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MEssagE
Based on previous work by our group with manual 
annotation of visible Barrett oesophagus (BE) 
cancer images, a real- time deep learning artificial 
intelligence (AI) system was developed. While an 
expert endoscopist conducts the endoscopic assess-
ment of BE, our AI system captures random images 
from the real- time camera livestream and provides a 
global prediction (classification), as well as a dense 
prediction (segmentation) differentiating accurately 
between normal BE and early oesophageal adeno-
carcinoma (EAC). The AI system showed an accu-
racy of 89.9% on 14 cases with neoplastic BE.

In MorE dETaIl
This paper follows up on our prior publication on 
the application of AI and deep learning in the eval-
uation of BE.1 2 In our initial publications, we devel-
oped a computer- aided diagnosis (CAD) model and 
demonstrated promising performance scores in the 
classification and segmentation domains during BE 
assessment.1 2 However, these results were achieved 
on optimal endoscopic images, which may not 
mirror the real- life situation sufficiently. To enable 
the seamless integration of AI- based image classi-
fication into the clinical workflow, our previous 
system was developed further to increase the speed 
of image analysis for classification and the reso-
lution of the dense prediction, which shows the 
color- coded spatial distribution of cancer probabili-
ties.1 2 Still based on deep convolutional neural nets 
(CNNs) and a residual net (ResNet) architecture 
with DeepLab V.3+, a state- of- the- art encoder–
decoder network was adapted.3 To transfer the 
endoscopic livestream to our AI system, a capture 
card (Avermedia, Taiwan) was plugged to the endo-
scopic monitor.

Online supplementary video 1 shows the setting 
of AI- based BE evaluation in the endoscopy room 
of the University Hospital Augsburg (figure 1). 
The AI prediction can be started at any time using 
either a button on the keyboard or a foot switch. 
The video clip shows examples of three different 
patients and the AI predictions at different loca-
tions. Note that image freeze is not necessary for 
the AI analysis, which is randomly done by the 
system, but was done for evaluation purposes of 
this study to ensure the same basis for human and 
AI predictions. As can be seen, a dynamic blue bar 
at the bottom of the screen provides a continuous 
prediction of the probability of cancer in real time. 

In conformity to our previous AI system,2 an image 
is classified as EAC if the global cancer prediction 
exceeds 90%.

Online supplementary video 2 shows the user 
interface (UI) and the application features. The 
left part of the UI consists of a preview window of 
the livestream of the endoscopic examination (or 
optionally a video) and a list of patients examined. 
The main window shows the probability- based 
dense prediction. A real- time partial prediction is 
shown by the dynamic blue bar at the bottom of 
the screen. Three different visualisations of the 
results are provided: the Barrett view, the cancer 
view and the combined view. Additionally, the 
global prediction of cancer for a particular region 
of interest is located as a thick blue bar on the 
lower part of the UI. Finally, online supplementary 
video 2 sketches briefly the AI method used for 
global and dense prediction (figure 2). The method 
is based on DeepLab V.3+, an encoder–decoder 
artificial neural network.3 Similar to our previous 
CAD system,2 the encoder is ImageNet- pretrained 
and based on a ResNet with 101 layers. It succes-
sively reduces the spatial resolution of the feature 
maps in each layer to learn semantic information 
at a higher abstraction level. The last ResNet layer 
uses the concept of dilated convolutions followed 
by a spatial pyramid pooling to allow the integra-
tion of larger contexts into the classification.3 For 
global prediction, two fully connected layers are 
linked to the encoder path.4 For the dense predic-
tion, the decoder uses the semantic information of 
the encoder and distributes it to full spatial resolu-
tion. Therefore, the encoder neural network is used 
for classification (global prediction) as well as for 
segmentation (dense prediction).

In our present study, the AI system was trained 
using a total of 129 endoscopic images from our 
image database at the University Hospital Augs-
burg. To validate the system in real time, addi-
tional images (36 of early EAC and 26 of normal 
BE) from 14 patients (4 female and 10 male) were 
assessed by the AI system concurrently with the 
endoscopic examination by an expert BE endos-
copist. All images were validated by pathological 
examination of resection specimens (EAC), as well 
as forceps biopsies (normal BE). The AI system had 
excellent performance scores in the classification 
task with a sensitivity and specificity of 83.7% and 
100.0%, respectively, and an overall accuracy of 
89.9%.

Find more details on Methods and Results online.
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Figure 1 Seamless integration of AI- based computer- aided diagnosis 
in the clinical setting. The resulting AI prediction is based on the 
average predictions of original image and its three flipped variants. 
Each single prediction results from an ensemble of four independently 
trained models, each of which uses 90% of the training data available. 
This procedure increases the robustness but is more time- consuming. 
Overall, on a desktop with two NVidia TitanX graphics processing units, 
the AI prediction takes 1.19 and 0.13 s with and without ensembling, 
respectively.

Figure 2 Encoder–decoder neural network DeepLab V.3+3 with 
different paths for global and dense prediction,4 respectively.

CoMMEnTs
The incidence of EAC in the Western world is still on the rise, and 
the overall prognosis remains poor.5 BE is the most important 
risk factor for the development of EAC especially in patients 
with long- segment BE and intraepithelial neoplasia.6 The early 
detection of EAC can lead to a substantial improvement in prog-
nosis; however, the endoscopic detection and subsequent charac-
terisation of early EAC in BE is a challenge, even for experienced 
endoscopists. Early EAC is often flat and difficult to distinguish 
from the surrounding non- dysplastic Barrett’s mucosa, even with 
high- definition endoscopes.7 The Bing study group comprising 
international Barrett experts achieved a sensitivity and speci-
ficity of 80% and 89%, respectively, in the diagnosis of high- 
grade neoplasia and mucosal cancer.8 Endoscopists with less 
experience in BE evaluation will probably achieve lower perfor-
mance values. Therefore, the need for more efficient methods 
of detection and characterisation of early EAC in BE has led to 
intensive research in the field of AI and CAD, especially with 
deep neural networks.

To our knowledge, this is the first real- time application of a 
deep learning AI system in the evaluation and diagnosis of early 
EAC in BE in a real- life setting. The video demonstrations show 
the difficulties encountered by expert and non- expert endosco-
pists during BE assessment. Since the AI system showed a very 
similar performance compared with the experienced endoscopist 
(the AI system and the expert disagreed in only one of the exam-
ined regions), the AI- based CAD has the potential to improve the 
quality of BE assessment, especially for non- expert endoscopists. 
Study limitations include the low number of patients included in 
the present study. Furthermore, elevated lesions delineated by 
the subjective impression of the endoscopist were included in 
our initial study. However, further optimisation with evaluations 
will follow.
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