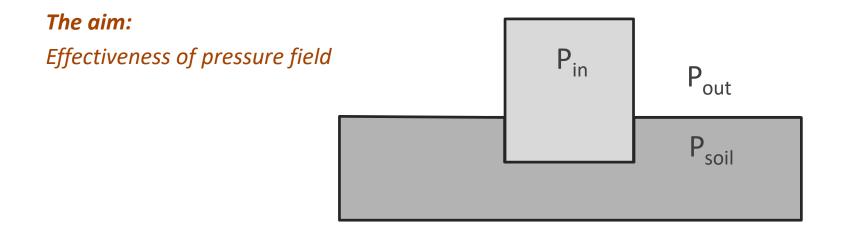
CONCRETE SLAB FACILITIES


Field pressure studies for understanding depressurization techniques (semi-laboratory scale)

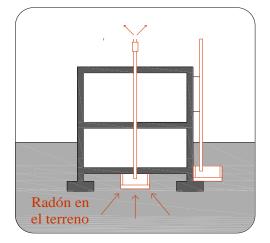
Borja Frutos Vázquez. PhD. Architect Eduardo Muñoz Lorenzo. Civil Engineer Manuel Olaya Adán. Physicist

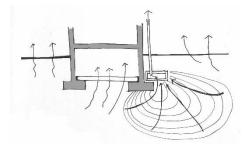
Institute for Construction Science Eduardo Torroja (CSIC)

The question - hypothesis

- Under normal condition $P_{in} < (P_{out} y P_{soil})$: 2-5Pa (stack effect)
- If we can reduce P_{soil} under $P_{in} \longrightarrow \begin{cases} Advective flux will be inverted. \\ Also CRn in soil will dilute with fresh air \end{cases}$

Guaranty value of depression: order -10 Pa


How can we reach those -10 Pa


in all area in contact with the building ???

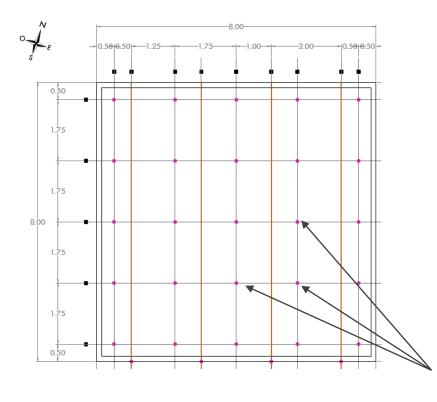
Designing a depressurization system for the **area to be treated**. (Extension of the pressure field):

Parameters

- Needed to cover the <u>building area (m²)</u>
- Taking into account foundation barrier
- Sub slab aggregate permeability
- Number of suction points
- Power of the mechanical fan

METHODS

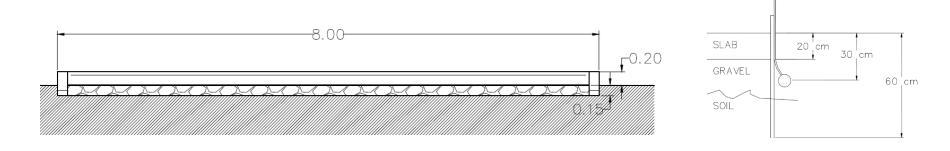
A) Constructions of 2 concrete slab on a real soil:


- 2 types of *slab design*.
- With different sub slab aggregate permeability
- With and without gravel bed
- The presence of cracks
- Different foundation lines configurations

B) Mounting a monitoring differential pressure sensors system.

- C) Measuring the pressure field with a SDS working
- D) Predictive model generation in FEM Software
- E) Validating for using as a designing tool
- F) Limitations and future works

Concrete slabs

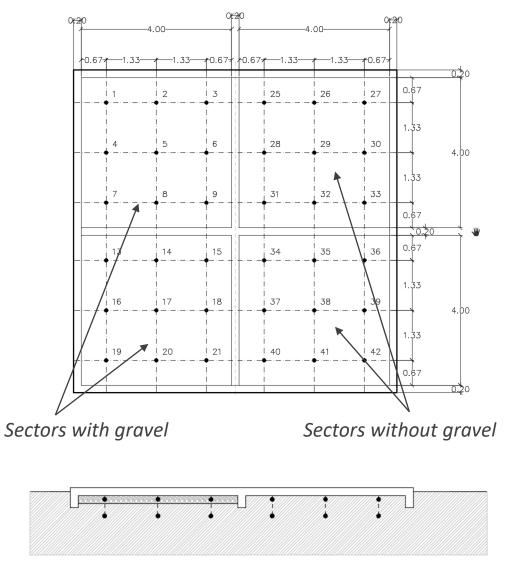


1st Concrete Slab

- Surface: 64 m² (8 m x 8 m)
- 20 cm thickness concrete
- 15 cm gravel bed under slab
- Perimeter foundation for avoiding communication between gravel and outside air

25 Pressure sensors. (5 x 5 mesh)

- Depth 1. In the gravel under the slab (30 cm)
- Depth 2. In the soil (60 cm)



2 insertion devices in each point of the mesh for pressure sensors.

