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I also want to thank Nicole Grüner and Johanna Rosenbeck who provided a
tremendous amount of emotional support and constantly motivated me to carry on.

Finally, I am particularly grateful to my parents and my sister for always believing
in me and to my adorable niece Leonie Müller. In particular, my parents did not only
enable me to study and to do my Ph.D., their trust in me also motivated me to
constantly strive for the best.





Abstract

This thesis studies the economic impact of private antitrust enforcement on com-
petition and on cartel members’ compensation payments. After Chapter 1’s short
introduction to the topic, Chapter 2 investigates the effects of compulsory compensa-
tion for umbrella losses on competition. These losses arise when the price increase by
the cartel results in a general price increase in the market concerned, i.e., customers
who bought a product produced by a cartel outsider also had a damage. Chap-
ters 3 and 4 analyse the internal allocation of compensation payments between cartel
members in the EU.

More specifically, Chapter 2 disproves the conventional wisdom that giving more
customers a legal entitlement to compensation leads to more cartel deterrence and en-
hances competition. In a Bertrand-Edgeworth model it is shown that more stringent
compensation provisions can have the opposite effect when the size of formed cartels
is endogenous. In particular, compulsory compensation for umbrella losses deters
small cartels, which have limited influence on the market price, and inadvertently
stimulates formation of big encompassing cartels with significant price influence.

Detected wrongdoers are commonly jointly and severally liable towards customers
who successfully claimed for compensation, i.e., they may be forced to compensate
victims on behalf of all. In the EU, they are internally liable in proportion to their
“relative responsibility” for the harm. Chapter 3 operationalizes a firm’s relative re-
sponsibility by evaluating counterfactual damages had one or more cartelists rejected
collaboration. Basic normative requirements – in particular causality – call for ag-
gregation of counterfactual overcharges via the Shapley value. Damage allocations
for linear market environments are characterized and bounds on payment obliga-
tions are established. Several ad hoc suggestions for deducing relative responsibility,
e.g., from market shares or profits, are evaluated. The chapter also provides a new
decomposition of the Shapley value which can be useful for other applications.

The applicability of the heuristics discussed in Chapter 3 is however limited for
two reasons. First, they do not provide a good approximation of the Shapley value
independently of firms’ characteristics. Second, none of the heuristics reflects the
cartelists’ relative responsibility. Chapter 4 resolves this obstacle by arguing that
simple games, used in game-theoretic analysis of voting, can provide a workable
approximation of the crucial causal links that define responsibility. Moreover, nu-
merical examples show the Shapley-Shubik index of simple games to reflect EU law
better than ad hoc heuristics for a variety of linear market models.
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Chapter 1

Introduction

1.1 Motivation and Scope

Competition is impeded when rival firms coordinate their strategies. Agreements
how to set prices, quantities or other decision variables are forbidden in many juris-
dictions. They not only decrease consumer surplus but can also have negative effects
on other market players. The European Commission estimated the annual social
costs for ’hardcore cartels’ in the EU to approximately e25–65 billion (see European
Commission 2013a). Deterring firms from illegal conduct is therefore an important
task for policymakers. Public and private antitrust enforcement institutions have
been established in order to sustain competition.

How public antitrust rules should be designed to achieve this goal has been a
key question in the literature for long. Many policy recommendations of economists
have already been implemented into national law. The most prominent example is
the introduction of leniency programs in the EU and the US with the aim to increase a
cartel’s detection probability. The great success of leniency programs is emphasized
by many competition authorities (see, e.g., Hammond 2010 or Bundeskartellamt
2016).1

In the US, there is also a long and successful history of private antitrust enforcement
(see Clayton Act 1914, §4, §16). More and more other countries have therefore
extended their private antitrust rules, e.g., the EU, Japan or Australia. In some
aspects, legal rules among countries are comparable. For example, several countries
established rules that (i) allow litigants to reach out-of-court settlements, (ii) make

1See Bryant and Eckard (1991) and Combe et al. (2008) for an economic discussion of leniency
programs.
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tortfeasors jointly liable towards third parties and (iii), at least partially, exclude
leniency applicants from joint liability.2

The economic discussion of private antitrust enforcement has, however, received
far less attention than the public one. This is surprising with respect to at least
three points. First, the deterrent effect of private antitrust enforcement is generally
accepted by legal and economic scholars. Second, although influential competition
authorities around the world seek for effective competition, designs of legal rules
differ. A question which arises is which legal environment indeed promotes effec-
tive competition? Third, private antitrust enforcement is a highly dynamic part of
competition policy. Thus, policy recommendations have to be established and legal
rules have to be transferred into economic concepts in an ongoing process. These
three points are now discussed in more detail.

(1) The deterrent effect of private antitrust enforcement is frequently highlighted
by competition economists. For instance, Lande and Davis (2008) showed in a
sample of forty cartel cases that “. . . private litigation provides more than four times
the deterrence of the criminal fines”.3 Deterrence arising from private antitrust
enforcement in the EU increased since the European Commission passed Directive
2014/104/EU (frequently referred to as the “Directive on Antitrust Damages Actions”)
which contains several rules to simplify private antitrust actions. High compensation
claims in private antitrust enforcement may become the norm in the EU. Several
courts throughout the EU already handle claims for compensation of overcharge
losses, aggregating to several billions, caused by a long-lasting violation of antitrust
law in the European truck market.4

(2) The design of legal rules can differ between countries – and even their inter-
pretation within a country. This, per se, would not be surprising if the legislative
objectives differed between countries or specific regions. But the goal of effective com-
petition is the same and omnipresent in the legal and economic literature. The point is
that opinions on how effective competition can be achieved differ. These differences
can be driven by ideological aspects (e.g., is an over-deterrence of antitrust infringe-
ments possible?) but also by methodological aspects (e.g., what are the channels of
influence?).

2Jointly liable means that harmed customer can sue any cartel member for any desired share of the
total damage no matter whether this cartel member sold the product or not.

3See Werden et al. (2012) for a critical discussion.
4See, e.g., LG Hannover Az. 18 O 8/17, LG Stuttgart Az. 45 O 11/17, Spanish commercial Court-

Juzgados Delo Mercantil 151/2019 and 118/2019.
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For instance, in the US, the legal interpretation of private antitrust rules depends
highly on the competent court, like the handling of cases in which customers suffer
umbrella losses (i.e., they paid a price overcharge due to collusion although they bought
the product from a non-cartel member; see 596 F.2d 573 3rd. Cir. 1979 and 600 F.2d
1148 5th Cir. 1979 for varied assessments). In the light of effective competition, some
scholars ask the US Supreme Court to follow the Court of Justice of the European
Union (CJEU) in obligating firms to compensate customers who suffered umbrella
losses (see Blair and Durrance 2018). These scholars only consider one channel of
influence: cartel deterrence.5

A prominent example where the legal norm differs between European and US
private antitrust law is the internal liability of cartel members after compensation
has been paid jointly (external liability). In the US, there is generally no internal
compensation among joint tortfeasors (see Texas Industries, Inc. v. Radcliff Materials,
Inc., 451 U.S. 630, 1981). By contrast, the EU Directive on Antitrust Damages Actions
states clearly that a cartel member is liable according to his relative responsibility for
the harm.

(3) The derivation of policy implications and the “translation” of legal rules into
economic concepts are important and ongoing tasks. Thus, after the appropriate
legal and economic concept is figured out, guidelines for lawyers on how to easily
apply this concept have to be developed. An economic model which perfectly reflects
the legal rule is not useful if data requirements or mathematical burdens too severely
limit its applicability.

This thesis addresses points (1)–(3) and focuses on questions which are outstand-
ing due to their economic and legal scope. Chapter 2 analyses how compensation for
umbrella losses influences effective competition. Thus, the existing literature (see,
e.g., Blair and Maurer 1982 or Blair and Durrance 2018) is extended to an important
topic. It is shown that an increasing number of customers who are allowed to bring
a lawsuit before the court can lead to more encompassing cartels: the price over-
charge can increase. Chapters 3 and 4 deal with the economic operationalization of
the relative responsibility norm for the internal allocation of compensation payments
between jointly and severally liable cartel members. It is argued that the Shapley
value, a prominent solution concept in cooperative game theory, applies best from a
theoretical perspective.

5Note that the notions of effective competition and cartel deterrence cannot be used synonymously as
increasing cartel deterrence for partial cartels does not necessarily lead to fewer cartels forming or to
lower observed market prices.
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1.2 Structure

All chapters are designed to be self-contained and can be read in any sequence. This
comes at the cost of some overlap. Chapters 3 and 4 are based on joint work with
Stefan Napel.

1.2.1 Compensation for Umbrella Losses: Cartel Deterrence and
Cartel Size

Chapter 2 considers compensation for umbrella losses and how effective competition is
affected when all (direct) customers who suffered harm caused by a cartel agreement
can reclaim antitrust damages, no matter whether the product was produced by a
cartel member or by an outsider.

Umbrella pricing arises when the price choice of a best-responding cartel outsider
is increasing in the price chosen by cartel members. Then, also customers who bought
a product from a firm which acted competitively had a damage caused by the cartel:
the umbrella loss. To achieve effective competition, the CJEU established in 2014
that former cartel members also have to compensate these losses (see CJEU C-557/12
2014). Thus, all customers have legal standing, that is, have the right to bring a
corresponding lawsuit before the court.

The argument made by legal and economic proponents of an entitlement to com-
pensation for umbrella losses is that a larger potential number of suing customers
increases cartel deterrence since net expected collusive profits decrease (see, e.g., CJEU
C-557/12 2014 or Blair and Durrance 2018). Needless to say, this is indeed a key argu-
ment for allowing all customers to have legal standing when effective competition is
the aim. However, this argument can only be the final judgment when cartel size is
exogenous; an assumption which can hardly be satisfied.

Extending legal standing to customers who bought from non-cartel members will
influence cartel size and therefore the market price when endogenous cartel formation
is considered. The reason is that compensation for umbrella losses influences a
specific cartel’s attractiveness because profits of both the cartel members and the
non-cartel members depend on whether all customers have legal standing or not.

In a Bertrand-Edgeworth model related to Bos and Harrington (2010) we discuss
how compensation for umbrella losses influences cartel deterrence and cartel size in
a dynamic market environment. This allows to challenge the policy recommendation
that all customers should have legal standing when effective competition is desired.
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For illustrative reasons, consider a market with three symmetric but capacity-
constrained firms A,B and C that produce a homogeneous good and set prices.
Regarding a firm’s capacity, assume that no firm is large enough to influence the
competitive market price on its own. Then, competitive profits of firms are zero
when per unit production costs are constant. Let us also presume that the capacity
of a single firm is sufficiently small to ensure that a partial cartel of two firms can
profitably increase their prices above the competitive level. In fact, when a partial
cartel of two firms was formed (e.g., let firms A and B be the wrongdoers), their
customers will have paid an overcharged price. However, also firm C’s customers
bought the product at a price which was above the competitive level: firm C’s
competitive best response to increased prices by firms A and B is to increase its price
under the umbrella of the cartel. Hence, it made a positive profit compared to zero
profits received under competition. Thus, all customers have had a damage caused
by illegal coordination of just two firms.

If firm C also joined the cartel, competition among all firms would be eliminated
and cartel members would set the monopoly price. Then, the worst market outcome
is reached from a customer’s but also from a total welfare perspective: the price
overcharge damage and the deadweight loss are highest. Additionally, when all
firms jointly infringe competition law, the question how a compensation for umbrella
losses influences the market outcome becomes irrelevant since there are no umbrella
losses which could be compensated.

Whether a stable cartel exists, what size this cartel has and how it can influence
the market price, will depend on whether firms have to compensate for umbrella
losses or not. Cartel deterrence, when only firms A and B coordinate their strategies,
is obviously strengthened when all customers are allowed to bring a lawsuit before
the court, because expected compensation payments increase. We additionally show
that members of a partial cartel will decrease their prices when all customers have
legal standing. Thus, conditional on that a partial cartel has formed, prospective
customers benefit from a compensation for umbrella losses: deterrence increases and
the damage caused by a potential cartel decreases.

However, decreasing market prices when firms A and B have to compensate for
umbrella losses also leads to decreasing profits for firm C, since the price-raising
effect caused of the cartel is softened. This lowers the attractiveness of operating
outside the cartel and inadvertently stimulates firm C to join the partial cartel; so the
industry-wide cartel can successfully operate (assuming that firms are sufficiently
patient). Then firms set the joint profit maximizing price, that is, the monopoly
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price. Hence, the argument that all harmed customers should have legal standing to
achieve effective competition has to be viewed with caution.

The opposite effects of an extended legal standing, that is, decreasing prices and
increasing cartel deterrence given a cartel has already formed versus an increas-
ing cartel size when endogenous cartel formation is considered, are discussed and
proven to hold true in a dynamic market environment with n firms. Whether the
(average) price overcharge of a cartel will increase or decrease when firms have to
compensate for umbrella losses cannot be answered unambiguously. This new and
highly relevant observation hasn’t been acknowledged in the literature so far. It
could help to improve policy recommendations.

1.2.2 Shapley Apportioning of Cartel Damages by Relative Respon-
sibility

Chapter 3 considers damage allocation between jointly and severally liable cartel
members when a firm’s contribution share should depend on its relative responsibility
for the harm.

We start by discussing several properties that a responsibility-based allocation
should satisfy, assuming that organizational roles of cartel members are symmetric.
It is, for example, reasonable to require that all compensation payments have to be
allocated among detected cartel members and that different currencies or increasing
interest payments should not change the share that a former cartel member must
contribute. In particular, to be in line with relative responsibility, three properties are
central. First, when a firm joins a cartel but a customer’s damage stays unchanged,
no matter which (partial) cartel is considered (this firm is termed null player in the
field’s literature), it is convincing to argue that it bears no responsibility. Null players
should be excluded from compensating antitrust victims. Second, when one firm
can be replaced by another firm and a customer’s damage stays unchanged for every
counterfactual damage scenario, both firms bear the same relative responsibility and
should have to contribute equally. Most importantly, a cartel member’s compen-
sation payments should depend on its ability to influence market prices: when a
firm joins a partial cartel and a customer’s damage increases strongly, this firm bears
huge responsibility for the resulting total. The Shapley value, introduced by Shap-
ley (1953b), is the unique value which satisfies all these and several other desirable
properties.

