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Dear editor, 
 
 

We appreciate your comments on our work and the chance to submit the revised 

version of our paper. Also, we are thankful to bring us the reviewer’s comments, which 

helped us to make our paper better. 

As you asked, we have improved the literature survey with papers from different 

journals. We would like to emphasize that, from our view, the high ASR values found in our 

research does not necessarily compromises the other results (activation energies and 

microstructural features), because we were able to separate the correlations between these 

properties and the microstructural and interfacial characteristics, as you may see in the 

revised version. Besides, this is the first research paper concerning the use Airbrushed 

Solution Combustion method and we believe that the IJHE is the perfect journal for this 

publication, because it was developed aiming the fabrication of fuel cell electrodes. 

We kindly ask you consider the publishing of our revised paper and we are very 

thankful for the opportunity to publish this work in such prestigious journal. 

 

Thank you. 

 

Diego Pereira Tarragó, PhD. 
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REVISOR #1 

- “First, the reported cathode performances are not advantageous as compared with 

traditional ones.”  

“The correlation between the method and the microscopic structure of the cathode is 

not well established.” 

R: You are correct, the resultant electrode ASR is higher than those found in the 

literature. That is what we stated in the paper, as you may see. On the other hand, we 

believe that the results of activation energies and approach given in the discussion, 

together with the use a novel deposition method, are worth of publishing. In the revised 

paper, we made an effort to deepen the arguing in the correlation between 

microstructure and electrochemical properties by adding more recent literature in the 

interpretation of the results. 

 

- „The characterizations are too rough, and clear presentation is lacking.” 

R: The description of the experimental procedure, section 2.2, was modified in the 

revised version and a scheme of the half-cell testing was added. 

 

REVISOR #2 

- “The cross-section SEM images of as-prepared cathode and surface SEM images of 

the measured one should be presented in the paper so that we can evaluate the 

change of cathode and judge whether it is robust enough during the operation.” 

R: We agree that this can give important information; unfortunately only one LSM/YSZ 

half cell sample was prepared for this study. We hope that this could be accepted in the 

revised version. 

 

- “In the experimental section, author mentioned that the ASC technique detail using in 

this paper could not be given for patent right reason, thus the patent number should be 

mentioned herein.” 

*Detailed Response to Reviewers
Click here to download Detailed Response to Reviewers: Response to reviewers.pdf

http://ees.elsevier.com/he/download.aspx?id=2021272&guid=1e62e323-95ba-42d7-8984-6bed1d5fa141&scheme=1


R: In section 2.1, when the ASC method is mentioned, the patent number is referenced 

right after, in the reference nº 24. Nevertheless, we inserted the patent number further 

in the same paragraph. 

 

- “The LSM cathode prepared using ASC method possesses smaller particle and high 

porosity, it seems that the electrode may present high cathode performance in SOFC 

or half-cell test, however, the obtained ASR value is not as low as expect, why?” 

R: By adding new references, we tried to make a more clear explanation on the high 

ASR founded in our sample. You may see this discussion on the paragraphs right 

before the conclusions. 

 

- “The sentence, "It is related to the cathode/electrolyte charge and mass transfer from 

the LSM films to the YSZ", is not a proper expression. Charge transfer is a right 

concept to describe electrochemical reaction process, however, mass is a 

transportation process in fact.” 

R: This sentence was modified in the revised version, according to your comment. 

 

- “There is an obvious change between 550 C and 650 C as shown in Fig. 6. Author 

listed many related literature data herein, but mechanism explanation according to this 

work is absence in fact since the micro-structure of LSM cathode in this work is quite 

different from the references, while it may be changed during heating-up or cooling-

down process to influence the electrode performance.” 

R: The electrode processes mechanism proposed in our work is based on the reports 

of many authors, considering the similarities between the electrochemical behaviors of 

similar samples. Yet, changes in the microstructural features of the LSM catalyst can 

induce modifications in the activation energy values. In our paper the reaction 

mechanism adopted is shown in Fig. 5, together with a detailed explanation on the 

relation between experimental data and the fit and simulation process. 

REVISOR #3 

- “This manuscript concerns of using airbrush method for preparing thin film LSM 

cathode. Similar method for cathode preparation has been reported 



in  https://doi.org/10.4028/www.scientific.net/MSF.727-728.669. It is interesting as an 

alternative way for fabricating SOFC cathodes.” 

R: The paper is interesting, but it deals with an airbrushed LSM suspension deposited 

on an YSZ substrate and fired at high temperature (1200°C), and focus more on the 

rheological properties of the organic suspension, rather than the microstructure and 

electrochemical performance. The method used in our work uses the deposition of an 

aqueous monophasic solution and a low temperature thermal treatment (850°C). 

Nevertheless, we added the mentioned paper as a reference in the revised version, as 

a comparison for the film thickness. 

 

- “In the characterization part, how the impedance been measured, how is the sample 

looks like, is it a symmetrical cell? what is the material for the counter electrode?” 

R: In the revised version we enhanced the description of the experimental procedure 

carried out in the impedance analysis and added a schematic drawing of the sample 

testing. The YSZ/LSM sample is a half-cell, as mentioned many times along the paper 

and also in the title of section 2.1. The counter electrode is the contact electrode itself, 

which is a gold sputtered layer in the YSZ side of the half-cell. 

 

- “In Figure 2a, it is clear that the YSZ subtract has quite a rough surface, would this 

influence the interface between LSM nano particle and the substrate, how would this 

influence the thin file preparation and the electrocardiogram performance?” 

R: Yes. We analyzed this point more carefully in the revised version and, not only the 

surface roughness, but also the existence of lamination cracks in the YSZ bulk could 

have been responsible for the high ASR value measured. 

 

- “If the LSM film was made at 850C, and is there any degradation/particle growth 

during testing at 850C?” 

R: We believe that it was not the case. We based ourselves in our earlier work where 

the sintering properties of LSM nanopowders were studied and also another reference 

was added to the revised version. 

 

https://doi.org/10.4028/www.scientific.net/MSF.727-728.669


- “In 3.3 How did the author get the LSM/YSZ half cell EIS spectra(Figure 4.a)? This 

should be detailed also in the characterization part.” 

R: In the revised version we enhanced the description of the experimental procedure 

carried out in the impedance analysis. 

 

- “Au was sputtered as contact electrodes, what is the thickness of the Au, would the 

Au influence the electrode performance?” 

R: We have tested the influence of the gold cover thickness in the EIS results. With no 

or very thin Au cover (80 nm), an extra impedance arc was founded in the Nyquist 

plots. While thicknesses of ~350 nm eliminated this extra arc, and that is what was 

used in the paper. 

 

- In Figure 4.a, the author use two RQ element for modeling of the EIS, how the author 

determine the Rsuf and Rint? usually numerical modelling does not necessarily 

correlated to the physical process, beside temperature variation, O2 partial pressure 

variation should be performed to better separate the Rint and Rsuf process. 

R: We agree that O2 pressure variation could bring more on the electrochemical 

results, but we had no equipment to do so at the time. Instead, we were based on 

references that tested the O2 pressure variation in similar samples and temperatures. 

In Fig. 5 we explained our considerations on the relation between reaction 

mechanisms, fitting and simulation of EIS experimental results and the literature and 

state-of-the-art of LSM/YSZ half-cell electrochemical properties. 

 

- “As the author listed the ASR values from the literature. The ASR of this work is more 

than 10 times of the literature reported value, which significantly weak the scientific 

discussion of the work such as Ea values and the comparison with the other literature. 

What is the reproducibility of the results? The author claims that the the low adherence, 

interface contact etc as possible reasons, is there any evidence to support this? seen 

from the cross section SEM in Figure 3a, it looks they have a quite good adherence 

between the two phases. And if it is due to contact loss, it has to be at least a factor of 

10 times loss of contact.  what is the ohmic resistance of the YSZ electrolyte used 



here? The author should compare the ohmic resistance with the measured resistance 

of the cell.” 

R: We enhanced the discussion in section 3.3 of the revised paper and these issues 

were addressed.  



HIGHLIGHTS 

 

1. The novel Airbrushed Solution Combustion (ASC) deposition method was tested. 

2. A thin LSM film with average grain size of 55 nm and 10 μm thick was obtained. 

3. A very thin and interconnected porosity was observed in the nanostructured film. 

4. Electrochemical phenomena were separately related with microstructural features. 

5. O2 reduction steps had low activation energies but high area specific resistance. 
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DEPOSITION OF NANOSTRUCTURED LSM PEROVSKITE THIN FILM ON DENSE YSZ 

SUBSTRATE BY AIRBRUSHED SOLUTION COMBUSTION (ASC) FOR APPLICATION IN 

SOFC CATHODES 

 

 

ABSTRACT 

 

To make SOFC high efficiency energy generation devices, thin ceramic films are 

proposed as their main components. The rate of the oxygen reduction reaction is 

relevant for the overall performance of the SOFC, hence a lot of attention is given to 

the cathodes and their interfaces. The airbrushed solution combustion (ASC) method 

was used to fabricate an LSM thin film on a dense YSZ substrate. A single phase LSM 

perovskite was obtained with very thin and interconnected porosity, and a small 

average grain size (55 nm). The nanostructured LSM thin film electrode showed a low 

total activation energy (1.27 eV) at high temperatures, but a high area specific 

resistance at 850°C (55 Ω.cm²). The activation energy for the dissociative adsorption 

and diffusion of oxygen was significantly low (1.27eV), while the charge transfer and 

oxygen ion migration activation energy at the LSM/YSZ interface (1.28 eV) was closer 

to those usually reported. 

 

KEYWORDS: LSM perovskite; nanostructured cathode; SOFC; oxygen reduction 

reaction; airbrushed solution combustion (ASC). 

 

 

1. INTRODUCTION 

 

High efficiency energy conversion devices are often referred to as vital for the 

construction of a sustainable grid based on distributed energy. In this sense, solid 

oxide fuel cells (SOFC) can play an important role in the near future, due to their great 

potential as an efficient energy generator, combined with low levels of emissions [1,2]. 

Nowadays, a few large enterprises already dispose of SOFC systems as their energy 

supplier, however, substantial use of this technology is yet to come. This is due to the 
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costs involved in the fabrication and in the maintenance of the SOFC energy banks, 

which usually requires very specialized labor. Also, their performance and reliability, 

which are very important commercial factors, are closely related to the fabrication 

process and component design [3]. In the most recent generation of SOFC devices, the 

intermediate temperature SOFC (IT-SOFC), the operating temperature is potentially 

reduced to the range of 500°C to 750°C. The main components are formed by thin 

films, deposited over each other, in order to form the SOFC stack. The mechanical 

support of the set is made by the interconnector which, due to the low operating 

temperature, can be composed of a metallic alloy [4]. 

Different methods can be used to fabricate thin films for IT-SOFC devices. 

