrome b-245 b polypeptide (CYBB)
was upregulated in endoglin transfectants. Based on these data, it

can be postulated that L-endoglin and S-endoglin transfectants
might display an enhanced production of ROS levels. However,
this production might be compensated for in L-endoglin, but not

in S-endoglin transfectants owing to increased protein levels of
superoxide dismutase 2 (SOD2), which might contribute to free
radical scavenging (Fig. 5G). This interpretation is compatible

with the actual measurement of ROS production in U937 cells,
showing that S-endoglin expressing cells display levels of ROS
higher than those of L-endoglin or mock transfectants (Fig. 5H).

Overall, the selected proteins analysed in Fig. 5 represent a
large number of proteins involved in immune cell trafficking,
cellular growth and proliferation, and cell death and survival, as
well as homeostasis of free radicals (supplementary material Fig.

S2; Table S1). Given the high number of deregulated proteins
involved in each of these biological processes, it is unclear what
the specific contribution of each protein is. Rescue experiments of

the biological functions might be useful to dissect the
contribution of each protein. Taken together, these data suggest
that protein expression of both endoglin isoforms affect the

mentioned cellular processes associated with aging, whereas S-
endoglin appears to contribute to cellular senescence.

Endoglin isoforms in macrophage polarization
It is well known that aging impairs macrophage polarization into
M1 and M2 subtypes (Mahbub et al., 2012). Because S-endoglin
is upregulated upon macrophage senescence in vitro and during in

vivo aging (Fig. 1), we assessed the role of both endoglin
isoforms in the phorbol myristate acetate (PMA)-induced
macrophage differentiation of U937 cells (Cabañas et al.,

1990). Thus, PMA-treated L-endoglin, S-endoglin and mock
U937 transfectants were analysed by quantitative PCR to assess
the transcript levels of different M1 and M2 marker genes

(Fig. 6A). The expression of classical M1 interleukin genes, like
IL6, IL23A or IL12A, was higher in mock and L-endoglin
transfectants than in S-endoglin-transfected cells. By contrast,
typical M2 genes, like musculoaponeurotic fibrosarcoma

oncogene homolog B (MAFB), stabilin 1 (STAB1) or serpin
peptidase inhibitor, clade B (SERPINB2) were more highly
expressed in S-endoglin transfectants than in mock cells or L-

endoglin transfectants (Fig. 6A). Therefore, and at the
transcriptomic level, the presence of S-endoglin skews myeloid
cell polarization towards M2, whereas the expression of L-

endoglin does not have an overt influence of the gene expression

of polarization markers, further emphasizing the different
signalling capabilities of both endoglin isoforms.

Next, we assessed the potential influence of both endoglin
isoforms on the functional polarization of myeloid cells using the
PMA-induced differentiation of U937 cells. To that end, the
responsiveness of endoglin transfectants to lipopolysaccharide

(LPS), which favours the acquisition of an M1 phenotype, was
evaluated (Fig. 6B). Analysis of the secreted cytokine profile
showed the release of pro-inflammatory cytokines to the

supernatant in mock, L-endoglin and S-endoglin populations
(Fig. 6B). Overall, endoglin transfectants displayed lower levels
of LPS-induced pro-inflammatory cytokines than mock controls

(Fig. 6B). S-endoglin transfectants showed the lowest
inflammatory response among the three cell types, in agreement
with their M2-like phenotype observed in Fig. 6A. Moreover, L-

endoglin cells displayed an inflammatory profile stronger than
that of S-endoglin transfectants, a finding compatible with their
gene expression pattern (Fig. 6A, upper panel). This M1-like
phenotype associated with L-endoglin is especially evident in the

case of the cytokines C5/C5a, I-309, IL8, IP10 and Rantes.
Next, we investigated the underlying molecular basis for the

role of endoglin in macrophage polarization. It is noteworthy that

activin-A is a key regulator of macrophage polarization that
promotes a proinflammatory phenotype and inhibits the
acquisition of an anti-inflammatory status (Sierra-Filardi et al.,

2011). Because gene expression experiments showed an altered
regulation of activin-A (INHBA) transcription in endoglin
transfectants (Fig. 6A), we assessed the possible deregulated

protein expression of this cytokine in U937 transfectants. Of
note, and for technical reasons, our SILAC protein analysis
did not include the secreted proteome fraction of the transfectants
and therefore, no data about activin-A protein expression

was available. As shown in Fig. 6D, secretion of activin-A
was markedly increased (more than twofold) in L-endoglin
transfectants compared to mock controls. By contrast, activin-A

levels in culture supernatants of S-endoglin transfectants were
clearly reduced relative to controls. Taken together, the
polarization studies suggest that, in monocytic cells, L-endoglin

promotes an M1-like phenotype, whereas S-endoglin favours the
expression of M2 markers and functions.

