GREEN Grid Conference 2019

Load Shifting Extension to the EECA Solar Calculator

Sharee McNab

29 November 2019

Outline

- Overview of EECA Solar Calculator
- Implementing load shifting
- Impact of load shifting
- Possible future work

Overview EECA Solar Calculator

Solarview Sunpath

- Generation
 - Address specific
 - Climate data from NIWA
 - Energy calcs
- Household load profile
 - Analysis of 18000 households
- Financial analysis
 - NPV
 - Payback time

The EECA energywiseTM PV Solar Calculator

Alan Wood1*, Allan Miller2, Sharee McNab2, Scott Lemon2

- ¹ Department of Electrical and Computer Engineering, University of Canterbury
- ² Electric Power Engineering Centre (EPECentre), University of Canterbury
- * Presenting author

EEA Conference & Exhibition 2016, 22 – 24 June, Wellington

https://ir.canterbury.ac.nz/handle/10092/15238

Outline

- Overview of EECA Solar Calculator
- Implementing load shifting
- Impact of load shifting
- Possible future work

Load Shifting Feature

- What is load shifting?
 - Householder choosing to shift load to times when more generation, increasing self-consumption

 $Self-consumption = \frac{solar \ used \ (kWh)}{solar \ generated \ (kWh)}$

- Why?
 - Self-consumption of generation an important factor in financial benefit
 - NOT just a knob to dial up higher
 - Link to physical behaviours
- Which Loads?
 - Electric hot water (thermal storage)
 - Flexible loads (dishwasher, clothes washer/dryers)
- How?
 - Aggregated load data (typical)
 - Where is the load shifted from?
 - Where to shift to?

Import price ~ 25-35 c/kWh Export price ~ 8-9 c/kWh

Different Ways to Shift Load

Fixed (eg. timers)

- Hot water
- Flexible loads

Smart (eg HEMS, HW Diverters)

- Look for excess generation
- Modulate output

Important – not compatible with controlled circuits!

Solar with

Shifting Load From ...

- Aggregated data
- HW load removed from load profile assuming typical 27%
- Similarly for appliances, daily appliance load calculated to shift of

Shifting Load To (Timer) ...

- HW (Timer) centred around the max generation time
- Appliances are staggered around max generation time

Modelling a HW Diverter

Energy State

- Assume initial state at start of year
- Model keeps HW cylinder state, between T_{max} (73°C) & T_{min} (40°C)
- When export and T < T_{max} heat cylinder
- When T < T_{min} heat cylinder
- Assumes tempering valve installed

Load Shifting Assumptions

Parameter	Value	Reference
Hot water load component	27%	EECA 2018
Hot water element size	3kW Important in timer analysis	GREEN Grid sample houses
Hot water cylinder size	180L (HW Diverter)	GREEN Grid sample houses
Max/Min hot water temperature (assumes a mixer)	73/40° C	HW Diverter only (Paladin)
Hot Water min. diversion	OW	Best case
Dishwasher load (typical)	0.78 kWh	EECA Sales and Efficiency Data 2018
Clothes washer (cold / hot)	0.21 / 1.32 kWh	EECA Sales and Efficiency Data 2018
Clothes dryer	4.39 kWh	EECA Sales and Efficiency Data 2018

Outline

- Overview of EECA Solar Calculator
- Implementing load shifting
- Impact of load shifting
- Possible future work

Summer Day Generation/Load Comparison

3 kW PV Array, electricity consumption 7500 kWh p.a.

Load shifting impact (hot water)

3 kW array, electricity consumption 7500 kWh p.a.

Possible Future Work

Short term

- Further validation of solar systems
- Implications of the Electricity Pricing Review

Longer term

- Battery Energy Storage
- Changing loads
 - EV charging,
 - air-conditioner
- Upload personal smart-meter data
- Advances in PV technologies
 - Bifacial, smart solar modules

EECA Solar Calculator

https://www.energywise.govt.nz/tools/solar-tool/

Thank you to our supporters!