Techniques based on vapor deposition and those involving the use of plasma, usually 

allow good microstructure and thickness control of the obtained films and can be 

conducted using a great variety of materials [5,6]. However, they generally require the 

use of robust and precise equipment and, in some cases, high processing temperature 

and expensive raw materials [7,8]. Thin films used in SOFC are also obtained by the 

processing of ceramic powders. Methods such as tape casting, screen printing, dip 

coating and spin coating, amongst others, are frequently reported as potential paths 

for the manufacturing of SOFC devices with low cost equipment and simple 

technological transfer [9]. The microstructure is controlled by the characteristics of the 

slurry, which is significantly influenced by the characteristics of the starting powder. 

Also the use of high  sintering temperatures (> 1000°C) is common [10–12]. Precursor 

solution based methods perform a one-step synthesis and deposition of ceramic 

materials on the surface of different substrates [13,14]. In such methods, lower 

processing temperatures can be used and sufficient microstructural control is 

managed, by selecting suitable experimental conditions [15]. 

Considering that the cathodic reaction, which is the oxygen adsorption and its 

reduction and injection in the ion conducting electrolyte, is reported as the limiting 

factor of the overall SOFC performance, it is important that proper compositional and 

structural characteristics are achieved through processing [16,17]. Strontium-doped 

lanthanum manganites (LSM) are the most commonly used materials to compose the 

cathode in the SOFC. They present chemical and physical compatibility with yttria-

stabilized zirconia (YSZ), which is a material generally used as an electrolyte, in typical 



operating and processing temperatures of SOFC devices [18,19]. Composite electrodes 

based on LSM have also been tested for use in cells with YSZ electrolytes [20–22]. A 

better cathode performance can be achieved when its porous microstructure 

optimizes the air flow in its interior and, even more important, increases the active 

sites for the reaction by the enlargement of the triple phase boundary (TPB) zone [23]. 

Also, the contribution of the gas transport of molecular oxygen to the total cathode 

polarization is insignificant in thin films with relatively high porosity [24]. More 

recently, other cathode characteristics such as the length of the adsorption/diffusion 

process and surface diffusivity of oxygen adsorbed atoms have also been given 

importance, and they have a close relation with the physical properties and 

microstructural parameters of the cathode [25]. With the production of a 

nanostructured component, with small grain and pore size, a decrease in the activation 

energy may be attained, improving the cathode performance and, consequently, the 

overall performance of the SOFC device [17,21,26]. 

In this work, an attempt was made to obtain a LSM thin film with optimum 

porous microstructure and reduced grain size. The Airbrushed Solution Combustion 

(ASC) method [27] was tested to fabricate an LSM/YSZ half-cell, by depositing a thin 

LSM film on a dense YSZ substrate. Structural and morphological characterization of 

the LSM film was carried out and its electrochemical properties were evaluated in 

respect to the oxygen reduction reaction mechanism to verify the suitability of the 

deposition method. 

 

2. EXPERIMENTAL 

 

2.1 Preparation of the half-cell 

 

In order to fabricate the substrate, YSZ powders (Sigma-Aldrich – 99.9%) were 

mixed in distilled water containing 2.5 wt.% of polyvinyl alcohol (Vetec-Brasil – 99.0%), 

to act as a binder. After drying for 24 h at 110°C the mixture was sieved using #60 

mesh and separated into a portion of 650 mg. It was then submitted to 175 MPa in a 

uniaxial press using a 12 mm diameter mold. The sintering of the substrate was carried 



out in air, using a heating rate of 10°C/min up to a 1450°C plateau, where it was held 

for 90 min. 

A 15 mol% of strontium was chosen as the A-site dopant in the lanthanum 

manganite thin film, resulting in the La0.85Sr0.15MnO3 compound . Higher Sr ratios are 

not advisable because it increases the thermal expansion which can make it 

incompatible with the YSZ substrate [28]. Besides, in amounts up to 15 mol%, Sr2+ 

cations are chemically more stable due to their lower diffusion rate into YSZ 

electrolytes [29]. 

The LSM film was deposited on the dense YSZ substrate by the Airbrushed 

Solution Combustion (ASC) method [27]. The ASC is based on precursor solution 

techniques with metal salts and organic fuels and with a relatively low processing 

temperature.  In this work, the LSM film was deposited at 650°C and subsequently 

heat treated at 850°C for 3 hours with a heating and cooling rate of 2°C/min. Further 

investigations on the ASC deposition of porous ceramic films are being carried out and, 

also because of patent (BR 10 2017 008343 8 A2) rights, no further details of the 

deposition step can be given. 

 

2.2 Characterization 

 

The YSZ substrate had its apparent porosity, apparent density and densification 

determined by the Archimedes method [30]. The rate of densification was calculated 

considering the mass and volume of the samples and the theoretical density of YSZ as 

6.10 g/cm³. 

Room temperature X-ray diffraction (XRD) patterns of the YSZ substrates and of 

the LSM film were collected using a Bruker ASXD8 Advance equipment, in the range 

(2) of 20° to 70° with a 0.05° step and a 2 s capture time. The obtained patterns were 

compared with the International Centre for Diffraction Data (ICDD) database using the 

X’pert Highscore tool. 

The microstructure of the YSZ substrate, as well as the deposited LSM film, was 

evaluated with a Hitachi TM-1000 table top scanning electron microscope (TT-SEM). 

Low magnification micrographs were used to evaluate the YSZ surface and the 

presence of cracks and continuity of the film. For a more detailed microstructural 



observation of the LSM film a Hitachi S-4700 field emission SEM (FEI-SEM) was used. 

For this analysis the film was initially gold sputtered. After the electrochemical 

analysis, the half-cell was cold embedded with epoxy resin and cut in half with a 

diamond disc. The cross sectional observation of the half-cell was carried out in a Zeiss 

EVO MA10 scanning electron microscope (SEM) with a coupled Energy Dispersive 

Spectroscope (EDS) detector, and an EDS line scan measurement was performed along 

the LSM/YSZ interface. 

Before the electrochemical impedance spectroscopy (EIS) characterization, the 

LSM/YSZ half-cell received a sputtered gold cover of a few hundreds of nanometers on 

both sides, acting as contact electrodes. A Metro-ohm Autolab equipment, internally 

coupled with a radio frequency analyzer, uses two platinum probes in contact with 

each side of the gold sputtered faces of the half-cell. Figure 1 shows a scheme of the 

sample analyzed by EIS. The measurements were done in a furnace, under air 

atmosphere and at temperatures from 450°C to 850°C, with steps of 50°C and a 

heating rate of 5°C/min. The frequency range used was from 10-2 Hz to 106 Hz, 

increasing in a logarithmic scale and with AC signal of 50 mV. The collected data was 

analyzed using the Nova 1.10 software, where the Nyquist plots were fitted and 

simulated using equivalent circuits, based on electrochemical reaction mechanisms. 

 

 

Figure 1: Scheme of the LSM/YSZ half-cell during the EIS analysis. 

 

 

3. RESULTS AND DISCUSSION 

  

3.1 Phase formation 



 

The sintered YSZ substrate was 1.2 mm thick and 10 mm in diameter. The 

apparent porosity was determined as 1.44% and the apparent density was 5.99 g/cm³, 

which compared to the considered theoretical density (6.10 g/cm³), is only 1.8% lower. 

For this type of substrate a densification of more than 95% is desirable, considering its 

function as an ion conductor electrolyte and a physical barrier for the separations of 

gases in the SOFC [28]. The substrate reached a densification of 96.3% and, therefore, 

attained the required standard for a satisfactory deposition and characterization of the 

LSM thin film. The densification is slightly lower than the apparent density (98.2%), 

which may be due to closed pores in the substrate. 

In Figure 2.a, an XRD pattern of the obtained YSZ substrate is shown with 

identified peaks marked. This pattern matched with the ICDD 01-089-9069 file, which 

corresponds to the cubic structure of zirconium oxide. This phase is the one that shows 

the higher ionic conductivity and is stabilized at low temperatures by the addition of 

yttrium oxide [31]. 

 

 

Figure 2: XRD pattern of (a) YSZ substrate and (b) LSM film. 

 



The XRD pattern of the LSM film is shown in Figure 2.b. YSZ peaks are found 

amongst LSM peaks and are identified with different marks. The LSM film matched file 

is ICDD 01-089-0648, which corresponds to the rhombohedral perovskite structure. It 

is known that the addition of bivalent cations, such as Sr2+, in lanthanum manganites 

induces the formation of Mn4+ species. Gaudon et al. [32] studied the influence of 

dopant concentration on the structure of LSM compositions. It was observed that the 

concentration of Mn4+ ions in the LSM structure is constant for Sr2+ amounts of up to 

30%. In this composition range, the Mn4+ remains at a concentration of around 40% 

and maintains stable the LSM rhombohedral perovskite structure. 

Another important factor is the LSM thermal history. Considering the same 

strontium amounts (up to 30%), Cortes-Gil et al. verified that when thermally treated 

below 1000°C, the LSM rhombohedral structure is stable, whereas at higher 

temperatures the orthorhombic structure is stabilized [33]. In a previous study a heat 

treatment at 750°C also kept the LSM rhombohedral structure stabilized. Hence, when 

processing the LSM with such a composition at relatively low temperatures, this 

structure is more likely to be found [34]. 

 

3.2 Morphology 

 

A TT-SEM micrograph of the YZS substrate surface is shown in Figure 3.a. The 

observed microstructure is composed of sub micrometric grains and the presence of 

some porosity can also be seen. Despite of these pores, the YSZ substrate 

microstructure was considered suitable to continue to the film deposition stage, based 

also on the aforementioned XRD and densification results. The FE-SEM micrograph in 

Figure 3.b presents a good surface sample of the LSM film deposited on the YSZ 

substrate. A continuous and porous film is observed. Insignificant remnants of cracks 

may be seen in the film, which is practically crack free. Gharbage et al. [6] compared an 

LSM film deposited by ultrasonic spray with an RF sputtered one, both with a final 

thermal treatment at 900°C, and observed that the first method led to the formation 

of cracks with sizes between 1 to 10 μm, while with the second method the film 

structure seemed denser, with few pores.  

 



 

Figure 3: TT-SEM micrograph of the (a) YSZ substrate and FE-SEM micrographs of the (b, c and d) LSM 
film at different magnifications. 

 

Analyzing the FE-SEM micrographs, shown in Figures 3.c and 3.d, more details 

are revealed in the microstructure of the LSM film. Regarding the magnification 

increase in these FE-SEM micrographs, it is assumed that the LSM film obtained by ASC 

has different structural levels. In Figure 3.c, relatively large pores, with diameters of 

around 3 μm, are seen and, in a closer look (Figure 3.d), a much finer porosity is 

revealed. These small pores are very abundant throughout the microstructure and it 

can be seen that they are intensely interconnected, forming a porosity network. It is 

assumed that the porous nanostructure obtained by the ASC thin film deposition 

method can play a very important role in its application as an SOFC cathode, because it 

can potentially improve the gaseous permeability and impacts on the TPB extension 

and in the activation energy of the electrochemical reactions [23]. Brant et al. [35] 

observed that LSM grain growth and coarsening increases the pore size, leading to 

higher activation energy. Also, Niu et al. [36] observed that pore size distribution 

influences the current density and lifetime when surface cathode poisoning with 

foreign ions occurs. Su et al. [37] also mentioned the YSZ surface roughness as an 



important factor for the electrochemical performance of LSM, because the formation 

of wider contact area enhances the TPB zone.  

