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Abstract: Infertility is a global disease affecting one out of six couples of reproductive age in the
world, with a male factor involved in half the cases. There is still much to know about the regulation
of human male fertility and thus we decided to focus on two peptide families that seem to play a key
role in this function: tachykinins and kisspeptins. With this aim, we conducted an exhaustive review
in order to describe the role of tachykinins and kisspeptins in human fertility and their possible
implications in infertility etiopathogenesis. Many advances have been made to elucidate the roles of
these two families in infertility, and multiple animal species have been studied, including humans.
All of this knowledge could lead to new advances in male infertility diagnosis and treatment, but
further research is needed to clarify all the implications of tachykinins and kisspeptins in fertility.
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1. Introduction

Infertility is a condition defined as the inability for a couple to conceive after at least one year of
unprotected intercourse. This pathology has become a global health issue with a general prevalence of
15%, affecting one out of six couples of reproductive age. According to global statistics, male infertility
is the cause of approximately 50% of infertility cases, either as a sole cause or in combination with a
female infertility factor [1].

Currently, assisted reproductive technology (ART) is the most reliable tool to effectively treat
infertility when a male factor is present, and thanks to numerous advancements, many strategies
have been developed in order to address different male infertility etiologies [1,2]. However, many
aspects remain to be unveiled and the etiology of suboptimal sperm quality is still poorly understood.
Many pathological agents have been described, including genetic, physiological, and environmental
factors [3–7]. In this sense, new advances are necessary in order to fully understand the physiology of
the sperm cell and find new clinical approaches to treat male infertility.

In this review, we focused on two different groups of molecules, tachykinins and kisspeptins,
deeply involved in male fertility—they are also involved in female fertility, but that is beyond the
scope of this work. General aspects about these molecules are discussed, as well as their role at
the hypothalamus, regulating the hypothalamic–pituitary–gonadal axis. Recent research has also
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revealed the possible role of tachykinins and kisspeptin exerted in spermatozoa themselves, regulating
their function. We review different works describing the expression of these molecules in human
spermatozoa and their possible roles in these cells.

2. Tachykinins

The tachykinin family is one of the most conserved peptide groups in the kingdom Animalia [8,9].
This family comprises a group of regulatory peptides including substance P (SP), neurokinin A (NKA),
neurokinin B (NKB), and hemokinin-1 (HK-1) [8,10–14]. In humans, tachykinins are encoded by three
different genes: SP and NKA are expressed through alternative mRNA (messenger ribonucleic acid)
splicing from the gene tachykinin precursor 1 (TAC1), whereas NKB is encoded by the TAC3 gene
and HK-1 is encoded by the TAC4 gene [12,14–17]. Tachykinin effects are mediated by three receptors
named tachykinin receptor 1 (NK1R), tachykinin receptor 2 (NK2R), and tachykinin receptor 3 (NK3R),
encoded respectively by the genes tachykinin receptor (TACR)1, TACR2, and TACR3. They belong to
the family of G protein-coupled receptors with seven transmembrane domains. NK1R is activated
preferentially by SP and HK-1, NK2R by NKA, and NK3R by NKB [8,17–21]. However, endogenous
tachykinins are not highly selective and can act as full agonists on all three receptors [8,13] (Figure 1).
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Figure 1. Genetic coding scheme of the tachykinins and their receptors. TAC1, tachykinin precursor 1
gene; TAC3, tachykinin precursor 3 gene; TAC4, tachykinin precursor 4 gene; SP, substance P; NKA,
neurokinin A; NKB, neurokinin B; HK-1, hemokinin-1; TACR1, tachykinin receptor 1 gene; TACR2,
tachykinin receptor 2 gene; TACR3, tachykinin receptor 3 gene; NK1R, tachykinin receptor 1; NK2R,
tachykinin receptor 2; NK3R, tachykinin receptor 3.