All counterfactual market scenarios enter the Shapley value, that is, damages of
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all partial cartels that could form have to be known. Thus, when a market consists of
three firms A, B and C and the industry-wide cartel formed, not only the competitive
and the collusive outcomes have to be known, also damages caused by partial cartels
{A,B}, {A,C} and {B,C} enter the Shapley value. To simplify the derivation of a firm’s
compensation payments, Chapter 3 introduces a new decomposition of the Shap-
ley value, based on incremental contributions. Its interpretation can be illustrated
by determining firm A’s contribution payments: it starts with an equal ’per head’
allocation of cartel damages. Firm A’s contribution share then decreases when the
damage caused by the partial cartel {B,C}, exceeds the average damage caused by a
partial cartel of two firms, i.e., {A,B} and {A,C}. In general, only average damages by
partial cartels of the same size enter the Shapley value when the new decomposition
is used. Thus, it is not necessary to determine damages in all counterfactual market
scenarios. This decomposition could be of general interest whenever costs, benefits,
etc. have to be allocated between firms or contractual partners in general.

One can explicitly determine the Shapley value in a linear market environment
with differentiated substitutes by characterizing a firm’s average damage for a given
cartel size s. This allows to derive general bounds between which the Shapley value
of a specific firm lies. The firm which has sold the product must usually contribute
more than an equal share of the compensation, even under mild asymmetry of firms.

Since all relevant market parameters have to be estimated to determine the Shap-
ley value exactly, we compare an allocation based on Shapley shares with ad hoc
heuristics suggested by legal practitioners. We can infer that the heuristic which is
closest to the Shapley value depends on the kind of asymmetry between firms. If, e.g.,
firms differ in their size, an allocation based on competitive sales is most adequate;
when firms differ in their efficiency, an allocation based on competitive revenues fits
best. No heuristic outperforms all others – in particular, even the closest heuristic is
in some cases far off.

Last, the chapter argues briefly that a generalization of the Shapley value – the
weighted Shapley value – can be used to take organizational roles of the cartel’s firms
into account. Thus, a responsibility-based allocation of cartel damages is feasible
even if a cartel member’s contribution share does not solely depend on market
parameters. It can, e.g., be desirable to increase a ringleader’s contribution share
or to exclude a leniency applicant from compensation payments to correctly reflect
relative responsibility.
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1.2.3 Simple Games and Cartel Damage Proportioning

In Chapter 4 we introduce a new heuristic to approximate a cartel member’s con-
tribution share when damage should be allocated by relative responsibility. Then,
as discussed in Chapter 3, the Shapley value should be used to determine a firm’s
compensation payments. This heuristic has two advantages compared to an ad-hoc
damage allocation based on market shares or profits for example. First, it reflects
cartel members’ relative responsibility. Second, it continuously outperforms ad hoc
heuristics with respect to the accuracy of the approximation in the market model
with linear demand and cost functions introduced in Subsection 3.3.1.

To set up this heuristic, we first discuss simple games in a cartel damage context.
Simple games are a special case of cooperative games and characterized by two
properties. First, the worth (or damage) of each (partial) cartel is either 0 or 1.
Second, the damage caused by a partial cartel weakly increases from zero to one
when more and more firms join the cartel.

We therefore normalize the damage caused by a (partial) cartel to 1 if the damage
caused by this cartel is large; it is normalized to zero if a cartel’s damage is relatively
small by comparison. This dichotomous approximation regarding a cartel’s damage
can be represented very compactly by the set of minimal winning coalitions (MWC). A
MWC contains only firms which are needed to cause a unit damage; damage would
be zero if one firm left a MWC.

A given set of MWCs determines a dichotomous damage scenario (DDS). With three
firms four distinct DDS are feasible; for five or less firms we enumerate all 179 DDS
which can arise. We argue that the specification of a DDS to approximate the under-
lying market scenario is much easier than a full-blown merger simulation analysis.
For example, the precise estimation of a firm’s production costs is not needed to
derive the appropriate DDS. Determining the Shapley-Shubik (power) index for a
specific DDS gives a damage allocation which reflects relative responsibility.

We evaluate how a heuristic based on DDS performs in the linear market model
discussed in Subsection 3.3.1. We analyse two claim scenarios. First, we assume that
only one customer who bought one product unit acts against former cartel members.
Second, we assume that all or a fixed share of all customers act against former cartel
members. In both scenarios, we infer that a heuristic based on approximating the
cartel market by a DDS frequently outperforms ad hoc heuristics. In particular, in the
first claim scenario we show for a class of numerical examples that only an allocation
based on DDS always comes close to a firm’s Shapley share evaluated in the original
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market. In the second claim scenario, only the heuristic based on DDS comes close
to a responsibility-based allocation of cartel damages independently of the considered
asymmetry between firms.





Chapter 2

Compensation for Umbrella Losses:
Cartel Deterrence and Cartel Size

In most jurisdictions, victims of antitrust infringements have a right to act against
detected cartel members and to reclaim damages caused by a cartel. Firms can
anticipate that they will have to compensate suing customers if their cartel should be
detected. Thus, compensation payments not only redistribute money ex post from
wrongdoers to harmed customers but play a role in deterring cartels ex ante. Private
antitrust enforcement has therefore become an important regulatory instrument in
the US, EU, Japan and elsewhere.

An important aspect when discussing private antitrust enforcement is the legal
standing of cartel victims: who is legally entitled to be compensated by former cartel
members? Is it only customers who bought a product produced by a cartel member,
or are customers who bought a product produced by outsiders eligible to bring a
lawsuit before the court, too? This question is answered differently in the US and
the EU. In the US, there is no final decision of the Supreme Court yet. Whether
only customers who bought products produced by cartel members are entitled to
compensation crucially depends on the competent court (see 596 F.2d 573 3rd. Cir.
1979 and 600 F.2d 1148 5th Cir. 1979 for conflicting views and Blair and Durrance
2018 for an overview of more recent cases). By contrast, the Court of Justice of the
European Union (CJEU) recently established that also customers who suffered a loss
from umbrella pricing have legal standing (see CJEU C-557/12 2014 for a landmark
judgement and 6 U 204/15 Kart (2) for a relevant application). Umbrella pricing refers
to the fact that also best-responding outsiders raise their prices in reaction to price
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increases by cartel participants.1

The CJEU endorsed an expanded legal standing of antitrust victims by reference to
antitrust goals and in order to further effective competition. It concluded that “[t]he
right of any individual to claim compensation for such a loss [umbrella pricing]
actually strengthens the working of the European Union competition rules, since it
discourages agreements or practices, frequently covert, which are liable to restrict or
distort competition, thereby making a significant contribution to the maintenance of
effective competition in the European Union” (see CJEU C-557/12 2014, recital 23).
Similar arguments are acknowledged in the US. For instance, Leon Higginbotham
Jr., former judge at the U.S. Court of Appeals for the Third Circuit, already noted
in 1979 (judgement 596 F.2d 573 3rd. Cir.) that “[a]llowing standing [for umbrella
pricing] would also encourage [private] enforcement, and thereby deter violation, of
the antitrust laws.”

The legal standing of antitrust victims clearly has great economic importance but
its effects on cartel behavior has been investigated only by a comparatively small
literature. Blair and Maurer (1982) stated: “[i]t is obvious that the prospect of recov-
ery by purchasers from noncolluding competitors should have a greater deterrent
effect than recovery limited to direct purchasers, assuming a constant probability of
detection.” Blair and Durrance (2018) concluded that awarding compensation for
umbrella losses “. . . further deters illegal price-fixing behavior”.

These quotes are intuitively very appealing. However, they have a common
shortcoming. The legal standing of victims of antitrust infringements will not only
affect cartel deterrence as such: stable cartel sizes may depend on how umbrella victims
are treated.

Compared to the baseline case of no compensation whatsoever, expected collusive
profits decrease if customers who bought a product produced by a cartel member
are entitled to reclaim losses. Requiring compensation for umbrella losses is an ad-
ditional financial burden on firms’ profits if and only if a partial cartel operates: there
are no umbrella effects if an industry-wide cartel operates. This changes the rela-
tive attractiveness and stability of partial vs. industry-wide cartels. When markets
involve three or more firms, the deterrence effects of compensation – notably the
legal standing of umbrella victims – are therefore more subtle than the conventional
wisdom articulated by above quotes.

Building on a Bertrand-Edgeworth model investigated by Bos and Harrington

1See Inderst et al. (2014) for a detailed discussion on umbrella pricing and Holler and Schinkel
(2017) for a correction.
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(2010), we first show for symmetric firms and given coalition size s that cartel sustain-
ability is decreasing with an extended legal standing: deterrence is strengthened and
the economic intuition in the quotations applies.

Second, for endogenous coalition size s, we show that this beneficial effect of ex-
tended legal standing to umbrella victims may however be reversed. Compensation
payments for umbrella losses imply that small partial cartels are disproportionately
harshly burdened, since the number of suing cartel victims is large compared to the
product units sold by the cartel. For given detection probabilities, expected collusive
profits for small coalitions of firms hence decrease more strongly when all customers
are given legal standing. This makes it more probable that larger cartels form, as we
illustrate in Section 2.1 with a numerical example and show in a dynamic market
environment in Section 2.3.

The first and only paper so far that has investigated how (public) antitrust en-
forcement affects cartel size is by Bos and Harrington (2015). Their key finding is
that cartel size can either increase or decrease in a penalty which is proportional to a
cartel member’s collusive profit.2 The present study introduces a detailed analysis of
private antitrust enforcement (which can lead to disproportionate changes in a cartel
member’s profit) and clarifies the interaction of cartel size and cartel deterrence. In
particular, for a specific discount factor δ ∈ (0, 1), we first determine all dynamically
sustainable (partial) cartels (i.e., after a cartel has formed, cartel members adhere to the
agreed behavior); among those, we select stable coalition sizes (i.e., cartel formation
is considered). This allows to derive and to compare, for any discount factor δ, the
size of a formed cartel depending on whether victims who suffered umbrella losses
have legal standing or not.

The remainder of this chapter is structured as follows. After presenting an illus-
trative example, we introduce the model in Section 2.2. Section 2.3 discusses how
compensation payments affect the market outcome given a cartel of size s has formed.
Assuming that cartel formation is endogenous, we then show in Section 2.4 that al-
lowing all customer to bring a lawsuit before the court can have adverse effects on

2They identify three main factors how antitrust enforcement influences cartel size. First, decreas-
ing collusive profits when expected fines increase can discourage firms from joining a cartel. Second,
since the collusive price is shown to be weakly decreasing when firms are penalised, more firms which
coordinate their strategies are needed to ensure sufficiently high collusive profits. Third, since they
assume that the detection probability depends on the capacity controlled by the cartel, it follows that
expected fines increase when cartels are more encompassing. While the first and the third factor imply
a decreasing coalition size, the second factor can lead to increasing coalition sizes with a more severe
antitrust regime. The overall effect is ambiguous and will depend on the magnitude of these factors.
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the market outcome. Before concluding we discuss results with another numerical
example in Section 2.5. All proofs are collected in Appendix B.

2.1 Illustration in Static Market Environment

Consider a standard Bertrand oligopoly with n firms and linear demand D(p) = 10−p.
Production costs c are normalized to zero. Let each firm be constrained to a capacity
of k with (n − 1)k ≥ D(0) > 0. Then, it is well-known that a Nash equilibrium exists
where all firms price at costs.3

Now suppose that the symmetric firms can make binding agreements to form a
single cartel of size s ≤ n.4 Such cartel will be uncovered with probability α. In this
case, the antitrust authority imposes fines of τ ≥ 0 times each cartel member’s profit.
Additionally, the share β ≥ 0 of all customers who have legal standing successfully
reclaims overcharge losses. These compensation payments are allocated equally
among cartel members.

All firms simultaneously set prices. If a cartel of s firms operates, its participants
choose a price ps ≥ 0 which maximizes cartel members’ expected profits. Suppose
that a best-responding non-cartel member (referred to as a free rider), which correctly
anticipates that a cartel operates, increases its price under the “umbrella” of the
cartel. In particular, free riders are assumed to marginally undercut the cartel price
as long as ps > 0.5 Thus, all customers essentially would pay ps; however, customers
with a high willingness to pay are assumed to be served first (i.e., efficient rationing
is assumed). Then, cartel members only make profits if residual demand DR

s (ps) :=
max{10 − ps − (n − s)k, 0} is strictly positive. All free riders produce at capacity while
cartel members have unused capacity because aggregated cartel capacities exceed
residual demand. Since firms are symmetric it is assumed that each cartel member
supplies DR

s (ps)/s.
If β = 0, i.e., firms do not have to compensate customers, a cartel member’s profit

is
πN

s (ps) := psDR
s (ps)/s − ατpsDR

s (ps)/s = (1 − ατ)psDR
s (ps)/s.

Let pN
s be the price which maximizesπN

s (ps). The profit of a free-riding non-cartel firm

3Depending on the price grid it is unique.
4The assumption that firms can make binding agreements is relaxed in Section 2.2.
5This leads to the unique static Nash equilibrium in the model introduced by Bos and Harrington

(2010).
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is πFN
s (pN

s ) := pN
s k. Let IN

s (pN
s ) := πN

s (pN
s )/πFN

s−1(pN
s−1) measure a firm’s incentive to leave

coalition s given that remaining s− 1 firms still coordinate strategies: for IN
s (pN

s ) > 1,
a cartel member strictly prefers to stay in coalition s.

If β > 0 and legal standing is restricted to customers who directly bought a
product produced by a cartel member, denoted as home customers, a cartel member’s
expected compensation payment is αβpsDR

s (ps)/s. Its expected profit is

πH
s (ps) := πN

s (ps) − αβpsDR
s (ps)/s = (1 − ατ − αβ)psDR

s (ps)/s.

The profit maximizing price when only home customers have legal standing is
therefore independent of compensation payments, that is, it equals pN

s as long as
1− ατ− αβ > 0. A free rider’s profit is πFH

s (pN
s ) = πFN

s (pN
s ) = pN

s k. As above, we define
I

H
s (pN

s ) := πH
s (pN

s )/πFH
s−1(pN

s−1).
When all customers have legal standing, a cartel member’s expected compensa-

tion payment is αβpsD(ps)/s; its expected profit is

πA
s (ps) := πN

s (ps) − αβpsD(ps)/s = (1 − ατ)psDR
s (ps)/s − αβpsD(ps)/s.

This is no longer proportional to πN
s (ps) and hence compensation payments generally

affect the profit maximizing cartel price for s , n. Let pA
s be the price that maximizes

πA
s (ps). As for the case with no compensation at all, we define πFA

s (pA
s ) := pA

s k and
I

A
s (pA

s ) := πA
s (pA

s )/πFA
s−1(pA

s−1) to measure a firm’s incentive to leave coalition s.
Now consider a numerical example with n = 5, k = 3, α = 1/5, τ = 1/2 and β = 1.

