Nuclear Structure C ## Neutron Skin Effects in Mirror Energy Differences: The Case of ²³Mg-²³Na A Boso^{1, 2, 3}, S Lenzi^{1, 2}, F Recchia^{1, 2} ¹Universita degli Studi di Padova, Italy, ²INFN, Italy, ³National Physical Laboratory, United Kingdom Energy differences between analogue states in the T=1/2 ²³Mg-²³Ma mirror nuclei have been measured along the rotational yrast bands with the EXOGAM + Neutron Wall + DIAMANT setup at GANIL. The nuclei of interest have been populated via the ¹²C+¹⁶O fusion evaporation reaction. This allows us to search for effects arising from isospin-symmetry breaking interactions (ISB) and/or shape changes. Data are interpreted in the shell model framework following the method successfully applied to nuclei in the $f_{1/2}$ shell. The introduction of a schematic ISB interaction of the same type of that used in the $f_{1/2}$ shell will be shown as needed in order to reproduce the data. An alternative novel description, applied here for the first time, will be presented. It relies on the use of an effective interaction deduced from a realistic charge-dependent chiral nucleon-nucleon potential. This analysis provides two important results: (i) The mirror energy differences give direct insight into the nuclear skin; (ii) the skin changes along the rotational bands are strongly correlated with the difference between the neutron and proton occupations of the $s_{1/2}$ "halo" orbit. Fig. 1: (a) 23 Mg- 23 Na level schemes deduced in this work; (b) The parameter ζ (proportional to the neutron skin) and the difference in the occupation number of the $s_{1/2}$ orbital between neutrons and protons. [1] A. Boso et al., Phys. Rev. Lett. 121, 032502 (2018) ## Electron Capture of ⁸B into highly excited states of ⁸Be M Borge¹, S Vinals¹, A Gad⁴, P Figuera², L Fraile³, H Fynbo⁴, J Jensen⁴, B Jonson⁵, R Lica⁶, I Marroquin¹, M Munch⁴, E Nacher¹, T Nilsson⁵, J Ovejas¹, A Perea¹, J Refsgaard⁴, K Riisager⁴, C Sotty⁶, O Tengblad¹ ¹CSIC, Spain, ²INFN Laboratori Nazionali del Sud, Italy, ³Universidad Complutense de Madrid, Spain, ⁴University of Aarhus, Denmark, ⁵Chalmers University of Technology, Sweden, ⁶National Institute for Physics and Nuclear Engineering, Romania There is surprisingly little known experimentally about the beta strength distribution of the proton halo nucleus 8B . The main experimental efforts have been dedicated to establish the shape of the a-a spectrum arising from the β + decay via the 3.03 MeV state in 8B e due to its astrophysics interest, as this decay is the unique source of energetic solar neutrinos above 2 MeV. From the nuclear structure point of view, the main interest lies in the decay to the highly excited states in ⁸Be that can give information on the halo structure of ⁸B. Especially the indication for strong isospin mixing in the 2⁺ doublet at 16.6 - 16.9 MeV having dominant configurations integrated by ⁷Li+p and ⁷Be+n, respectively [1]. The β +/EC decay feeding to this doublet mainly proceed via the 16.6 MeV state, that has been observed by several groups, however, the electron capture process feeding the 16.9 MeV state was first hinted by Kirsebom et al. [2]. In a recent experiment performed at the ISOLDE Decay Station at CERN we confirm the latter decay branch with much better statistics. We present in this contribution the results obtained from this experiment, in particular, the R-matrix analysis of the full α -decay spectrum. This analysis allows for a proper characterization of the 2+ doublet and a discussion of the resulting isospin mixing will be presented. - [1] P. von Brentano, Phys. Rep. 264, 57 (1996) - [2] O. Kirsebom et al., Phys. Rev. C 83, 065802 (2011) ## The structure of ²⁵Na measured using (d,p) transfer: relevance to the ²⁴Al(p,g)²⁵Si reaction rate in astrophysical environments W Catford¹, A Knapton¹, N Orr² ¹University of Surrey, UK, ²LPC Caen, France Recently, results have been reported for states in ²⁵Si as studied via gamma-ray spectroscopy in nucleon-removal reactions at intermediate energy [1]. The measurements were interpreted together with experimental results [2,3] for the mirror nucleus ²⁵Na and with new shell model calculations and it was found [1] that the astrophysical reaction rate was likely to be up to a factor of 100 larger than previously thought [4]. Using a radioactive beam of 10⁴ pps ²⁴Na at 8 MeV/nucleon, produced using ISAC2 at TRIUMF, the d(²⁴Na,pg)²⁵Na reaction has been studied [3]. Differential cross sections were measured for 12 states in ²⁵Na including the astrophysically relevant 3.995 MeV 9/2⁺ state. Definitive spin assignments were obtained, taking into account the observed gamma-ray decay patterns, and spectroscopic factors were deduced showing striking agreement with new shell model calculations (fig. 1). The experimental details, the complete structure results for ²⁵Na and the connection to the astrophysical reaction will be presented. The measured value of the s-wave transfer to the 3.995 MeV state implies an even more significant role for the mirror state in ²⁵Si than previously [1] inferred.