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Abstract
Class based emotion recognition from speech, as performed
in most works up to now, entails many restrictions for practi-
cal applications. Human emotion is a continuum and an auto-
matic emotion recognition system must be able to recognise it
as such. We present a novel approach for continuous emotion
recognition based on Long Short-Term Memory Recurrent Neu-
ral Networks which include modelling of long-range dependen-
cies between observations and thus outperform techniques like
Support-Vector Regression. Transferring the innovative concept
of additionally modelling emotional history to the classification
of discrete levels for the emotional dimensions “valence” and
“activation” we also apply Conditional Random Fields which
prevail over the commonly used Support-Vector Machines. Ex-
periments conducted on data that was recorded while humans
interacted with a Sensitive Artificial Listener prove that for ac-
tivation the derived classifiers perform as well as human anno-
tators.
Index Terms: Emotion Recognition, Sensitive Artificial Lis-
tener, LSTM

1. Introduction
Automatic emotion recognition from speech has in the past fo-
cused on identifying discrete classes of emotion, e. g. [1]. How-
ever, common sense and psychological studies suggest that the
full spectrum of human emotion cannot be expressed by a few
discrete classes. Emotion is better represented by continuous
values on multiple attribute axes such as valence, activation or
dominance [6]. A specific emotion thereby is represented by a
point in a multi-dimensional coordinate space.

Research dealing with recognition of emotion as a contin-
uum requires databases where emotion is continuously labeled
regarding multiple attributes. Such databases [3] have been re-
cently recorded by the HUMAINE project1. In the Sensitive
Artificial Listener (SAL) database which is used in this work,
not only emotional dimensions but also the dimension “time” is
a quasi-continuum, since annotations for valence and activation
are sampled every 10 ms. In this paper we introduce a new
technique for continuous emotion recognition in a 3D space
spanned by activation, valence, and time using Long Short-
Term Memory Recurrent Neural Networks (LSTM-RNN) [7].
Recently LSTM-RNN have been successfully applied to speech

1http://www.emotion-research.net/

recognition [5] and meeting segmentation [9]. In contrast to
state-of-the-art approaches such as Support-Vector Regression
(SVR), LSTM-RNN also model long-range dependencies be-
tween successive observations and therefore are suited to cap-
ture emotional history for adequate prediction of emotion in a
three-dimensional space. The principle of modelling the tem-
poral evolution of emotion is also evaluated for discrete labels.
For this purpose the continuous labels for activation and valence
are quantised and Conditional Random Fields (CRF) [8], which
similarly to LSTM-RNN drop the independence assumption be-
tween successive class labels, are applied.

The next section introduces the database of induced emo-
tional speech used in our experiments. Section 3 describes the
set of acoustic features. In Section 4 the classification methods
are explained. Finally, in Section 5 the results are presented.

2. Database
As database we use the induced Belfast Sensitive Artificial Lis-
tener data which is part of the final HUMAINE database [3]. We
use a subset which contains 25 recordings in total from 4 speak-
ers (2 male, 2 female) with an average length of 20 minutes per
speaker. The data contains audio-visual recordings from natu-
ral human-computer conversations that were recorded through
a SAL interface designed to let users work through a range of
emotional states. [3] describes the database in more detail. Data
has been labelled continuously in real time by 4 annotators with
respect to valence and activation using a system based on FEEL-
trace [2]. The annotators used a sliding controller to annotate
both emotional dimensions separately whereas the adjusted val-
ues for valence and activation were sampled every 10 ms to ob-
tain a temporal quasi-continuum. To compensate linear offsets
that are present among the annotators, the annotations were nor-
malised to zero mean globally. Further, to ensure common scal-
ing among all annotators, each annotator’s labels were scaled so
that 98% of all values are in the range from -1 to +1. Finally, the
mean of all 4 annotators was computed, which is used as ground
truth label in the experiments reported on in Section 5. The av-
erage Mean Squared Error (MSE) of the four human annotators
with respect to the mean value is 0.08 for activation and 0.07 for
valence. The 25 recordings have been split into turns using an
energy based Voice Activity Detection. A total of 1,692 turns
is accordingly contained in the database. The turns were once
randomly divided into training (1,102 turns) and test (590 turns)
splits for the experiments. Both sets contain all speakers, thus
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results are not speaker independent, which in turn would not be
feasible with only 4 speakers. Labels for each turn are com-
puted by averaging the frame level valence and activation labels
over the complete turn. Apart from the necessity to deal with
continuous values for time and emotion, the great challenge of
emotion recognition on the SAL database is the fact that the
system must deal with all data - as recorded - and not only man-
ually pre-selected “emotional prototypes” as in practically any
other database.