DISCUSSION
The effect of aging on the innate immune system has a
detrimental effect on the health of elderly individuals. Indeed,
there is a substantial decline in the ability to resist infectious

diseases and in the generation of robust protective immune
responses among the elderly (Bender, 2003; Dace and Apte,
2008). Macrophages are crucial components of the innate

immune system, but their senescence protein markers and
related functions during aging have been poorly investigated.
Here, we have analysed, for the first time, the regulated

expression and function of two endoglin isoforms during
macrophage senescence. We find that S-endoglin is a marker of
macrophage senescence, being upregulated during in vitro

senescence induced by oxidative stress and in vivo aging. This

upregulation preceded that of PAI-1, a well-known senescence
marker, suggesting that S-endoglin is an early marker of
macrophage senescence. Previous studies have also shown that

S-endoglin is a contributor to age-dependent cardiovascular
pathology (Blanco et al., 2008). The upregulation of S-endoglin
unbalances the ratio of S-endoglin to L-endoglin isoforms, in turn

affecting the TGF-b signalling pathways of endothelial cells.
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Both endoglin isoforms interact with the TGF-b signalling
receptors types I (ALK1 and ALK5) and II (TbRII) and

modulate cellular responses to TGF-b (Lastres et al., 1996;
Guerrero-Esteo et al., 2002; Blanco et al., 2008; Velasco et al.,
2008). More specifically, S-endoglin promotes the TGF-b–

ALK5-dependent route, whereas L-endoglin activates the TGF-
b–ALK1-dependent pathway. Interestingly, PAI-1 is a target gene
of the S-endoglin–ALK5 pathway, suggesting that S-endoglin is

upstream of PAI-1. This is in agreement with the upregulation of
S-endoglin and PAI-1 in LPMs, but not in SPMs, and with the

finding that the S-endoglin increase precedes that of PAI-1 in
senescent macrophages.

To date, most of the studies on endoglin have been focused on

the predominant L-endoglin isoform, although substantial levels
of S-endoglin mRNA are coexpressed with L-endoglin in vivo

(Bellón et al., 1993; Pérez-Gómez et al., 2005; Blanco et al.,

Fig. 6. Polarization of endoglin U937 transfectants. (A) Analysis of the M1 and M2 gene profile upon macrophage differentiation. Mock, L-endoglin and S-
endoglin U937 transfectants were treated with PMA for 3 days and specific M1 (IL6, INHBA, IL23A, IL2A and IL1A) and M2 (MAFB, STAB1, SERPINB2, FOLR2

and CD163) marker genes were analysed by quantitative RT-PCR. Results were normalized to the values for mock transfectants. L-endoglin and S-endoglin
transfectants show an M1-like and M2-like phenotype, respectively. (B) U937 transfectants were treated with PMA, and LPS was added for the last 12 h of
incubation. Inflammatory cytokines in the culture medium were analysed with a kit of capture antibodies spotted on nitrocellulose membranes. Expression
of both endoglin isoforms impairs the typical inflammatory response compared to mock cells, although the overall inhibitory effect of S-endoglin was
stronger than that of L-endoglin. Cytokine levels in the absence of stimuli were negligible. (C) Levels of activin-A in culture supernatants from mock, L-endoglin
and S-endoglin transfectants were determined by ELISA. L-endoglin transfectants induce, whereas S-endoglin transfectants inhibit, the expression of activin-A.
The statistical significance of endoglin transfectants versus mock cells (*P,0.05; **P,0.01; ***P,0.001) and of S-endoglin transfectants versus L-endoglin
transfectants (#P,0.05; ##P,0.01; ###P,0.001) is indicated.
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2008). Unfortunately, little is known about the role of endoglin
isoforms in the myeloid lineage. To assess the impact of the two

endoglin isoforms in monocytic cells, stable transfectants of
U937 cells overexpressing human L-endoglin or S-endoglin were
subjected to a proteomic analysis using the SILAC technology.
The biological functions affected by endoglin overexpression

were studied using IPA. This showed that, among the altered
biofunctions, there were cellular processes affected in both
types of endoglin transfectants, including cellular growth and

proliferation, immune cell trafficking, and cell death and survival,
as well as homeostasis of free radicals, all of which are
compromised during aging. A common feature of L-endoglin

and S-endoglin transfectants is their general decrease of integrin
levels (at least a1, a5, b1 and b2 integrin subunits), in agreement
with their decreased fibronectin-dependent cell adhesion. These

data not only show that expression of both endoglin isoforms in
monocytic cells reduces their adhesion to the extracellular matrix,
but that it also impairs their trafficking, which necessarily
involves cell adhesion. Supporting this interpretation, studies in

different cell types have shown that overexpression of either L-
endoglin or S-endoglin leads to reduced cellular migration
(Guerrero-Esteo et al., 1999; Liu et al., 2002; Conley et al.,

2004; Bernabeu et al., 2007). Furthermore, the upregulation of S-
endoglin during macrophage senescence is in line with the
decreased migration of myeloid cells, as well as the impaired

anti-inflammatory response, observed during aging (Shaw et al.,
2010; Li, 2013). Endoglin expression is finely regulated during
hematopoietic development and differentiation. For example,

hematopoietic stem cells express endoglin prior to a
downregulation during cell development and mobilization
(Chen et al., 2003). In addition, endoglin is markedly
upregulated during monocyte activation to macrophages

(Lastres et al., 1992). Thus, it can be postulated that the
increased expression of endoglin is associated with resident
niches of hematopoietic stem cells or tissue macrophages.

