Executive Ballroom 210E

CLEO: Science & Innovations

SF3E • Ultrafast Oscillators-Continued

SF3E.4 • 14:45

21 W average power sub-100-fs Yb:Lu₂O₃ thin-disk laser, Norbert Modsching¹, Jakub Drs¹, Julian Fischer¹, Clément Paradis¹, François Labaye¹, Maxim Gaponenko¹, Christian Kränkel², Valentin J. Wittwer¹, Thomas Südmeyer¹; ¹Laboratoire Temps-Fréquence, Université de Neuchâtel, Switzerland; ²Center for Laser Materials, Leibniz-Institut für Kristallzüchtung, Germany. We demonstrate a Kerr lens mode-locked thin-disk laser oscillator operating with 95-fs pulses at 21.1 W of average power. This is the highest average power achieved by any oscillator in the sub-. 100-fs regime.

SF3E.5 • 15:00

Three-element-cavity enables Kerr-lens mode-locking at 20-GHz repetition rate, Shota Kimura¹, Shuntaro Tani¹, Yohei Kobayashi¹; ¹The Univ. of Tokyo, Japan. We propose a new cavity design for a compact Kerr-lens mode-locked laser using only three optical elements. The repetition rate of 20 GHz was achieved with the pulse duration of 120 fs.

SF3E.6 • 15:15

Graphene mode-locked Tm,Ho:CLNGG laser with 70-fs pulse duration, Yongguang Zhao¹, Weidong Chen¹, Valentin Petrov¹, Li Wang¹, Yicheng Wang¹, Zhongben Pan¹, Xiaojun Dai², Hualei Yuan², Yan Zhang², Huagiang Cai², Ji Eun Bae³, Sun Young Choi³, Fabian Rotermund³, Pavel Loiko⁴, Josep Serres⁵, Xavier Mateos⁵, Wei Zhou⁶, Deyuan Shen⁶, Uwe Griebner¹; ¹Max-Born Inst., Germany; ²China Academy of Engineering Physics, China; ³Dept. of Physics, South Korea Advanced Inst. of Science and Technology (KAIST), South Korea (the Republic of); 4ITMO Univ., Russia; ⁵Universitat Rovira i Virgili, Spain; ⁶Jiangsu Normal Univ., China. We report on a mode-locked Tm,Ho:CLNGG laser employing graphene as a saturable absorber. Pulses as short as 70 fs, i.e., 10 optical cycles, are generated at 2093 nm with a repetition rate of ~89 MHz.

SF3E.7 • 15:30

Sub-10 fs Pulse Generation From a Blue-Diode-Pumped Kerr-Lens Mode-Locked Ti:sapphire Laser, Han Liu¹, Geyang Wang¹, Ke Yang¹, Renzhu Kang¹, Wenlong Tian¹, Dacheng Zhang¹, Liang Guo¹, Jiangfeng Zhu¹, Zhiyi Wei²; ¹Xidian Univ., China; ²Chinese Academy of Sciences, Beijing National Lab for Condensed Matter Physics, Inst. of Physics, China. We demonstrate a blue-diode pumped Kerr-lens mode-locked Ti:sapphire laser generating sub-10 fs pulses for the first time. The laser is centered at 830 nm with 113 nm bandwidth and 22 mW average power.

JF3F.3 • 15:30 Invited

Deep Imaging Cytometry. Yueqin Li¹, Ata Mahjoubfar¹, Bahram Jalali¹, Kayvan Niazi²; ¹UCLA, USA, ²Nantworks, USA. We describe a new implementation of our deep learning time-stretch imaging flow cytometry which avoids data pre-processing and feature extraction. The neural network classifies cancer cells by directly processing the raw serial temporal data.

SF3G.6 • 15:30

Rapid Femtosecond Laser 3D microfabrication using Focal Field Engineering, Yan Li¹, Dong Yang¹, Lipu Liu¹, Hong Yang¹, Qihuang Gong¹; ¹Peking Univ., China. We realize the single-exposure and the singlescan femtosecond laser microfabrication of 3D microstructures by the 3D focal field intensity engineering. The two rapid techniques are further integrated to fabricate a microstructure.

