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Abstract

Epigenetic changes, including DNA methylation, are a

common finding in cancer. In lung cancers methylation

of cytosine residues may affect tumor initiation and

progression in several ways, including the silencing of

tumor suppressor genes through promoter methylation

and by providing the targets for adduct formation of

polycyclic aromatic hydrocarbons present in combus-

tion products of cigarette smoke. Although the impor-

tance of aberrant DNA methylation is well established,

the extent of DNAmethylation in lung cancers has never

been determined. Restriction landmark genomic scan-

ning (RLGS) is a highly reproducible two-dimensional

gel electrophoresis that allows the determination of the

methylation status of up to 2000 promoter sequences in

a single gel. We selected 1184 CpG islands for RLGS

analysis and determined their methylation status in 16

primary non–small cell lung cancers. Some tumors did

not show methylation whereas others showed up to

5.3% methylation in all CpG islands of the profile.

Cloning of 21 methylated loci identified 11 genes and 6

ESTs. We demonstrate that methylation is part of the

silencing process of BMP3B in primary tumors and lung

cancer cell lines. Neoplasia (2001) 3, 314–323.

Keywords: non– small cell lung cancer, DNA methylation, RLGS, genome scanning,

epigenetic.

Introduction

Lung cancer is the leading cause of cancer - related death in

both males and females worldwide [1] . Clinically, lung

cancer can be divided into two groups: small cell lung cancer

(SCLC) and non–small cell lung cancer (NSCLC) [2,3] .

The latter constitutes approximately 75% of all lung cancers

[2 ] and includes squamous cell carcinoma (SCC), adeno-

carcinoma (AC) and large cell carcinoma (LCC) (approx-

imately 30%, 40% and 15%, respectively in all lung cancer

cases in North America) [3] .

Molecular abnormalities in lung cancer affect both

growth-promoting oncogenes and growth- inhibiting tumor

suppressor genes. So far mutations have been reported in

the oncogene K-RAS [4–6] as well as in tumor

suppressor genes p53 [7 ] , CDKN2 [8–11] and RB

[12] . In addition to genetic changes, the epigenetic

change of DNA methylation, the addition of a methyl

group to the cytosine ring in 50 -CpG-30 dinucleotides, may

play a significant role during lung cancer development

[13–17] . DNA methylation is established and maintained

by a family of DNA methyltransferases [18] and affects

chromatin organization as well as gene expression [19] . A

well -studied example in lung cancer is the aberrant

promoter methylation of the tumor suppressor gene,

CDKN2, which correlates with gene silencing [8,10,20–

22] . Because most of the reports describe methylation in

single cancer genes, no measurement of the overall

contribution of promoter methylation in lung cancer exists.

As an initial step to address this question, Zochbauer-

Muller et al. showed that numerous genes, including

retinoic acid receptor � -2 (RAR� ) , tissue inhibitor of

metaloproteinnase 3 (TIMP-3 ) , CDKN2, O6-methylgua-

nine-DNA-methyltransferase (MGMT ) , death-associated

protein kinase (DAPK ) , E-cadherin (ECAD ) , p14ARF and

glutathione S-transferase P1 (GSTP1 ) , were methylated

at various degrees in a collection of 107 primary NSCLC

[22] .

Methylation changes in lung cancer appear to be early

events and thus should be useful in improving early

detection of potentially malignant cells [23–25] . For

example, CDKN2 promoter methylation is proposed as a

biomarker for early detection of lung cancer and monitoring

of prevention trials [23–25] . Using sensitive PCR-based

methylation analysis, methylation in CDKN2 and/or MGMT
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promoters was found in sputum of smokers up to 3 years

before clinical diagnosis of squamous cell lung carcinoma

[23–25] .

There is a need for the identification of novel markers

in lung cancer as well as the identification of cancer -

related genes. Aberrantly methylated target sequences

can guide a search for novel genes that may be useful

biomarkers, as well as candidate cancer genes. In this

study we use, for the first time, restriction landmark

genomic scanning (RLGS) to determine frequencies of

DNA methylation and to identify novel methylation targets

in NSCLC samples. Transcription patterns for one

methylated gene, BMP3B, were studied in greater detail

in primary tumors as well as in lung cancer cell lines. We

show that aberrant methylation of the CpG island of

BMP3B downregulates gene transcription of this interest-

ing gene product.