Traditionally, tachykinins have been considered as neuropeptides, as they were mainly found in
the central and peripheral nervous system [22,23]. Nowadays, numerous studies have proven that they
are also expressed in non-neural cells exerting regulatory roles at many different levels. In the immune
system, the expression pattern of NKB and HK-1 mRNA have been determined in human lymphocytes,
monocytes, neutrophils, and eosinophils [24]. The smooth muscle cells express SP and NK1R [8,25].
In the genital tract of females, tachykinins are expressed in endometrium, oviductal epithelial cells
and ovarian cells (granulosa and cumulus cells) [26–30]. In the genital tract of males, tachykinin and
their receptors are expressed in Sertoli and Leydig cells, as well as in spermatozoa [31,32]. Moreover,
mutations in the TAC3 and TACR3 genes were found to cause hypogonadotropic hypogonadism in
humans, demonstrating that NKB and NK3R play a key role in the regulation of reproduction [33]
(Figure 1).
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3. Kisspeptins

Kisspeptins are a family of structurally related peptides encoded by the kisspeptin (KISS1) gene.
Their effects are mediated through binding to the KISS1 receptor (KISS1R), also known as GPR54 (G
protein-coupled receptor 54), which is encoded by the KISS1R gene. Kisspeptins are mainly expressed
in the hypothalamus, regulating gonadotropin releasing hormone (GnRH) secretion and, thereby,
gonadotropin release by the pituitary gland [34–36]. In fact, humans with mutations in the KISS1R gene,
or mice with mutations in KISS1 or KISS1R genes, are affected by hypogonadotropic hypogonadism,
characterized by deficient production of gonadotropins and sex steroids, which leads to an incomplete
sexual maturation [37–41]. Recent evidence has shown that they can also be found in mammalian
reproductive tissues, including the testes [42,43], the uterus [26,29,44–46], the oviduct [26,47], the
ovary [26–28,48–52], and the placenta [53].

In female reproductive tissues, kisspeptins are involved in the regulation of a wide variety of
processes including follicular development, oocyte maturation, ovulation, ovarian steroidogenesis,
embryo implantation, and placentation [53–56]. In the case of males, kisspeptins are suggested to play
important regulatory roles in spermatogenesis, testicular steroidogenesis, and spermatozoa function,
as is discussed in the following sections [43,54].

4. Tachykinins and Kisspeptins as Regulators of the Hypothalamic–Pituitary–Gonadal Axis

The hypothalamic–pituitary–gonadal (HPG) axis plays an essential role in maintaining the normal
function of the reproductive system in adults of both sexes. The HPG axis is governed by pulsatile
secretion of gonadotropin-releasing hormone (GnRH) from the hypothalamus. This hormone, in
turn, regulates the secretion of gonadotropins by the pituitary gland: follicle-stimulating hormone
(FSH) and luteinizing hormone (LH). In addition, the secretion of GnRH, FSH, and LH is subjected to
feedback regulation by hormones produced by the gonad [53]. According to evidence, neurokinin B
(NKB) and kisspeptin (KISS1) are two key agents in the regulation of this axis, together with the opioid
peptide dynorphin. They are all expressed in a subset of neurons present in the arcuate nucleus (or
human infundibular nucleus) of the hypothalamus—the KNDy (kisspeptin/neurokinin B/dynorphin)
cells [34,36,57,58]. The co-localization of these three peptides in KNDy cells has been well documented
in a high number of mammals, including sheep, goats, mice, rats, and monkeys [34,57], and has been
functionally demonstrated in humans [59]. Although many aspects about these three peptides and
their role in KNDy cells remain unclear, they seem to be fundamental agents in the control of GnRH
pulsatile secretion by GnRH neurons, as well as its feedback regulation by gonadal hormones [57,58].

5. Expression of Tachykinins and Kisspeptins in Testicular Tissues

Various studies have been published documenting the expression of tachykinins and as well as
their receptors in the testes of different animal species including humans [60–62]. The tachykinin SP is
present in Leydig and Sertoli cells of humans, mice, hamsters, marmosets, and rats, and the mRNA of
the different tachykinins and tachykinin receptors has also been detected in these cells [31,32,61,63,64].
Substance P has also been found in the seminiferous tubules of rats [65], in spermatid cells, and
spermatogonia of marmosets [64]. Regarding human spermatozoa, there is also evidence of tachykinins
and tachykinin receptor expression [66–68]. Equally, tachykinin-degrading enzymes are also expressed
in these cells [66,69–71].

As for kisspeptins and/or KISS1R, there is documented evidence of their expression in the
following tissues and cell types: round spermatid cells of mice [72]; primordial germ cells, Leydig, and
interstitial cells of mice [73]; human spermatozoa [43]; Sertoli cells and interstitial compartment of
rhesus monkeys [42]; and Leydig cells, Sertoli cells, and all germ cells of Pelophylax esculentus frogs [74].
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6. Peripheral Roles of Tachykinins and Kisspeptins in Male Fertility Regulation

6.1. Spermatogenesis

Little is known about the role of tachykinins in spermatogenesis. Noritake et al. [75] found
that treatment of dogs with an antagonist of the three tachykinin receptors caused an inhibition of
spermatogenesis and a degeneration of testes, which appeared to be mainly mediated by NK3R. In
parallel, studies in NK3R null mice demonstrated that male mice had smaller testes but apparently
normal spermatogenesis [76], a fact that was also observed in NKB null male mice [77]. Further studies
are needed to determine the precise role of the tachykinin system in spermatogenesis.