SF3H.5 • 15:30

Microwatt-Level Soliton Frequency Comb Generation in Microresonators Using an Auxiliary Laser, Shuangyou Zhang¹, Jonathan M. Silver¹, Leonardo Del Bino¹, Francois Copie¹, Michael T. M. Woodley¹, George Ghalanos¹, Andreas Svela¹, Niall Moroney¹, Pascal DelHaye¹; ¹National Physical Lab, UK. We report a simple and robust method to generate soliton frequency combs in microresonators assisted by an auxiliary laser. Our method significantly enhances the soliton access range and enables threshold powers down to 780 microwatt.

JF3F.2 • 15:00 Invited

through In Situ Backpropagation, Tyler Hughes¹, Momchil Minkov¹, Ian Williamson¹, Yu Shi¹, Shanhui Fan¹; ¹Stanford Univ., USA. We provide a protocol for training photonic neural networks based on adjoint methods. The gradient of the network with respect to its tunable degrees of freedom is computed by physically backpropagating an optical

Executive Ballroom

210F

Joint

JF3F • Symposium on Deep-

Machine Learning & Photonics

learning Photons: Where

Intersect III—Continued

Training of Photonic Neural Networks error signal.

Executive Ballroom 210G

Executive Ballroom 210H

CLEO: Science & Innovations

SF3G • Laser-Based 2D/3D Micro- & Nano-fabrication-Continued

SF3G.4 • 14:45

Two-photon induced chiral mass-transport of azo-polymers as a function of pulse duration, Keigo Masuda¹, Yoshinori Kinezuka¹, Mitsuki Ichijo¹, Ryo Shinozaki¹, Keisaku Yamane², Kohei Toyoda^{1,3}, Katsuhiko Miyamoto^{1,3}, Takashige Omatsu^{1,3}; ¹Chiba Univ., Japan; ²Hokkaido Univ., Japan; ³MCRC Chiba Univ., Japan. We demonstrated two-photonabsorption induced chiral surface relief formation in an azo-polymer film by illumination of picosecond 1-µm optical vortex pulses. The chiral surface relief formation required at least several times the response-time of trans-cis isomerization.

SF3G.5 • 15:00 Invited

Functionalizing Glass by Local Compositional Tuning with Ultrafast Lasers, Javier Solis1; 1Instituto De Optica 'Daza De Valdes', Spain. The presentation provides an overview of fs-laser induced ion migration phenomena in glass, with emphasis on recent results of our research group regarding its application for the production of efficient photonic devices.

SF3H • Microresonator Frequency Combs—Continued

SF3H.3 • 14:45

Si-chip frequency combs with 2-octaves bandwidth for longwave-IR gas and liquid dual-comb spectroscopy, Nima Nader¹, Jeff Chiles¹, Henry Timmers¹, Eric J. Stanton¹, Abijith Kowligy¹, Alexander Lind^{1,2}, Sae Woo Nam¹, Scott A. Diddams^{1,2}, Richard P. Mirin¹; ¹National Inst. of Standards and Tech, USA; ²Physics, Univ. Of Colorado, Boulder, USA. We use suspended-silicon waveguides for spectral engineering of mid-infrared frequency combs to achieve spectra spanning 2.0 octaves (2-8.5 μ m). We demonstrate dual-comb spectroscopy of gas and liquid-phase samples with 100 MHz comb-line resolution.

SF3H.4 • 15:00

Silicon-Chip-Based f-2f Interferometer, Yoshitomo Okawachi¹, Mengjie Yu^{1,2}, Jaime Cardenas¹, Xingchen Ji^{1,2}, Michal Lipson¹, Alexander Gaeta¹; ¹Columbia Univ., USA; ²Cornell Univ., USA. Using a single siliconnitride waveguide, we demonstrate an f-2f interferometer for carrier-envelope-offset frequency (f_{CEO}) detection by simultaneous supercontinuum generation and secondharmonic generation. We measure a f_{CEO} beatnote with a 27-dB SNR with 62-pJ pulse energies.

Metadata, citation and similar papers at core.ac.uk