Accordingly, the resident large macrophages of the peritoneal
cavity are mostly senescent (Cassado Ados et al., 2011) and show
increased endoglin expression during aging (Fig. 1E).

The shared behaviour of L-endoglin and S-endoglin U937
transfectants regarding integrin expression and cell adhesion can
probably be explained by the fact that the extracellular domain of
endoglin is the same in both isoforms. By contrast, other cellular

functions were differentially affected by L-endoglin or S-
endoglin expression, suggesting that these functions are
dependent on the distinct cytoplasmic tail of each endoglin

isoform. Thus, and at variance with L-endoglin, S-endoglin
expression led to decreased cellular proliferation and a decreased
survival response to GM-CSF-induced apoptosis, as well as to

increased oxidative stress (Fig. 5). This phenotype of S-endoglin-
expressing cells fits well with that of cellular senescence,
suggesting that S-endoglin is not only a marker of macrophage

senescence but also contributes to the compromised status of
macrophage functions during aging (Allen, 1998; Colantoni et al.,
2001; Lloberas and Celada, 2002; Plowden et al., 2004).

We also describe for the first time that endoglin expression

alters the differentiation and polarization processes of
macrophages (Fig. 6). Polarization of macrophages is crucial in
the immune response to pathogens, and in tumour progression,

autoimmunity and fibrosis (Werner and Alzheimer, 2006; Benoit
et al., 2008); this polarization activity is impaired during aging,
leading to a deficient macrophage function and activation

(Gomez et al., 2005; Pello et al., 2011). Macrophages can be

subdivided into classical pro-inflammatory M1 macrophages, or
alternative anti-inflammatory M2 macrophages (Mantovani et al.,

2004). Importantly, these macrophage subpopulations are capable
of switching phenotypes based on the stimuli (Arnold et al.,
2007). Our polarization studies suggest that in monocytic U937
cells, L-endoglin promotes an M1-like phenotype, whereas S-

endoglin favours the expression of M2 markers (Fig. 6).
Classically activated M1 macrophages secrete pro-inflammatory
cytokines, such as tumor necrosis factor (TNF-a), interleukin-12

(IL-12) and the TGF-b family member activin-A, and exert anti-
tumoricidal activity. By contrast, activated M2 macrophages
secrete anti-inflammatory cytokines, such as IL-4, IL-10 and

TGF-b1, which promote age-associated processes, such as
fibrosis, atherosclerosis and tumour growth (Mantovani et al.,
2004; Pello et al., 2011). These findings suggest that S-endoglin

might contribute to the abnormal inflammatory response
associated with aging by inducing an M2-like phenotype in
macrophages.

The opposing behaviour of L-endoglin versus S-endoglin

regarding the M1–M2 polarization is clearly illustrated by the
basal secretion of activin-A in U937 transfectants (Fig. 6D).
Activin-A expression is upregulated on activation and in response

to inflammatory mediators (Jones et al., 2007; Robson et al.,
2008; Phillips et al., 2009), but is suppressed by anti-
inflammatory glucocorticoids (Yu et al., 1996; Scutera et al.,

2008). We find that production of activin-A is markedly increased
by L-endoglin and clearly reduced by S-endoglin, in agreement
with the M1-like and M2-like phenotypes, respectively. Of note,

activin-A is a key modulator of the polarization (Sozzani and
Musso, 2011), whose activity depends on the species and
environmental context. Recently, it has been described that
activin-A contributes to M1 macrophage polarization and

prevents the expression of M2-specific markers in humans
(Sierra-Filardi et al., 2011) Interestingly, a steep increase in
activin-A levels during aging, especially in the last decades of life

has been described in healthy adult men and post-menopausal
women (Baccarelli et al., 2001). Because activin-A is a ligand of
endoglin (Barbara et al., 1999), the functional interplay between

the S-endoglin and activin-A in senescent macrophages deserves
to be further investigated.