Resulting prices pN
s under “no” or “home” compensation and pA

s under compensation
of “all”, profits and IN

s (pN
s ), IH

s (pN
s ) and IA

s (pA
s ) are listed in Table 2.1 for all s ≤ n.6

pN
s πN

s πFN
s I

N
s πH

s I
H
s pA

s πA
s πFA

s I
A
s

s = 1 0 0 0 − 0 − 0 0 0 −

s = 2 0.5 0.11 1.5 ∞ 0.09 ∞ 0 0 0 −

s = 3 2 1.2 6 0.8 0.93 0.62 1.14 0.31 3.43 ∞
s = 4 3.5 2.76 10.5 0.46 2.15 0.36 3.07 1.65 9.21 0.48
s = 5 5 4.5 − 0.43 3.5 0.33 5 3.5 − 0.38

Table 2.1 Market outcomes and a firm’s incentive to leave coalition s in corresponding
regimes i ∈ {N,H,A}

When firms have to compensate for umbrella losses and a partial cartel of given
size s < n has formed, cartel members take the increasing number of customers that

6Numbers in all tables are rounded to two decimal places.
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are entitled to bring a lawsuit before the court into account by reducing the cartel
price. Then, profits of cartel and non-cartel members decrease. All customers benefit
from an extended legal standing.

However, to see that the compensation regime can influence cartel formation,
first, consider a coalition of size 2. Table 2.1 illustrates that expected coalition profits
(writtenv in bold) are only (strictly) positive when outside customers have no legal
standing. Hence, antitrust enforcement deters a coalition of size 2 from coordinating
strategies when umbrella losses have to be compensated. Second, consider a coalition
of size 3 with IA

3 (pA
3 ) > 1 > IN

3 (pN
3 ) > IH

3 (pN
3 ). Firms have a strict incentive to leave

this coalition when umbrella losses remain uncompensated (a partial cartel of size 2
will form sinceI j

s < 1 with j ∈ {N,H} and s ≥ 3), but, crucially, staying in a coalition of
size 3 is preferable and stable (i.e., firms have no incentive to build a larger coalition)
when all customers have legal standing. Then, the resulting market price when
umbrella losses have to be compensated is more than twice as high as the market
price when these losses stay uncompensated. In the following, we will show that
such – at first glance – counterintuitive effect is a robust phenomenon and that the
example’s results generalize to a dynamic market environment.

2.2 Model

We adopt a simplified version of the Bertrand-Edgeworth competition model intro-
duced by Bos and Harrington (2010). Public and private antitrust enforcement are
added below.

2.2.1 Partial Collusion and Capacity Constrained Firms

The model investigated by Bos and Harrington (2010) allows the analysis of partial
cartel formation in a dynamic framework. This is highly useful to discuss how policy
instruments affect cartel size and therefore the market price. In order to focus on the
analysis of compensation payments, we adopt a simplified version of their model.7

Symmetric and capacity constrained firms i ∈ N := {1, . . . ,n} produce homoge-
neous goods and compete in an infinitely repeated price game. Firms set prices
simultaneously. Each firm’s capacity k is exogenously given. Hence we consider

7The two main simplifying assumptions are symmetry of firms and a linear market environment.
Bos and Harrington (2010) assume that the demand function is twice continuously differentiable and
decreasing in the market price and that firms differ in size.
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firms of equal sizes. Past moves are assumed to become public information. Firms’
common discount factor is δ ∈ (0, 1). The payoff of each firm is the expected present
value of its profit stream.

We normalize constant marginal costs c to zero and assume the linear market
demand function D(p) := a − bp with a, b > 0.8 The monopoly profit pD(p) is strictly
concave; let pm denote the price which maximizes it, i.e., pm = arg max pD(p). When
capacity constraints bind, residual demand is allocated efficiently, i.e., consumers
with a high willingness to pay are served first (see Kreps and Scheinkman 1983).

Firms simultaneously set prices and then each firm produces to meet demand
up to capacity. If a set of firms T ⊆ N charges a common price, it is assumed
that demand of each single firm i ∈ T is positive when the total demand for these
firms is positive. Additionally, if aggregated capacity of all firms in T exceeds their
aggregated demand, then each single firm has excess capacity.

The following assumptions impose upper and lower bounds on a single firm’s
capacity. They simplify the analysis while guaranteeing that at least sufficiently
inclusive partial cartels can earn profits when firms do not have to compensate for
umbrella losses (see Prop. 2.1).9

k < D(pm) and k ≥
D(0)
n − 1

=
a

n − 1
. (A1)

The first part of assumption (A1) states that monopoly demand exceeds each firm’s
capacity.Hence, the firm that chooses the lowest price produces at capacity, if the
market price does not exceed pm. With k ≥ a/(n − 1), the standard Bertrand outcome
is reached when all firms compete.

Non-negative price choices are assumed to be discrete, that is, they differ by
increments of ε > 0. Then two symmetric stage game Nash equilibria (p = 0 and
p = ε) exist. When ε is sufficiently small, competitive prices essentially equal costs
and therefore zero.

As in Bos and Harrington (2010) we assume that only a single cartel operates.
Roles of its members are identical in that no ringleaders are needed to lead or instigate
the union. In addition, we introduce public antitrust enforcement by assuming that

8We will show that prices of firms in the competitive and in the collusive equilibrium coincide.
Thus, each firm earns the margin m = p − c. Substituting p = m + c in D(p) gives D̃(m) = a − b(m + c) =

ã − bm with ã = a − bc. Maximizing with respect to p or with respect to m does not affect our analysis.
Section 2.5 considers a numerical example with c > 0.

9 More general assumptions regarding capacities of firms are made in Compte et al. (2002). They
however assume that only the industry-wide cartel can form.
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a cartel generates hard evidence which could be found by the antitrust authority if it
audits the industry with probability α ∈ (0, 1) per period. Bryant and Eckard (1991)
estimated the annual probability of getting indicted by federal authorities in the US
to be at most between 13% and 17%. Combe et al. (2008) found comparable results
in an European sample. As in Katsoulacos et al. (2015) we assume that α does not
depend on a cartel’s price choice.

When the cartel is detected, the competition authority imposes a fine with prob-
ability one: each firm has to pay share τ ≥ 0 of its one period profit as in Bos and
Harrington (2015).10 We suppose that former cartel members are not under special
observation, i.e., they may directly enter a convicted cartel again.

2.2.2 Equilibrium Price and Cartel Sustainability

To simplify the analysis, Bos and Harrington (2010) imposed the following three
properties on equilibrium strategy profiles. First, a stationary collusive outcome is
reached. Second, when a firm deviates, former cartel members play Nash reversion
strategies, i.e., deviations are punished by a permanent return to the static Nash equi-
librium. Last, cartel members choose their strategy profile without conditioning on
past behavior by non-cartel members. This induces non-cartel members to maximize
their current profit in equilibrium. In particular, they take the common prices set by
the cartel members as given, i.e., all firms are aware of the existence of a cartel.

Acting against cartel members is superfluous if the cartel has not caused any
damage. Hence, only (partial) cartels which earn positive profits, i.e., which cause
damage, are relevant and collusive prices are necessarily positive.

We now assume that a cartel of size s < n operates and profitably chooses a
price pN

s ≥ 0 + 2ε.11 The superscript N is used in the following when firms do not
have to compensate. A best-responding free rider prices at pN

s − ε in the unique
static Nash equilibrium, as proven by Bos and Harrington (2010). The intuition is
as follows: first, assume that free riders match or even outbid pN

s . If a single free
rider prices at p′ > pN

s , its demand is zero since (n − 1)k > D(p′) by assumption (A1).
Duplicating a cartel member’s strategy however leads to positive profits. If a group
of free riders chooses any price p′ > pN

s , each single free rider prefers to undercut

10Profits equal revenues with c = 0. In the EU, fines are indeed primarily based on revenues of
the last business year (see European Commission 2006). Including time-dependent fines would be
possible by assuming that the share of the one period profit a firm has to pay increases each year by
some factor κ, i.e., the share would increase to (1 + κt)τ in period t.

11Whenever there is no risk of misinterpretation we denote a partial cartel of size s as “coalition s”.



2.2. Model 19

p′. The trivial price effect is dominated by a non-trivial capacity effect, since free
riders in sum have unused capacity (see assumption (A1)) and from the assumption
on demand allocation when several prices are identical, it follows that each single
firm has unused capacity. This argument extends to the case when free riders meet
the cartel price. Hence, free riders undercut pN

s . Second, positive profits for cartel
members require that residual demand, supplied by the cartel is positive although
free-riding non-cartel firms’ price choice is p′ < pN

s . Thus, with efficient rationing, it
is needed that D(pN

s ) > (n − s)k. Then, free riders will produce at capacity by pricing
at pN

s − ε. Any price below pN
s − ε reduces an outsider’s profit. With ε ≈ 0 the market

price essentially is pN
s .

Residual demand served by the cartel aggregates to DR
s (pN

s ) := D(pN
s ) − (n − s)k.

The cartel in sum has unused capacity because DR
s (pN

s ) < sk by assumption (A1).
How to allocate DR

s (pN
s ) among symmetric firms is far less critical compared to the

general case of asymmetric firms: the allocation proportional to capacities, used
by Bos and Harrington (2010), coincides with an allocation by heads. Hence, the
expected current profit of a cartel member under “no-compensation” is

πN
s (pN

s ) := pN
s (1 − ατ)DR

s (pN
s )/s = pN

s DnN
s (pN

s ). (2.1)

The term DnN
s (pN

s ) := (1−ατ)DR
s (pN

s )/s denotes the net demand of a cartel member with
β = 0, that is, its residual demand after subtracting expected fines. Thus, to ensure
positive collusive profits, net demand has to be positive for pN

s > ε. Since firms are not
under special observation after the cartel was uncovered, profit maximization implies
that firms immediately return to anticompetitive behavior in case of detection. So,
discounted collusive profits are VN

s (pN
s ) := πN

s (pN
s )/(1 − δ).

The expected current profit of a free-riding non-cartel firm is

πFN
s (pN

s ) := (pN
s − ε)k ≈ pN

s k; (2.2)

its discounted profit is VFN
s (pN

s ) := πFN
s (pN

s )/(1 − δ).

Next, dynamic cartel sustainability for DR
s (pN

s ) > 0 is discussed. A cartel is dynam-
ically sustainable iff discounted collusive profits are at least as large as discounted
deviation profits (see Friedman 1971). Latter are only positive in the period of de-
fection since Nash reversion strategies are played. Maximizing one-shot deviation
profits implies to slightly undercut the market price. Then, the dissident produces at
capacity. Since non-cartel members price at pN

s − ε, a deviating firm will not choose a
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price below pN
s − 2ε because sold quantity stays unchanged with k < D(pN

s − 2ε). If it
is capacity constrained by meeting the price of non-cartel members, it will prefer to
do so. All prices essentially equal pN

s with ε ≈ 0.

The question whether dissidents should be fined in case of cartel detection in
the deviation period or not is answered differently in the literature. Whereas, e.g.,
Aubert et al. (2006) or Buccirossi and Spagnolo (2007) assumed that a deviating
firm is fined, other authors, e.g., Motta and Polo (2003) or Katsoulacos et al. (2015)
excluded dissidents from penalty payments. Following the assumption that only
firms that belong to the cartel in the period of detection are fined, yields a deviation
profit of12

VDN
s (pN

s ) := pN
s k +

δ
1 − δ

0. (2.3)

A cartel is sustainable if the dynamic incentive compatibility constraint (DICC)

VN
s (pN

s ) ≥ VDN
s (pN

s )⇔
1

1 − δ
pN

s (1 − ατ)DR
s (pN

s )/s ≥ pN
s k (DICC)

holds. Solving inequality (DICC) for the discount factor yields

δ ≥
sk − (1 − ατ)DR

s (pN
s )

sk
= 1 −

(1 − ατ)DR
s (pN

s )
sk

=: δN
s (pN

s ). (2.4)

With 1 > ατ and DR
s (pN

s ) < sk it is necessary and sufficient that DR
s (pN

s ) is positive to
conclude that 0 < δN

s (pN
s ) < 1. Thus, each coalition that has a positive net demand

is sustainable for some discount factors. Since δN
s (pN

s ) is increasing in pN
s , there is no

price which allows sustainability of coalition s if

δ ≤ δN
s (0) = 1 −

(1 − ατ)(a − k(n − s))
sk

=: δmN
s . (2.5)

δmN
s is referred to as the minimal discount factor.

When coalition s has formed, cartel members choose the same profit maximizing
cartel price pN

s > 0. Two cases, depending on whether the DICC is binding or not,
have to be distinguished. First, assume that δ is sufficiently large so that the DICC is

12Assuming that a deviating firm is fined but allowing firms to apply for immunity (where an
immunity recipient’s fine is reduced to zero) leads to VDN

s (pN
s ) since a deviating firm’s best strategy

is to apply for immunity in the introduced model (see Aubert et al. 2006). The same applies for
compensation payments where the immunity recipient is excluded from liability.
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not binding. Then, maximizing the strictly concave collusive value VN
s (pN

s ) yields

∂VN
s (pN

s )
∂pN

s
= a − 2bpN

s − (n − s)k = 0⇔ pN
s =

a − (n − s)k
2b

=: pMN
s . (2.6)

pMN
s is strictly increasing in the coalition size s. Substituting pN

s = pMN
s in δN

s (pN
s ) yields

δN
s (pMN

s ) = 1 −
(1 − ατ)(a − (n − s)k)

2sk
=: δN

s . (2.7)

If δ ≥ δN
s , each cartel member chooses the price pMN

s . δN
s is referred to as the non-binding

discount factor. A cartel member’s expected current profit at pMN
s is πN

s (pMN
s ) = (1 −

ατ)(a−k(n−s))2/(4bs). Rewriting assumption (A1) gives a/(n−1) ≤ k < D(pMN
n ) = a/2.

Thus, at least four firms are needed to satisfy assumption (A1).
When δ ∈ (δmN

s , δN
s ) the DICC binds but a price pN

s > 0 where profits are positive
is still feasible. Define pDN

s as the highest price that satisfies the DICC when firms do
not have to compensate. It is given by

pDN
s :=

(a − kn)(1 − ατ) + ks(δ − ατ)
b(1 − ατ)

. (2.8)

pDN
s is linearly increasing in the discount factor. A necessary condition for pDN

s > 0 is
δ > ατ, since the first summand of the numerator in equation (2.8) is negative when
assumption (A1) is satisfied. Hence, whenever pDN

s is positive, it is increasing in the
coalition size. A cartel which is sustainable chooses the price pN

s := min{pDN
s , pMN

s }.
A price above pDN

s would violate sustainability, a price above pMN
s cannot be profit

maximizing since VN
s (pN

s ) is strictly concave. Thus, pN
s maximizes a firm’s collusive

value while satisfying its DICC.