The average grain size of the LSM film obtained by ASC deposition and heat 

treated at 850°C for 3 hours, is 55 nm. Together with the deposition method and 

parameters, the temperature applied in the thermal treatment is crucial for the 

fabrication of nanostructured ceramic films. A minimum temperature is required for 

better phase crystallization, but an increase in the temperature used can also promote 

grain growth and, in some cases, may lead to crack formation in the thin film [38]. 

Table 1 shows the comparison between the processing temperature and method with 

microstructural features of different LSM films with close compositions. The use of an 

airbrush was tested by Chiba et al. [39] for the deposition of a LSM suspension on an 

YSZ electrolyte and the films was heat treated at 1200°C and reached a final thickness 

of 30 µm. Hayashi et al. [7] deposited LSM cathode compositions using radio-

frequency sputtering and verified grain growth in the film from 20 nm to 150 nm, 

because of the need of a 1000°C heat treatment. It was also reported that after the 

heat treatment, the grain morphology was square-shaped. The use of powder 

processing methods tends to promote even more significant grain growth, because 

they require higher processing temperatures. The screen printing deposition of LSM 

powders obtained by co-precipitation, as performed by Jiang [40], resulted in a 360 nm 

average grain size when a 1150°C heat treatment was used. The same method was 

used by Das et al. [41], but the final thermal treatment was at 1000°C, and it was 

observed that the size of the grains was mostly submicrometric with some larger 

grains of 1 to 2 μm. Benamira et al. [42] tested a simple brush painting of a commercial 

submicrometric LSM slurry, followed by sintering at 1200°C, where the average grain 

size seems to be smaller than 500 nm. A similar procedure was followed by Seyed-

Vakili et al. [26] that used an even lower sintering temperature (1100°C) but ended up 

with larger grains. On the other hand, this same temperature used by Brant et al. [35] 

to treat commercial LSM powder deposited through a painting process, resulted in an 

average grain size of 200 nm. The aerosol flame deposition performed by Im et al. [43] 

also needed a thermal treatment of 1200°C and produced an even larger grain growth, 

close to 800 nm. Darbandi et al. [21] performed a spin coating deposition of LSM 

powder with particles measuring from 20 to 50 nm and, after a low temperature 



thermal treatment (850°C), the final grain size did not seem to have varied much, with 

an average size being close to 100 nm. 

 

Table 1: Cathodic material, deposition method, processing temperature and microstructural features of 
LSM films found in the literature among with the one obtained by ASC. 

Ref. 
n° 

Cathodic 
material 

Deposition 
method 

Process 
temperature 

Grain size 
(nm) 

Thickness 
(μm) 

* La0.85Sr0.15MnO3 ASC 850°C 55 10 

[6] La0.5Sr0.5MnO3 RF sputtering 900°C NA 1 

[6] La0.5Sr0.5MnO3 ultrasonic spray 900°C NA 10 

[7] La0.5Sr0.5MnO3 RF sputtering 1000°C 150 0.6 – 1.2 

[21] La0.75Sr0.2MnO3-δ [n] spin coating 850°C < 100 # 0.5 

[21] (La0.8Sr0.2)0.95MnO3-δ [μ] screen printing 1150°C NA 10 

[26] La0.8Sr0.2MnO3 painting 1100°C ~ 1000 # 40 

[22] La0.8Sr0.2MnO3/20%YSZ screen printing 1200°C NA 35 

[35] La0.65Sr0.35MnO3 painting 1100°C 200 NA 

[39] La0.85Sr0.15MnO3 airbrushing 1200°C NA 30 

[40] La0.72Sr0.18MnO3 screen printing 1150°C 360 50 

[41] La0.65Sr0.3MnO3 screen printing 1000°C ~ 1000 # 50 

[42] La0.8Sr0.2MnO3 painting 1200°C < 500 # 12 

[43] La0.8Sr0.2MnO3 aerosol flame 1200°C < 800 # 8 

[44] La0.8Sr0.2MnO3 spin coating 1100°C NA 10 

* this work NA not available # estimated from micrographs 

 

The cross sectional SEM micrograph taken at the end of the experimental 

procedure, is displayed in Figure 4.a. The thickness of the LSM film is 10 µm and, 

amongst the fine porosity discussed above, flattened larger pores were observed. Also, 

the porous LSM film looks well adhered to the YSZ substrate. In general, the 

techniques used for LSM deposition are versatile with respect to film thickness, as 

depicted in Table 1. Usually, sputtering methods allow the production of thinner films, 

of around a few micrometers or even less [6,7]. Through powder processing methods 

of LSM, or LSM/YSZ composites, it is more common to find thicknesses of a few dozen 



micrometers [22,26,40,41]. Nevertheless, films with reduced thickness can also be 

achieved by conventional powder processing, as demonstrated by the brush painting 

and the spin coating performed by Benamira et al. [42] and Murray et al. [44], where 

the produced films were 12 and 10 μm thick, respectively. In some cases, ultrathin LSM 

films can be obtained by conventional powder processes, like the spin coating 

performed by Darbandi et al. [21], which resulted in a 0.5 μm thick film. Methods 

based on wet chemistry are also used in the production of thin LSM films. Gharbage et 

al. [6] used ultrasonic spray deposition and obtained a 10 μm thick LSM film, and Im et 

al. [43] reached 8 μm in a LSM film deposited by aerosol flame deposition. An study 

accomplished by Andersson et al. [45], using numeric modelling, demonstrated that 

90% of the electrochemical reactions occur within a distance of 10 µm from the 

electrode/electrolyte interface and that thicker components may only increase ohmic 

losses. Also, Carpanese et al. [24] demonstrated that the polarization due to O2 

diffusivity is some orders of magnitude lower that the total cathode polarization in 

films as thin as 3 μm. The material costs also depend on the film thickness and can be 

reduced along with it. Hence, it is advisable that cathode thickness is less, or not much 

more, than 10 μm. In this sense, compared with data shown in Table 1, the LSM film 

thickness obtained by ASC deposition was considered suitable. 

 

 

Figure 4: (a) Cross sectional SEM micrograph of the LSM thin film and (b) EDS line scan profile for the 
major elements. 

 

 In Figure 4.b the EDS line scan result is shown. The variation of the relative 

amounts of the main components of the substrate and the film were measured. 

Analyzing the elemental profile obtained from the YSZ substrate side, a high 

concentration of Zr in contrast with Y is observed, as expected. In the LSM film side, 



the concentrations of La and Mn are similar. Considering the highest peaks of Zr, La 

and Mn near the interface it, was possible to determine a gradual transition of 

elements with a width of 1.2 μm. This may represent a region with more intense 

electrochemical activity or, less likely, due to the low heat treatment temperature 

(850°C), a dielectric phase formation process. Ananyev et al. [46] studied the cation 

interdiffusion in LSM/YSZ composite cathodes and observed a much smaller width of 

variable composition. It was determined that at high temperature exposure, this 

transient area tends to grow with time. 

 

3.3 Electrochemical characterization 

 

The measurements performed by the EIS technique can be used to determine 

the activity of catalysts in terms of an interfacial polarization resistance of a solid 

electrode/electrolyte interface. Such a relation occurs due to the similarity of the 

electrochemical behavior with an electrical circuit formed, essentially, by resistive and 

capacitive elements and, in some cases, inductive elements also. This implies that each 

electrochemical phenomenon presents a conservative element, independent of the 

frequency, in addition to the dissipative one. In this sense, the relative capacitance of a 

constant phase element can indicate the nature of an electrochemical phenomenon 

associated with a determined resistance [47,48]. Usually, the response of an LSM 

porous film deposited on an YSZ substrate is considered as two semi-circles in the 

Nyquist plot. The influence of temperature and microstructure at atmospheric 

pressure (pO2 = 0.21 atm) on the overall cathode behavior was analyzed considering 

the separate influence of each phenomenon represented by a semi-circle in the 

impedance spectrum. 

Figure 5.a shows the EIS spectra of the LSM/YSZ half-cell obtained at 550°C and 

600°C. For the resistance values of both axes in the Nyquist plot, the area of the 

contact electrode was considered such that all the results are shown in terms of area 

specific resistance (ASR) and are designated solely with the letter R. In all measured 

temperatures up to 550°C, a small arc is observed in the high frequency region, 

followed by a larger arc composed by two overlapping semi-circles. At temperatures of 

600°C and above, only the larger arc is observed. For this reason, the equivalent circuit 



used to fit the experimental data for the spectra obtained at temperatures up to 

550°C, is different from those obtained at temperatures of 600°C and above. At lower 

temperatures (T < 550°C), the equivalent circuit is composed of a serial resistance Rs 

connected to three RQ systems, where each RQ is a resistance R in parallel with a 

constant phase element Q. However, at higher temperatures (T > 600°C) there are only 

two RQ systems connected to Rs, as illustrated in Figure 5.b. 

 

 

Figure 5: (a) Impedance experimental data at 550°C and 600°C and (b) equivalent circuits for different 
temperatures. 

 

 As 550°C is considered a relatively low temperature, besides the serial 

resistance (Rs), the high frequency RQ system can also be attributed to an electrolytic 

process and is represented as (RQ)YSZ. The QYSZ element of the half-cell studied 

presented a capacitance value in the order of 10-9 F/cm². This value is within a range of 

capacitance associated with grain boundary processes suggesting that RYSZ corresponds 

to the oxygen ion conduction resistance in the grain boundary of the YSZ electrolyte. 

Therefore, the Rs resistance in such temperatures represents the resistance inside the 

YSZ electrolyte grains [31,48]. This same behavior where the high frequency arc tends 

to lose its capacitive element with increasing temperature, has been reported in the 

literature [40,43]. The temperature where the (RQ)YSZ disappears depends, mainly, on 

the properties of the electrolyte and it can vary from under 600°C to temperatures just 



above 700°C. In this process, the RYSZ becomes part of the Rs and, at high 

temperatures, the Rs corresponds to the total ohmic resistance of the YSZ electrolyte. 

The larger arc is associated with electrode processes and can be decomposed 

into two overlapped semi-circles, as reported by different authors [21,22,35,40,42,43]. 

Running the simulation of the obtained data considering two RQ systems in the half-

cell, a capacitance in the order of 10-4 F/cm² is found in the lower frequency arc. This 

value indicates electrochemical reactions. In this case, it is attributed to the reactions 

and diffusion on the LSM surface, corresponding to the (RQ)sur elements. The other arc 

considered at intermediate frequencies has a capacitance in the order of 10-5 F/cm², 

which is a typical value for an interface process. It is related to the cathode/electrolyte 

charge transfer from the LSM films to the YSZ [40,43,48]. The interface elements are 

called (RQ)int. 