MATERIALS AND METHODS
Cell culture and SILAC
Stable transfectants of endoglin isoforms (L and S) and mock condition

(M) in the U937 cell line were cultured as described previously (Lastres

et al., 1996). For the SILAC assays, cells were cultured in specific

SILAC-ready RPMI 1640 (Thermo Scientific) supplemented with 10%

dialysed fetal bovine serum, 100 U/ml streptomycin/penicillin at 37 C̊

under a humidified atmosphere with 5% CO2. Metabolic labelling of

transfectants with non-radioactive isotopes was carried out as follows: (1)

Light-isotope labelling, L-Lys + L-Arg; (2) medium-isotope labelling,

[13C6]L-Lys + [13C6]L-Arg; and (3) heavy-isotope labelling,

[13C6],[15N2]L-Lys + [13C6],[15N4]L-Arg (Thermo Scientific). Cell

viability was checked by Trypan Blue staining and proliferation was

measured in a Neubauer chamber. At a population doubling level of six (a

label up to 95% is assumed), equal numbers of cells were mixed in the

direct combination (MockLight+L-EngHeavy+S-EngMedium) and swapping

(MockMedium+L-EngLight+S-EngHeavy). Then, protein enrichment was

made after subcellular fractioning into membrane, cytoplasmic and

nuclear compartments, using the subcellular protein fractionation kit for

cells in culture (Thermo Scientific). Fractions were individually loaded

and separated in non-reducing and queratin-free SDS-PAGE. After

staining with colloidal Coomassie (Invitrogen), the entire gel lane was cut

into 10–14 pieces of equal size and subjected to in-gel tryptic digestion
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essentially as described previously (Wilm et al., 1996). Briefly, the gel

pieces were destained and washed and, after dithiothreitol reduction and

iodoacetamide alkylation, proteins were digested with porcine trypsin

(sequencing grade modified; Promega, Madison, WI) overnight at 37 C̊.

The resulting tryptic peptides were extracted from the gel pieces with

30% acetonitrile and 0.3% trifluoroacetic acid, and the mixture was

evaporated in a vacuum centrifuge to remove the organic solvents. For

validation studies, U937 cell transfectants were grown in standard RPMI

medium supplemented with 10% heat-inactivated fetal calf serum (FCS),

2 mM L-glutamine, and 100 U/ml penicillin/streptomycin.

Protein mass spectrometry analysis
Briefly, peptides were loaded onto a C18-A1 ASY-Column 2-cm

precolumn (Thermo Scientific) and then eluted onto a Biosphere C18

column (NanoSeparations) and separated using a 180-min gradient

[170 min with 2–35% acetonitrile (ACN) gradient using buffer A, 0.1%

formic acid, 2% ACN; and buffer B, 0.1% formic acid, 99.9% ACN] at a

flow-rate of 250 nl/min on a nanoEasy HPLC (Proxeon) coupled to a

nanoelectrospray ion source (Proxeon). Mass spectra were acquired on

the LTQ-Orbitrap Velos (Thermo Scientific) in the positive ion mode.

Singly charged ions and unassigned charge states were rejected. After

mass spectrometry analysis, raw files were searched against the human

SwissProt database (SwissProt_57.15.fasta) using the MASCOT search

engine (version 2.3, Matrix Science) through Proteome Discoverer

(version 1.3.0.339) (Thermo). Identified peptides were validated using

Percolator algorithm (Käll et al., 2007) with a q-value threshold of 0.01,

and their relative quantification was performed using Proteome

Discoverer software. Light, medium and heavy spectra of the peptides

were analysed to get the protein level ratios based on the detected relative

abundance (supplementary material Fig. S1B). The final list of

differentially expressed proteins was obtained by correcting the ratio

deviation among samples. Thus, a truncated mean (or trimmed mean)

was applied to initially obtained ratios (supplementary material Fig.

S1C). In addition, individual peptide analysis using the Proteome

Discoverer software was carried out to correct for the weak, but

significant, arginine to proline metabolic switch (data not shown). For

each SILAC triplet (light, medium and heavy), Proteome Discoverer

determines the area of the extracted ion chromatogram and computes the

ratios of different combinations – heavy:light and medium:light (direct)

and light:medium and heavy:medium (swapping). Protein ratios are then

calculated as the median of all the quantified unique peptides belonging

to a certain protein. The final list was manually filtered excluding

proteins between 1.5 and 0.8 ratio and/or with different values or poor

peptide resolution in direct or swapping experiments. Values are

presented and analysed as the log2 of the obtained average ratio of

direct:swapping (L-Eng:Mock and S-Eng:Mock). The logarithmic ratio

distribution of the SILAC raw data after normalization respect to mock

transfectants is shown in supplementary material Fig. S3. As expected,

most of the identified proteins for both transfectants (.4000) have a

value around zero (no change compared to Mock). The definitive protein

list with the average of ratios was analysed using IPA software (Ingenuity

Systems). The protein list was clustered on a Venn diagram in order to

identify proteins that were either significantly up or down expressed in

both L-endoglin and S-endoglin transfectants compared to controls. The

image was obtained by an online tool developed in the Centro Nacional

de Biotecnologı́a (CNB, CSIC, Madrid) (Oliveros et al., 2000).