2.2.3 Private Antitrust Enforcement

We assume that some fraction β ∈ [0, 1] of harmed individuals who have legal
standing successfully reclaim one year’s overcharge damages after the cartel was
discovered.13 Since competitive prices equal marginal costs and therefore zero, the
overcharge damage coincides with the market price. A cartel’s aggregated expected

13A critical discussion on this assumption is given in Appendix A. There, we additionally argue that
co-defendants will expect that each firm has to contribute the same share on the total compensation
no matter whether firms are internally liable as in the EU or whether a rule of no contribution applies
as in the US.
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compensation payment is αβpH
s DR

s (pH
s ) when only home customers have legal stand-

ing. Expected compensation payments areαβpA
s D(pA

s ) when all customers can reclaim
overcharge damages. Prices pH

s and pA
s will be derived in Subsection 2.3.2. We assume

that each cartel member has to bear the same share of the total compensation. Thus,
a cartel member’s expected compensation payments are αβpH

s DR
s (pH

s )/s respectively
αβpA

s D(pA
s )/s.

In summary, a firm’s expected current collusive payoff depends on the legal
standing of antitrust victims as follows

πH
s (pH

s ) := pH
s (1 − α(τ + β))DR

s (pH
s )/s = pH

s DnH
s (pH

s ) (2.9)

πA
s (pA

s ) := pA
s

(
(1 − ατ)DR

s (pA
s ) − αβD(pA

s )
)
/s = pA

s DnA
s (pA

s ) (2.10)

with DnH
s (pH

s ) := (1 − α(τ + β))DR
s (pH

s )/s and DnA
s (pA

s ) :=
(
(1 − ατ)DR

s (pA
s ) − αβD(pA

s )
)
/s.

Introducing private antitrust enforcement is normally equivalent to an increase in τ
when only home customers have legal standing.14 This ceases to be true when all
customers have legal standing.

A firm’s deviation payoff – but not its profit maximizing strategy – depends on
whether a deviating firm must contribute to compensation or not in case of cartel
detection. We assume that a deviating firm is excluded from compensation payments
(see fn. 12). Thus, a deviating firm earns the profit VDj

s (p j
s) := (p j

s − x)k ≈ p j
sk with

x ∈ {ε, 2ε} and j ∈ {H,A}.

2.3 Exogenous Coalition Size s

We now assume that coalition size s is exogenously given. First, we derive a necessary
condition for positive net demand; then, we determine the smallest coalition size that
satisfies this condition. Second, we discuss cartel pricing and cartel sustainability.

14There are two reasons why this equivalence could not be given. First, according to Thaler (1985),
decision makers prefer integrated losses compared to segregated losses since the value function is convex
for losses. That is, firms prefer high payments at once compared to fractionated payments. Second,
an argument which is closely related to the first one, but which builds on rational profit maximizing
behavior, is that bad news in the media over a longer period of time substantially influence the
reputation and therefore the profit of a firm.
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2.3.1 Positive Net Demand

Static collusive profits can only exceed static competitive profits if the cartel can
profitably charge a price pi

s ≥ 0 + 2ε with i ∈ {N,H,A} (recall that costs are c = 0,
superscript i is used in the following for i ∈ {N,H,A}). For this, it is necessary that
the cartel could at least serve a positive net demand at pi

s = 2ε: market demand is
decreasing in the market price and free-riding non-cartel firms always undercut the
cartel price as long as pi

s ≥ 2ε. Thus, when cartel members choose the price 2ε but
outsiders still have enough capacity to serve total demand D(ε), there is no price
pi

s ≥ 2ε which satisfies Dni
s (pi

s) > 0. Hence, a necessary condition for a positive net
demand is Dni

s (2ε) ≈ Dni
s (0) > 0.

Net demand for p j
s = 2ε ≈ 0 with j ∈ {H,A}, s = n and β > 0 is positive if

DnH
n (0) = DnA

n (0) = (1 − α(τ + β))D(0)/n > 0. This always holds if

1 − α(τ + β) =: e > 0. (A2)

When condition (A2) is violated, no coalition s ≤ n can make profits. In the following,
we assume that the enforcement parameter e is strictly positive. This implies that 1 > ατ
since β ≥ 0.

When e > 0 and capacities are bounded by assumption (A1), some coalitions
of size s < n may serve a positive net demand; this was illustrated in Section 2.1.
Which partial cartels actually satisfy Dni

s (2ε) > 0 depends on the aggregated outside
capacity: the larger the individual capacity k, the more encompassing a cartel must
be to have positive net demand. Recall that k is bounded by assumption (A1), that
is, k ∈ [a/(n − 1), a/2).

Lemma 2.1 derives a general condition for Dni
s (2ε) > 0 for s < n and pi

s = 2ε ≈ 0.15

Lemma 2.1. Let e > 0 and µ := (1 − α(β + τ))/(1 − ατ). Coalition s < n has positive net
demand for pi

s = 2ε ≈ 0 iff

(i) k < a
n−s =: kPN

s when umbrella losses stay uncompensated and

(ii) k < µa
n−s =: kPA

s when umbrella losses have to be compensated,

with kPN
s ≥ kPA

s .

15The condition ensures positive collusive profits when discount factors are sufficiently high.
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From β > 0 follows that µ ∈ (0, 1]. Since µ is only relevant when cartel members
have to compensate outside customers, it will be referred to as the umbrella coefficient.

The larger s and the smaller k, the looser are the constraints in Lemma 2.1 since
outside capacity decreases. Additionally, from kPN

s ≥ kPA
s follows that the condition

for net demand being positive for pi
s ≈ 2ε becomes more restrictive when umbrella

losses have to be compensated: to ensure positive net demand, aggregated outside
capacity has to decrease when expected compensation payments increase.

Lemma 2.1 allows to partition the interval k ∈ [a/(n − 1), a/2) into several sub-
intervals. In particular, given capacity level k, Proposition 2.1 derives the smallest
coalition size, denoted by s, which can serve a positive net demand.

Proposition 2.1. Let e > 0, k ∈ [a/(n−1), a/2) and µ > 1/2. The capacity of the smallest
coalition s < n which has positive net demand for pi

s = 2ε ≈ 0 satisfies

(i) kPN
s−1 ≤ k < kPN

s when umbrella losses stay uncompensated and

(ii) max{a/(n−1), kPA
s−1} ≤ k < min{kPA

s , a/2}when umbrella losses have to be compensated.

At least coalition n − 2 satisfies Dnj
s (2ε) > 0 with j ∈ {N,H}; at least coalition n − 1 satisfies

DnA
s (2ε) > 0.

For kPN
s−1 ≤ k < kPN

s with 2 ≤ s ≤ n− 2, coalition s is the smallest coalition which has
positive net demand when umbrella losses remain uncompensated. A similar result
obtains when all customers have legal standing. Capacity bounds then also depend
on the umbrella coefficient and on the constraints imposed by assumption (A1).
From the assumptions on the capacity bounds also follow that at least a coalition of
n − 2 firms has positive net demand when outside customers have no legal standing.
This is not true when legal standing is extended to all customers since expected
compensation payments increase. In particular, if private antitrust enforcement has
a rather high weighting compared with public antitrust enforcement (that is, µ is
sufficiently small) and firm-specific capacity is rather large (that is, even one cartel
outsider supplies a huge share of total demand), only the industry-wide cartel would
have positive net demand. However, µ > 1/2 ensures that at least coalition n − 1 has
positive net demand when all customers have legal standing.

Whether small coalitions have positive net demand or not therefore crucially
depends on the legal standing of antitrust victims. The conditions for net demand of
small coalitions being positive when firms have to compensate for umbrella losses are
tighter since µ ∈ (0, 1]. The reason is that the potential number of suing customers
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Figure 2.1 Minimal cartel size s for positive net demand in “home” (red) and “all”
(green) regimes

increases. Thus, net demand is more likely to be negative. This is illustrated in
Figure 2.1 for the example discussed in Section 2.1, that is, for n = 5 and µ = 7/9.16

When only home customers have legal standing, coalitions of size 2 or 3 are the
smallest coalitions which have positive net demand (depending on the capacity level
k). With an extended legal standing to all customers, more firms are needed to satisfy
DnA

s (2ε) > 0 for many values of k. Damage caused by coalition s is zero if k ≥ kPN
s

resp. if k ≥ kPA
s . In Subsection 2.4.2 we will however show that given capacity level

k only the smallest or the next lager coalition that has positive net demand can form
stable coalitions when firms are patient.

2.3.2 Cartel Pricing and Cartel Sustainability

We next show how an extended legal standing affects cartel pricing and cartel sus-
tainability, given a partial cartel of size s has already formed. Recall here that a
cartel is dynamically sustainable iff discounted collusive profits are at least as large as
discounted deviation profits, i.e., the DICC has to be satisfied. Defining the minimal
discount factor δmj

s , the non-binding discount factor δ j
s and the optimal cartel price p j

s

with j ∈ {H,A} analogously to δmN
s , δN

s and pN
s (see Section 2.2), we show:

Proposition 2.2. For a given coalition size s, extended legal standing leads to

(i) (weakly) increasing deterrence: δmA
s ≥ δmH

s ≥ δmN
s ; (δA

s ≥ δ
H
s ≥ δ

N
s ) and to

(ii) (weakly) decreasing market prices: pN
s ≥ pH

s ≥ pA
s .

Moreover, discount factors δmi
s and δi

s are decreasing and pi
s is increasing in the coalition

size s.
16For illustrative reasons, we only compare the two cases j ∈ {H,A}with β > 0.
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For a fixed s < n, we see that optimal cartel prices pi
s decrease and minimal

discount factors δmi
s and non-binding discount factors δi

s increase when firms have to
compensate for umbrella losses since expected compensation payments increase.17

Moreover, large cartels are rather easy to sustain and their members are able to charge
high prices.

Figure 2.2 illustrates the optimal prices for all coalitions which have positive net
demand for the example discussed in Section 2.1. When the industry-wide cartel
forms (coloured blue), umbrella losses do not occur. Since net demand of a coalition
of size 2 is not positive for pA

2 ≈ 2ε, no δmA
2 < 1 exists.
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Figure 2.2 Cartel pricing and cartel sustainability given coalition size s in “home”
(red) and “all” (green) regimes

For the case when coalition size is exogenous, Propositions 2.1 and 2.2 confirm
intuition of the related literature, that is, cartel deterrence is increasing when more
customers are entitled to compensation (see, e.g., Blair and Durrance 2018). More-
over, prices are decreasing with an extended legal standing to outside customers.
Given a cartel has formed, a more severe compensation rule is unambiguously good.
However, the legal standing of antitrust victims influences the generally endogenous
size of stable cartels as is discussed next.

17Note that no common definition of cartel deterrence exists. Generally, it is assumed that de-
terrence increases when critical discount factors (δi

s(pi
s)) increase. We will mainly consider minimal

discount factors to discuss cartel deterrence: with δ < δmi
s a cartel is deterred from coordinating

strategies.
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2.4 Endogenous Coalition Size s

We first discuss the concepts used to identify stable (partial) cartels. Next, stable
coalition sizes for large discount factors, that is, all coalitions satisfying Dni

s (2ε) > 0
can price without considering the DICC, are derived. Last, it is shown that the stable
coalition size if firms have to compensate for umbrella losses is at least as large as
the coalition size if they do not have to compensate these losses for all δ > δmA

n .

2.4.1 A-stability

Escrihuela-Villar (2008, 2009) and Bos and Harrington (2010, 2015) discuss models
of partial cartel formation in a dynamic market environment. They use the same
concepts to identify stable cartels, namely adaptations of the stability concepts intro-
duced by D’Aspremont et al. (1983).18 We follow this literature here.

We discuss cartel stability for different values of δ ∈ (0, 1) and k ∈ [a/(n − 1), a/2)
given β ≥ 0 and µ > 1/2. Then, the umbrella coefficient µ is sufficiently large to
ensure that at least coalition n − 1 satisfies DnA

s (2ε) > 0.

Firms simultaneously decide whether to join the cartel or not. As usual in the
literature on cartel formation among symmetric firms, we do not address the ques-
tion which firms actually join the conspiracy (see, e.g., D’Aspremont et al. 1983,
Donsimoni et al. 1986 or Escrihuela-Villar 2008, 2009).

A first requirement for cartel stability is that coalition s has to be sustainable for
pi

s = 2ε, i.e., δ ≥ δi
s(2ε) > δi

s(ε) ≈ δmi
s and therefore δ > δmi

s . Then, cartel members can
choose a price where their profits and profits of free riders are positive. This excludes
coalitions that do not affect prices, i.e., do not cause damage.

To identify internally and externally stable cartels among coalitions that are sus-
tainable for pi

s = 2ε, it is sufficient to consider static member and free rider profits,
since πi

s(pi
s) and πFi

s (pi
s) are only scaled by 1/(1 − δ) to derive Vi

s(pi
s) and VFi

s (pi
s). Inter-

nal cartel stability requires that no cartel member has an incentive to leave whereas
external cartel stability states that free rider wants to join the coalition.19 Formally, a

18D’Aspremont et al. (1983) investigate internal and external cartel stability in a static market
environment. They conclude that a cartel is stable if and only if both conditions are satisfied. This
stability concept can easily be adapted to a dynamic setting.

19Other approaches to select stable coalitions were, e.g., introduced by Bernheim et al. (1987),
Bernheim and Whinston (1987), Ray and Vohra (1999) or Diamantoudi (2005).
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cartel of size s > 1 is said to be internally stable if

I
i
s(k, δ) := πi

s(p
i
s) − π

Fi
s−1(pi

s−1) ≥ 0 (INT)

and a cartel of size s < n is said to be externally stable if

E
i
s(k, δ) := πi

s+1(pi
s+1) − πFi

s (pi
s) ≤ 0. (EXT)

For s = 1 internal and for s = n external cartel stability is assured. Coalitions which
satisfy internal and external stability and which are additionally dynamically sustain-
able for pi

s = 2ε are denoted asA-stable.20 Note that coalitions which cannot influence
the market price can nevertheless satisfy stability defined as in D’Aspremont et al.
(1983): as shown in Lemma 2.1, cartel profits can only be positive when aggregated
outside capacity is sufficiently small. Thus, when coalition s + 1 does not control
enough capacity to satisfy πi

s+1(pi
s+1) > 0 it directly follows that πi

s(pi
s) = 0 and there-

fore Ii
s(k, δ) = 0 and Ei

s(k, δ) = 0.