Materials and Methods

Primary Human NSCLC Samples and Cell Lines

The tumor samples were derived from patients here at

The Ohio State University, James Cancer Hospital. Com-

plete pathologic classification is available for all tumor

samples studied. Tissues were collected through the

Cooperative Human Tissue Network to maintain patients’

confidentiality. Samples were subsequently stored in our

lung tumor tissue bank. Sixteen frozen paired NSCLC

tumors with normal adjacent tissue were selected for this

study. We used four lung cancer cell lines, all obtained from

ATCC. H23 was derived from an AC, H125 was derived from

an adenosquamous carcinoma, H522 was derived from an

AC, and H1115 was derived from an LCC that metastasized

to the lymph node. All cell lines were cultured in RPMI-1640

medium (Gibco BRL, Rockville, MD) supplemented with

10% fetal bovine serum, 100 U/ml penicillin and 0.1 mg/ml

streptomycin (Gibco BRL).

Two-Dimensional Separation by Restriction Landmark

Genome Scanning (RLGS)

RLGS was performed as described previously [26,27] . In

summary, high molecular weight DNA was digested with the

methylation sensitive restriction enzyme NotI (Promega,

Madison, WI) , end- labeled by [� - 32P]dGTP and

[� -32P]dCTP (Amersham, Piscataway, NJ) , and then

digested using the restriction enzyme EcoRV (Promega) .

NotI–EcoRV DNA fragments were separated in a first

dimension through a 0.8% agarose tube gel, followed by

an in-gel digestion with a third restriction enzyme, HinfI

(New England Biolabs, Beverly MA). Finally, the DNA was

separated on a second dimension 5% polyacrylamide gel;

the gel was dried and exposed to X-ray film for 5 to 10 days.

RLGS profiles of primary tumors and normal adjacent lung

tissue were superimposed to visually detect differences in

the intensities and/or presence of the radiolabeled frag-

ments.

RLGS Analysis

The fragments in the RLGS profiles have been named on

our ‘‘Master RLGS profile’’ (see website E-mail: http: / /

pandora.med.ohio-state.edu/masterRLGS/ ) . The master

RLGS profile, derived from normal peripheral blood

lymphocyte DNA, is divided into 63 sections. Each RLGS

fragment is given a unique identifier (e.g., 3C1) that relates

to the position within the RLGS profile. Therefore, data sets

from different patients can be compared to identify

commonly changed fragments.

Cloning of RLGS Fragments

A human NotI–EcoRV plasmid library and library mixing

gels were created previously to facilitate cloning of RLGS

fragments [26,28] . These mixing gels allow the determi-

nation of an address for a library clone corresponding to the

RLGS fragment by identifying enhancement in the plate, row,

and column mixing gels [26] . Bacterial clones were cultured

in LB medium with ampicillin to isolate plasmid DNA using

Qiagen miniprep kit (Qiagen, Valencia, CA) . The plasmid

DNA was digested with NotI and EcoRV (Promega) , end-

labeled with [� - 32P]dGTP and [� -32P]dCTP (Amer-

sham). Labeled DNA, 5.2 and 10.4 pg per clone, were

mixed with labeled peripheral blood lymphocytes (PBL)

genomic DNA from a normal healthy donor, and subse-

quently separated in the two-dimensional RLGS mixing gel.

Enhanced intensities of the RLGS fragment of interest in

these mixing gels indicated that the NotI /EcoRV clone

represents the RLGS fragment of interest.

Characterization of RLGS Fragments

The confirmed plasmid clones are sequenced with M13

forward and M13 reverse primers. DNA sequences from

M13 forward primer were used to perform standard

nucleotide–nucleotide BLAST searches, using nonredun-

dant (nr ) and high throughput genomic sequence (htgs)

databases at release time March 1, 2001 (http: / /

www.ncbi.nlm.nih.gov/BLAST/ ) . When possible, 2-kb

genomic sequences from both sides of the NotI site were

used for subsequent BLAST searches for genes or ESTs.

Chromosomal location of cloned DNA fragments were

obtained either directly from the information given in

Genebank (http: / /www.ncbi.nlm.nih.gov/ ) , or by searching

the OMIM database (http: / /www.ncbi.nlm.nih.gov/entrez/

query.fcgi?db=OMIM) using gene names, or by searching

the BAC resource website (http: / /www.ncbi.nlm.nih.gov /

genome/cyto/hbrc.shtml ) that contains cytogenetic data of

FISH-mapped and sequence- tagged BAC clones. The

properties of CpG islands were determined using a web-

based program http: / /www.itba.mi.cnr.it /webgene/ , which

is provided by the Institute of Advanced Biomedical

Technologies ( ITBA), Italy.