3. Feature Extraction
As acoustic features for emotion recognition, functionals of
acoustic Low-Level Descriptors (LLD) are state of the art as
proven by various current works, e. g. [1, 10]. These function-
als are statistical properties derived from the LLD contours of
the whole utterance to be classified. Thus, utterances of vari-
able length can be mapped onto a feature vector of constant
dimension. In this work the features as introduced in [11] are

Table 1: Acoustic LLD used for computation of hierarchical
functionals.

Type LLD
Time Signal Elongation, Centroid, Zero-Crossing Rate
Energy Log-Frame-Energy
Spectral 0-250 Hz, 0-650 Hz, Flux

Roll-Off + δ, Centroid + δ
Pitch F0 (fundamental frequency)
Formants F1-F7 Frequency + δ,

+ Bandwidth + δ
Cepstral MFCC 1-15 + δ + δδ
Voice Quality Harmonics to Noise Ratio (HNR)

used. Table 1 shows the LLD to which the functionals maxi-
mum, position of maximum, minimum, position of minimum,
mean, median, and standard deviation are applied. Thereby we
used the principle of hierarchical functionals to compensate sta-
tistical outliers in long turns: the typical turn-wise functionals
are supplemented by hierarchical functionals (“functionals of
functionals”, e. g. “mean of maxima”) basing on a fixed length
segmentation of 1 second. In [11] this novel strategy has proven
to enable enhanced performance for emotion recognition.

In total 4,843 features have been extracted for each utter-
ance. To investigate the effects of feature normalisation, six
variations are evaluated: mean and variance standardisation
(MVS), numeric normalisation to range -1 to +1 (NRM), and
the combination of MVS and NRM (M+N) each applied to a)
the complete data set (ALL) and b) the data of each speaker in-
dividually (SPK). In the ongoing the resulting features sets are
named accordingly : MV Sall, NRMall, M+Nall, MV Sspk,
NRMspk, and M+Nspk. For computation of the standardisa-
tion/normalisation coefficients only the training split was used.

To find features highly relevant to the task at hand a
correlation-based feature search (CFS) basing on a Sequential-
Forward-Floating-Search (SFFS) is performed for each target
label and feature set individually using the corresponding train-
ing split.

4. Classification
4.1. Long Short-Term Memory Recurrent Neural Net

A major drawback of recurrent neural networks trained by back-
propagation through time and other established methods is that

they are not able to store information over a longer time pe-
riod. Bridging such longer lags is difficult since error signals
are likely to either blow up or vanish. With so-called Long
Short-Term Memory (LSTM) cells as introduced by Hochre-
iter and Schmidhuber [7] it is possible to overcome the problem
that events lying back in time tend to be forgotten. Instead of the
hidden cells of a conventional recurrent neural net the LSTM-
RNN consists of memory blocks which contain one or more
memory cells (see Figure 1). In the middle of each cell there
is a simple linear unit with a single self-recurrent connection
whose weight is set to 1.0. Thus the current state of a cell is
preserved throughout one time step. The output of one cell is

ycj (t) = youtj (t)h(scj (t)) (1)

whereas the internal state scj (t) can be calculated as

scj (t) = scj (t− 1) + yinj (t)g(netcj (t)) (2)

with the initial state scj (0) being 0. Due to this architecture
salient events can be remembered over arbitrarily long periods
of time. Cells can be combined to blocks sharing the input and
output gate. In general, the LSTM-RNN architecture consists
of three layers: an input, a hidden, and an output layer. The
number of input layer nodes corresponds to the dimension of
the feature vector. As hidden layer we used 8 blocks with four
LSTM cells each. For the output layer one node is used, corre-
sponding to either valence or arousal.

Figure 1: Memory cell of an LSTM-RNN; s: states; y: data
(inputs/outputs); g,h: transfer functions (sigmoid)

4.2. Conditional Random Fields

As alternative to continuous class labelling with an LSTM-
RNN, also discrete labelling using Conditional Random Fields
(CRF) [8] was conducted in Section 5. Unlike generative mod-
els like the Hidden Markov Model, Conditional Random Fields
do not assume that the observations are conditionally indepen-
dent. This is advantageous whenever there are long-range de-
pendencies between the observations. For CRF classification
the continuous valence and arousal labels were quantised to four
and seven levels each.