Net demand 
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Figure 2.3 How to deriveA-stable coalition sizes

Figure 2.3 illustrates the different test steps, to identify anA-stable coalition size.
Coalition s is not A-stable (denoted by “A”) whenever one step is not met. In the
first step we select coalitions which have positive net demand, that is, coalitions
which satisfy Dni

s (2ε) > 0 (see Lemma 2.1). All coalitions that have positive net
demand are dynamically sustainable for pMi

s if δ ≥ δi
s. Among those coalitions, we

identify internally and externally stable cartels to derive A-stable cartel sizes for
δ ≥ δi

s in Subsection 2.4.2. Positive net demand of coalition s does however not

20An alternative way to exclude coalitions which cannot influence the market price is to assume
that inequality (INT) is strict as in Bos and Harrington (2010) or Escrihuela-Villar (2008, 2009).
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ensure that this coalition is also dynamically sustainable for any δ ∈ (0, 1); dynamic
sustainability only applies for δ > δmi

s . In Subsection 2.4.3 we compare the coalition
size of anA-stable cartel for different compensation regimes depending on δ ∈ (0, 1).

2.4.2 Cartel Size when Firms are Patient

We start by discussing cartel stability for discount factors which are sufficiently large
to ensure that each coalition that has positive net demand can choose the price pMi

s

where the DICC is not binding. Then, neither collusive nor outside profits depend
on the discount factor δ.21 Static collusive profits for β > 0, which are given by

πH
s (pMH

s ) =
e[a − k(n − s)]2

4bs
and πA

s (pMA
s ) =

[ae − k(n − s)(1 − ατ)]2

4bse
, (2.11)

are positive when coalition s has a positive net demand.
Lemma 2.2 identifies internally stable cartels. The capacity where firms are indif-

ferent between being a cartel member of coalition s + 1 or an outsider assuming that
s firms form a cartel is denoted by k̃i

s.

Lemma 2.2. Let δ ≥ δi
s, e > 0, µ > 1/2 and k ∈ [a/(n − 1), a/2).

(a) The unique internally stable cartel which makes profits consists of s firms, if and only if

(i) k < a/(n − xNA
s ) =: k̃N

s when firms do not have to compensate,

(ii) k < a/(n − xH
s ) =: k̃H

s when only home customers have legal standing,

(iii) k < µa/(n − xNA
s ) =: k̃A

s when all customers have legal standing,

with

xNA
s :=

ατ(s + 1) −
√

s2 − 1 + 2ατ(s + 1)
−1 + ατ

;

and

xH
s :=

α(s + 1)(τ + β) −
√

s2 − 1 + 2α(s + 1)(τ + β)
−1 + αβ + ατ

.

(b) In addition, a coalition of s + 1 firms is internally stable if and only if k ≥ k̃i
s.

21Assuming that firms can sign binding contracts in a static model yields similar results.
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Among those coalitions which earn profits, internal stability either permits a
single cartel of size s or two internally stable cartels exist. The largest coalition that
could be internally stable when umbrella losses stay uncompensated has size n − 1;
coalition n could be internally stable when all customers have legal standing (see
Prop. 2.1).

The internal stability condition for coalition s + 1 gets tighter, i.e., is satisfied for
fewer values of k, when only home customers have legal standing compared to no
compensation at all: outside profits do not depend on private antitrust enforcement
whereas collusive profits decrease when firms have to compensate home customers.
When all customers have legal standing, collusive profits further decrease but also
outside profits are strictly lower for β > 0 and s < n since the market price is
decreasing when all customers are allowed to bring a lawsuit before the court. Which
effect dominates can be analysed by comparing critical capacities k̃i

s where firms are
indifferent between staying in coalition s or joining coalition s + 1. We prove that
xH

s > xNA
s when β > 0 and that k̃i

s is unique. Then, it is easily checked that k̃H
s > k̃N

s > k̃A
s

when β > 0: the first inequality follows since xH
s > xNA

s ; the second one since µ < 1.
Thus, the decrease in outside profits more than offsets the decrease in collusive
profits when umbrella losses have to be compensated. Hence, the condition for
internal stability of coalition s + 1 is satisfied also for smaller values of k.

Selecting externally stable cartels among coalitions s and s + 1 gives

Proposition 2.3. Let δ ≥ δi
s, e > 0, µ > 1/2 and k ∈ [a/(n − 1), a/2). The largest

coalition which is internally stable is also externally stable andA-stable since πi
s(pMi

s ) > 0.
Coalitions s and s + 1 are bothA-stable when k = k̃i

s.

For k , k̃i
s A-stability determines a unique cartel size. This is consistent with

the related literature on cartel formation in a static market environment (see, e.g.,
Donsimoni et al. 1986 or Shaffer 1995).22 The uniqueA-stable coalition size for k < k̃i

s

is s; only coalition s + 1 operates if k > k̃i
s.

Only the two smallest coalitions which have positive net demand for capacity
level k, that is, coalitions s and s + 1, can form. Which coalition actually forms
depends on a firm’s capacity level k and it is more likely that larger coalitions form
if cartel members have to compensate for umbrella losses.

Figure 2.4 illustrates theA-stable coalition sizes depending on the capacity level k
for the example discussed in Section 2.1. Since k̃A

s < k̃H
s , it is easy to see that the

22In Donsimoni et al. (1986) two stable cartel sizes can exist depending on the number of operating
firms. Then, one of the two cartels is necessarily industry-wide.
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Figure 2.4A-stable coalition sizes given capacity k for patient firms in “home” (red)
and “all” (green) regimes

coalition size when firms have to compensate for umbrella losses is larger than the
coalition size when only home customers have legal standing, for many capacity
levels k (e.g., for k = 3 as in the discussed example.)

Two important insights can be derived. First, small potential cartels that can earn
positive profits would actually form for δ ≥ δi

s. Proposition 2.1 however established
that it is less likely that profits of small coalitions are positive when firms have to
compensate for umbrella losses. Thus, an A-stable cartel’s size generally increases
for δ ≥ δi

s when also outside customers are entitled to compensation and the umbrella
coefficient µ is sufficiently small. Second, since k̃H

s > k̃N
s > k̃A

s , it is less likely that
coalition s forms (i.e., fewer values of k allow for stability of coalition s) when firms
have to compensate for umbrella losses even if Dni

s (2ε) > 0 is satisfied for the same
coalition size s (see Figure 2.4). Although prices for a given coalition size satisfy
pMA

s ≤ pMH
s = pMN

s , the ranking of prices and market performance can be reversed
if A-stable coalitions with endogenous size s are considered (as in the discussed
example).

2.4.3 Coalition Size for δ ∈ (0, 1)

Finally, we discuss cartel formation in a dynamic market environment that cannot be
reduced to a static one, i.e., the case δ ∈ (0, 1).

To see how the size of anA-stable cartel depends on the discount factor, we first
recall and combine results of Propositions 2.2 and 2.3. From Proposition 2.2 follows
that cartel agreements are easier to sustain with an increasing coalition size. For
δ ∈ (δmi

n , δ
mi
n−1] only the industry-wide cartel is sustainable for pi

s = 2ε and thus can
earn positive expected collusive profits. Hence, it is the unique coalition which is
A-stable since external stability is assured and internal stability is easily derived.
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Proposition 2.2 additionally states that cartel deterrence is increasing when firms
have to compensate. If the discount factor is restricted to δ ∈ (δmN

n , δmj
n ] with j ∈ {H,A}

and harmed customers have legal standing, not even the industry-wide cartel is
sustainable for p j

s = 2ε: increasing cartel deterrence leads to effective competition,
that is, the competitive price is reached.

With δ > δmA
n results change. At least the industry-wide cartel is sustainable

for pi
s = 2ε no matter whether firms have to compensate or not; it is the unique

sustainable coalition whenever δ is sufficiently close to the minimal discount factors
δmA

n = δmH
n and firms have to compensate. Further increasing discount factors do

not only lead to more coalitions which are sustainable, also prices when the DICC is
binding increase (see equations (2.8) and (2.20)). This influences the attractiveness of
coalition n. For δ ≥ δi

s and k̃A
n > a/2 only coalitions s and s + 1 < n can beA-stable, as

shown in Proposition 2.3. Then, for δ ∈ (0, 1), at least two different coalitions satisfy
A-stability.23

To show that coalition size is weakly increasing with an extended legal standing
to outside customers for δ ≥ δmA

n , we evaluate the discount factor δ̃Ii
s which satisfies

πi
s(pi

s) − πFi
s−1(pi

s−1) = 0. This discount factor makes a member of a cartel indifferent
between staying in or leaving coalition s. We will derive that δ̃Ii

s is unique for δ < δi
s.

The coalition size of anA-stable cartel then evolves with increasing discount factors
as follows: for δ ∈ (δmi

n , δ̃
Ii
n) only the industry-wide cartel satisfies A-stability; for

δ ∈ (δ̃Ii
n , δ̃

Ii
n−1) only coalition n − 1 does. This repeats until the A-stable coalition size

for δ ≥ δi
s is reached. A sufficiently small change of δ changes theA-stable coalition

size by at most one since πi
s(pi

s) − πFi
s−1(pi

s−1)=0 and πi
s(pi

s) − πFi
s−2(pi

s−2)=0 cannot be
simultaneously satisfied because a free rider’s profit is increasing in the coalition
size s.

We now define si
δ as the coalition size of anA-stable cartel given discount factor

δ and prove that sA
δ > s j

δ with j ∈ {N,H}when δ > δmA
n . To achieve this, three steps are

needed.

Step I: Three disjunct intervals in which δ̃Ii
s ∈ (δmi

s , 1) can lie are identified. They
correspond to three different constraint situations and modes of cartel operation.
First, for δ̃Ii

s ∈ (δmi
s , δ

i
s), the DICC is binding for coalitions s and s − 1. Second,

the DICC is only binding for coalition s − 1, i.e., δ̃Ii
s ∈ (δi

s, δ
i
s−1). Last, the dynamic

sustainability conditions are non-binding for δ̃Ii
s ≥ δi

s−1. Interval bounds depend

23For k̃A
n < k < a/2 only coalition n isA-stable when firms have to compensate for umbrella losses

for all δ ∈ (δmA
n , 1). Then, we can directly conclude that coalition size is weakly increasing for δ > δmA

n
when all customers have legal standing.
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on the private antitrust regimes; they are weakly increasing with an extended legal
standing (except for the upper bound of interval 3, see Prop. 2.2). Intervals when
home (all) customers have legal standing are illustrated in Figure 2.5.

𝛿𝛿

1𝛿𝛿𝑠𝑠𝑚𝑚𝑚𝑚 𝛿𝛿𝑠𝑠𝑚𝑚 𝛿𝛿𝑠𝑠−1𝑚𝑚

𝛿𝛿

1𝛿𝛿𝑠𝑠𝑚𝑚𝑚𝑚 𝛿𝛿𝑠𝑠𝑚𝑚 𝛿𝛿𝑠𝑠−1𝑚𝑚1 2 3

1 2 3

Figure 2.5 Intervals in which δ̃I j
s with j ∈ {H,A} can lie in “home” (red) and “all”

(green) regimes

Step II: We show that δ̃IA
s > δ̃I j

s with j ∈ {N,H} if δ̃Ii
s lies in interval 1 or 2. This is

illustrated in Figure 2.6 and stated in Lemmata 2.3 and 2.4.
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𝛿𝛿
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Figure 2.6 δ̃IA
s > δ̃IH

s given δ̃I j
s with j ∈ {H,A} lies in interval 1 or 2 in “home” (red)

and “all” (green) regimes

Lemma 2.3. Let δ̃Ii
s ∈ (δmi

s , δ
i
s). The critical discount factors that make a firm indifferent

can be ranked such that δ̃IA
s > δ̃IH

s > δ̃IN
s .

Lemma 2.4. Let δ̃Ii
s ∈ [δi

s, δ
i
s−1). The critical discount factors that make a firm indifferent

can be ranked such that δ̃IA
s > δ̃IH

s and δ̃IA
s > δ̃IN

s . Additionally, δ̃IH
s > δ̃IN

s iff k < a
n−xs

and
δ̃IH

s ≤ δ̃
IN
s iff k ≥ a

n−xs
with

xs :=
sαβ + 2sατ − 2

√
s2 − 2s + sαβ + 2sατ

−2 + αβ + 2ατ
.

Step III: The final step is split into three parts. We first show that for a specific capacity
level k, δ̃Ii

s can only lie in interval 3 for one of the cases i ∈ {N,H,A}. However, when
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δ̃Ii
s lies in interval 3, firms are indifferent between staying in coalition s or leaving

this coalition for all δ ∈ [δi
s−1, 1). Second, we argue that the indifferent discount factor

is unique whenever δ̃Ii
s does not lie in interval 3. Last, we prove that the number (1,

2 or 3) of the interval in which δ̃Ii
s lies is weakly increasing when outside customers

have legal standing. Then, we can conclude:

Proposition 2.4. Let δ > δmA
n = δmH

n , e > 0, k ∈ [a/(n − 1), a/2) and µ > 1/2. The
A-stable cartel size depends on the standing of antitrust victims with sA

δ ≥ sH
δ and sA

δ ≥ sN
δ .

The ordering of sH
δ and sN

δ additionally depends on firms’ capacities.

Table 2.2 summarizes results for the four possible scenarios that δ̃IA
s either lies

in one of the intervals 1, 2 or 3, or that no δ̃IA
s exists. When δ̃I j

s with j ∈ {N,H}
both exist, we can conclude from Proposition 2.3 that only δ̃IN

s can lie in interval 3.
The distinction between capacity levels k < a/(n − xs) and k > a/(n − xs) follows from
Lemma 2.4; it is relevant when the DICC is only binding for coalition s−1. Combining
the ranking of discount factors that make firms indifferent, which is depicted in Ta-
ble 2.2, with the result that lower bounds of intervals are increasing with an extended
legal standing, allows the conclusion that critical discount factors δ̃Ii

s are increasing
when all customers have legal standing. From an increasing critical discount factor
δ̃Ii

s directly follows that coalition size of an A-stable cartel is nondecreasing when
compensation for umbrella losses is awarded.

both DICC binding DICC binding for s − 1 no DICC binding

k ∈ [ a
n−1 ,

a
2 ) δ̃IA

s > δ̃IH
s > δ̃IN

s – –

k < a
n−xs

δ̃IH
s > δ̃IN

s δ̃IA
s > δ̃IH

s > δ̃IN
s −

k > a
n−xs

δ̃IH
s > δ̃IN

s δ̃IA
s > δ̃IN

s > δ̃IH
s −

k < a
n−xs

δ̃IH
s > δ̃IN

s δ̃IH
s > δ̃IN

s δ̃IA
s

k > a
n−xs

δ̃IH
s > δ̃IN

s δ̃IN
s > δ̃IH

s δ̃IA
s

k < a
n−xs

δ̃IH
s > δ̃IN

s δ̃IH
s > δ̃IN

s δ̃IN
s

k > a
n−xs

δ̃IH
s > δ̃IN

s δ̃IN
s > δ̃IH

s δ̃IN
s

Table 2.2 Ranking of critical discount factors δ̃Ii
s

Thus, the legal standing of antitrust victims will influence cartel formation. Note
however that it need not be the case that cartel size when only home customers have
legal standing is larger than in the baseline scenario of no compensation: when
the critical discount factor δ̃I j

s with j ∈ {N,H} lies in interval 3, coalition size can
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either increase or decrease with more customers having legal standing. The reason
is that collusive profits are decreasing when firms have to compensate their home
customers and the DICC is not binding. Thus, incentives to stay in coalition s + 1
decrease. However, also the market price decreases when the DICC is binding and
firms have to compensate home customers. Hence, the profit of an outsider decreases
when coalition s forms; firms have a stronger incentive to stay in coalition s+1. These
ambiguous effects can lead to increasing or decreasing coalition sizes as in Bos and
Harrington (2015).