Southern Hybridization

Southern hybridization was performed as described

previously [26] . Briefly, control samples, DNA from healthy

donors, were digested by EcoRV alone and a NotI /EcoRV
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combination. The control sample will show the expected

fragment size in the EcoRV digestion and a smaller fragment

in the double digestion. All tumor samples were digested by

NotI /EcoRV. The probes were prepared by restriction

enzyme digestion of the clone DNA, purification of the target

fragments, and subsequent labeling by random priming

using the Prime IT II kit (Stratagene, La Jolla, CA).

Percentage of methylation was quantified by a phosphor-

imager.

5-aza-2 0 -Deoxycytidine Treatment of Cell Lines

A total of 3�106 cells of each NSCLC cell line were

seeded into T75 culture flasks and cultured with RPMI-1640

media overnight. 5-aza-20 -deoxycytidine media was freshly

made each day from stock solution (10 mmol / l in 100%

DMSO) (Sigma, St. Louis, MO) to a final concentration of 1

�mol/ l. Cells were cultured with 5-aza-20 -deoxycytidine
medium for 24 hours and then washed with PBS twice and

continued to culture with fresh medium without 5-aza-20 -
deoxycytidine for 2 days (24-hour timepoint ) . Cells for the

72-hour timepoint were cultured in 5-aza-20 -deoxycytidine
medium that was changed daily for 3 days, then washed with

PBS twice and continued to culture in fresh medium without

5-aza-20 -deoxycytidine for one additional day.

Semiquantitative RT-PCR

Total RNA from cell lines with or without 5-aza-20 -
deoxycytidine treatment, primary tumors and paired normal

adjacent lung tissue was isolated using TRIzol (Gibco BRL)

and purified by RNeasy Mini Kit (Qiagen) . Three micro-

grams total RNA was reverse transcribed in vitro by random

hexamer and oligo dT using SUPERSCRIPT first -strand

synthesis kit (Gibco BRL) . cDNA was amplified by PCR.

Primers for RT-PCR were designed from the published

cDNA sequences. Forward and reverse primers are from

different exons to avoid amplification from genomic DNA.

Primer sequences were as follows: BMP3B forward: 50 -
GGTGGACTTCGCAGACATCG-30; BMP3B reverse: 50 -
GATGGTGGCATGGTTGGATG-30, product size: 130 bp.

GPI forward: 50 -GACCCCCAGTTCCAGAAGCTG-30; GPI

reverse: 50 -GCATCACGTCCTCCGTCACC-30, product

size: 178 bp. In all reactions the forward primer for each

pairs was end labeled by [� -32P]ATP with T4 kinase (Gibco

BRL).

The semiquantitative radioactive RT-PCRwas performed

with optimized conditions for both the target gene and an

internal control, glucose-6-phosphate isomerase (GPI ) , in

a single reaction tube. Amplification was stopped in the

exponential range for both genes. The exponential range

was determined by phosphorimager quantification of the

PCR product band intensities from different amplification

cycles. Each PCR reaction was carried out in 50 �l final

volume containing 5 �l of 10� PCR buffer, 1.5 mMMgCl2, 10

pmol of each primer, 200 �M of each dNTP and 2.5 U

Platinum Taq DNA polymerase (Gibco) . The reactions were

initiated with 958C for 10 minutes to activate DNA polymer-

ase and then followed by amplification. BMP3B was

amplified at 968C for 20 seconds, 638C for 15 seconds,

and 728C for 15 seconds for eight cycles before addition of

GPI primers and additional 22 cycles.

Statistical Methods

Tests were performed for heterogeneity in methylation

across patients and for preferential methylation of certain

CpG island fragments, described in detail in Ref. [30] .

Briefly, the heterogeneity test is based on a comparison of

the mean methylation frequency to its variance in a chi -

square statistic. Preferential methylation is assessed using a

standard goodness-of - fit test [29] assuming that all spots

are lost at equal true frequency. Empirical null distributions

for both of these statistics were obtained by performing

appropriate 10,000 random permutations of the fragment /

patient data. Such an approach accounts for multiple testing

( i.e., multiple fragments were examined) and does not rely

on asymptotic distribution assumptions.