Immunodetection assays
For western blot analysis, transfectant cells were lysed in lysis buffer

(10 mM Tris-HCl pH 8, 150 mM NaCl, 1% NP-40, and a cocktail of

protease and phosphatase inhibitors) at 4 C̊. Lysate aliquots containing

40 mg protein were separated by SDS-PAGE under non-reducing

conditions. After separation, samples were electrotransferred onto a

PVDF membrane using the iBlotH System (Invitrogen). Immunodetection

was carried out by probing the membrane with rabbit polyclonal

antibodies against Smad3 (sc-6202), calmodulin (sc-5537), cathepsin-G

(sc-6512), CDK8 (sc-1521), PRX1 (sc-7381), PSTPIP1 (sc-390727) (all

Santa Cruz Biotechnology) or superoxide dismutase (S5069, Sigma)

overnight at 4 C̊, using a mouse monoclonal anti-b-actin antibody (AC-

15, Sigma) as a loading control, followed by incubation with the

corresponding horseradish-peroxidase-conjugated secondary antibody.

Protein bands were revealed using the SuperSignal chemiluminescent

substrate (Pierce, Rockford, IL, USA) and quantified using the Molecular

ImagerH Gel DocTM XR+ System with Image LabTM Software. For

immunofluorescence flow cytometry, cells were collected, centrifuged

and washed twice with 4 C̊ PBS. After blocking with 2% human AB+

serum in PBS for 30 min, cells were incubated with the mouse

monoclonal anti-endoglin (P4A4; Developmental Studies Hybridoma

Bank, University of Iowa), anti-CD13 (sc-53970, Santa Cruz

Biotechnology) or anti-a1 integrin (TS2/7; Francisco Sanchez-Madrid,

Hospital de La Princesa, Madrid, Spain) antibodies, followed by

incubation with Alexa-Fluor-488-conjugated goat anti-mouse-Ig

antibody (Invitrogen). Samples were analysed in an EPICS Coulter XL

flow cytometer. Results are expressed as an expression index, calculated

as the percentage of positive cells multiplied by their mean fluorescence

intensity. For activin-A measurements, culture supernatants from U937

cells were collected and centrifuged at 3000 g for 10 min to pellet

cellular debris. The levels of activin-A in the supernatants were

determined using the human Activin-A Quantikine ELISA kit

(ARY005; R&D Systems), following the manufacturer’s instructions.

Proliferation, survival and apoptosis assays
For proliferation assays, U937 cells were cultured at 1.26105 cells/ml in

RPMI 1640 medium supplemented with 10% FCS and growth was

observed at 24, 48 and 72 h. Proliferation measurements were carried out

by cell counting after Trypan Blue staining in a Neubauer chamber or in a

TC10 automated cell counter (BioRad). Each measurement was performed

in triplicate. For survival assays, U937 cells were seeded at 46104–86104

cells/ml in a 96-well plate and induction of apoptosis was carried out by

culturing the cells in the presence or absence of GM-CSF cytokine (10, 50

and 100 ng/ml) for up 4 days. Cultured cells were harvested and incubated

with MTT (0.25 mg/ml; Sigma) at 37 C̊ under 5% CO2 for 2 h. Then, the

plate was centrifuged at 100 g for 10 min and, after discarding the

medium, precipitated formazan crystals, generated by a differential activity

of succinate dehydrogenase, were resuspended in DMSO. The absorbance

was measured at 595 nm, followed by a background subtraction at 630 nm,

in an IEMS Reader (Thermo Scientific).

Measurement of ROS
For detection of ROS, U937 cells were incubated in 10 mM 29,79-

dichlorodihydrofluorescein diacetate (H2DCFDA) (Invitrogen, Paisley,

UK) for 30 min at room temperature in the dark. Samples were washed

twice and finally resuspended in NaOH 0.25 M to determine the

intracellular ROS levels. Fluorescence in lysates was measured in a

Varioskan Flash spectral scanning multimode reader (Thermo Scientific).

The relative fluorescence was normalized to the total protein content in

each condition. The protein concentration was determined by the

bicinchoninic acid assay (BCA protein assay kit, Pierce, Rockford, IL,

USA) using BSA as standard and following the manufacturer’s

instructions.

Cell adhesion assay to fibronectin
For cellular adhesion to fibronectin-coated surfaces, 24-well plates were

coated with 1 mg/cm2 of human fibronectin in 500 ml (Sigma) at 37 C̊ for

1 h. A total of 500,000 cells were washed twice in PBS, labelled with the

fluorescence probe carboxyfluorescein diacetate, succinimidyl ester

(CFSE, Invitrogen) and assayed. After the indicated time, cells

attached to the wells were washed and then lysed (25 mM Tris-

phosphate pH 7.8, 2 mM DTT, 2 mM CDTA, 10% glycerol, 1% Triton

X-100). Fluorescence in lysates was measured in a Varioskan Flash

spectral scanning multimode reader (Thermo Scientific).