The reaction mechanism adopted by different authors assumes that four steps 

can take place in the LSM/YSZ half-cell. At first, the gaseous O2 penetrates the porous 

LSM structure and is adsorbed in a favorable site on the LSM surface (Oads). The 

adsorption promotes the O2 molecule dissociation, using electrons from the external 

circuit. The dissociated O- diffuses on the TPB area and proximities, towards the YSZ 

electrolyte. Once it finds an oxygen vacancy in the YSZ lattice, it undergoes the 

complete reduction to O2- and it is fully incorporated in the electrolyte. For a better 

understanding of the relationship between the reaction mechanisms, the data 

generated by the impedance spectrum, and the fit and simulation treatment with 

equivalent circuits, a schematic illustration is shown in Figure 6. The dots are the 

experimental results obtained at 550°C, and the full line connecting them is the 

simulation result obtained with the software. Drawn below this curve are the semi-

circles considered for the fit and simulation. In this model, the RQ elements of the 

electrode, (RQ)int and (RQ)sur, can represent more than one reaction step, if compared 

to the mechanism described earlier. The resistance Rsur is associated with the 

dissociative adsorption of oxygen and diffusion, while the Rint resistance is related to 

the complete reduction of oxygen and injection in the YSZ electrolyte lattice. 

 



 

Figure 6: Scheme of the relationship between the impedance spectrum, the equivalent circuits, and the 
electrochemical reaction mechanism of oxygen reduction in the LSM/YSZ interface and nearby.  

 

Figure 7 shows the Arrhenius plot of the overall electrode area specific 

resistance (Re), which is the sum of Rsur and Rint, and represents to total charge transfer 

polarization of the electrode process [21,41]. A change in the curve slope is observed 

and starts at 550°C, where Re remains virtually constant until 650°C. From this 

temperature on, the decrease in Re occurs with different behavior, which means that 

there is a variation in the total activation energy of the electrode (Eae). At lower 

temperatures (T < 550°C) the Eae is 1.05 eV, and above 650°C, it is increased to 1.27 

eV. As the oxygen reduction in the LSM/YSZ pair occurs through various reaction steps, 

this change can be attributed to a shift in the rate determining step of the overall 

reaction. Jiang et al. [22] stated that a theoretical variation in anodic and cathodic 

charge transfer coefficient can occur at a temperature around 700°C. The author 

attributed this deviation to the rate determining step shift and demonstrated 

experimentally the temperature influence on the Eae of LSM/YSZ composite cathodes, 

obtaining 1.33 eV at lower temperatures (T < 700°C), and 1.59 eV at elevated 

temperatures, above 700°C. Benamira et al. [42] observed a similar variation in the Eae 

of pure LSM cathode, where a deviation of Eae from 1.00 eV, up to 480°C, to 1.92 eV at 



higher temperatures (T > 510°C), was observed. It is noted that the shift of the rate 

determining step can take place at a range of temperatures, with different shift 

temperatures being found in the literature. The starting temperature (550°C) and the 

Eae at low temperatures (1.05 eV) are close to those reported by Benamira et al. [42]. 

While at higher temperatures (T > 650°C) the obtained value of Eae (1.27 eV) and the 

electrode behavior change temperature are nearest to those reported by Jiang et al. 

[22]. Barbucci et al. [49] observed that the addition of YSZ to the LSM cathode only 

influenced the polarization resistance, and did not influence the activation energy, 

where an Eae of around 1.04 eV (T > 700°C) was verified for pure LSM and for cathodes 

with different amounts of YSZ. This statement corroborates an earlier study carried out 

by Murray et al. [44], where it is also inferred that the presence of YSZ in the LSM 

electrode does not change the rate determining step and, consequently, does not 

change the Eae. Nevertheless, they reported a slight decrease in the Eae from 1.61 eV 

for pure LSM, to 1.49 eV for LSM/50%YSZ composite. The possibility of the shift in the 

Eae have been caused by grain growth or microstructural modifications was 

discharged, since it is reported to occur only at temperatures above 1000°C, even for 

powders with reduced grain size [50,51]. 

 

 

Figure 7: Variation of the overall electrode resistance (Re) of the LSM thin film with temperature. 

 



Table 2 brings together the electrochemical characteristics of the LSM 

electrode deposited by the ASC process with other results reported by different 

authors with various cathode compositions. Values of Eae at high temperatures, near 

2.00 eV, can be found in the literature as well as values closer to 1.00 eV. This is 

because many variables can influence the total Eae, like the morphological aspects, the 

actual composition of the LSM thin films, adherence and contact with the YSZ 

substrate, and also its electrolytic characteristics. Although some authors correlate the 

LSM thin film microstructure with the activation energy and total polarization, in the 

studies referred to this work, a direct and general correlation of these factors is not 

easily observed due to divergence or lack of information. Lee [52] screen printed an 

La0.5Sr0.5MnO3 thin film on an YSZ substrate and obtained an Eae of 1.76 eV (T > 600°C) 

with a firing temperature of 1100°C. Yang et al. [53] used the same method, with a 

firing temperature of 1150°C, to deposit a (La0.8Sr0.2)o.97MnO3 thin film and found a 

similar Eae value of 1.80 eV (T > 800°C). When the substrate was changed to samarium-

doped ceria, the Eae decreased to 1.47 eV, highlighting the influence of the electrolyte 

on the overall electrode activation energy (Eae). The influence of annealing 

temperature of La0.65Sr0.35MnO3 thin films was reported by Brant et al. [35]. When fired 

in temperatures up to 1200°C, the Eae obtained was near 1.20 eV, and above these 

temperatures a gradual increase was observed, attributed to the loss of porosity of the 

thin film and also to the formation of secondary phases in the LSM/YSZ interface, with 

the Eae reaching up to 2.00 eV. Compared with these works, the high temperature Eae 

of the LSM thin film deposited by ASC (1.27 eV, T > 650°C) can be considered low and it 

is likely that this fact is related to the influence of the morphological characteristics of 

the thin film, such as small grain size and fine interconnected porosity. Darbandi et al. 

[21] compared LSM cathodes obtained from commercial micro LSM powder with a 

synthesized nanopowder and reported a reduction in the Eae from 1.52 to 1.41 eV (T > 

500°C). For a similar commercial LSM starting powder, Seyed-Vakili et al. [26] obtained 

the same value of Eae (1.52 eV), whereas the film was sintered at 1150°C, which is 50°C 

higher.  

 

 

 



 

 

Table 2: Electrochemical properties of LSM thin film deposited by ASC, amongst those reported by 
different authors. 

Ref. 
n° 

Cathodic 
material 

Temp. 
range 

Eae 
(eV) 

Eaint 
(eV) 

Easur 
(eV) 

ASR-850°C 
(Ω.cm²) 

* La0.85Sr0.15MnO3 < 550°C 1.05 0.86 1.37 NA 

* La0.85Sr0.15MnO3 > 650°C 1.27 1.28 1.27 55 

[21] La0.75Sr0.2MnO3-δ n > 500°C 1.41 NA NA 0.62 

[21] (La0.8Sr0.2)0.95MnO3 μ > 500°C 1.52 NA NA 2.32 

[21] La0.75Sr0.2MnO3-δ/25%GDC > 500°C 1.13 NA NA 0.06 

[26] La0.8Sr0.2MnO3 > 600°C 1.52 NA NA 6.71 - 

[35]  La0.65Sr0.35MnO3 > 900°C 1.20-2.00 NA NA NA 

[37] (La0.75Sr0.25)0.95MnO3-δ 800°C NA NA NA 7.59 - 

[40] La0.72Sr0.18MnO3 > 700°C 2.22 1.13 3.04 6.2 + 

[42] La0.8Sr0.2MnO3 < 500°C 1.00 NA NA NA 

[42] La0.8Sr0.2MnO3 > 500°C 1.92 NA NA NA 

[43] La0.8Sr0.2MnO3 > 600°C 1.48 1.60 1.38 1.7 + 

[22] La0.8Sr0.2MnO3 / 20% YSZ < 700°C 1.33 NA NA NA 

[22] La0.8Sr0.2MnO3 / 20% YSZ > 700°C 1.59 NA NA 12 # 

[44] La0.8Sr0.2MnO3 > 550°C 1.61 NA NA 0.70 # 

[44] La0.8Sr0.2MnO3 / 50% YSZ > 550°C 1.49 NA NA 0.09 # 

[49] (La0.75Sr0.25)0.95MnO3‡δ > 700°C 1.04 NA NA 4.5 # 

[52] La0.5Sr0.5MnO3 > 600°C 1.76 NA NA 7.9 # 

[53] (La0.8Sr0.2)0.97MnO3 > 800°C 1.80 NA NA 3.8 # 

* this work NA not available # estimated from Arrhenius plot  -800°C   +900°C 

 

A comparison between Rint and Rsur behavior with increasing temperature is 

shown in the Arrhenius plot of Figure 8. A change in the predominant behavior, 

together with a shift in the Ea of both reactions, is noted. At low temperatures (T < 

550°C) the LSM/YSZ interface reaction is predominant, showing a higher ASR (Rint), 

while at higher temperatures (T > 650°C) the ASR of the LSM surface reaction (Rsur) has 

higher values. Im et al. [43] observed a similar transition of the predominant reaction 

occurring at slightly higher temperatures, in the range of 650°C to 750°C, assuming 

that Rint is related to the charge transfer resistance in the LSM/YSZ interface and Rsur to 



the dissociative adsorption and diffusion of oxygen in the LSM surface. On the other 

hand, Jiang [40] reported a different behavior, where Rsur is predominant at lower 

temperatures while Rint has higher ASR values at higher temperatures, with the 

transition occurring around 800°C. 

 

 

Figure 8: Arrhenius plot of Rint and Rsur. 

 

The activation energy of the LSM/YSZ interface (Eaint) at temperatures lower 

than 600°C is 0.86 eV, and at higher temperatures increased to 1.28 eV. At the 

interface, charge transfer and oxygen ion migration take place. It is possible that a 

variation in the predominant step at Rint occurs from low to high temperatures 

[22,40,42]. Considering the Eaint at higher temperatures (1.28 eV), the obtained value is 

between the 1.13 eV, reported by Jiang [40], and the 1.60 eV obtained by Im et al. 

[43]. The activation energy of the LSM surface (Easur) decreased from 1.37 eV to 1.28 

eV with rising temperature. In this region, the dissociative adsorption and diffusion of 

oxygen are the considered steps [22,40,42] and, again, the temperature seems to 

influence the predominant one. At higher temperatures, the Easur (1.27 eV) is lower 

than those in literature [40,43].  

Considering the values of Eaint and Easur obtained at high temperatures and the 

microstructure observed in this study, compared with other works, it may be inferred 

that a thicker film, such as the one obtained by Jiang [40] with 50 μm, results in a 

higher value of Easur (3.04 eV), while thinner films may cause a decrease in Easur, as 



seen in the report of Im et al. [43] (1.38 eV) with a thickness of 8 μm, and in this work 

where with a 10 μm thick film, an Easur of 1.27 eV was achieved. The small grain size 

and fine interconnected porosity of the LSM film deposited by ASC may have 

influenced the relatively low Easur obtained. These morphological aspects can also be 

related to low Eaint. The Eaint and average grain size of Jiang [40], and Im et al. [43], 

were 1.13 eV for 360 nm and 1.60 eV for 1 μm, respectively. In this work, an Eaint of 

1.28 eV was obtained for an average grain size of 55 nm and it is possible that these 

values could be lowered by improving the substrate quality and interface adhesion, as 

discussed below. 