An unambiguous conclusion can be stated when all customers have legal stand-
ing: coalition size of an A-stable cartel is (weakly) larger than for compensation
only of home customers or no compensation at all. However, the market price may
decrease or increase with a more severe antitrust regime because even a large cartel’s
price can be comparatively small when all customers have legal standing. Latter
is driven by the disproportional burdening of small coalitions that would have to
compensate a huge number of customers: even if the sustainability condition is not
binding, partial cartels will take a compensation for umbrella losses into account by
reducing their prices.

Discount factors that imply indifference and allow for two A-stable cartel sizes
are illustrated in Figure 2.7 as dotted vertical lines for Section 2.1’s example. Thick
lines depict anA-stable cartel’s profit-maximizing price path given discount factor δ,
depending on whether outside customers have legal standing or not. (Dashed lines
are adopted from Figure 2.2.) One can see that the coalition size of an A-stable
cartel when firms have to compensate for umbrella losses is at least as large as the
coalition size of an A-stable cartel when only home customers have legal standing
for all δ ∈ (0, 1). The effect of an extended legal standing on the market price
is however ambiguous. These conclusions are now illustrated with a numerical
example, assuming constant positive rather than zero per-unit production costs.

2.5 Application

The numerical example considered in Section 2.1 is adapted supposing that firms
operate in a dynamic environment with positive per-unit production costs c = 2.
Recall that n = 5, k = 3, α = 1/5, τ = 1/2 and β = 1. Market demand is D(p) = 10 − p.
Table 2.3 summarizes prices, cartel members’ and free riders’ profits when the DICC
is non-binding, that is, when δ > δi

s, and the corresponding minimal discount factors
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p
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Figure 2.7A-stable coalition sizes for δ ∈ (0, 1) in “home” (red) and “all” (green)
regimes

δmi
s for s ≥ 2 (recall, pMN

s = pMH
s and πFN

s (pMN
s ) = πFH

s (pMN
s )).

pMN
s πN

s πFN
s δmN

s πH
s δmH

s pMA
s πA

s πFA
s δmA

s
s = 2 0 0 − − 0 − 0 0 − −

s = 3 3 0.3 3 0.8 0.23 0.84 2.14 0.01 0.43 0.98
s = 4 4.5 1.41 7.5 0.63 1.09 0.71 4.07 0.75 6.21 0.76
s = 5 6 2.88 − 0.52 2.24 0.63 6 2.24 − 0.63

Table 2.3 Market outcomes

Table 2.3 first illustrates that the smallest coalition which can serve a positive net
demand has size 3 in all compensation regimes. Second, deterrence, that is, minimal
discount factors δmi

s , are (weakly) increasing with an extended legal standing. Third,
prices, when the DICC is not binding, are strictly lower when all customers have
legal standing compared to regimes N or H for s < n.

Figure 2.8 additionally includes prices when the DICC is binding. This allows to
illustrate the price path as firm’s common discount factor δ is increased assuming
a cartel of size s has already formed with no compensation, a compensation for
home resp. all customers with s < n and a compensation for all customers with s = n
(blue).24 The arrows on the δ-axis for s < n are separated into two intervals: increasing
deterrence, that is, greater δ is required to render the given cartel size dynamically
sustainable when firms have to compensate home customers is coloured red; when

24The origin of the price is set equal to 2 – the marginal costs.
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all customers have legal standing, deterrence is further increasing. This is illustrated
by the green arrow. The vertical arrows at δ = 1 illustrate the decreasing price given
coalition size s < n when the DICC does not bind and firms have to compensate for
umbrella losses.

p

𝛿𝛿1
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2

n=s=5

s=4

s=3

4.5
4.07

3
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Figure 2.8 Price paths given a (partial) cartel of size s has formed

Next assume that coalition size s is endogenous and that δ ≥ δi
s. Then, it is

a coalition of size 3 which is the unique A-stable coalition when compensation
payments are not awarded to victims who suffered umbrella losses. However, a
partial cartel of four firms is internally stable when firms have to compensate for
umbrella losses since πA

4 (pMA
4 )−πFA

3 (pMA
3 ) > 0; external stability of coalition 4 is given

since πA
5 (pMA

5 ) − πFA
4 (pMA

4 ) < 0 (see Table 2.3). Additionally, a coalition of four firms is
the unique coalition size with satisfies internal and external stability simultaneously.
Thus, a partial cartel of four firms is the uniqueA-stable coalition size.25 The market
price for theA-stable coalition size increases by more than 30% if all customers have
legal standing.

With decreasing discount factors, that is, δ < δi
s, also larger coalitions can be A-

stable. Which coalitions form depends on the indifferent discount factors δ̃Ii
s which

are summarized in Table 2.4. Ranking indifferent discount factors by size yields

25Following Diamantoudi (2005) and assuming that a cartel of size s′ is internally (externally) stable
if the decision to be outsider (insider) would start a sequence ending with an A-stable cartel where
profits of outsiders (insiders) are smaller than πi

s′ (p
Mi
s′ ) (πFi

s′ (p
Mi
s′ )), leads to the sameA-stable coalition

sizes in this example. Stability results therefore do not necessarily hinge on the concepts introduced
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δ̃IN
s δ̃IH

s δ̃IA
s

s = 5 0.69 0.75 0.80
s = 4 0.85 0.87 −

s = 3 − − −

Table 2.4 Indifferent discount factors δ̃Ii
s

δ̃IN
5 < δ̃IH

5 < δ̃IA
5 and δ̃IN

4 < δ̃IH
4 .26 Thus, the coalition size when customers who

suffered an umbrella loss have legal standing is at least as large as the coalition size
when they are not allowed to bring a lawsuit before the court, whenever at least the
industry-wide cartel is dynamically sustainable.

In Figure 2.9 we combine Figure 2.8 and Table 2.4 and illustrate the ambiguous
effects of an extended legal standing. Bold lines depict the price paths of A-stable
cartels as we consider possible discount factors of firms. Indifferent discount factors
subdivide the δ-axis into six segments. In segment I, prices unambiguously increase
when firms do not have to compensate because even the industry-wide cartel is not
dynamically sustainable for a wide range of discount factors when firms have to
compensate; if it is dynamically sustainable, prices will only slightly increase. The
opposite is true in segment II: a coalition of four firms is A-stable in regime N
whereas the industry-wide cartel is still A-stable when firms have to compensate.
The positive effect of a decreasing coalition size now dominates when firms do
not have to compensate. Then, the market price decreases when private antitrust
enforcement is prohibited. In segment III, all market prices differ. Highest prices can
be observed when all customers have legal standing; lowest prices when only home
customers have legal standing. Almost the same applies in segment VI although
prices in regimens N and H coincide for some discount factors. Prices when all
customers have legal standing can also be lowest as in segment IV or intermediate
in between the price when only home customers have legal standing (above) and the
price when no customer has legal standing (below) as in segment V.

How an extended legal standing effects social welfare can be directly assessed by
comparing corresponding market prices since a compensation only for overcharge
losses is simply a redistribution of money between firms and customers. Thus, the
higher the market price, the higher the deadweight loss (in legal terms denoted as loss
of profits), which is hardly ever reclaimed. Whether pro- or anticompetitive effects

by D’Aspremont et al. (1983).
26Since coalition 4 is A-stable when all customers have legal standing for δ ≥ δA

s , no δ̃IA
4 ∈ (0, 1)

exists.
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Figure 2.9A-stable coalitions’ price paths

of an extended legal standing dominate on the welfare for δ ∈ (0, 1), can be analysed
for specific distributions of δ. Following Katsoulacos et al. (2015) and assuming that
δ is uniformly distributed27 on (0, 1) yields

mN
= 0.68; mH

= 0.28 (−58.82%); mA
= 0.69 (+1.47%)

with mNas the average mark-up when firms do not have to compensate and mH

and mA as the average mark-up (increase) when home or all customers have legal
standing, respectively. The ranking mA > mN > mH extends to the case where c = 0
with mN

= 0.92, mH
= 0.62 (−32.61%) and mA

= 1.02 (+10.87%). Thus, a regime where
only home customers have legal standing leads to the highest social welfare in the
considered example for δ ∈ (0, 1).

The analysis of consumer surplus (CS) requires more detailed consideration. A
regime which leads to rather high prices but which ensures compensation of all
customers can be preferable from an aggregated customer perspective compared to
regimes N and H even if prices in these regimes are lower. The increasing deadweight
loss (which is born by the customers) when the market price increases can be offset
by high compensation payments when umbrella losses have to be compensated. In

27The distribution of δwill depend on the considered market. However, since one legal rule should
apply for all markets, it is a natural assumption to start with a uniformly distributed discount factor.
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particular, with β = 1, customers who (i) bought a product produced by a free rider
and (ii) did not decrease their demand, will always prefer a rule of compensation for
all, although the market price might increase.

In the considered example, all customers successfully reclaim overcharge dam-
ages, that is, β = 1. This gives compensation regime A a good shot with respect to
CS. Indeed, a compensation of all customers leads in each segment of Figure 2.9 to a
higher CS compared to no compensation at all (CS is evaluated for the average price
in each segment). Additionally, except for segment III, CS when all customers have
legal standing exceeds CS when only home customers have legal standing. How-
ever, in segment III, compensation regime H outperforms regime A and regime N;
but regime H performs worst in segment V.

The considered example clearly advocates a compensation only of home cus-
tomers when social welfare should be maximized. However, when the maximization
of consumer surplus is the objective, a compensation of all customers is preferable
for a wide range of discount factors. Results crucially hinge on the size of β and
on the distribution of δ. In particular, β will be smaller than one in most real-life
cases. Moreover, in many cartel cases in the EU (e.g., in the canned vegetables or
in the beauty product market), it is highly likely that only big players act against
former cartel members since individual damages are rather small. Thus, arguing
that all customers should have legal standing to increase CS although this implies
increasing prices, could harm small customers.

2.6 Concluding Remarks

This chapter shows that the coalition size of a stable cartel depends on whether firms
have to compensate for umbrella losses or not. Our model predicts that cartel size
tends to increase if private antitrust enforcement also applies to umbrella effects. Fu-
ture empirical analysis may detect whether the legal certainty about cartel members
having to compensate umbrella victims, which was established by judgement CJEU
C-557/12 for the EU, has indeed induced more encompassing cartels. How coalition
size and therefore the market price depends on the right for outside customers to
bring an action before the court also matters to recent discussion on the legal standing
of cartel victims in the US. Authors who urge the Supreme Court to take a decision
and to extend legal standing to outside customers only take cartel deterrence for
given cartel size into account (see Blair and Durrance 2018).
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We have shown that coalition size may increase and hence a market price increase
is possible because of extended legal standing. This has been shown in a symmetric
setup but we have no reason to believe that this will be different under mild asym-
metry of the firms. Still, an extension to firms that differ in their capacities would be
a natural extension of our analysis. Bos and Harrington (2010) provide important in-
sights into cartel formation among asymmetric-sized firms. For instance, they show
that a stable cartel must include the largest firms in the market, since these firms’
influence on the resulting market price is greatest. The respective bigger incentive of
large firms to coordinate their strategies in asymmetric cases should in our view not
change results of this chapter.

The same applies for the detection probability, which is assumed to be indepen-
dent of the price or the size of the cartel. No matter whether the cartel price or the
cartel size drives detection probabilities, stable coalition sizes would decrease since
firms are more likely to leave rather large cartels (the effect is either direct since larger
cartels are easier to detect or indirect since the market price is increasing in the cartel
size). Only if the detection probability depends on the cartel size, results would
be systematically affected because the coalition size is shown to be larger when all
customers have legal standing whereas prices can either increase or decrease with a
more severe antitrust regime. However, although smaller coalitions can form for a
wider range of discount factors when detection probabilities would depend on the
market price or the cartel size, there is no reason to believe that the main conclusion
of this chapter is reversed: the coalition size tends to increase when all customers
would have legal standing.

Consideration of different concepts of cartel stability would also be useful as
theoretical robustness check. The related approach by Diamantoudi (2005) probably
leads to similar results (see fn. 25) but complex settings as in Ray and Vohra (1999)
might change our findings. How an expanded legal standing of cartel victims affects
the size of stable cartels when multiple partial cartels can form is left for future
research.

That private antitrust enforcement effects market prices plays a crucial role in
antitrust policy. With the exception of Bos and Harrington (2015), the relevant studies
however do not consider how enforcement rules affect cartel size – which is a main
determinant of market prices. A compensation for umbrella effects reduces a cartel
member’s profit more the smaller the coalition size. This is opposite to the policy
recommendation by Bos and Harrington (2015) which suggest policies that should
be “. . . progressively more aggressive for more inclusive cartels”. However, even a policy



42 Chapter 2. Compensation for Umbrella Losses

where rather small cartels are disproportionately harshly burdened can be beneficial
from a welfare perspective when increasing cartel deterrence and decreasing market
prices outweigh negative effects caused by increasing coalition sizes.

A central policy recommendation can by deduced: courts should not argue that
all customers should have legal standing to strengthen effective competition just be-
cause cartel deterrence is increasing. How a compensation for umbrella losses affects
competition will depend on the specific market, on firms’ discount factors, on char-
acteristics of plaintiffs, etc. A legal rule, which should maximize social welfare, may
favour compensation only of home customers as in the discussed example.

2.7 Appendix A
Private Antitrust Enforcement

We will first discuss the assumptions made to simplify the incorporation of private
antitrust enforcement. Second, we clarify the assumption that firms will expect to
bear an equal share of the total compensation payments.