Oxidative-stress-induced senescence in human and
mouse macrophages
Buffy coats were obtained from the Centro de Transfusion de la

Comunidad de Madrid, after informed consent and according to
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institutional guidelines. Human monocytes from four different donors

were purified from peripheral blood mononuclear cells (PBMCs) by

magnetic cell sorting using CD14 Microbeads (Miltenyi Biotec).

Monocytes (>95% CD14+ cells) were cultured at 0.56106 cells/ml for

three days in RPMI medium supplemented with 10% FCS (complete

medium) at 37 C̊ under a humidified atmosphere with 5% CO2. Resident

LPMs were isolated from mice as described below and then were incubated

in complete medium for 2 h at 37 C̊ under 5% CO2. Then, the medium was

removed and plates were washed with PBS to eliminate cells in suspension

and enrich for adherent cells. After adherence, the typical change in

morphology was observed in human and mouse macrophages. To induce

oxidative stress, H2O2 at 150 mM was added for 1 h, then the cells were

washed twice with PBS and cultured for an additional 12 h in normal fresh

medium. Cellular senescence was monitored by senescence-associated b-

galactosidase activity (SA-b-Gal), as previously described (Haendeler

et al., 2004; Blanco et al., 2008; Cassado Ados et al., 2011).

Macrophage differentiation and polarization of U937 cells
Stable U937 transfectants were cultured at 26105 cells/ml for three days in

complete RPMI with or without 50 nM phorbol-12-myristate-

13-acetate (PMA). Upon treatment with PMA, cells underwent growth

arrest and a change of morphology owing to their attachment to the

substrate. The differentiation to macrophages was confirmed using

immunofluorescence flow cytometry by measuring the increased surface

expression of CD11b (Bear-1 antibody; ab36939, Abcam). For polarization

studies, U937 stable transfectants were differentiated to macrophages with

PMA as above, but adding 25 mg/ml of LPS for the last 12 h of PMA

treatment. The amount of the cytokines present in the supernatant after the

LPS/PMA treatment was analysed with the Human Cytokine Array panel A

(R&D Systems), according to the manufacturer’s instructions.

Animals
Specified pathogen-free C57Bl/6J male 8–48-week-old mice were used in

the experiments. All animal procedures were in accordance with the

guidelines for animal use published by Conseil de l’Europe (No. L358/1-

358/6, 1986), Spanish Government (BOE No. 67, pp. 8509–8512, 1988, and

BOE No. 256, pp. 31349–31362, 1990) and were approved by the National

Research Council of Spain (CSIC) Animal Care and Use Committee. In

order to recruit SPMs, mice were intraperitoneally injected with 1 mg of

Zymosan A from Saccharomyces cerevisiae (Z4250, Sigma-Aldrich) in

0.5 ml of sterile PBS. For the isolation of peritoneal cavity cells (both

recruited SPMs and tissue-resident LPMs) all animals were deeply

anaesthetized with isofluorane and killed by cervical dislocation. After

injecting 10 ml of sterile PBS into the peritoneal cavity, a massage was

performed for a few seconds and ,8–9 ml of the injected liquid was

recovered. Then, always under sterile conditions, the cell suspension was

transferred to a 15-ml tube and centrifuged at 250 g for 6 min. The pellet

was resuspended in 1 ml DMEM with 10% FCS, and the cell suspension

was divided in wells of a P-6 plate and brought to a final volume of 2.5 ml of

DMEM with 10% FCS. Cells were incubated for 2 h at 37 C̊ under 5% CO2.

After this time, the medium was removed and washed with 3 ml of PBS to

remove the suspended cells and enrich the sample with adherent cells

(macrophages from the peritoneal cavity). The cells were maintained in

culture in DMEM with 10% FCS and the medium was changed every 24 h.

Quantitative real-time RT-PCR
Total RNA was isolated from cells using the SpeedTools total RNA