The total electrode ASR (Re) is strongly influenced by measurement 

temperature and can undergo other variations due to structural characteristics, such 

as grain size, porosity, thickness and substrate material [21,26,35]. The Re at 850°C 

obtained in this study (55 Ω.cm²) is relatively high when compared to results reported 

by other authors. Usually, Re values remain under 10 Ω.cm², as shown in Table 2. Lee 

[52] and Yang et al. [53] screen printed LSM compositions with sintering temperatures 

of 1100°C and 1150°C and reported 7.9 Ω.cm² and 3.8 Ω.cm² at 850°C, respectively, 

which are already relatively high values. At the temperature of 900°C, Jiang [40] and Im 

et al. [43] reported Re as 6.2 Ω.cm² and 1.7 Ω.cm², respectively. Lower ASR values can 

be achieved with the use of composite cathodes, such as in the works of Murray et al. 

[44], which tested LSM with 50% of YSZ and obtained 0.09 Ω.cm², and Darbandi et al. 

[21], which used LSM with 25% gadolinium-doped ceria and reached 0.06 Ω.cm². 

Barbucci et al. [49] observed that the addition of up to 50% YSZ to LSM cathodes 

decreased the ASR values, whereas, at higher concentrations the ASR showed an 

increase. The study with YSZ buffer layers, by Benamira et al. [42], indicates that the 

contact quality between components could directly influence the total electrode ASR. 

The use of a YSZ porous interlayer could also lead to better and broader LSM/YSZ 

interface contact, according to the study of Su et al. [37], where the use of such a layer 

decreased the total polarization resistance from 7.59 Ω.cm² to 2.19 Ω.cm², at 800°C. At 

this same temperature, Sayed-Vakili et al. [26] obtained 6.71 Ω.cm² by testing a 

commercial LSM material. Somehow, even with improved morphological 

characteristics and low values of Eae, the LSM film obtained by ASC presented high 

polarization resistance. 



Considering the LSM nanostructure it was expected a decrease in both Eae and 

Re. It is known that nanocrystalline materials can present a change in the energetic 

state of interfaces, including gas/solid and solid/solid interfaces [54,55]. This change in 

the interface energy can explain the promising Eae values reported in this work, since 

the activation energies depend directly on the surface energetic state. On the other 

hand, nanostructures also provide an increase in the active sites and defects 

concentration, as well as enhancement in thin films adherence and, consequently, a 

decrease in Re should have been observed [41,55], but in despite of it a high Re value 

was found. It is possible that microstructural defects within the YSZ bulk have caused 

deleterious effects on the cathode performance, since it was already reported that 

nature and quality of the electrolyte can directly influence the cathode polarization; 

The YSZ electrolyte is a pure ionic conductor and, in this work, the total 

conductivity of the electrolyte was found higher (0.048 S/cm) than the usually 

reported [56,57]. Kwon and Choi [57] reported that the difference between the 

conductivity of YSZ bulk and thin film is observed only when an across-plane current is 

tested, while in an in-plane current the conductivities are alike. In this sense, the 

lamination like defects observed in the electrolyte in Figure 4.a may be the cause of 

poor electrolyte conductivity and, consequently, high Re of the LSM film. 

 

 

4. CONCLUSIONS 

 

 A porous 10 μm thick nanostructured LSM film was deposited on a dense YSZ 

substrate by the ASC method. The film presented no secondary phases, being 

composed of crystalline LSM rhombohedral perovskite after heat treatment. Enhanced 

morphological characteristics were observed, such as very fine and interconnected 

porosity and an average grain size of 55 nm. The activation energy of the electrode, as 

well as the LSM/YSZ interface and LSM surface activation energies underwent an 

increase at temperatures higher than 650°C, but still remained low compared to the 

literature values, probably due to the morphological characteristics. The total 

electrode ASR (55 Ω.cm²) was considered high for the LSM/YSZ system, probably due 

to microstructural defects in the YSZ electrolyte that decreased its conductivity and, 



hence, the cathode global performance. The development of nanostructured thin 

ceramic films using the ASC method is promising and further investigation must be 

carried out for optimum use of this novel deposition technique. 
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DEPOSITION OF NANOSTRUCTURED LSM PEROVSKITE THIN FILM ON DENSE YSZ 

SUBSTRATE BY AIRBRUSHED SOLUTION COMBUSTION (ASC) FOR APPLICATION IN 

SOFC CATHODES 

 

 

ABSTRACT 

 

To make SOFC high efficiency energy generation devices, thin ceramic films are 

proposed as their main components. The rate of the oxygen reduction reaction is 

relevant for the overall performance of the SOFC, hence a lot of attention is given to 

the cathodes and their interfaces. The airbrushed solution combustion (ASC) method 

was used to fabricate an LSM thin film on a dense YSZ substrate. A single phase LSM 

perovskite was obtained with very thin and interconnected porosity, and a small 

average grain size (55 nm). The nanostructured LSM thin film electrode showed a low 

total activation energy (1.27 eV) at high temperatures, but a high area specific 

resistance at 850°C (55 Ω.cm²). The activation energy for the dissociative adsorption 

and diffusion of oxygen was significantly low (1.27eV), while the charge transfer and 

oxygen ion migration activation energy at the LSM/YSZ interface (1.28 eV) was closer 

to those usually reported. 

 

KEYWORDS: LSM perovskite; nanostructured cathode; SOFC; oxygen reduction 

reaction; airbrushed solution combustion (ASC). 

 

 

1. INTRODUCTION 

 

High efficiency energy conversion devices are often referred to as vital for the 

construction of a sustainable grid based on distributed energy. In this sense, solid 

oxide fuel cells (SOFC) can play an important role in the near future, due to their great 

potential as an efficient energy generator, combined with low levels of emissions [1,2]. 

Nowadays, a few large enterprises already dispose of SOFC systems as their energy 

supplier, however, substantial use of this technology is yet to come. This is due to the 
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costs involved in the fabrication and in the maintenance of the SOFC energy banks, 

which usually requires very specialized labor. Also, their performance and reliability, 

which are very important commercial factors, are closely related to the fabrication 

process and component design [3]. In the most recent generation of SOFC devices, the 

intermediate temperature SOFC (IT-SOFC), the operating temperature is potentially 

reduced to the range of 500°C to 750°C. The main components are formed by thin 

films, deposited over each other, in order to form the SOFC stack. The mechanical 

support of the set is made by the interconnector which, due to the low operating 

temperature, can be composed of a metallic alloy [4]. 

Different methods can be used to fabricate thin films for IT-SOFC devices. 

Techniques based on vapor deposition and those involving the use of plasma, usually 

allow good microstructure and thickness control of the obtained films and can be 

conducted using a great variety of materials [5,6]. However, they generally require the 

use of robust and precise equipment and, in some cases, high processing temperature 

and expensive raw materials [7,8]. Thin films used in SOFC are also obtained by the 

processing of ceramic powders. Methods such as tape casting, screen printing, dip 

coating and spin coating, amongst others, are frequently reported as potential paths 

for the manufacturing of SOFC devices with low cost equipment and simple 

technological transfer [9]. The microstructure is controlled by the characteristics of the 

slurry, which is significantly influenced by the characteristics of the starting powder. 

Also the use of high  sintering temperatures (> 1000°C) is common [10–12]. Precursor 

solution based methods perform a one-step synthesis and deposition of ceramic 

materials on the surface of different substrates [13,14]. In such methods, lower 

processing temperatures can be used and sufficient microstructural control is 

managed, by selecting suitable experimental conditions [15]. 

Considering that the cathodic reaction, which is the oxygen adsorption and its 

reduction and injection in the ion conducting electrolyte, is reported as the limiting 

factor of the overall SOFC performance, it is important that proper compositional and 

structural characteristics are achieved through processing [16,17]. Strontium-doped 

lanthanum manganites (LSM) are the most commonly used materials to compose the 

cathode in the SOFC. They present chemical and physical compatibility with yttria-

stabilized zirconia (YSZ), which is a material generally used as an electrolyte, in typical 



operating and processing temperatures of SOFC devices [18,19]. Composite electrodes 

based on LSM have also been tested for use in cells with YSZ electrolytes [20–22]. A 

better cathode performance can be achieved when its porous microstructure 

optimizes the air flow in its interior and, even more important, increases the active 

sites for the reaction by the enlargement of the triple phase boundary (TPB) zone [23]. 

Also, the contribution of the gas transport of molecular oxygen to the total cathode 

polarization is insignificant in thin films with relatively high porosity [24]. More 

recently, other cathode characteristics such as the length of the adsorption/diffusion 

process and surface diffusivity of oxygen adsorbed atoms have also been given 

importance, and they have a close relation with the physical properties and 

microstructural parameters of the cathode [25]. With the production of a 

nanostructured component, with small grain and pore size, a decrease in the activation 

energy may be attained, improving the cathode performance and, consequently, the 

overall performance of the SOFC device [17,21,26]. 

In this work, an attempt was made to obtain a LSM thin film with optimum 

porous microstructure and reduced grain size. The Airbrushed Solution Combustion 

(ASC) method [27] was tested to fabricate an LSM/YSZ half-cell, by depositing a thin 

LSM film on a dense YSZ substrate. Structural and morphological characterization of 

the LSM film was carried out and its electrochemical properties were evaluated in 

respect to the oxygen reduction reaction mechanism to verify the suitability of the 

deposition method. 

 

2. EXPERIMENTAL 

 

2.1 Preparation of the half-cell 

 

In order to fabricate the substrate, YSZ powders (Sigma-Aldrich – 99.9%) were 

mixed in distilled water containing 2.5 wt.% of polyvinyl alcohol (Vetec-Brasil – 99.0%), 

to act as a binder. After drying for 24 h at 110°C the mixture was sieved using #60 

mesh and separated into a portion of 650 mg. It was then submitted to 175 MPa in a 

uniaxial press using a 12 mm diameter mold. The sintering of the substrate was carried 



out in air, using a heating rate of 10°C/min up to a 1450°C plateau, where it was held 

for 90 min. 

A 15 mol% of strontium was chosen as the A-site dopant in the lanthanum 

manganite thin film, resulting in the La0.85Sr0.15MnO3 compound . Higher Sr ratios are 

not advisable because it increases the thermal expansion which can make it 

incompatible with the YSZ substrate [28]. Besides, in amounts up to 15 mol%, Sr2+ 

cations are chemically more stable due to their lower diffusion rate into YSZ 

electrolytes [29]. 

The LSM film was deposited on the dense YSZ substrate by the Airbrushed 

Solution Combustion (ASC) method [27]. The ASC is based on precursor solution 

techniques with metal salts and organic fuels and with a relatively low processing 

temperature.  In this work, the LSM film was deposited at 650°C and subsequently 

heat treated at 850°C for 3 hours with a heating and cooling rate of 2°C/min. Further 

investigations on the ASC deposition of porous ceramic films are being carried out and, 

also because of patent (BR 10 2017 008343 8 A2) rights, no further details of the 

deposition step can be given. 