Results

Levels of Methylation in CpG Islands of NSCLC

RLGS profiles from 16 matched pairs consisting of lung

tumors from NSCLC patients and matched normal lung

tissue were prepared using the enzyme combination NotI–

EcoRV–HinfI (Figure 1A ) . Each tumor profile was com-

pared against the matching normal lung RLGS profile.

Previously, we had shown that the loss of an RLGS fragment

in the tumor compared with the matching normal is indicative

of DNAmethylation in theNotI site [30,31] . The total number

of methylation events out of 1184 RLGS fragments analyzed,

as well as clinical data for the patients are shown in Table 1.

The range of methylation in these samples is from 0% to

5.3%. Although most (12 of 16) of the tumor samples

showed methylation levels below 1%, 4 of 16 patients show

levels of CpG island methylation above 2%. Of these,

patients 5, 11, 14, and 17 show methylation frequencies of

4.9%, 5.3%, 2.4%, and 5.0%, respectively. No obvious

correlation of overall methylation frequency and clinical data

can be seen. This range of variation is greater than would be

expected if all patients had the same underlying methylation

rate. A chi -square test (see Statistical Methods section)

shows significant heterogeneity in methylation levels across

the patients (P<.0001) . In addition, some CpG islands are

preferentially methylated, as indicated by the number of

fragments showing relatively high methylation frequency

(Figure 2, P<.0001) . Of the total 1184 analyzed RLGS

fragments, 1036 were never methylated. A total of 76

fragments were methylated in only one tumor, 53 fragments

were methylated in two tumors, 9 fragments (2E61, 2F43,

3D24, 3F82, 3F85, 4D8, 4E53, 4F15, and 4F58) were

methylated in three tumors, 2 fragments (2D45 and 3F16)

were methylated in four tumors, 1 fragment (3F28) was

methylated in five tumors, 1 fragment (3G78) was methy-

lated in seven tumors, 5 fragments (2C35, 3C1, 3E55, 4E1,

and 1 RLGS fragment not present in the RLGS master

316 Aberrant Methylation in Non-Small Cell Lung Cancer Dai et al.
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profile ) were methylated in eight tumors, and 1 fragment

(1F22) was methylated in nine tumor samples (Figure 2 ) .

No correlation between global methylation frequency and

any of the clinical parameters including tumor stage, differ-

entiation, histopathological classification, age or gender

could be detected. However, it is interesting to note that a

subset of methylation events correlate with the histopatho-

logical features of the tumors. For example, of the 50 CpG

island sequences that are methylated at least twice in tumors

with clear histopathology (excluding patients No. 3, 10, and

15) , 1 is found only in the two LCCs, no CpG islands was

found methylated only in the four ACs, and 2 are found

1B.
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Figure 1. RLGS and confirmation of methylation by Southern hybridization. (A ) Representative RLGS profile of normal lung DNA using the enzyme combination

NotI –EcoRV–HinfI. Fragment sizes for the first dimension ( 1D ) and second dimension ( 2D ) are given in kilobases. (B ) Sections of RLGS profiles from normal lung

and lung tumor from patient 17 highlighting RLGS fragment 3C1 (GNAL ) and 4F15 (BMP3B ) ( arrows ). While the lung cancer profile shows decreased intensity of

3C1 and 4F15, the mixing gel shows enhancement, indicating that the correct NotI –EcoRV clone was isolated from the library. Only differences in RLGS fragments

3C1 and 4F15 were indicated, other changes between normal and tumor profiles were not marked by arrows. (C ) and (D ) Southern blot analysis of primary lung

cancers and matched normal adjacent tissue. Hybridization was used to confirm methylation of RLGS fragment 3C1, GNAL (C ) and 4F15, BMP3B (D ) in RLGS

profiles of primary lung cancer is due to DNAmethylation. The peripheral blood lymphocyte (PBL ) DNA in the first lane of each blot was digested with EcoRV only. All

other tumor (T ) and normal adjacent lung (N ) DNA samples were double digested by EcoRV/NotI. The majority of the DNA is digested by NotI and results in the

smaller NotI –EcoRV (N /RV ) fragment. Tumor samples show amuch higher degree of methylation. M: indicates the marker lane. H23, H125, H522, and H1155 are

lung cancer cell lines.
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methylated exclusively in the seven SCCs. Other methyl-

ation events (a total of 16 CpG islands) are shared between

all three subtypes. In addition seven methylation events are

found in AC and LCC, nine are shared between AC and SCC

and a total of 15 CpG islands are methylated in both SCC

and LCC (Table 2) . Validation of thesemethylation events in

larger sample sets is required to unambiguously identify

tumor–type–specific methylation events.