extraction kit (Biotools) and reverse-transcribed using iScript cDNA

Synthesis kit (BioRad). The cDNA was amplified in triplicates using

specific oligonucleotides. For experiments with U937 cells, oligonucleotides

for selected genes were designed according to the Universal Probe Library

System (Roche Diagnostics) for quantitative real-time PCR (qRT-PCR). For

the U937 polarization and phenotype screening, the levels of typical M1 or

M2 genes were normalized to those of the TBP (TATA box binding

protein), HPRT1 (hypoxanthine phosphoribosyltransferase 1) and RPLPO

(large ribosomal protein) housekeeping genes. For experiments with

human and mouse macrophages, the cDNA was used as a template for real-

time PCR performed with specific primers. Mouse primers were: Pai1

(FW, 59-GTCTTTCCGACCAAGAGCAG-39; RV, 59-GACAAAGGCT-

GTGGAGGAAG-39); S-endoglin and L-endoglin (FW, 59-GACCTGTCT-

GGTAAAGGCCTTGTCCTG-39); L-endoglin (RV, 59-CTGGGGCCAC-

GTGTGTGAGAATAG-39); S-endoglin (RV, 59-CTGAGGGGCGTGGG-

TGAAGG-39). Human primers were: PAI1 (FW, 59-CAGACCAAGAGC-

CTCTCCAC-39; RV, 59-ATCACTTGGCCCATGAAAAG-39); L-endoglin

and S-endoglin (FW, 59-ACCTGTCTGGTTGCACAAGCAAAGG-39); L-

endoglin (RV, GGGAACCGCGTGTGCGAGTAG-39); S-endoglin (RV-

59-GGGAACCTGGGAGCGGGG-39). Primers for human and mouse 18S

rRNA were: FW, 59-CTCAACACGGGAAACCTCAC-39; and RV, 59-

CGCTCCACCAACTAAGAACG-39. Samples were amplified using the iQ

SyBR-Green Supermix (BioRad). Amplicons were detected using an iQ5

real-time detection system (BioRad). Transcript levels were normalized to

18S levels.

Statistical analysis
All the experiments were performed at least three times. Statistical

analyses were performed on GraphPad Prism 5 for Windows (La Jolla,

CA). All the statistical data are presented as mean6s.d. Statistical

significance was calculated using an unpaired, two-tailed Student’s t test

or, when appropriate, by ANOVA followed by Bonferroni’s post hoc

testing. A value of P,0.05 was considered significant.
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Lastres, P., Bellon, T., Cabañas, C., Sanchez-Madrid, F., Acevedo, A., Gougos,
A., Letarte, M. and Bernabeu, C. (1992). Regulated expression on human
macrophages of endoglin, an Arg-Gly-Asp-containing surface antigen. Eur.
J. Immunol. 22, 393-397.

Lastres, P., Martı́n-Perez, J., Langa, C. and Bernabéu, C. (1994).
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López-Novoa, J. M. and Bernabeu, C. (2010). The physiological role of endoglin
in the cardiovascular system. Am. J. Physiol. 299, H959-H974.

Mahbub, S., Deburghgraeve, C. R. and Kovacs, E. J. (2012). Advanced age
impairs macrophage polarization. J. Interferon Cytokine Res. 32, 18-26.

Mantovani, A., Sica, A., Sozzani, S., Allavena, P., Vecchi, A. and Locati, M.
(2004). The chemokine system in diverse forms of macrophage activation and
polarization. Trends Immunol. 25, 677-686.

O’Connell, P. J., McKenzie, A., Fisicaro, N., Rockman, S. P., Pearse, M. J. and
d’Apice, A. J. (1992). Endoglin: a 180-kD endothelial cell and macrophage
restricted differentiation molecule. Clin. Exp. Immunol. 90, 154-159.

Okuma, E., Saeki, K., Shimura, M., Ishizaka, Y., Yasugi, E. and Yuo, A. (2000).
Induction of apoptosis in human hematopoietic U937 cells by granulocyte-
macrophage colony-stimulating factor: possible existence of caspase 3-like
pathway. Leukemia 14, 612-619.

Oliveros, J. C., Blaschke, C., Herrero, J., Dopazo, J. and Valencia, A. (2000).
Expression profiles and biological function. Genome Inform. Ser. Workshop 11,
106-117.

Pello, O. M., Silvestre, C., De Pizzol, M. and Andrés, V. (2011). A glimpse on the
phenomenon of macrophage polarization during atherosclerosis.
Immunobiology 216, 1172-1176.
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Sierra-Filardi, E., Puig-Kröger, A., Blanco, F. J., Nieto, C., Bragado, R.,
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SUPPLEMENTARY FIGURE LEGENDS 

 

Supplementary Figure 1. SILAC labelling and analysis strategy in endoglin 

monocytic transfectants. U937 transfectants were harvested and labelled with light 

(Lys, Arg; C12), medium (Lys, Arg; C13) and heavy (Lys, Arg; C13-N15) amino acids 

by culturing in SILAC media. Equal number of cells, in different combinations, were 

mixed, lysed and fractionated for individual membrane, cytoplasm and nuclear analysis 

using SDS-PAGE followed by trypsin digestion. Then, protein identification and 

quantitation was carried out by liquid chromatography and mass spectroscopy (LC-MS) 

(A). Light, medium and heavy spectra of the peptides was obtained in an LTQ Orbitrap 

equipment and analysed to get the protein level ratios based on the detected relative 

abundance (B). Labelling efficiency was checked and ratios where manually normalized 

in all subcellular fractions to correct the mixing-labelling variability (C).  