 

2.2 Characterization 

 

The YSZ substrate had its apparent porosity, apparent density and densification 

determined by the Archimedes method [30]. The rate of densification was calculated 

considering the mass and volume of the samples and the theoretical density of YSZ as 

6.10 g/cm³. 

Room temperature X-ray diffraction (XRD) patterns of the YSZ substrates and of 

the LSM film were collected using a Bruker ASXD8 Advance equipment, in the range 

(2) of 20° to 70° with a 0.05° step and a 2 s capture time. The obtained patterns were 

compared with the International Centre for Diffraction Data (ICDD) database using the 

X’pert Highscore tool. 

The microstructure of the YSZ substrate, as well as the deposited LSM film, was 

evaluated with a Hitachi TM-1000 table top scanning electron microscope (TT-SEM). 

Low magnification micrographs were used to evaluate the YSZ surface and the 

presence of cracks and continuity of the film. For a more detailed microstructural 



observation of the LSM film a Hitachi S-4700 field emission SEM (FEI-SEM) was used. 

For this analysis the film was initially gold sputtered. After the electrochemical 

analysis, the half-cell was cold embedded with epoxy resin and cut in half with a 

diamond disc. The cross sectional observation of the half-cell was carried out in a Zeiss 

EVO MA10 scanning electron microscope (SEM) with a coupled Energy Dispersive 

Spectroscope (EDS) detector, and an EDS line scan measurement was performed along 

the LSM/YSZ interface. 

Before the electrochemical impedance spectroscopy (EIS) characterization, the 

LSM/YSZ half-cell received a sputtered gold cover of a few hundreds of nanometers on 

both sides, acting as contact electrodes. A Metro-ohm Autolab equipment, internally 

coupled with a radio frequency analyzer, uses two platinum probes in contact with 

each side of the gold sputtered faces of the half-cell. Figure 1 shows a scheme of the 

sample analyzed by EIS. The measurements were done in a furnace, under air 

atmosphere and at temperatures from 450°C to 850°C, with steps of 50°C and a 

heating rate of 5°C/min. The frequency range used was from 10-2 Hz to 106 Hz, 

increasing in a logarithmic scale and with AC signal of 50 mV. The collected data was 

analyzed using the Nova 1.10 software, where the Nyquist plots were fitted and 

simulated using equivalent circuits, based on electrochemical reaction mechanisms. 

 

 

Figure 1: Scheme of the LSM/YSZ half-cell during the EIS analysis. 

 

 

3. RESULTS AND DISCUSSION 

  

3.1 Phase formation 



 

The sintered YSZ substrate was 1.2 mm thick and 10 mm in diameter. The 

apparent porosity was determined as 1.44% and the apparent density was 5.99 g/cm³, 

which compared to the considered theoretical density (6.10 g/cm³), is only 1.8% lower. 

For this type of substrate a densification of more than 95% is desirable, considering its 

function as an ion conductor electrolyte and a physical barrier for the separations of 

gases in the SOFC [28]. The substrate reached a densification of 96.3% and, therefore, 

attained the required standard for a satisfactory deposition and characterization of the 

LSM thin film. The densification is slightly lower than the apparent density (98.2%), 

which may be due to closed pores in the substrate. 

In Figure 2.a, an XRD pattern of the obtained YSZ substrate is shown with 

identified peaks marked. This pattern matched with the ICDD 01-089-9069 file, which 

corresponds to the cubic structure of zirconium oxide. This phase is the one that shows 

the higher ionic conductivity and is stabilized at low temperatures by the addition of 

yttrium oxide [31]. 

 

 

Figure 2: XRD pattern of (a) YSZ substrate and (b) LSM film. 

 



The XRD pattern of the LSM film is shown in Figure 2.b. YSZ peaks are found 

amongst LSM peaks and are identified with different marks. The LSM film matched file 

is ICDD 01-089-0648, which corresponds to the rhombohedral perovskite structure. It 

is known that the addition of bivalent cations, such as Sr2+, in lanthanum manganites 

induces the formation of Mn4+ species. Gaudon et al. [32] studied the influence of 

dopant concentration on the structure of LSM compositions. It was observed that the 

concentration of Mn4+ ions in the LSM structure is constant for Sr2+ amounts of up to 

30%. In this composition range, the Mn4+ remains at a concentration of around 40% 

and maintains stable the LSM rhombohedral perovskite structure. 

Another important factor is the LSM thermal history. Considering the same 

strontium amounts (up to 30%), Cortes-Gil et al. verified that when thermally treated 

below 1000°C, the LSM rhombohedral structure is stable, whereas at higher 

temperatures the orthorhombic structure is stabilized [33]. In a previous study a heat 

treatment at 750°C also kept the LSM rhombohedral structure stabilized. Hence, when 

processing the LSM with such a composition at relatively low temperatures, this 

structure is more likely to be found [34]. 

 

3.2 Morphology 

 

A TT-SEM micrograph of the YZS substrate surface is shown in Figure 3.a. The 

observed microstructure is composed of sub micrometric grains and the presence of 

some porosity can also be seen. Despite of these pores, the YSZ substrate 

microstructure was considered suitable to continue to the film deposition stage, based 

also on the aforementioned XRD and densification results. The FE-SEM micrograph in 

Figure 3.b presents a good surface sample of the LSM film deposited on the YSZ 

substrate. A continuous and porous film is observed. Insignificant remnants of cracks 

may be seen in the film, which is practically crack free. Gharbage et al. [6] compared an 

LSM film deposited by ultrasonic spray with an RF sputtered one, both with a final 

thermal treatment at 900°C, and observed that the first method led to the formation 

of cracks with sizes between 1 to 10 μm, while with the second method the film 

structure seemed denser, with few pores.  

 



 

Figure 3: TT-SEM micrograph of the (a) YSZ substrate and FE-SEM micrographs of the (b, c and d) LSM 
film at different magnifications. 

 

Analyzing the FE-SEM micrographs, shown in Figures 3.c and 3.d, more details 

are revealed in the microstructure of the LSM film. Regarding the magnification 

increase in these FE-SEM micrographs, it is assumed that the LSM film obtained by ASC 

has different structural levels. In Figure 3.c, relatively large pores, with diameters of 

around 3 μm, are seen and, in a closer look (Figure 3.d), a much finer porosity is 

revealed. These small pores are very abundant throughout the microstructure and it 

can be seen that they are intensely interconnected, forming a porosity network. It is 

assumed that the porous nanostructure obtained by the ASC thin film deposition 

method can play a very important role in its application as an SOFC cathode, because it 

can potentially improve the gaseous permeability and impacts on the TPB extension 

and in the activation energy of the electrochemical reactions [23]. Brant et al. [35] 

observed that LSM grain growth and coarsening increases the pore size, leading to 

higher activation energy. Also, Niu et al. [36] observed that pore size distribution 

influences the current density and lifetime when surface cathode poisoning with 

foreign ions occurs. Su et al. [37] also mentioned the YSZ surface roughness as an 



important factor for the electrochemical performance of LSM, because the formation 

of wider contact area enhances the TPB zone.  

The average grain size of the LSM film obtained by ASC deposition and heat 

treated at 850°C for 3 hours, is 55 nm. Together with the deposition method and 

parameters, the temperature applied in the thermal treatment is crucial for the 

fabrication of nanostructured ceramic films. A minimum temperature is required for 

better phase crystallization, but an increase in the temperature used can also promote 

grain growth and, in some cases, may lead to crack formation in the thin film [38]. 

Table 1 shows the comparison between the processing temperature and method with 

microstructural features of different LSM films with close compositions. The use of an 

airbrush was tested by Chiba et al. [39] for the deposition of a LSM suspension on an 

YSZ electrolyte and the films was heat treated at 1200°C and reached a final thickness 

of 30 µm. Hayashi et al. [7] deposited LSM cathode compositions using radio-

frequency sputtering and verified grain growth in the film from 20 nm to 150 nm, 

because of the need of a 1000°C heat treatment. It was also reported that after the 

heat treatment, the grain morphology was square-shaped. The use of powder 

processing methods tends to promote even more significant grain growth, because 

they require higher processing temperatures. The screen printing deposition of LSM 

powders obtained by co-precipitation, as performed by Jiang [40], resulted in a 360 nm 

average grain size when a 1150°C heat treatment was used. The same method was 

used by Das et al. [41], but the final thermal treatment was at 1000°C, and it was 

observed that the size of the grains was mostly submicrometric with some larger 

grains of 1 to 2 μm. Benamira et al. [42] tested a simple brush painting of a commercial 

submicrometric LSM slurry, followed by sintering at 1200°C, where the average grain 

size seems to be smaller than 500 nm. A similar procedure was followed by Seyed-

Vakili et al. [26] that used an even lower sintering temperature (1100°C) but ended up 

with larger grains. On the other hand, this same temperature used by Brant et al. [35] 

to treat commercial LSM powder deposited through a painting process, resulted in an 

average grain size of 200 nm. The aerosol flame deposition performed by Im et al. [43] 

also needed a thermal treatment of 1200°C and produced an even larger grain growth, 

close to 800 nm. Darbandi et al. [21] performed a spin coating deposition of LSM 

powder with particles measuring from 20 to 50 nm and, after a low temperature 



thermal treatment (850°C), the final grain size did not seem to have varied much, with 

an average size being close to 100 nm. 

 

Table 1: Cathodic material, deposition method, processing temperature and microstructural features of 
LSM films found in the literature among with the one obtained by ASC. 