The assumption that share β of harmed customers who have legal standing suc-
cessfully reclaim annual overcharge damages simplifies the analysis in three ways.
First, firms only have to compensate the damage for one single period.28 Second,
we only consider the price overcharge damage. Depending on national law, plain-
tiffs can also reclaim loss of profits. This damage arises when the product was not
bought because it became too expensive. However, a compensation for loss of profits
comes with many practical hurdles, e.g., how to estimate its size. It plays an almost
negligible role in legal practice (see Laborde 2017). Third, the probability of winning
the lawsuit is assumed to not depend on characteristics of claimants. In particular,
we assume for the case with legal standing of all customers that customers who
bought a product produced by non-cartel members have the same winning proba-
bility as customers who bought a product produced by a cartel member. Increasing
standing is therefore directly transferred to increasing aggregated expected compen-
sation payments. Providing causal evidence that there was a damage caused by a
cartel, although the product was not produced by a cartel member, may however be
burdensome when products are rather bad substitutes. This assumption should be

28A time variable could be included to take cartel duration into account. Then, compensation
payments would increase in the time a cartel operated. There is however no reason to believe that
increasing compensation payments over time will change results of this chapter.
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unproblematic with homogeneous goods (see Blair and Durrance 2018).

Next, we will argue that firms will expect to pay an equal share of the total
compensation. Harmed customers who have legal standing can act against any
former cartel member since co-defendants are jointly liable towards third parties in
most jurisdictions, e.g., in the EU, US, Japan or Australia. This means that they can
sue any cartel member for the total or any desired share of the total damage no matter
whether this firm has produced the good bought by the customer or not. Which firm
actually has to bear the compensation (internal liability) will be settled afterwards.
Different concepts to allocate compensation payments among joint tortfeasors exist
in the EU and the US.

In the EU, the European Commission established a rule of contribution. The
applicable Directive 2014/104/EU states that each cartel member has to contribute
according to its relative responsibility for the harm (Article 11). How to economically
quantify this norm is discussed in more detail in Chapter 3, by Schwalbe (2013) and
by Napel and Oldehaver (2015). The only reasonable internal allocation rule in our
model is an allocation per heads since firms are symmetric even on a customer level
and all firms are assumed to have the same role in the cartel.

In the US, firms do not have to contribute (see Texas Industries, Inc. v. Radcliff
Materials, Inc., 451 U.S. 630, 1981). The firm that is sued has to bear the whole
compensation, that is, firms are not internally liable. This however does not mean that
firms expect to pay the whole compensation: incentives of customers to act against
particular cartel members are in our model the same ex ante. Thus, the probabilities
that a given firm has to compensate all customers are identical among cartel members.
For risk-neutral firms, this is equivalent to the case where all customers which have
legal standing split equally between detected cartel members.29

No matter whether firms have to contribute or not, they expect that compensation
payments are allocated equally among cartel members. The expected collusive value
of each cartel member therefore decreases symmetrically in compensation payments
and all firms choose the same profit-maximizing price.

29See Easterbrook et al. (1980) for a detailed discussion on expected liability shares.
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2.8 Appendix B
Proofs

Proof of Lemma 2.1.
Part (i): Outside customers have no legal standing. Then, net cartel demand for p j

s =

2ε ≈ 0 with j ∈ {N,H} and s < n, i.e., DnN
s (0) = (1 − ατ)DR

s (0)/s and DnH
s (0) = eDR

s (0)/s,
is positive if the enforcement parameter e is positive and if

DR
s (0) > 0⇔ k <

a
n − s

. (2.12)

Part (ii): All customers have legal standing. Then, net cartel demand for pA
s = 2ε ≈ 0

and s < n is positive if

DnA
s (0) = [(1 − ατ)(a − (n − s)k) − αβa]/s > 0⇔ k < µ

a
n − s

(2.13)

with µ := (1 − α(τ + β))/(1 − ατ). Given (A2), i.e., e = 1 − α(τ + β) > 0, and β ≥ 0 it
follows that µ ∈ (0, 1]. That umbrella coefficient µ ∈ (0, 1] implies a

n−s ≥
µa

n−s . �

Proof of Proposition 2.1.
Part (i): Consider k < a/(n − (s − 1)). Condition (i) of Lemma 2.1 then implies that a
coalition of size s− 1 would also have positive net demand. By contrast, net demand
of coalition s would be zero for k ≥ a/(n − s) since condition (i) of Lemma 2.1 would
then be violated. Hence, a/(n− (s− 1)) ≤ k < a/(n− s) when coalition s is the smallest
coalition which could supply a positive net demand.

To see how capacity constraints imposed by assumption (A1) influence coalition
size s, first recall that positivity of Dnj

s (2ε) with j ∈ {N,H} is only given when outside
capacity is sufficiently small, i.e., given coalition size s, capacity level k has to be
sufficiently small. An increasing capacity level k can be offset with a larger coalition
size s to satisfy Dnj

s (2ε) > 0. Assumption (A1) first requires that firms are not too
small, i.e., k ≥ a/(n − 1). However, with k ≈ a/(n − 1), a coalition of size 2, that
is, the smallest possible coalition size which could form, satisfies Dnj

s (2ε) > 0, since
a/(n− (s−1)) ≥ a/(n−1) with s ≥ 2. Second, firms are not allowed to be too large, that
is, k < a/2.30 Hence, we can conclude that no coalition of size n − 1 or n could be the
smallest coalition which has positive net demand even if k ≈ a/2 since a/(n− s) ≤ a/2

30The industry-wide cartel price, given the DICC is non-binding, will be shown to be independent
of the legal standing of antitrust victims (see equation (2.17)). Thus, the monopoly output is a/2.
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implies s ≤ n − 2.

Part (ii): Umbrella losses have to be compensated. When capacity constraints
introduced in (A1) are not binding, Lemma 2.1 determines interval bounds of the
capacity of coalition s as in (i). However, depending on the size of µ, it can be true
that µa/(n − (s − 1)) < a/(n − 1) resp. that µa/(n − s) > a/2. Then, capacity bounds are
binding and the capacity of coalition s satisfies max{a/(n − 1), µa/(n − (s − 1))} ≤ k <
min{µa/(n − s), a/2}.

For k ≈ a/(n − 1), it is no longer true that coalition s = 2 must have positive
net demand since a necessary condition for DnA

s (2ε) > 0 is µa/(n − s) > a/(n − 1) ⇔
µ > (n − s)/(n − 1). Thus, if the umbrella coefficient is sufficiently small, coalition
s = 2 has no positive net demand. Additionally it is no longer true that at least
coalition n − 2 has positive net demand for k ≈ a/2. The smallest coalition size s
for k ≈ a/2 satisfies max{a/(n − 1), µa/(n − (s − 1))} ≤ k < a/2 ≤ µa/(n − s). The
last inequality holds if µ ≥ (n − s)/2. That some capacity level k satisfies a/2 > k ≥
max{a/(n − 1), µa/(n − (s − 1))} follows if a/2 > µa/(n − (s − 1))⇔ µ < (n − s + 1)/2.31

This inequality is always satisfied for s < n and β > 0. Thus, a coalition has positive
net demand if µ > max{(n − s)/(n − 1), (n − s)/2} = (n − s)/2 for n ≥ 4. Hence, with
µ > 1/2, it follows that at least coalition n − 1 has positive net demand. �

Proof of Proposition 2.2.
Part (i): When only home customers have legal standing, the DICC is

VH
s (pH

s ) ≥ VDH
s (pH

s )⇔ δ ≥ 1 −
e(a − bpH

s − k(n − s))
ks

=: δH
s (pH

s ). (2.14)

With legal standing extended to outside customers, DICC requires

VA
s (pA

s ) ≥ VDA
s (pA

s )⇔ δ ≥
k(n − ατ(n − s)) − e(a − bpA

s )
ks

=: δA
s (pA

s ) (2.15)

to sustain the agreement. With pH
s = 0 resp. pA

s = 0 minimal discount factors δmj
s are

δH
s (0) = 1 −

e(a − k(n − s))
ks

=: δmH
s ; δA

s (0) =
k(n − ατ(n − s)) − ea

ks
=: δmA

s . (2.16)

Arranging minimal discount factors δmN
s (see equation (2.5)), δmH

s and δmA
s by size

yields δmA
s ≥ δmH

s ≥ δmN
s . This ranking is strict for s < n and β > 0.

31It directly follows that a/2 > a/(n − 1) with n ≥ 4.
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To derive non-binding discount factors δ j
s with j ∈ {H,A}, we first have to deter-

mine profit maximizing prices when the DICC is non-binding. This yields

pMH
s :=

a − k(n − s)
2b

; pMA
s :=

ae − k(n − s)(1 − ατ)
2be

(2.17)

with pMN
s = pMH

s ≥ pMA
s and D(pMH

n ) = D(pMA
n ) = a/2. Substituting pMj

s into δ j
s(p

j
s) with

j ∈ {H,A} gives

δH
s (pMH

s ) = 1 −
e(a−(n−s)k)

2ks
=: δH

s ; δA
s (pMA

s ) =
k(n+s −ατ(n−s))−ea

2ks
=: δA

s . (2.18)

For δ ≥ δH
s (δ ≥ δA

s ) firms price at pMH
s (pMA

s ). Ranking these discount factors by size
yields δA

s ≥ δ
H
s ≥ δ

N
s with β ≥ 0 and s ≤ n.

To see that δmH
s , δmA

s , δH
s and δA

s are decreasing in the coalition size, consider

∆δmH
s := δmH

s − δmH
s−1 =

e(a − kn)
k(s − 1)s

< 0; ∆δH
s := δH

s − δ
H
s−1 =

∆δmH

2
< 0;

∆δmA
s := δmA

s − δ
mA
s−1 =

ea − kn(1 − ατ)
k(s − 1)s

< 0; ∆δA
s := δA

s − δ
A
s−1 =

∆δmA

2
< 0. (2.19)

Denominators are always positive for s ≥ 2. Numerators are negative when assump-
tions (A1) and (A2) are satisfied.32

Part (ii): Suppose that the DICC is binding, that is, δ ∈ (δmj
s , δ

j
s) with j ∈ {H,A}.

Then, the profit maximizing cartel price is

pDH
s :=

(a − kn)e + ks(δ − α(β + τ))
be

; pDA
s :=

(
ae − kn(1 − ατ)

)
+ ks(δ − ατ)

be
(2.20)

with pDN
s ≥ pDH

s ≥ pDA
s . These prices can only be positive if δ > α(β+ τ) resp. if δ > ατ

since the first addends of the numerators in (2.20) are negative by assumption (A1).

The optimal cartel price pi
s := min{pDi

s , pMi
s } is increasing in the coalition size s

since pDi
s and pMi

s are increasing in s. Additionally, pi
s is (weakly) decreasing with an

extended legal standing: pN
s ≥ pH

s follows since pMN
s = pMH

s > pDN
s ≥ pDH

s and discount
factors can be ranked such that δN

s ≤ δ
H
s . Thus, if firms do not have to compensate,

they choose pMN
s also for values of δwhere pDH

s is chosen if firms have to compensate.
Following the same approach gives pH

s ≥ pA
s with pMH

s ≥ pMA
s ≥ pDA

s , pDH
s ≥ pDA

s and

32From ∆δmH
s < 0 directly follows δmN

s − δmN
s−1 < 0 since e > 0 implies (1 − ατ) > 0. The same applies

for ∆δH
s < 0 and δN

s − δ
N
s−1 < 0.
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δH
s ≤ δ

A
s . �

Proof of Lemma 2.2.
We first substitute πi

s(pMi
s ) and πFi

s−1(pMi
s−1) in equation (INT):

Part (i) : I
N
s (k) =

(1 − ατ)
sb

(
a − k(n − s)

2

)2

−
a − kn + k(s − 1)

2b
k (2.21)

Part (ii) : I
H
s (k) =

e
sb

(
a − k(n − s)

2

)2

−
a − kn + k(s − 1)

2b
k (2.22)

Part (iii) : I
A
s (k) =

(
ae − k(n − s)(1 − ατ)

)2

4bse
−

ae − k(n − (s − 1))(1 − ατ)
2be

k. (2.23)

Deriving second derivatives of Ii
s(k) with respect to k yields

∂2
I

N
s (k)
∂k2 =

2s(1 + (n − s)ατ) + (1 − ατ)(n − s)2

2sb
(2.24)

∂2
I

H
s (k)
∂k2 =

2s(n + 1 − s) + e(n − s)2

2sb
(2.25)

∂2
I

A
s (k)
∂k2 =

(1 − ατ)[2s(1 + (n − s)ατ) + (n − s)2(1 − ατ)]
2bse

. (2.26)

Equ. (2.24)–(2.26) are strictly positive for e > 0 and s ≤ n. Ii
s(k) is therefore strictly

convex in the capacity.

The following part considers the case that max{a/(n−1), µa/(n− (s−1))} = µa/(n−
(s − 1)) and that min{µa/(n − s), a/2} = µa/(n − s). When this affects results, it is
explicitly highlighted. Then, capacities are bounded by k ∈ [a/(n − (s − 1)), a/(n − s))
when outside customers have no legal standing and by k ∈ [µa/(n− (s−1)), µa/(n− s))
when all customers have legal standing and coalition s is the smallest coalition which
could serve a positive net demand (see Proposition 2.1). Thus, capacities for coalition
s can be written as k = a/(n − x) resp. as k = µa/(n − x) with x ∈ [s − 1, s). Capacity
level k increases in x.

Coalition s is internally stable since its collusive value is positive, whereas the
outside profit of coalition s − 1 is zero. Firms therefore have no incentive to leave
coalition s.

We next show, that also a coalition of size s + 1 is internally stable for some values
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of k. Substituting k = a/(n − x) resp. k = µa/(n − x) in equations (2.21)–(2.23) yields33

I
N
s (x) =

a2[x2
− (s − 2)s − (s − x)2ατ]

4bs(n − x)2 (2.27)

I
H
s (x) =

a2[x2e − s2(1 + αβ + ατ) + 2s(1 + xα(β + τ))]
4bs(n − x)2 (2.28)

I
A
s (x) = µ

a2[x2
− (s − 2)s − (s − x)2ατ]

4bs(n − x)2 = µIN
s (x). (2.29)

It is sufficient to prove that IN
s (x) is positive to conclude that IA

s (x) is positive since
µ > 0 by assumption (A2). Substituting s = s + 1 in equations (2.27) and (2.28)
and inserting the lower bound for the capacity which still allows coalition s to earn
positive profits, i.e., x = s− 1 in k = a/(n− x), gives the internal stability condition for
a coalition of size s + 1 when capacities are k = a/(n − (s − 1)), that is,

I
N
s+1(s − 1) =

a2(1 − s − 2ατ)
2b(s + 1)(n − s + 1)2 < 0; I

H
s+1(s − 1) =

a2(1 − s − 2α(β + τ))
2b(s + 1)(n − s + 1)2 < 0.