Cloning of RLGS Fragments and Properties of Cloned

Fragments

To further characterize some of the methylated fragments

in NSCLC, the NotI /EcoRV plasmid clone library mixing gels

were used to locate the corresponding clones [26] . Clones

with expected insert sizes were analyzed in RLGS mixing

gels to confirm that the correct fragment was cloned. Figure

1B shows two examples for RLGS fragments 3C1 and 4F15.

A total of 21 fragments were cloned and sequenced. Twelve

of these clones (2D14, 2D20, 2C35, 2E24, 2E61, 3B36,

3C1, 3E55, 3F16, 3F50, 3F82, and 4E53) have been

identified as methylation targets in other types of malignan-

cies [30–32] . BLAST searches identified homologies to 11

genes and six EST sequences (Table 3) . Two sequences

(3F16 and 3F82) show high homology to DNA-binding

protein A (DBPA ) and mouse early B-cell factor 3,

respectively and may represent either pseudogenes or novel

gene family members. The remaining two showed homology

to genomic sequences. We found that 20 of 21 NotI sites are

located within CpG islands. Six of the 11 CpG islands with

homology to genes are located in the 50 end of the genes.

The CpG islands identified in insulin promoter factor 1

( IPF1 ) , orthodenticle (drosophila ) homolog 1 (OTX1 ) ,

HOX11, T-box brain 1, monocarboxylate transporter 3

(MCT3 ) are located in the middle or 30 end of the genes.

Chromosomal location of all the fragments were derived from

database searches of the human draft sequence of the

human genome, Genebank or OMIM database. The detailed

information for these 21 fragments, including fragment

addresses on master profile, total methylation frequency in

primary tumors, CpG island properties and location in the

Table 1. DNA Methylation in 16 Patients with Lung Cancer.

Patient

No.

Methylation events out

of 1184 CpG islands

% Methylation Age Gender Tumor

stage

Differentiation Tumor

type

1 5 0.4 45 F T2N1, IIB Well AC

2 3 0.3 72 M T1N0, IA Moderate SCC

3 7 0.6 56 F T2N1, IIB Poor LCC with features of AC

5 58 4.9 75 M T2N0, IB Moderate SCC

6 7 0.6 62 F T1N0, IA Poor SCC

7 2 0.2 68 M T3N2, IIIA Undifferentiated LCC

8 0 0 66 M T2N0, IB Well AC

9 5 0.4 78 F T1N0, IA Poor SCC

10 1 0.1 69 M T2N1, IIB Poor N /A

11 63 5.3 67 F T2N0, IB Poor LCC

13 0 0 76 M T1N1, IIA Poor SCC

14 28 2.4 61 M N/A Poor SCC

15 4 0.3 70 F T3N0, IIB N /A LCC with SCC and AC

16 2 0.2 79 F T1N0, IA N /A AC (with clear cell features )

17 59 5.0 81 M N/A Well AC

18 8 0.7 63 F N /A Poor SCC

SCC, squamous cell carcinoma; AC, adenocarcinoma; LCC, large cell carcinoma. N /A, no data available.
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Figure 2. Global methylation patterns in lung cancer are nonrandom.

Frequency distribution of methylation events in CpG islands within 16

NSCLCs.

Table 2. Distribution of CpG Islands Methylated at Least Twice in Various

Histopathological Subgroups of Non–Small Cell Lung Cancer.

Subgroup Number of methylated CpG islands

LCC 1

AC 0

SCC 2

LCC+AC 7

AC+SCC 9

LCC+SCC 15

LCC+AC+SCC 16

LCC, large cell carcinoma; AC, adenocarcinoma; SCC, squamous cell

carcinoma.
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genes, BLAST search results, and chromosomal location of

the genes, are listed in Table 3.