5. Results and Discussion
In this section recognition results for classification of valence
and activation with four different classifiers are presented.
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Apart from CRF we also use Support-Vector Machines (SVM)
as a state-of-the-art method for discrete classification. Then we
discuss the continuous predictors LSTM-RNN and SVR.

Table 2: Recognition rates RR and RRc (tolerating confusion
between directly neighboring labels) for SVM classification of
activation (A) and valence (V) with 4 (top part) and 7 (bottom
part) discrete classes.

Feature set RRA RRc
A RRV RRc

V
[%] [%] [%] [%]

MV Sall 44.4 91.4 43.7 87.3
MV Sspk 41.9 89.2 32.7 79.2
NRMall 46.3 94.2 44.4 86.9
NRMspk 44.1 92.2 41.2 86.1
M+Nall 45.1 93.9 44.6 86.8
M+Nspk 45.5 92.5 41.2 86.6
MV Sall 26.4 67.6 22.4 55.4
MV Sspk 25.4 70.3 17.8 49.7
NRMall 30.8 73.4 24.6 61.2
NRMspk 28.1 71.4 22.4 63.1
M+Nall 30.2 73.2 24.4 62.0
M+Nspk 30.3 73.1 20.7 57.1

5.1. Support-Vector Machines

Table 2 shows results for SVM classification using the six dif-
ferent feature normalisation variants with 4 and 7 quantisation
steps (discrete classes) for the continuous values of valence and
activation. Depending on the accuracy requirements of the ap-
plication confusions between neighboring classes may be toler-
able. Thus, in addition to the standard recognition rate (RR) a
second recognition rate (RRc) is introduced where confusions
between directly adjacent neighbouring classes are scored as
correctly classified.

We would like to note at this point that the RRc value for
4 classes has to be interpreted carefully, since many confusions
are scored as correct, the observed high recognition rates can
be expected. Thus, the same experiment was conducted with 7
classes. Then, each class represents a numerical range of width
1
7
≈ 0.29. Two classes represent a numerical range of width

≈ 0.58, being almost equivalent to using four classes. The RRc

rate for 7 classes is roughly around 70%, which is good consid-
ering the subjective nature of emotion. Results for activation are
remarkably better than for valence which confirms the findings
in [4] proving that even for humans valence is harder to identify
than activation whenever linguistic information is not included.

5.2. Conditional Random Fields

Table 3 shows the corresponding results for CRF classification
with the same number of quantisation steps and types of feature
normalisation as in Section 5. As expected, due to additional
modelling of temporal dependencies between the observations,
CRF outperform SVM considering the best results for each case
(printed in bold face in Table 2 and Table 3 respectively). The
best recognition rates RR, both for valence and activation, are
obtained with normalisations NRMall and M+Nall for both
classifiers.

5.3. Support-Vector Regression

Continuous classifiers (predictors) require a different evaluation
method. Instead of a recognition rate (percentage of correctly
classified instances) the Mean Squared Error (MSE) between

Table 3: Recognition rates RR and RRc (tolerating confusion
between directly neighboring labels) for CRF classification of
activation (A) and valence (V) with 4 (top part) and 7 (bottom
part) discrete classes.

Feature set RRA RRc
A RRV RRc

V
[%] [%] [%] [%]

MV Sall 46.4 91.5 43.7 88.6
MV Sspk 39.2 88.3 32.4 76.8
NRMall 46.6 93.9 45.6 88.3
NRMspk 44.1 95.4 36.6 79.0
M+Nall 50.8 95.0 44.9 88.0
M+Nspk 45.3 94.1 34.7 81.9
MV Sall 27.8 71.2 20.9 52.0
MV Sspk 28.0 69.2 18.3 45.8
NRMall 32.5 77.5 29.7 65.1
NRMspk 31.7 77.8 25.8 64.9
M+Nall 31.5 73.4 27.0 62.4
M+Nspk 26.1 70.9 21.7 62.7

the prediction and the actual value is propagated herein. Larger
deviations between actual and predicted have greater influence
on the MSE than small errors. Therefore, the MSE in contrast to
the Mean Linear Error (MLE) also enhances the accuracy of the
result to some extent. The left part of Table 4 shows the MSE
for valence and activation achieved with SVR classification.

