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Abstract. Novel resistive gas sensors based on single-walled carbon nanotube (SWNT) 
networks as the active sensing element have been investigated for gas detection. SWNTs 
networks were fabricated by airbrushing on alumina substrates. As-produced- and Pd-
decorated SWNT materials were used as sensitive layers for the detection of NO2 and H2, 
respectively. The studied sensors provided good response to NO2 and H2 as well as excellent 
selectivities to interfering gases.  

 

1. Introduction 
Since their discovery in 1991 [1], carbon nanotubes (CNTs) have attracted much interest due to their 
unique structural and physical properties [2]. The breadth of applications for carbon nanotubes is 
indeed wide ranging: nanoelectronics, quantum wire interconnects, field emission devices, composites, 
chemical sensors, biosensors, detectors, etc [2-6]. The community is beginning to move beyond the 
wonderful properties that interested then in CNTs and are beginning to tackle real issues associated 
with converting a material into a device, a device into a system, and so on [5]. 

Carbon nanotubes can be considered as appropriate candidates to design high feature gas sensors due 
to their good conductivity, excellent mechanical properties, chemical stability, and large specific 
surface [2-8]. At this point, our paper focuses on using CNTs as chemical sensors for gas detection 
and particularly on designing, developing and optimizing nanotube-based sensors for the detection of 
H2 and NO2. 
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2. Experimental 
SWNTs produced by the arc-discharge method [9] and by the HiPco process (Carbon 
Nanotechnologies, Inc.) [10] were employed in the fabrication of the sensor films. In order to improve 
the affinity of the samples to hydrogen, arc-produced SWNTs were chemically decorated with Pd 
nanoparticles [7,11,12]. The tested sensors are described in Table 1.  
 

Table 1. Tested sensors  
Sensor Sensor composition 

S1 
S2 
S3 
S4 

SWNTs-Pd (1:1) 
SWNTs-Pd (1:4) 

Super Purified HiPco SWNTs (2% Fe) 
HiPco SWNTs (30% Fe)  

 
 
Sensor films were fabricated by airbrushing ethanol dispersions of the employed SWNTs on two 
different alumina substrates (Figure 1): 
1- Alumina substrates (Heraeus MSP 769) with heating element (Pt 25) and temperature sensor (Pt 
1000) that allow evaluating the sensor performance as a function of temperature from 25 to 200ºC. 
Sensor dimensions are 6x6 mm.  
2- Alumina substrates (Laser Tech Services A/S). Platinum electrical contacts were deposited by RF 
magnetron sputtering on the sensing element (SWNT network). These sensors were mounted on a 3-
pin socket with the electrical contacts. Sensor dimensions are 25x27 mm. 
Sensor devices were placed in a stainless steel test cell of 20 cm3 for their characterization by dc 
electrical measurements. Dry air at constant flow of 200 mL/min was used as carrier gas. The 
employed concentrations were varied from 0.5 to 1.5% for hydrogen, and from 0.2 to 0.7 ppm for NO2 
(exposure time: 15 minutes). Concentrations of interfering gases were 80, 300, and 200 ppm for 
ammonia, toluene and octane, respectively. The gas mixtures were prepared by means of a mass flow 
controller into an automated gas line. 
Sensor resistances were measured with a digital multimeter (DMM) connected to the personal 
computer through standard IEEE interface. The measurement system (multimeter and flow controller) 
was fully automated and controlled with a program developed in Testpoint™.  
 
 
  Laser Tech Services A/S

contacts
Sensor
film 

Electrical contacts
Heraeus MSP 769

Sensor film 

Electrical contacts

 

 

 

 

 

 

 

Figure 1: Resistive sensor devices. 

 
Figures 2 and 3 show representative atomic force microscopy (AFM) and scanning electron 
microscope (SEM) images of the SWNT networks. These images indicate that networks consist of thin 
films of entangled, randomly distributed CNTs.  
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Figure 2: AFM images of a network of SWNT bundles (a), and SWNT bundle junctions (b). 

b

 
 

           
 

Figure 3: SEM micrographs of (a) a Hereaus MSP 769 sensor bare Au electrode, and (b) an 
airbrushed HiPco SWNT bundle network. 

 

3. Results 
Pd-decorated SWNT sensors exhibited good sensitivity and selectivity to H2 at room temperature in 
reversible detection processes. The molecular hydrogen dissociation on the surface of the Pd 
nanoparticles results in electron transfer from these Pd nanoparticles to the SWNTs and, therefore, to 
the measured SWNT network resistance increase upon exposure to H2 [7]. Figure 4 shows the 
response curves of these sensors to different gases (hydrogen, ammonia, toluene and octane). The 
sensor S2 provides a higher sensitivity than the sensor with a lower Pd content (S1). Sensitivity is 
defined as: 
S (%) = 100×(Rg-Rair)/Rair , where Rg and Rair are the resistance values of the sensor with and without 
H2 exposure, respectively.  
The resistance variation of the studied sensors in air is proportional to the hydrogen concentration 
(Figure 5), following the exponential equation: 
S (%) = a [H2]b, where S(%) is the sensitivity, a and b are constants for each sensor and gas, [H2] is 
the gas concentration in ppm.  
On the other hand, CNT networks prepared from unpurified, as-produced HiPco SWNTs (S4), and 
purified HiPco SWNTs (S3) were evaluated as NO2 sensors at temperatures ranging from 25ºC to 
200ºC (Figure 6). NO2 concentrations as low as 0.2 ppm were detected in the tested temperature range 
(Table 2, Figure 6). The electron withdrawing by NO2 molecules adsorbed on the CNT surface leads 
to the observed CNT network resistance decrease upon NO2 exposure. The sensor response increased 
when increasing the operation temperature up to 100ºC, and then decreased at higher temperatures 
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(Table 2). The best sensor performance in terms of response time, sensitivity, and recovery time was 
achieved at 200ºC. Still, even at this temperature, long recovery times (~2 hours) were measured, 
therefore suggesting that NO2 chemisorption processes occur during these NO2 detection experiments. 
These sensors also provided negligible cross sensitivity to interfering gases. It is also worth 
mentioning that the metal impurity content significantly affect the network resistance and the sensor 
response (Table 2, Figure 6). Thus, networks of purified HiPco SWNTs (S3) provided higher response 
to NO2 than as-produced HiPco SWNT networks (S4) (Figure 6). The structural modifications that 
result of SWNT purification processes (SWNT partial debundling and shortening, and introduction of 
defects and chemical functional groups) [14] might also affect the CNT-NO2 interaction and, 
therefore, the sensor response. 
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Figure 4: Response of the Pd-funcionalizated sensors  

to different gases at room temperature. 
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Figure 5: Sensitivity of the Pd-funcionalizated sensors to hydrogen at room  

temperature (black-dotted curves correspond to the calibration curves). 
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Table 2. Sensitivity to a 0.1 ppm NO2  
in air of the S3 and S4 sensor 

T (ºC)   S3 S4 
25 
100 

  0.18 
10.43 

0.1 
6.3 

200   5.50 2.5 
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Figure 6: S3 and S4 response curves in air atmosphere at 200 ºC. 

 
 

4. Conclusions 
The employed Pd-decorated SWNT- and HiPco SWNT networks provided good response to H2 and 
NO2, respectively, as well as excellent selectivities to the tested interfering gases. The drawback of 
these CNT-based systems is the slow and incomplete recovery time that may limit their application as 
gas sensors. Future work will focus on improving this sensor performance and in the design of a 
sensor array for the simultaneous detection of H2 and NO2 in polluting gas mixtures. 
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