Concrete slabs

2st Concrete Slab

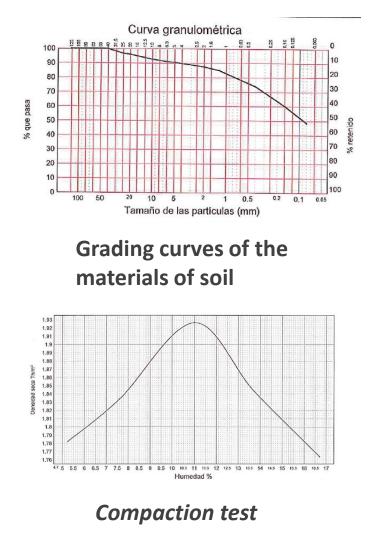
- Surface: 64 m² (8 m x 8 m). 4 sectors
 - 2 with gravel bed
 - 2 without gravel
- Perimeter foundation for avoiding communication between gravel and outside air
- <u>Central foundation</u> for studying obstacles in field pressure extension

Sensors (42 nodes in a mesh)

- Depth 1. Under the slab (30 cm)
- Depth 2. In the soil (60 cm)

Soil studies

3 levels of different material


Depth 0-0.5 m: Vegetal soil with sand Depth 0.5-1.3 m: small rocks, with clay Depth 1.3- 1.6 m: Sand, clay and small rocks

Measuring CRn in soil and Air permeability

(Cantabria University)

Punto Terreno	<i>k</i> (m²)	Punto Grava	<i>k</i> (m²)
A'1	5·10 ⁻¹²	A1	6·10 ⁻¹²
E'1	1·10 ⁻¹²	E1	6·10 ⁻¹²
A'5	6·10 ⁻¹²	A5	6·10 ⁻¹²
E'5	5·10 ⁻¹²	E5	5·10 ⁻¹²
C'3	3·10 ⁻¹²	C3	6·10 ⁻¹²

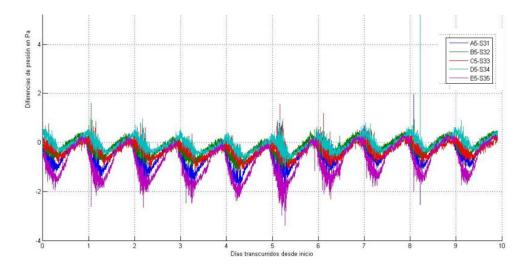
Pressure monitoring system

Needs

- Continuous measuring of pressure induce in soil by a Depressurization System
- MultiSensor System for controlling up to 50 sensor simultaneously (Mesh in Slab)
- Range of pressure: Expected to reach up tu **500 Pa** in some studies.
- Aquracy: Few Pascal in passive situation. Around 3-5 Pa.
- A data logger acquisition system with graphical visualization software.

System mounted

- Sensors: HONEYWELL HSCDRRD006MDSA3. range of ±600Pa with accuracy of 3Pa
- Multiplexer card with 8 channels and connected to a computer through a LABJACK U3


Pressure monitoring system

Software acquisition done by MatLab

TEST RESULTS, FEM MODEL AND FUTURE LINES

Test results

Previous work: joints sealing

Before

After

Institute for Construction Science Eduardo Torroja (CSIC). B. Frutos; E. Muñoz; M. Olaya

Test 1: corner suction point

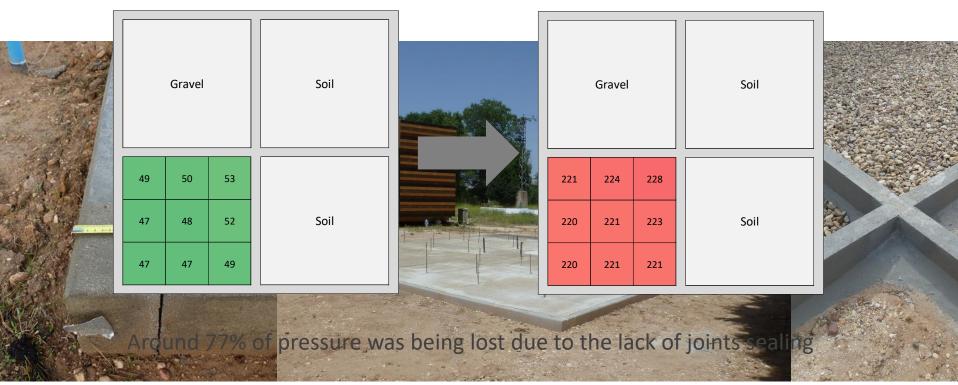
59	61	62	63	63
61	62	63	64	65
62	63	65	66	67
63	64	66	71	74
64	64	67	74	102

Test 2: central suction point

	-	-	-	
55	56	57	57	57
56	57	58	58	58
57	59	63	59	58
58	59	60	60	59
58	58	59	58	59