Scientific evidence regarding different animal species suggest that kisspeptin could be involved in
the regulation of spermatogenesis. A study performed in sexually immature chum mackerel showed
that subcutaneous administration of kisspeptin led to spermatogenesis acceleration [78]. In another
study involving the amphibian Pelophylax esculentus, researchers cultured their testes—obtained in
their reproductive period—and observed that kisspeptin accelerated germ cell progression [79]. As
for mammals, gene expression studies performed in mice revealed that KISS1/KISS1R expression
initiation in testis coincides with the formation of spermatozoa [54,72]. In addition, a cross-sectional
study performed in human showed that kisspeptin was present in seminal plasma. Moreover, total
measured kisspeptin was positively associated with sperm concentration, total sperm number, and
total mobile sperm count [80].

In contrast, studies in rats have reported an inhibitory effect of kisspeptin in spermatogenesis.
Exogenous kisspeptin treatment for 30 days in male rats led to testicular degeneration, which, according
to the authors, could be due to HPG axis desensitization caused by the continuous administration of
kisspeptin [81]. Curiously, a new study in rats by the same authors found testicular degeneration after
kisspeptin treatment for only 12 h, suggesting that the effect was not due to HPG axis desensitization
but to a hyper-stimulation of the axis [82]. In a similar work, authors reported a decrease in the amount
of elongated spermatids, preleptotene spermatocytes, and daily sperm production after 12 days of
treatment with different doses of kisspeptin [83].

To summarize, evidence leads us to think that kisspeptin is someway involved in the regulation
of spermatogenesis, but its role is not yet clear. Some studies suggest that kisspeptin is a local
spermatogenesis inductor, whereas others suggest a central inhibitory role of this peptide via HPG
axis hyper-stimulation. Molecular mechanisms behind this regulation are yet to be elucidated. In any
case, kisspeptin may not be essential for spermatogenesis, as KISS1 and KISS1R mutant mice conserve
low levels of spermatogenesis [84]. Moreover, male patients carrying KISS1R mutations respond to
exogenous hormonal therapy and can recover fertility [85].

6.2. Spermatozoa Function

There is evidence that tachykinins NKA, NKB, SP, and HK-1 are expressed in human sperm cells,
both at the mRNA and protein level [66,67]. These studies have also shown the presence of the three
tachykinin receptors at the protein level [67]. Experiments performed in human sperm samples have
proven that tachykinins are functionally active in spermatozoa, as they are capable of improving sperm
cell progressive motility. The effect on motility is quick and dependent on tachykinin concentration.
We also know that this effect is mainly mediated by activation of NK1R and NK2R, thanks to studies
using tachykinin receptor-selective antagonists [67].

Enkephalinase or neprilysin is the major peptidase that degrades tachykinins in most human
tissues [86–90]. Local activity of peptide-signaling molecules is tightly controlled by their enzymatic
degradation. Tachykinin-degrading enzymes neprilysin (NEP) and neprilysin-2 (NEP-2) are also
expressed in human sperm cells at the mRNA and protein level [66,69–71]. Tachykinin-degrading
enzyme neprilysin-2 protein is located at the equatorial segment of human spermatozoa, suggesting
a role for this enzyme in sperm fertilizing capacity [66]. One study showed that sperm from NEP2
knockout mice had normal characteristics but lower fertilization capacity, and resulting embryos had
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a worse development [91]. Inhibition of NEP and NEP2 by phosphoramidon leads to an increase in
linear and straight motility of sperm cells (sperm progressive motility), which is essential for adequate
swimming through the female genital tract [92–94].