Ref. 
n° 

Cathodic 
material 

Deposition 
method 

Process 
temperature 

Grain size 
(nm) 

Thickness 
(μm) 

* La0.85Sr0.15MnO3 ASC 850°C 55 10 

[6] La0.5Sr0.5MnO3 RF sputtering 900°C NA 1 

[6] La0.5Sr0.5MnO3 ultrasonic spray 900°C NA 10 

[7] La0.5Sr0.5MnO3 RF sputtering 1000°C 150 0.6 – 1.2 

[21] La0.75Sr0.2MnO3-δ [n] spin coating 850°C < 100 # 0.5 

[21] (La0.8Sr0.2)0.95MnO3-δ [μ] screen printing 1150°C NA 10 

[26] La0.8Sr0.2MnO3 painting 1100°C ~ 1000 # 40 

[22] La0.8Sr0.2MnO3/20%YSZ screen printing 1200°C NA 35 

[35] La0.65Sr0.35MnO3 painting 1100°C 200 NA 

[39] La0.85Sr0.15MnO3 airbrushing 1200°C NA 30 

[40] La0.72Sr0.18MnO3 screen printing 1150°C 360 50 

[41] La0.65Sr0.3MnO3 screen printing 1000°C ~ 1000 # 50 

[42] La0.8Sr0.2MnO3 painting 1200°C < 500 # 12 

[43] La0.8Sr0.2MnO3 aerosol flame 1200°C < 800 # 8 

[44] La0.8Sr0.2MnO3 spin coating 1100°C NA 10 

* this work NA not available # estimated from micrographs 

 

The cross sectional SEM micrograph taken at the end of the experimental 

procedure, is displayed in Figure 4.a. The thickness of the LSM film is 10 µm and, 

amongst the fine porosity discussed above, flattened larger pores were observed. Also, 

the porous LSM film looks well adhered to the YSZ substrate. In general, the 

techniques used for LSM deposition are versatile with respect to film thickness, as 

depicted in Table 1. Usually, sputtering methods allow the production of thinner films, 

of around a few micrometers or even less [6,7]. Through powder processing methods 

of LSM, or LSM/YSZ composites, it is more common to find thicknesses of a few dozen 



micrometers [22,26,40,41]. Nevertheless, films with reduced thickness can also be 

achieved by conventional powder processing, as demonstrated by the brush painting 

and the spin coating performed by Benamira et al. [42] and Murray et al. [44], where 

the produced films were 12 and 10 μm thick, respectively. In some cases, ultrathin LSM 

films can be obtained by conventional powder processes, like the spin coating 

performed by Darbandi et al. [21], which resulted in a 0.5 μm thick film. Methods 

based on wet chemistry are also used in the production of thin LSM films. Gharbage et 

al. [6] used ultrasonic spray deposition and obtained a 10 μm thick LSM film, and Im et 

al. [43] reached 8 μm in a LSM film deposited by aerosol flame deposition. An study 

accomplished by Andersson et al. [45], using numeric modelling, demonstrated that 

90% of the electrochemical reactions occur within a distance of 10 µm from the 

electrode/electrolyte interface and that thicker components may only increase ohmic 

losses. Also, Carpanese et al. [24] demonstrated that the polarization due to O2 

diffusivity is some orders of magnitude lower that the total cathode polarization in 

films as thin as 3 μm. The material costs also depend on the film thickness and can be 

reduced along with it. Hence, it is advisable that cathode thickness is less, or not much 

more, than 10 μm. In this sense, compared with data shown in Table 1, the LSM film 

thickness obtained by ASC deposition was considered suitable. 

 

 

Figure 4: (a) Cross sectional SEM micrograph of the LSM thin film and (b) EDS line scan profile for the 
major elements. 

 

 In Figure 4.b the EDS line scan result is shown. The variation of the relative 

amounts of the main components of the substrate and the film were measured. 

Analyzing the elemental profile obtained from the YSZ substrate side, a high 

concentration of Zr in contrast with Y is observed, as expected. In the LSM film side, 



the concentrations of La and Mn are similar. Considering the highest peaks of Zr, La 

and Mn near the interface it, was possible to determine a gradual transition of 

elements with a width of 1.2 μm. This may represent a region with more intense 

electrochemical activity or, less likely, due to the low heat treatment temperature 

(850°C), a dielectric phase formation process. Ananyev et al. [46] studied the cation 

interdiffusion in LSM/YSZ composite cathodes and observed a much smaller width of 

variable composition. It was determined that at high temperature exposure, this 

transient area tends to grow with time. 

 

3.3 Electrochemical characterization 

 

The measurements performed by the EIS technique can be used to determine 

the activity of catalysts in terms of an interfacial polarization resistance of a solid 

electrode/electrolyte interface. Such a relation occurs due to the similarity of the 

electrochemical behavior with an electrical circuit formed, essentially, by resistive and 

capacitive elements and, in some cases, inductive elements also. This implies that each 

electrochemical phenomenon presents a conservative element, independent of the 

frequency, in addition to the dissipative one. In this sense, the relative capacitance of a 

constant phase element can indicate the nature of an electrochemical phenomenon 

associated with a determined resistance [47,48]. Usually, the response of an LSM 

porous film deposited on an YSZ substrate is considered as two semi-circles in the 

Nyquist plot. The influence of temperature and microstructure at atmospheric 

pressure (pO2 = 0.21 atm) on the overall cathode behavior was analyzed considering 

the separate influence of each phenomenon represented by a semi-circle in the 

impedance spectrum. 

Figure 5.a shows the EIS spectra of the LSM/YSZ half-cell obtained at 550°C and 

600°C. For the resistance values of both axes in the Nyquist plot, the area of the 

contact electrode was considered such that all the results are shown in terms of area 

specific resistance (ASR) and are designated solely with the letter R. In all measured 

temperatures up to 550°C, a small arc is observed in the high frequency region, 

followed by a larger arc composed by two overlapping semi-circles. At temperatures of 

600°C and above, only the larger arc is observed. For this reason, the equivalent circuit 



used to fit the experimental data for the spectra obtained at temperatures up to 

550°C, is different from those obtained at temperatures of 600°C and above. At lower 

temperatures (T < 550°C), the equivalent circuit is composed of a serial resistance Rs 

connected to three RQ systems, where each RQ is a resistance R in parallel with a 

constant phase element Q. However, at higher temperatures (T > 600°C) there are only 

two RQ systems connected to Rs, as illustrated in Figure 5.b. 

 

 

Figure 5: (a) Impedance experimental data at 550°C and 600°C and (b) equivalent circuits for different 
temperatures. 

 

 As 550°C is considered a relatively low temperature, besides the serial 

resistance (Rs), the high frequency RQ system can also be attributed to an electrolytic 

process and is represented as (RQ)YSZ. The QYSZ element of the half-cell studied 

presented a capacitance value in the order of 10-9 F/cm². This value is within a range of 

capacitance associated with grain boundary processes suggesting that RYSZ corresponds 

to the oxygen ion conduction resistance in the grain boundary of the YSZ electrolyte. 

Therefore, the Rs resistance in such temperatures represents the resistance inside the 

YSZ electrolyte grains [31,48]. This same behavior where the high frequency arc tends 

to lose its capacitive element with increasing temperature, has been reported in the 

literature [40,43]. The temperature where the (RQ)YSZ disappears depends, mainly, on 

the properties of the electrolyte and it can vary from under 600°C to temperatures just 



above 700°C. In this process, the RYSZ becomes part of the Rs and, at high 

temperatures, the Rs corresponds to the total ohmic resistance of the YSZ electrolyte. 

The larger arc is associated with electrode processes and can be decomposed 

into two overlapped semi-circles, as reported by different authors [21,22,35,40,42,43]. 

Running the simulation of the obtained data considering two RQ systems in the half-

cell, a capacitance in the order of 10-4 F/cm² is found in the lower frequency arc. This 

value indicates electrochemical reactions. In this case, it is attributed to the reactions 

and diffusion on the LSM surface, corresponding to the (RQ)sur elements. The other arc 

considered at intermediate frequencies has a capacitance in the order of 10-5 F/cm², 

which is a typical value for an interface process. It is related to the cathode/electrolyte 

charge transfer from the LSM films to the YSZ [40,43,48]. The interface elements are 

called (RQ)int. 

The reaction mechanism adopted by different authors assumes that four steps 

can take place in the LSM/YSZ half-cell. At first, the gaseous O2 penetrates the porous 

LSM structure and is adsorbed in a favorable site on the LSM surface (Oads). The 

adsorption promotes the O2 molecule dissociation, using electrons from the external 

circuit. The dissociated O- diffuses on the TPB area and proximities, towards the YSZ 

electrolyte. Once it finds an oxygen vacancy in the YSZ lattice, it undergoes the 

complete reduction to O2- and it is fully incorporated in the electrolyte. For a better 

understanding of the relationship between the reaction mechanisms, the data 

generated by the impedance spectrum, and the fit and simulation treatment with 

equivalent circuits, a schematic illustration is shown in Figure 6. The dots are the 

experimental results obtained at 550°C, and the full line connecting them is the 

simulation result obtained with the software. Drawn below this curve are the semi-

circles considered for the fit and simulation. In this model, the RQ elements of the 

electrode, (RQ)int and (RQ)sur, can represent more than one reaction step, if compared 

to the mechanism described earlier. The resistance Rsur is associated with the 

dissociative adsorption of oxygen and diffusion, while the Rint resistance is related to 

the complete reduction of oxygen and injection in the YSZ electrolyte lattice. 

 



 

Figure 6: Scheme of the relationship between the impedance spectrum, the equivalent circuits, and the 
electrochemical reaction mechanism of oxygen reduction in the LSM/YSZ interface and nearby.  

 

Figure 7 shows the Arrhenius plot of the overall electrode area specific 

resistance (Re), which is the sum of Rsur and Rint, and represents to total charge transfer 

polarization of the electrode process [21,41]. A change in the curve slope is observed 

and starts at 550°C, where Re remains virtually constant until 650°C. From this 

temperature on, the decrease in Re occurs with different behavior, which means that 

there is a variation in the total activation energy of the electrode (Eae). At lower 

temperatures (T < 550°C) the Eae is 1.05 eV, and above 650°C, it is increased to 1.27 

eV. As the oxygen reduction in the LSM/YSZ pair occurs through various reaction steps, 

this change can be attributed to a shift in the rate determining step of the overall 

reaction. Jiang et al. [22] stated that a theoretical variation in anodic and cathodic 

charge transfer coefficient can occur at a temperature around 700°C. The author 

attributed this deviation to the rate determining step shift and demonstrated 

experimentally the temperature influence on the Eae of LSM/YSZ composite cathodes, 

obtaining 1.33 eV at lower temperatures (T < 700°C), and 1.59 eV at elevated 

temperatures, above 700°C. Benamira et al. [42] observed a similar variation in the Eae 

of pure LSM cathode, where a deviation of Eae from 1.00 eV, up to 480°C, to 1.92 eV at 



higher temperatures (T > 510°C), was observed. It is noted that the shift of the rate 

determining step can take place at a range of temperatures, with different shift 

temperatures being found in the literature. The starting temperature (550°C) and the 

Eae at low temperatures (1.05 eV) are close to those reported by Benamira et al. [42]. 

While at higher temperatures (T > 650°C) the obtained value of Eae (1.27 eV) and the 

electrode behavior change temperature are nearest to those reported by Jiang et al. 

[22]. Barbucci et al. [49] observed that the addition of YSZ to the LSM cathode only 

influenced the polarization resistance, and did not influence the activation energy, 

where an Eae of around 1.04 eV (T > 700°C) was verified for pure LSM and for cathodes 

with different amounts of YSZ. This statement corroborates an earlier study carried out 

by Murray et al. [44], where it is also inferred that the presence of YSZ in the LSM 

electrode does not change the rate determining step and, consequently, does not 

change the Eae. Nevertheless, they reported a slight decrease in the Eae from 1.61 eV 

for pure LSM, to 1.49 eV for LSM/50%YSZ composite. The possibility of the shift in the 

Eae have been caused by grain growth or microstructural modifications was 

discharged, since it is reported to occur only at temperatures above 1000°C, even for 

powders with reduced grain size [50,51]. 

 

 

Figure 7: Variation of the overall electrode resistance (Re) of the LSM thin film with temperature. 