RLGS Fragment Loss Is Due to DNA Methylation

Southern hybridization was performed as a more sensi-

tive method to estimate the degree of methylation of the NotI

site from RLGS fragments lost in tumors. Southern hybrid-

ization has the ability to detect methylation as low as 5% to

10%, whereas RLGS allows the detection of 30% methyl-

ation [31] . Southern blot hybridization was also performed

to evaluate the possibility that the RLGS fragment loss was

due to homozygous deletion. Corresponding NotI /EcoRV

plasmid clones for four RLGS fragments were used as

probes on Southern blots. These four clones included three

fragments with homology to known genes 3C1 (G-� -

olfactory, GNAL ) , 3E55 ( insulin promoter factor 1, IPF1 ) ,

and 4F15 (Bone morphogenetic protein 3B, BMP3B ) . In

addition, fragment 2C35 with homology to an EST sequence

was used. Representative Southern blots for RLGS fragment

3C1 (GNAL ) and 4F15 (BMP3B ) are shown in Figure

1C and D , respectively. Tumor samples and paired normal

adjacent lung tissue DNAs were digested with NotI /EcoRV.

The detection of a fragment in the NotI /EcoRV digests equal

in size to the one detected with EcoRV only was scored as a

methylation event in the tumor DNA. The hybridization

shows that most tumor samples have a much higher degree

of methylation of the NotI site than the normal counterparts.

Some of the normal tissue DNAs show a small fraction of

methylated sequences. These normal lung tissues were

matched controls derived from the lung cancer patients and it

is possible that they may contain contaminating preneo-

plastic cells. No homozygous deletions were detected

because the hybridization signals are present in all tumor

samples. Methylation of the NotI site in the 50 end of GNAL

was observed in 10 of 16 patients. Methylation of 4F15

(BMP3B ) , was detected in five of six tumors and thus

confirmed the methylation events found by RLGS. Tumor-

specific or increased methylation was observed in 11 of 16

primary NSCLC for fragment 2C35 and 11 of 16 for 3E55

( IPF1 ) (Figure 1C and D and data not shown).

Aberrant Transcription of BMP3B in Primary NSCLC and

NSCLC Cell Lines

Radioactive, semiquantitative RT-PCR reactions were

performed to determine the expression levels of BMP3B in

six primary NSCLC samples and their paired normal lung

tissue. BMP3B was found hypermethylated in a CpG island

that is located in the 50 end of the gene (Figure 3A ) and was

selected for further analysis. RT-PCR was performed under

optimized conditions for both the target gene and the internal

control gene glucose-6-phosphate isomerase (GPI ) .

BMP3B was expressed in normal lung, whereas expression

of BMP3B in all studied tumor samples was reduced (Figure

3B ) . Interestingly, tumors from patients Nos. 2 and 6, which

did not show methylation of the NotI site exhibited very low

levels of BMP3B expression, suggesting heterogeneous

methylation of the CpG island. However, it is also possible,

andmaybe evenmore likely, that BMP3B is silenced by other

mechanisms including mutations, deletions and/or LOH.

To investigate the effect of CpG island methylation on the

transcription of the associated genes in more detail, we used

three NSCLC cell lines that are methylated in the NotI site of

BMP3B promoter region. H23, H125, and H1155 show more

than 50% methylation in the BMP3B promoter. The cells

Table 3. Cloned RLGS Fragments Altered in RLGS Profiles of 16 Primary Tumors.