Table 4: MSE for SVR (left part) and LSTM-RNN (right part)
prediction of activation (A) and valence (V) on 4 feature sets
with respect to the mean label value of the 4 annotators.

SVR SVR LSTM LSTM
Feature set MSEA MSEV MSEA MSEV

MVNall 0.12 0.19 0.10 0.22
MVNspk 0.10 0.19 0.13 0.21
NRMall 0.12 0.20 0.14 0.18
NRMspk 0.12 0.18 0.12 0.25
M+Nall 0.12 0.20 0.14 0.20
M+Nspk 0.12 0.18 0.08 0.25

To visualise the correctness of the classified values and to
compare the deviation of the predicted emotional dimensions
with the degree of agreement between the 4 annotators, Figure 2
shows the classified value obtained with SVR (dashed broad
grey line) as well as the minimum and the maximum of the an-
notated values (thin grey line) for all 590 test turns. The speaker
boundaries (between speakers f1, f2, m1, m2) are marked with
vertical dotted lines.

5.4. LSTM-RNN

The MSE for LSTM-RNN classification is shown in the right
part of Table 4. While for valence the best performance ob-
tained with LSTM-RNN is equal to the best performance with
SVR (0.18 MSE), LSTM-RNN outperform SVR classification
for activation. With feature normalisation type M+Nspk the
result for activation (MSE 0.08) is as good as human annotation
(see Section 2), which again confirms that modelling long-range
dependencies is advantageous for continuous emotion recogni-
tion. Also the broad black line in Figure 2, which shows the
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classified values when using LSTM-RNN, illustrates the almost
perfect result for activation: the classified activation value pri-
marily lies within corridor defined by the deviation between the
annotators (thin grey lines). As in the discrete case, valence is
classified far less accurately because of the lack of linguistic
information.
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Figure 2: LSTM-RNN (solid black line) / SVR (dashed grey line)
classification of activation and valence (y-axis) over 590 test
turns (x-axis); upper/lower grey line: maximum/minimum value
of the 4 annotators.

6. Conclusion and Outlook
In this work we introduced a novel strategy of emotion recog-
nition operating in continuous three-dimensional space. In con-
trast to common static classification techniques which aim to
distinguish discrete emotion classes and ignore temporal de-
pendencies occurring in the evolution of affect, we operate
in a quasi-continuous time domain with emotional dimensions
“valence” and “arousal” continuously emerging over time. To
capture long-range dependencies between the acoustic observa-
tions derived from hierarchical functionals of prosodic, spectral,
and voice quality features, we model emotional history using
Long Short-Term Memory Recurrent Networks which extend
the principle of recurrent neural networks by including memory
cells. The benefits of continuous LSTM-RNN modelling be-
come evident in our experiments when comparing the strategy
to state-of-the-art classification techniques like Support-Vector
Regression: LSTM-RNN prevail over SVR and achieve a pre-
diction quality which for “activation” is equal to human per-
formance. To further prove the convenience of including long-
range time dependencies between observations in quasi-time-
continuous emotion recognition, we also evaluated the concept
for discrete class labels obtained through quantisation of the
continuous labels for valence and arousal. Again including
emotional history, which in this case is done by applying Con-
ditional Random Fields, prevails over standard techniques like
Support-Vector Machines.

The classification performance for valence still is relatively
low which derives from the fact that detecting valence from
acoustic features alone is known to be a hard task, even for

humans. To overcome this problem the integration of linguis-
tic features which requires additional speech recognition is a
possible future approach for robust continuous emotion recog-
nition with LSTM-RNN. Further issues making the recognition
of valence challenging can be found when considering the SAL
database which was used in the experiments: only 4 speak-
ers and 4 annotators with low inter-labeler-agreement are used,
which is a low number compared to other databases for emo-
tion recognition [6]. Apart from this, the SAL database consists
not only of emotional prototypes with strong emotions. For fu-
ture works it is interesting to apply the promising concept of
modelling long-range dependencies in the temporal evolution of
emotion on larger databases which are also labeled as a quasi-
continuous 3D emotion space.
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find trouble in communication. Speech Communication 40, pages
117–143, 2003.

[2] R. Cowie, E. Douglas-Cowie, S. Savvidou, E. McMahon,
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