 



Table 2 brings together the electrochemical characteristics of the LSM 

electrode deposited by the ASC process with other results reported by different 

authors with various cathode compositions. Values of Eae at high temperatures, near 

2.00 eV, can be found in the literature as well as values closer to 1.00 eV. This is 

because many variables can influence the total Eae, like the morphological aspects, the 

actual composition of the LSM thin films, adherence and contact with the YSZ 

substrate, and also its electrolytic characteristics. Although some authors correlate the 

LSM thin film microstructure with the activation energy and total polarization, in the 

studies referred to this work, a direct and general correlation of these factors is not 

easily observed due to divergence or lack of information. Lee [52] screen printed an 

La0.5Sr0.5MnO3 thin film on an YSZ substrate and obtained an Eae of 1.76 eV (T > 600°C) 

with a firing temperature of 1100°C. Yang et al. [53] used the same method, with a 

firing temperature of 1150°C, to deposit a (La0.8Sr0.2)o.97MnO3 thin film and found a 

similar Eae value of 1.80 eV (T > 800°C). When the substrate was changed to samarium-

doped ceria, the Eae decreased to 1.47 eV, highlighting the influence of the electrolyte 

on the overall electrode activation energy (Eae). The influence of annealing 

temperature of La0.65Sr0.35MnO3 thin films was reported by Brant et al. [35]. When fired 

in temperatures up to 1200°C, the Eae obtained was near 1.20 eV, and above these 

temperatures a gradual increase was observed, attributed to the loss of porosity of the 

thin film and also to the formation of secondary phases in the LSM/YSZ interface, with 

the Eae reaching up to 2.00 eV. Compared with these works, the high temperature Eae 

of the LSM thin film deposited by ASC (1.27 eV, T > 650°C) can be considered low and it 

is likely that this fact is related to the influence of the morphological characteristics of 

the thin film, such as small grain size and fine interconnected porosity. Darbandi et al. 

[21] compared LSM cathodes obtained from commercial micro LSM powder with a 

synthesized nanopowder and reported a reduction in the Eae from 1.52 to 1.41 eV (T > 

500°C). For a similar commercial LSM starting powder, Seyed-Vakili et al. [26] obtained 

the same value of Eae (1.52 eV), whereas the film was sintered at 1150°C, which is 50°C 

higher.  

 

 

 



 

 

Table 2: Electrochemical properties of LSM thin film deposited by ASC, amongst those reported by 
different authors. 

Ref. 
n° 

Cathodic 
material 

Temp. 
range 

Eae 
(eV) 

Eaint 
(eV) 

Easur 
(eV) 

ASR-850°C 
(Ω.cm²) 

* La0.85Sr0.15MnO3 < 550°C 1.05 0.86 1.37 NA 

* La0.85Sr0.15MnO3 > 650°C 1.27 1.28 1.27 55 

[21] La0.75Sr0.2MnO3-δ n > 500°C 1.41 NA NA 0.62 

[21] (La0.8Sr0.2)0.95MnO3 μ > 500°C 1.52 NA NA 2.32 

[21] La0.75Sr0.2MnO3-δ/25%GDC > 500°C 1.13 NA NA 0.06 

[26] La0.8Sr0.2MnO3 > 600°C 1.52 NA NA 6.71 - 

[35]  La0.65Sr0.35MnO3 > 900°C 1.20-2.00 NA NA NA 

[37] (La0.75Sr0.25)0.95MnO3-δ 800°C NA NA NA 7.59 - 

[40] La0.72Sr0.18MnO3 > 700°C 2.22 1.13 3.04 6.2 + 

[42] La0.8Sr0.2MnO3 < 500°C 1.00 NA NA NA 

[42] La0.8Sr0.2MnO3 > 500°C 1.92 NA NA NA 

[43] La0.8Sr0.2MnO3 > 600°C 1.48 1.60 1.38 1.7 + 

[22] La0.8Sr0.2MnO3 / 20% YSZ < 700°C 1.33 NA NA NA 

[22] La0.8Sr0.2MnO3 / 20% YSZ > 700°C 1.59 NA NA 12 # 

[44] La0.8Sr0.2MnO3 > 550°C 1.61 NA NA 0.70 # 

[44] La0.8Sr0.2MnO3 / 50% YSZ > 550°C 1.49 NA NA 0.09 # 

[49] (La0.75Sr0.25)0.95MnO3‡δ > 700°C 1.04 NA NA 4.5 # 

[52] La0.5Sr0.5MnO3 > 600°C 1.76 NA NA 7.9 # 

[53] (La0.8Sr0.2)0.97MnO3 > 800°C 1.80 NA NA 3.8 # 

* this work NA not available # estimated from Arrhenius plot  -800°C   +900°C 

 

A comparison between Rint and Rsur behavior with increasing temperature is 

shown in the Arrhenius plot of Figure 8. A change in the predominant behavior, 

together with a shift in the Ea of both reactions, is noted. At low temperatures (T < 

550°C) the LSM/YSZ interface reaction is predominant, showing a higher ASR (Rint), 

while at higher temperatures (T > 650°C) the ASR of the LSM surface reaction (Rsur) has 

higher values. Im et al. [43] observed a similar transition of the predominant reaction 

occurring at slightly higher temperatures, in the range of 650°C to 750°C, assuming 

that Rint is related to the charge transfer resistance in the LSM/YSZ interface and Rsur to 



the dissociative adsorption and diffusion of oxygen in the LSM surface. On the other 

hand, Jiang [40] reported a different behavior, where Rsur is predominant at lower 

temperatures while Rint has higher ASR values at higher temperatures, with the 

transition occurring around 800°C. 

 

 

Figure 8: Arrhenius plot of Rint and Rsur. 

 

The activation energy of the LSM/YSZ interface (Eaint) at temperatures lower 

than 600°C is 0.86 eV, and at higher temperatures increased to 1.28 eV. At the 

interface, charge transfer and oxygen ion migration take place. It is possible that a 

variation in the predominant step at Rint occurs from low to high temperatures 

[22,40,42]. Considering the Eaint at higher temperatures (1.28 eV), the obtained value is 

between the 1.13 eV, reported by Jiang [40], and the 1.60 eV obtained by Im et al. 

[43]. The activation energy of the LSM surface (Easur) decreased from 1.37 eV to 1.28 

eV with rising temperature. In this region, the dissociative adsorption and diffusion of 

oxygen are the considered steps [22,40,42] and, again, the temperature seems to 

influence the predominant one. At higher temperatures, the Easur (1.27 eV) is lower 

than those in literature [40,43].  

Considering the values of Eaint and Easur obtained at high temperatures and the 

microstructure observed in this study, compared with other works, it may be inferred 

that a thicker film, such as the one obtained by Jiang [40] with 50 μm, results in a 

higher value of Easur (3.04 eV), while thinner films may cause a decrease in Easur, as 



seen in the report of Im et al. [43] (1.38 eV) with a thickness of 8 μm, and in this work 

where with a 10 μm thick film, an Easur of 1.27 eV was achieved. The small grain size 

and fine interconnected porosity of the LSM film deposited by ASC may have 

influenced the relatively low Easur obtained. These morphological aspects can also be 

related to low Eaint. The Eaint and average grain size of Jiang [40], and Im et al. [43], 

were 1.13 eV for 360 nm and 1.60 eV for 1 μm, respectively. In this work, an Eaint of 

1.28 eV was obtained for an average grain size of 55 nm and it is possible that these 

values could be lowered by improving the substrate quality and interface adhesion, as 

discussed below. 

The total electrode ASR (Re) is strongly influenced by measurement 

temperature and can undergo other variations due to structural characteristics, such 

as grain size, porosity, thickness and substrate material [21,26,35]. The Re at 850°C 

obtained in this study (55 Ω.cm²) is relatively high when compared to results reported 

by other authors. Usually, Re values remain under 10 Ω.cm², as shown in Table 2. Lee 

[52] and Yang et al. [53] screen printed LSM compositions with sintering temperatures 

of 1100°C and 1150°C and reported 7.9 Ω.cm² and 3.8 Ω.cm² at 850°C, respectively, 

which are already relatively high values. At the temperature of 900°C, Jiang [40] and Im 

et al. [43] reported Re as 6.2 Ω.cm² and 1.7 Ω.cm², respectively. Lower ASR values can 

be achieved with the use of composite cathodes, such as in the works of Murray et al. 

[44], which tested LSM with 50% of YSZ and obtained 0.09 Ω.cm², and Darbandi et al. 

[21], which used LSM with 25% gadolinium-doped ceria and reached 0.06 Ω.cm². 

Barbucci et al. [49] observed that the addition of up to 50% YSZ to LSM cathodes 

decreased the ASR values, whereas, at higher concentrations the ASR showed an 

increase. The study with YSZ buffer layers, by Benamira et al. [42], indicates that the 

contact quality between components could directly influence the total electrode ASR. 

The use of a YSZ porous interlayer could also lead to better and broader LSM/YSZ 

interface contact, according to the study of Su et al. [37], where the use of such a layer 

decreased the total polarization resistance from 7.59 Ω.cm² to 2.19 Ω.cm², at 800°C. At 

this same temperature, Sayed-Vakili et al. [26] obtained 6.71 Ω.cm² by testing a 

commercial LSM material. Somehow, even with improved morphological 

characteristics and low values of Eae, the LSM film obtained by ASC presented high 

polarization resistance. 



Considering the LSM nanostructure it was expected a decrease in both Eae and 

Re. It is known that nanocrystalline materials can present a change in the energetic 

state of interfaces, including gas/solid and solid/solid interfaces [54,55]. This change in 

the interface energy can explain the promising Eae values reported in this work, since 

the activation energies depend directly on the surface energetic state. On the other 

hand, nanostructures also provide an increase in the active sites and defects 

concentration, as well as enhancement in thin films adherence and, consequently, a 

decrease in Re should have been observed [41,55], but in despite of it a high Re value 

was found. It is possible that microstructural defects within the YSZ bulk have caused 

deleterious effects on the cathode performance, since it was already reported that 

nature and quality of the electrolyte can directly influence the cathode polarization; 

The YSZ electrolyte is a pure ionic conductor and, in this work, the total 

conductivity of the electrolyte was found higher (0.048 S/cm) than the usually 

reported [56,57]. Kwon and Choi [57] reported that the difference between the 

conductivity of YSZ bulk and thin film is observed only when an across-plane current is 

tested, while in an in-plane current the conductivities are alike. In this sense, the 

lamination like defects observed in the electrolyte in Figure 4.a may be the cause of 

poor electrolyte conductivity and, consequently, high Re of the LSM film. 

 

 

4. CONCLUSIONS 

 

 A porous 10 μm thick nanostructured LSM film was deposited on a dense YSZ 

substrate by the ASC method. The film presented no secondary phases, being 

composed of crystalline LSM rhombohedral perovskite after heat treatment. Enhanced 

morphological characteristics were observed, such as very fine and interconnected 

porosity and an average grain size of 55 nm. The activation energy of the electrode, as 

well as the LSM/YSZ interface and LSM surface activation energies underwent an 

increase at temperatures higher than 650°C, but still remained low compared to the 

literature values, probably due to the morphological characteristics. The total 

electrode ASR (55 Ω.cm²) was considered high for the LSM/YSZ system, probably due 

to microstructural defects in the YSZ electrolyte that decreased its conductivity and, 



hence, the cathode global performance. The development of nanostructured thin 

ceramic films using the ASC method is promising and further investigation must be 

carried out for optimum use of this novel deposition technique. 
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