

Fitting adjunctive behaviour

R. Pellón, G.E. López Tolsa Gómez, G. Calcagni

Introduction: adjunctive behaviour (AB)

- Adjunctive (schedule-induced) behaviour (Falk, 1961): non-contingent behaviour maintained by some other response (producted by a stimulus) that acquired a reinforcing effect.
- Traditional assumption: no contingency with incentives, **induction** instead of **reinforcement**.
- Key principle of association: proximity between response and reinforcer (intra-session time t) (Killeen & Pellón, 2013).
- First the AB is maintained by **induction**, then by backward chaining with other **behaviours**.
- Can we describe the induction and chaining processes by a unified model?

Objectives

<u>Acquisition phase</u>: find a model for **induction** (licks *L* as a function of previous pellet *n*). <u>Asymptotic phase</u>: find a model for **backward chaining** (licks *L* as a function of lever presses *P* and lever presses *P* as a function of previous pellet *n*).

Experimento (López Tolsa Gómez, 2018)

8 male Wistar rats.

Incentive: food pellet. Access to wáter. Behaviours: licking *L* and lever pressing *P*.

30 sessions 60 s long.

Average of last 5 sessions

Regime where behaviour is stable (smooth data).

- 1. Find fits for lever presses **P** and licks **L** separately as functions of intrasession time: **P(t)**, **L(t)**.
- 2. Invert $P(t) \rightarrow t(P)$.
- 3. Find *L(P)*.
- 4. Compare with independent fit *L(P)*.
- 5. Compare with fit *P(L)*.

P(t)

σ=3.7

$$P(t) = A_1 \frac{e^{at} - 1}{e^{at} + A_2}$$

a = 0.125 (p = 10⁻⁴⁰)
A₁ = 118.3 (p = 10⁻⁵⁰)
A₂ = 212.9 (p = 10⁻¹¹)

L(t)

 $L(t) = \overline{t^b \left(B_1 e^{ac_1 t} + \overline{B_2 e^{ac_2 t}}\right)}$

 $b = 3.532 (p = 10^{-32})$ $c_1 = 1.087 (p = 10^{-12})$ $c_2 = 3.116 (p = 10^{-31})$ $B_1 = 0.005 (p = 0.02)$ $B_2 = 2.617 (p = 10^{-7})$

This is not the best fit L(t), but it is the simplest for our purpose...

Backward chaining?

$$L(P) = \left[\ln \left(\frac{A_1 + A_2 P}{A_1 - P} \right)^{\frac{1}{a}} \right]^b \left[B_1 \left(\frac{A_1 - P}{A_1 + A_2 P} \right)^{c_1} + B_2 \left(\frac{A_1 - P}{A_1 + A_2 P} \right)^{c_2} \right]$$

A mess, and the fit is poor at low t

A better fit for *L(P)*

Backward chaining

$$L(P) = \alpha P^2 e^{-P^{\beta}} + \gamma$$

 $\alpha = 109.2, \beta = 0.745, \gamma = 4.939$

From this one can get *L(t)=L[P(t)]* (ugly to see, but it's a good fit!)

Acquisition

Promoting constants c to n-dependent parameters c_n :

- 1. For each session, fit *P(t,c)* and *L(t,c)* from *(P,t)* and *(L,t)* data, as before.
- 2. Find fits for c_n from (*c*,*n*) data.
- 3. Final model: $L(P, c_n)$.

And the answer is...

... I didn't have time!

Conclusions (preliminary)

- In this (a?) behavioral chain, fitting from the last link to the first is better than fitting the first and the last link separately and then combining them.
- Model fitting does *not* determine the causal arrow. A psychological model will decide whether we are interested in *L(P)* or *P(L)*.
- Best fits of the session dependence of the parameters *in progress*.