RLGS master

address

No. of tumors

methylated

Methylation found

in following subgroups

CpG

island

Location of CpG

island in gene

Gene or EST Accession

number

Chromosomal

location

2C35 8 AC /LCC/SCC Yes EST BG142595 AL139281, NT_024073.1 10p12

3C1 8 AC /LCC/SCC Yes 50 end GNAL U55180 18p11.21 - pter

3E55 8 AC /LCC/SCC Yes 30 end IPF1 NM 000209 13q12.1

3G78 7 AC /LCC/SCC Yes 50 end TAL1 AL135960 1p32

2D20 4 AC /LCC/SCC Yes middle OTX1 AB037501 2p13

3F16 4 AC /LCC/SCC Yes Homologous to EBF AL354950, NT_024100.1 10q26

3F50 4 LCC /SCC Yes 30 end HOX11 AJ009794 10q24

2E61 3 SCC Yes EST AJ230817 AL354000 17p11.2

3B55 3 LCC /SCC Yes 30 end T-box brain 1 XM_002531 2q23 -27

3F82 3 LCC /SCC Yes Homologous to DBPA M24069

4D8 3 AC /LCC/SCC No EST BF928282 AC012118, NT_010641.1 17q25.1

4E15 3 LCC /SCC Yes EST BE247619 AC003959 5q

4E53 3 AC /LCC/SCC Yes AL353195, NT_009829.1 13q12.2

4F15 3 LCC /SCC Yes 50 end BMP3B D49493, NT_008757.1 10q11.21 - 11.23

5E25 3 AC /LCC/SCC Yes Formin 2 like AL359918, NT_004771.1 1q44

2D14 2 AC /LCC Yes 50 end CD8 �1 Chain S87068 2p12

3B36 2 AC /SCC Yes 50 end CYP1b1 XM_002576 2p21 -22

3D44 2 AC /SCC Yes AL355304, NT_019429.1 6q23.1 - 6q24.3

5C32 2 AC /SCC Yes 50 end CD34 M81938 1q32

2E24 1 AC Yes middle MCT3 AF132611 22q12.3 - 13.2

3E34 1 SCC Yes EST AI631157 AC000068 22q11.2

AC, adenocarcinoma; LCC, large cell carcinoma; SCC, squamous cell carcinoma.
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were treated with two different timepoints (24 and 72 hours)

of 5-aza-20 -deoxycytidine (Figure 3C ) . Similar to the

primary tumors, all three cell lines (H23, H125, H1155) did

not show any detectable level of BMP3B expression at

baseline. However, expression was induced after 5-aza-20 -
deoxycytidine treatment in all three cell lines (Figure 3C ) .

Discussion

The methylation scanning properties of RLGS have pre-

viously been used for the identification of imprinted genes in

the mouse genome [33,34] , as well as for the identification

of methylated sequences in various human malignancies

[30,31,35] but not lung cancer. Genome-wide scans for

methylated sequences in lung cancer have been performed

by two different strategies including the use of a methylated

DNA binding column [36] and arbitrarily primed PCR [37] .

However, these techniques either showed a bias for

methylated repetitive sequences or were limited in the

number of analyzed sequences. In contrast, RLGS, a highly

reproducible two-dimensional gel electrophoresis, is a

genome-wide scan of DNA methylation changes in CpG

islands. Established cloning protocols utilizing an arrayed

plasmid clone library facilitate the rapid identification of

genomic sequences corresponding to the methylated targets

[26,28] . RLGS is based on the digestion of genomic DNA

with the methylation sensitive restriction enzyme NotI, which

can only digest unmethylated genomic DNA and does not

rely on prior knowledge of the gene sequence [26,31,35] .

We have used RLGS to determine the contribution of CpG

island hypermethylation in NSCLC and to identify novel

methylation targets. Although the importance of DNA

methylation in lung tumor development had been demon-

strated in several reports [23,38–40] , the overall extent was

previously unknown. Under the assumption that all RLGS

fragments represent promoter sequences we are, for the first

time, able to demonstrate that up to 5.3% of all promoter

regions, or 1537 of the estimated total 29,000 CpG islands

[41,42] in the tumor genome could be methylated. The

variability in the range of methylation shows that NSCLC

represents a heterogeneous group not only with respect to

the genetic defects identified but also on the epigenetic level.

Promoter methylation in cancer- related genes is well

known in lung cancer and is correlated with gene silencing in

genes involved in cell cycle (CDKN2 ) [8–11] , apoptosis

(DAP ) [43] , metastasis H-cadherin [44] and (TIMP-3 )

[45] , differentiation (RAR� ) [46] , DNA repair (MGMT )

[47] , and the recently identified candidate tumor suppressor

gene (RASSF1A ) with homology to the RAS family [38] . In

this study, we have identified 21 additional genomic loci

including 11 genes and six ESTs with aberrant CpG island

methylation in NSCLC. None of the cloned genes has been

reported to be methylated in lung cancer previously.

However, it is interesting to note that CpG island 3F16 is

approximately 200 kb away from MGMT ( located in

sequence contig NT_024100.1) . MGMT is a DNA repair

gene that was previously found to be methylated in 21% of

NSCLCs [22] . This finding would suggest a more regional
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Figure 3. Abnormal transcription of BMP3B NSCLC samples. (A ) Schematic representation of the genomic structure of BMP3B. The location of the NotI site relative

to exon 1 and the extent of the CpG island are displayed. The star indicates the NotI site identified by RLGS. (B ) Semiquantitative radioactive RT -PCR was used to

determine the relative expression levels of BMP3B in six patients with lung cancer. Relative expression levels of RNAs obtained from tumor (T ) and normal adjacent

lung (N ) were determined by comparing the intensities to the internal control, GPI. Negative control ( � ) contains water. GPI: Glucose -6 - phosphate isomerase.