 

Supplementary Figure 2. Ingenuity pathway analysis of SILAC proteome list. The 

bio-informatic Ingenuity Pathways Analysis (IPA) of the final protein list obtained after 

SILAC analysis is shown. The Ingenuity Knowledge Base (Genes Only) was used as a 

reference set. Direct and indirect relationships for human genes with high confidence in 

experimentally observed interactions were analyzed. Predicted networks (with high 

confidence) were also checked. Top 25 significantly altered biofunctions are shown for 

L-endoglin (A) and S-endoglin (B) U937 transfectants respect to mock controls. 

*Illustrative common biofunctions affected in both transfectants; #Example of specific 

biofunction affected in L-endoglin transfectants. The list of biofunctions is ordered from 

top to bottom according to their statistical significance (between p<1.19x10-9 and 

p<2.98x10-2). The area in the pie diagram relates to the number of altered proteins in 

each biofunction. 

 

Supplementary Figure 3. Quantitative analysis of protein expression in endoglin 

U937 transfectants. Logarithmic ratio distribution of the SILAC raw data after 

normalization respect to mock transfectants. Most of the identified proteins for both 

transfectants (>4,000) have a value close to zero. Broken arrows indicate the 

approximate cut-off values (0.585 and -0.322).  

Journal of Cell Science | Supplementary Material



Supplementary Table 2. SILAC ratios of the top ten most deregulated 
proteins in L-endoglin and S-endoglin transfectants. 

 

Logarithmic SILAC ratios are shown. Asterisks indicate proteins down- or up-regulated in both 

endoglin transfectants. Please note that not all the marked proteins of a given transfectant are 

shared in the top ten list of the other one (See Supplementary Figure 1). ANXA2, Annexin A2; 

APPL1, DCC-interacting protein 13-alpha; ARRB1, Beta-arrestin-1; BRD3, Bromodomain-

containing protein 3; C11orf31, Uncharacterized protein C11orf73; CC2D1A, Coiled-coil and C2 

domain-containing protein 1A; CDA, Cytidine deaminase; COPS5, COP9 signalosome complex 

subunit 5; CST7, Cystatin-F; CSTG, Cathepsin G; CTR9, RNA polymerase-associated protein 

CTR9 homolog; DAK, Bifunctional ATP-dependent dihydroxyacetone kinase/FAD-AMP lyase 

(cyclizing); DCTPP1, dCTP pyrophosphatase 1; DHPS, Deoxyhypusine synthase; FBXO4, F-box 

only protein 4; GGCT, Gamma-glutamylcyclotransferase; IL4I1, L-amino-acid oxidase; IQGAP3, 

Ras GTPase-activating-like protein IQGAP3; LIG1, DNA ligase 1; LRPAP, Alpha-2-macroglobulin 

receptor-associated protein; MARS2, Methionyl-tRNA synthetase mitochondrial; NR2F, COUP 

transcription factor 2; NR2F2, COUP transcription factor 2; PRTN3, Myeloblastin; PSTPIP1, 

Proline-serine-threonine phosphatase-interacting protein 1; PSTPIP2, Proline-serine-threonine 

phosphatase-interacting protein 2; RAB27B, Ras-related protein Rab-27B; RPL15, 60S 

ribosomal protein L15; S100A11, Protein S100-A11; SRP19, Signal recognition particle 19; 

SRP54, Signal recognition particle 54 kDa protein; TES, Testin; TRIM27, Zinc finger protein RFP; 

UBASH, Ubiquitin-associated and SH3 domain-containing protein B; UBASH3B, Ubiquitin-

associated and SH3 domain-containing protein B; VIM, Vimentin. 

Proteins 
MARS2 
ARRB1 
CTSG* 
PSTPIP2* 
DAK 
IL4I1 
SRP54 
NR2F2 
CST7* 
PSTPIP1 

Proteins Ratio
LRPAP1* -1.260
TES -1.248
UBASH3B -1.239
APPL1 -1.229
VIM* -1.220
LIG1* -1.220
DHPS -1.209
FBXO4 -1.208
RPL15 -1.202
DCTPP1* -1.143

Proteins Ratio
CTSG* 2.817
PRTN3* 2.687
PSTPIP2* 2.435
SRP19 2.293
TRIM27 2.026
CDA 1.980
NR2F2 1.633
COPS5 1.419
C11orf31 1.410
CST7* 1.381

Proteins Ratio
ANXA2* - 1.810
UBASH3B - 1.678
GGCT - 1.556
RAB27B - 1.393
CC2D1A - 1.335
CTR9 - 1.292
S100A11 - 1.266
IQGAP3 - 1.262
LIG1* - 1.239
BRD3 -1.218

L- Endoglin 

UP DOWN

S-Endoglin 

UP DOWN

Ratio
2.875
2.853
2.808
2.133
1.974
1.887
1.827
1.762
1.711
1.680

Supplementary Table 1. List of differentially expressed proteins obtained from
SILAC analysis.

Download Table S1
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