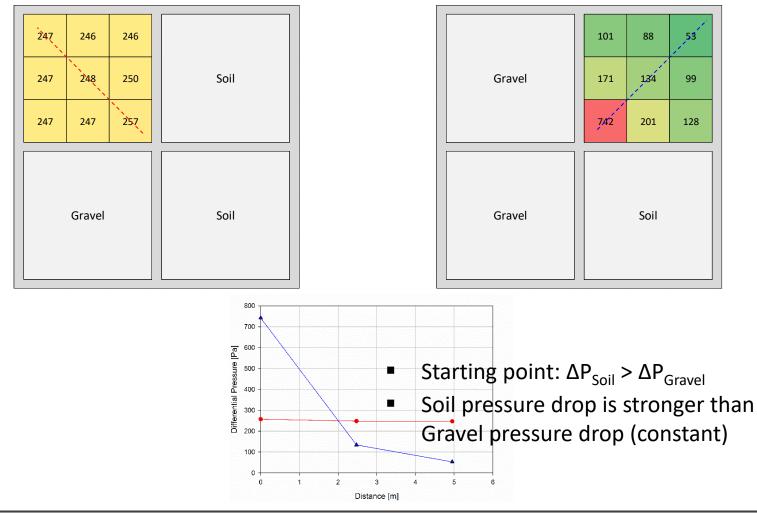
Test 3: side suction point

48	49	50	50	49
49	50	50	50	50
50	51	52	51	52
53	53	54	53	53
53	54	64	55	54

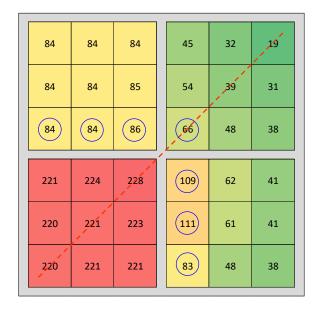


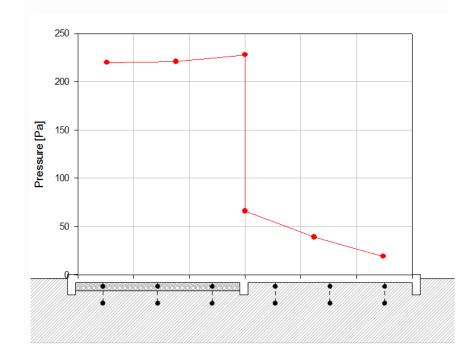
Joints Sealing Influence

Differences between gravel and soil despressurisation

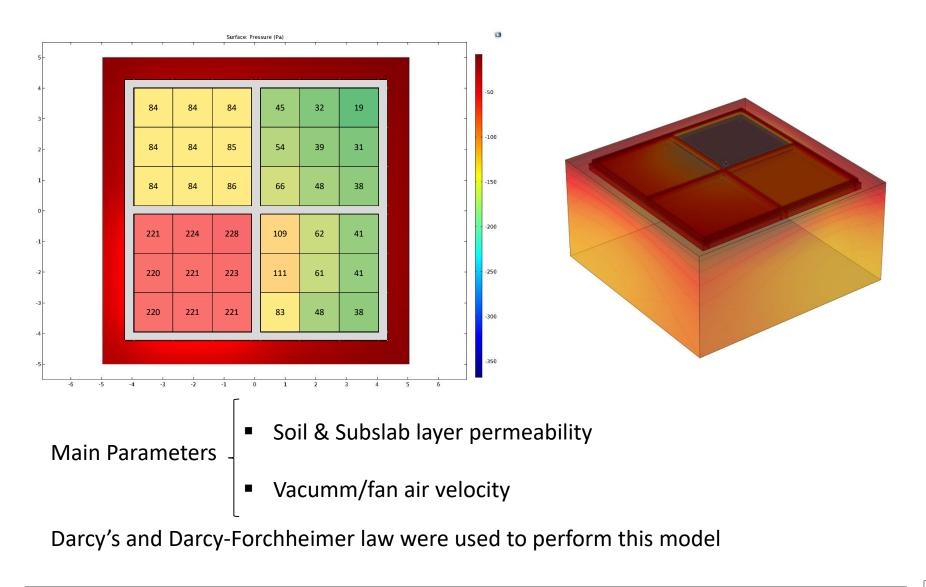

Foundation barriers influence

After joints sealing




Differences between gravel and soil despressurisation

Foundation barriers influence



- 50%-70% Foundation pressure drop
- Different soil and gravel pressure distributions

Modelling

Future work

- Test different radon mitigation fans
- Check the influence of soil moisture or rainfall
- Validate finite element model (In process)
- **Take and advantage of these facilities to train future radon mitigation professionals**

Thank you very much

CSIC. Institute for Building Sciences Eduardo Torroja-IETcc. (www.ietcc.csic.es)

Borja Frutos: <u>borjafv@ietcc.csic.es</u> Eduardo Muñoz: <u>emunozlorenzo@ietcc.csic.es</u>