(C ) Radioactive semiquantitative RT -PCR was used to determine the relative expression of BMP3B levels in RNAs from three cell lines (H23, H125, and H1155 )

after treatment with 5 0 - aza -2 0 - deoxycytidine. The upper panel shows the RT-PCR results and the lower panel shows the relative expression levels of BMP3B

compared to the internal control GPI. Cell lines were treated with 1 �mol / l 5 0 - aza - 2 0 - deoxycytidine for either 24 hours ( 24 ) or 72 hours (72 ) . Untreated control cell

lines (C ) were harvested in exponential growth phase. Y -axis gives the relative ratio of band intensity for the target gene /GPI quantified by phosphorimager.

Negative control ( � ) contained water, positive control ( + ) was normal lung tissue (NL ) .
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effect of methylation, similar to aberrant methylation found in

chromosome 17p11.2 in the major breakpoint cluster region

for medulloblastomas [30] . Another interesting target

sequence is 4D8 located in chromosome 17q25.1. Chromo-

some 17q had previously been implicated with frequent

(42%) loss of heterozygosity in NSCLC [48] , suggesting

that both genetic and epigenetic mechanisms could be

involved in the silencing of a putative tumor suppressor gene

in this region. Other fragments are derived from chromo-

some segments in 1p (3G78), 5q (4E15) , 10q (3F50) , 13q

(3E55) 18p (3C1), and 22q (2E24) , all within regions for

which either LOH or homozygous deletions have been

reported in lung cancer [49,50] . Whether any of the newly

identified genes meet the expected criteria for tumor

suppressor genes remains to be determined and will be the

focus of future work.

We focused our studies on RLGS fragment 4F15, derived

from a CpG island in the promoter region of the BMP3B gene

and determined the relation of CpG island methylation to

transcription. BMP3B is located in chromosome 10q11.21–

11.23, a region that shows 20% to 30% LOH in NSCLCs and

51% LOH in SCLCs [51] (see online http: / /www.helsinki.fi /

�lgl_www/LOSS/Respiratory.html ) and thus located in a

candidate tumor suppressor region. BMP3B is a member of

the transforming growth factor � (TGF-� ) superfamily,

originally identified due to their osteoinductive capacity.

Members of this family are usually involved in the regulation

of cell growth/differentiation during development and were

shown to be dysregulated in various human malignancies.

Interestingly other members of the BMP family have been

shown to induce apoptosis during organ development [52–

54] . In addition, two BMP family members, BMP4 and

BMP2, have been shown to induce apoptosis in multiple

myeloma cell lines [55] or hematopoetic cells [56] ,

respectively. BMP2 was also shown to suppress the trans-

formed phenotype in the human lung carcinoma cell line

A549 [57] .

BMP3B is highly expressed in human adult lung, brain,

skeletal muscle, pancreas, and testis, an expression pattern

that distinguishes it from the closest family member BMP3

[58] . BMP3B knockout mice did not show any detectable

abnormalities, suggesting a redundant function with that of

other members of the TGF-� family [59] . However, adult rat

lung tissue does not express BMP3B suggesting the

possibility of different functions of BMP3B in rodents and

humans [60] . We have shown that methylation in BMP3B is

correlated with transcriptional repression. The repression is

reversible by treatment with the demethylating agent 5-aza-

20deoxycytidine. Thus, our data suggest a causal relation-

ship between methylation of the BMP3B promoter and

transcriptional repression. We found BMP3B downregulated

in all NSCLC patient samples and cell lines, even in those

without methylation in the NotI site, suggesting that

methylation patterns in the CpG island are heterogeneous.

This assumption was confirmed by COBRA analysis testing

the methylation status in four BstUI (CGCG) restriction sites

in the promoter (Dai et al. unpublished) . Alternatively, other

mechanisms (e.g., LOH or mutations) of gene silencing

could be present. Additional work to study the complete

genetic and epigenetic mutation spectrum of BMP3B in lung

tumorigenesis is underway.

The identification of multiple targets for methylation opens

the exciting possibility to use these methylation events as

biomarkers for the early detection of lung cancer in sputum

as demonstrated by others [23] . In addition, our data also

indicate the possibility that certain methylation events may

be specific for lung cancer or subtypes within this group and

thus could serve as potential markers for the molecular

classification of lung cancers and different disease stages.

Validation of methylation events as possible markers for

early diagnosis, as predictive markers for survival or markers

that classify subtypes will require larger sets of patient

samples.
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