Regarding kisspeptins, it has been proven that KISS1 and KISS1R are present in mature human
spermatozoa [43]. They are mainly located in the equatorial segment, which has an important role
in oocyte-sperm fusion, and in the neck, involved in flagellar movement. Importantly, kisspeptin
colocalizes with NKB in the equatorial segment [43]. Kisspeptin is able to induce a slow and sustained
increase in intracellular Ca2+ concentration in sperm cell, which has been associated with sperm
motility, hyperactivation, and acrosome reaction [93–96]. Furthermore, kisspeptin can induce changes
in spermatozoa motility, increasing the flagellar beating and amplitude of lateral head displacement,
which are characteristic patterns of hyperactivated spermatozoa [97]. At the same time, straight and
linear movement is decreased [43]. It is well known that hyperactivated movement patterns are
necessary for sperm cells in order to leave their reservoirs in the oviductal isthmus, and reach and fuse
with the oocyte in vivo [94,97,98].

Besides tachykinins and kisspeptins, other bioactive peptides—such as opioids [71] and
bradykinin [99]—are also expressed in spermatozoa, and many of the enzymes involved in their
metabolism (like NEP and NEP-2) are also present and functionally active [69,71,99]. Inhibition of these
enzymes causes changes in spermatozoa motility [66,71,99]. It is possible that these peptides work
as signaling molecules between spermatozoa and their environment, acting in an autocrine and/or
paracrine manner.

6.3. Testicular Steroidogenesis

Androgens are steroid hormones secreted by different tissues in humans, including testes, ovaries,
and adrenal glands. In testes, Leydig cells are the ones responsible for androgen production and
secretion. Androgens are involved in multiple processes, but their main functions include the formation
of testes and male genitalia during prenatal development, the emergence and maintenance of male
secondary sex characteristics in males from puberty onwards, and the support of spermatogenesis [100].

Different studies suggest the involvement of tachykinins or kisspeptins in androgen production
by testes. Treatment of testicular sections or of isolated Leydig cells with SP or NKA reduced
testosterone basal levels, as well as the increase induced by LH or hCG (human chorionic
gonadotropin) [19,61,63,101]. In Sertoli cells, treatment with NKA in the presence of testosterone
caused an increase in estrogen levels, suggesting an activation of aromatase [61].

Experiments in rats have revealed that exogenous kisspeptin administration causes an initial
increase in testosterone plasma levels, but this effect vanishes if the treatment is prolonged [102].
These results were in harmony with those of Thompson and colleagues, who proposed the HPG
desensitization hypothesis after kisspeptin continuous treatment, previously mentioned in this
review [81]. Experiments in Leydig cells isolated from goat testes showed that a kisspeptin antagonist
(P234) significantly attenuated both basal and hCG-activated testosterone and estradiol production [103].
Lastly, ex vivo experiments on testes from P. esculentus frogs showed that kisspeptin altered the
expression of several enzymes involved in steroidogenesis, also suggesting a role for kisspeptin in
steroidogenesis regulation [74].

However, in a different study involving mice, authors did not observe a response of Leydig cells
to kisspeptin stimulation, but it is worth signaling that they used an immortalized Leydig cell line
(MA-10) to perform the experiments [72]. Conditions between Leydig cells and MA-10 cell line may
differ. Furthermore, steroidogenesis regulation may differ depending on the studied species. Proposed
roles of tachykinins and kisspeptins in the different reviewed studies are summarized in Figure 2.
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7. Conclusions
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peripheral levels of the organism. On one hand, neurokinin B and kisspeptin are key regulators of
HPG axis and thus gonadal function. On the other hand, tachykinins and kisspeptins are expressed in
different peripheral tissues exerting regulatory functions. Much has been published about the peripheral
regulatory roles of kisspeptin in female fertility. Kisspeptin and its receptor KISS1R have important roles
in regulating follicle development, oocyte maturation, ovulation, ovarian steroidogenesis, implantation,
pregnancy, and placentation [36,54–56]. However, less is known about the peripheral reproductive
roles of the tachykinin family and the roles of kisspeptins and tachykinins in male reproductive tissues.

In summary, the published work has proven that kisspeptins, tachykinins, and their corresponding
receptors are expressed in testes and spermatozoa of different animal species, including humans.
Evidence suggests that they have potential regulatory roles regarding spermatogenesis, spermatozoa
function and motility, and testicular steroidogenesis.

New advances are necessary in order to clarify and deepen the roles of these peptide families
and increase our knowledge about the regulation of male fertility in mammals and, more importantly,
in humans. These molecules could serve as genetic biomarkers to improve the diagnosis of different
infertility-related diseases in men or as new targets to develop therapies to treat male infertility.
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found in semen analysis—that is, asthenozoospermia—could be addressed in the future with treatments
aimed at specific tachykinins or kisspeptins.
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