(2.30)

Both denominators are positive and numerators are negative for all s ≥ 2. Hence,
internal stability is violated. Inserting the upper bound for x, that is, x = s, yields

I
N
s+1(s) =

a2(1 − ατ)
4b(s + 1)(n − s)2 > 0; I

H
s+1(s) =

a2e
4b(s + 1)(n − s)2 > 0 (2.31)

with n ≥ s and e > 0; coalition s + 1 is internally stable for x = s.

SinceI j
s+1(k) is strictly convex in k, a unique k > a/(n−(s−1)) resp. k > µa/(n−(s−1))

satisfiesI j
s+1(k) = 0 since I j

s+1(s − 1) < 0. SolvingI j
s+1(x) = 0 with j ∈ {N,H} for x gives

xNA
s1 =

ατφs −
√

s2 − 1 + 2ατφs

−1 + ατ
; xNA

s2 =
ατφs +

√
s2 − 1 + 2ατφs

−1 + ατ
; (2.32)

xH
s1 =

αφs(τ + β) −
√

s2 − 1 + 2αφs(τ + β)
−1 + αβ + ατ

; xH
s2 =

αφs(τ + β) +
√

s2 − 1 + 2αφs(τ + β)
−1 + αβ + ατ

withφs := s+1. We can directly exclude xNA
s2 and xH

s2 from the following analysis, since
denominators are negative whereas numerators are positive, leading to negative

33Similar equations can be stated allowing unit costs to be constant but positive with (a − bc)2

instead of a2.
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values of x which contradicts assumption (A1). To simplify notation, the ’1’ in
subscripts of xNA

s1 and xH
s1 is omitted in the following analysis.

The only step of the proof where capacity bounds of coalition s matter when firms
have to compensate for umbrella losses is the following: sinceIA

s+1(k) is strictly convex
in k, coalition s+1 is internally stable for all relevant values of k ∈ [a/(n−1), µa/(n−s))
if a/(n−xNA

s ) < a/(n−1). Internal stability of coalition s+1 is violated for any relevant
capacity level k ∈ [µa/(n− (s−1)), a/2) with a/2 ≤ a/(n−xNA

s ). Then, only coalition s is
internally stable. This however does not influence the analysis since k = a/(n − xNA

s )
only partitions the interval k ∈ [µa/(n− (s− 1)), µa/(n− s)) without proving existence
of coalition s or s + 1.

We next prove that xH
s ≥ xNA

s . First, note that xH
s = xNA

s with β = 0. Second, xH
s can

be shown to be increasing in β: taking the first derivative of xH
s for β yields

∂xH
s

∂β
=
αφs

[
s + α(β + τ) −

√
φs(s − 1 + 2α(β + τ))

]
(−1 + α(β + τ))2

√
φs(s − 1 + 2α(β + τ))

. (2.33)

The denominator is always positive with s ≥ 2. The numerator would be zero with
α(β + τ) = 1 and is decreasing in y := α(β + τ) since

∂(s + y −
√
φs(s − 1 + 2y))
∂y

= 1 −
φs√

φs(s − 1 + 2y)
< 0. (2.34)

Inequality (2.34) is satisfied for y < 1 and s ≥ 2. Hence, we can conclude that the
numerator of equation (2.33) is always positive since y < 1 as long as assumption (A2)
holds. Thus, xH

s is increasing in β and we can conclude that xH
s ≥ xNA

s .

We next show that no cartel of size s ≥ s + 2 is internally stable when coalition s
is the smallest partial cartel that has a positive net demand. Starting with a coalition
of size s = s + 2 and determining IN

s+2(s) and IH
s+2(s) yields

I
N
s+2(s) = −

a2(s + 2ατ)
2b(s + 2)(n − s)2 < 0; I

H
s+2(s) = −

a2(s + 2α(β + τ))
2b(s + 2)(n − s)2 < 0. (2.35)

With increasing capacity levels k, more firms coordinating their strategies are needed
to allow for internal stability. Since coalition s + 2 is not even internally stable for the
upper bound of k, internal stability is violated for any k ∈ [a/(n − (s − 1)), a/(n − s)).

No coalition of size s > s + 2 can be internally stable since IN
s (x) and IH

s (x) are
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decreasing in s. This follows since

I
N
s+1(x) − IN

s (x) = −
a2

(
2 + 3s + s2 + x2 + (2 + s2 + 3s − x2)ατ

)
4b(s + 1)(s + 2)(n − x)2 < 0 (2.36)

I
H
s+1(x) − IH

s (x) = −
a2

(
(2 + 3s + s2)(1 + α(β + τ)) + x2e

)
4b(s + 1)(s + 2)(n − x)2 < 0 (2.37)

for any coalition size s with n ≥ s > x and e > 0. Thus, we can conclude: I j
s(k) < 0

with j ∈ {N,H} for all s ≥ s + 2 and k ∈ [a/(n − (s − 1)), a/(n − s)).�

Proof of Proposition 2.3.
As already pointed out by D’Aspremont et al. (1983), a coalition s is externally stable
when coalition s + 1 is internally unstable. Thus, if only coalition s is internally stable,
that is, if k < k̃i

s, we can conclude that this coalition is the unique which isA-stable.

Now assume that coalitions s and s + 1 are both internally stable, that is, k ≥ k̃i
s.

When k > k̃i
s only coalition s + 1 isA-stable: first, coalition s + 2 is internally unstable,

i.e., coalition s + 1 is externally stable.34 Second, since firms have a strict incentive to
stay in coalition s + 1, inequality (INT) requires πi

s+1(pi
s+1)−πFi

s (pi
s) > 0. Thus, external

stability of coalition s, that is, πi
s+1(pi

s+1)−πFi
s (pi

s) ≤ 0, cannot be satisfied. When k = k̃i
s

firms are indifferent between staying in coalition s + 1 or leaving this coalition. Then,
both coalitions of size s and s + 1 satisfyA-stability. �

Proof of Lemma 2.3.
Let δ̃Ii

s ∈ (δmi
s , δ

i
s). Internal stability conditions, assuming that the DICC binds for

coalition s > 2, that is, prices are given by (2.8) and (2.20), yield

I
N
s (k, δ) =

k[k(δ(n + 1 − ατ(n − s)) − sδ2
− ατ) − aδ(1 − ατ)]

b(1 − ατ)
(2.38)

I
H
s (k, δ) =

k[aαδ(β + τ) − aδ + kδ(n + 1 − sδ) − kα(1 + δ(n − s))(β + τ)]
be

(2.39)

I
A
s (k, δ) =

k[aαδ(β + τ) − aδ − kατ + kδ(1 + n − sδ − (n − s)ατ)]
be

. (2.40)

34When firms have to compensate for umbrella losses and coalition s + 1 = n is internally stable, it
is by definition also externally stable.
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Taking second derivatives of (2.38)–(2.40) with respect to δ gives

∂2
I

N
s (k, δ)
∂δ2 = −

2k2s
b(1 − ατ)

< 0;
∂2
I

H
s (k, δ)
∂δ2 =

∂2
I

A
s (k, δ)
∂δ2 = −

2k2s
be

< 0. (2.41)

Internal stability conditions are strictly concave in δ. Thus, since equations (2.38)–
(2.40) are positive when coalition s − 1 is not sustainable, that is, when δ ∈ (δmi

s , δ
mi
s−1],

it remains to show that It
s(k, δ) − I j

s(k, δ) > 0 to conclude that there are unique values
δ̃It

s > δmt
s−1 and δ̃I j

s > δmj
s−1 such that δ̃It

s > δ̃I j
s with t , j.35

In order to do that we first define

∆I1
s (k, δ) := IA

s (k, δ) − IH
s (k, δ) =

k2αβ(1 + nδ − sδ)
be

(2.42)

∆I2
s (k, δ) := IH

s (k, δ) − IN
s (k, δ) =

k2αβ(δ − 1)(1 − sδ)
b(1 − ατ)e

(2.43)

∆I3
s (k, δ) := IA

s (k, δ) − IN
s (k, δ) =

k2αβ[−ατ + δ(1 + n − sδ − nατ + sατ)]
b(1 − ατ)e

. (2.44)

∆I1
s (k, δ) > 0 follows from n ≥ s, e > 0 and δ ∈ (0, 1). Thus, δ̃IA

s > δ̃IH
s .

To ensure that ∆I2
s (k, δ) is positive, it is additionally needed that δ > 1/s. For

δ = 1/s follows IH
s (k, 1/s) − IN

s (k, 1/s) = 0. Whenever δ̃IH
s is larger than 1/s we can

conclude that δ̃IH
s > δ̃IN

s . Substituting δ = 1/s inIN
s (k, δ) yieldsIN

s (k, 1/s) = k(kn−a)/bs
which is positive by assumption (A1). Thus, the value of IN

s (k, 1/s) at the intersection
of IN

s (k, 1/s) and IH
s (k, 1/s) is positive and no δ̃IH

s ≤ 1/s can exist. Hence, ∆I2
s (k, δ̃IH

s )
is positive and δ̃IH

s > δ̃IN
s .

Last, we show that δ̃IA
s > δ̃IN

s . Since the denominator of ∆I3
s (k, δ) is positive for

e > 0, it remains to show that the factor in squared brackets of the numerator in (2.44)
is also positive. First, recall that δ > ατ is needed to conclude that firms can charge
positive prices when all customers have legal standing and the DICC is binding.
Thus,

−ατ + δ(1 + n − sδ − nατ + sατ) ≥ −ατ + δ + δn(1 − δ) > 0. (2.45)

Substituting s = n gives the weak inequality which follows since the bracketed factor
on δ is decreasing in the coalition size with δ > ατ. The strict inequality follows from
δ > ατ and 1 > δ. �

35Another way to prove that δ̃It
s > δ̃I j

s would be to show that I j
s(k, δ̃It

s ) < 0 for δ̃It
s > δmt

s−1. Since δ̃It
s

is not unique, this complicates the proof.
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Proof of Lemma 2.4.
If δ̃Ii

s ∈ (δi
s, δ

i
s−1] a firm leaves coalition s when the DICC only binds for coalition s− 1.

Substituting πi
s(pi

s) = πi
s(pMi

s ) and πFi
s−1(pi

s−1) = pDi
s−1k in equation (INT) yields

I
N
s (k, δ) =

(1 − ατ)(a − k(n − s))2

4bs
−

(a − kn)(1 − ατ) + k(s − 1)(δ − ατ)
b(1 − ατ)

· k (2.46)

I
H
s (k, δ) =

e(a − k(n − s))2

4bs
−

(a − kn)e + k(s − 1)(δ − α(β + τ))
be

· k (2.47)

I
A
s (k, δ) =

e(a − k(n − s)/µ)2

4bs
−

(
ae − kn(1 − ατ)

)
+ k(s − 1)(δ − ατ)

be
· k. (2.48)

Internal stability conditions are therefore linearly decreasing in δ since the collusive
value does not depend on the discount factor but the outside profit is linearly in-
creasing in the price, which is linearly increasing in δ. Thus, there is a unique discount
factor from which internal stability of coalition s is violated.

We start by showing that δ̃IA
s > δ̃IH

s . To achieve this, we define ∆IHA
s (k) :=

I
H
s (k, δ) − IA

s (k, δ) which is

∆IHA
s (k) =

kαβ
[
2a(n − s)e − k

(
α(β + 2τ)(2ns − n2

− s2) + 2(n2 + 2s − s2)
)]

4bse
. (2.49)

∆IHA
s (k) does not depend on the discount factor. Hence, slopes of IH

s (k, δ) and
I

A
s (k, δ) in δ are the same, i.e., they are parallel. The difference is negative since the

denominator is positive with e > 0 and the term in square brackets of the numerator
is negative

2a(n − s)e − k
(
α(β + 2τ)(2ns − n2

− s2) + 2(n2 + 2s − s2)
)

(2.50)

≤ k[2(n−1)(n−s)e− α(β + 2τ)(2ns − n2
− s2) − 2(n2 + 2s − s2)]

= k[(s2αβ + 2s2 + 2s2ατ) − (n2αβ + 2ns + 2nsατ) + 2(−n(1 − αβ − ατ) − s(1 + αβ + ατ))]

≤ 2k[−ne − s(1 + αβ + ατ)] < 0 (2.51)

Expression (2.50) is increasing in a. Larger values of a for given k loosen the upper
bound of assumption (A1) but tighten the lower one. Inserting the largest a which
satisfies assumption (A1)’s lower bound, that is, a = (n−1)k, yields the first inequality.
The second inequality follows since (n2αβ + 2ns + 2nsατ) ≥ (s2αβ + 2s2 + 2s2ατ) for
n ≥ s. The strict inequality is obvious. Since IH

s (k, δ) and IA
s (k, δ) are both linearly

decreasing in δ and IA
s (k, δ) > IH

s (k, δ) we can conclude: δ̃IA
s > δ̃IH

s .
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Next, we show that δ̃IA
s > δ̃IN

s . To achieve this, we first solve IN
s (k, δ) = 0 for δ.

This yields the unique indifferent discount factor δ̃IN
s . Then, by substituting δ = δ̃IN

s

in IA
s (k, δ), we show that IA

s (k, δ̃IN
s ) > 0. It can only be true that IA

s (k, δ̃IN
s ) > 0 if

δ̃IA
s > δ̃IN

s . Starting with the derivation of δ̃IN
s yields

I
N
s (k, δ) =

(a − k(n − s))2(1 − ατ)
4bs

−
k((a − kn)(1 − ατ) + k(s − 1)(δ − ατ))

b(1 − ατ)
= 0 (2.52)

⇔ δ̃IN
s =

2ak(1−ατ)(ατ(n−s) − n−s)−(a2+k2n2)(1−ατ)2
−k2s

(
4ατ−s(1+ατ)2

−2n(1−α2τ2)
)

4k2(s − 1)s
.

Substituting δ̃IN
s for δ in IA

s (k, δ) gives

I
A
s (k, δ̃IN

s ) =
aαβ[2(k(n + s) − a)(1 − ατ) + aαβ]

4bse
. (2.53)

The denominator as well as the numerator are positive with e > 0, aαβ > 0, and
k(n + s) − a > 0, which is ensured by assumption (A1). Hence, IA

s (k, δ̃IN
s ) > 0.

Last, we set out the capacity condition under which δ̃IH
s > δ̃IN

s . Substituting
δ = δ̃IN

s in IH
s (k, δ) yields

I
H
s (k, δ̃IN

s ) =

αβ
(
a
(
α(β+2τ(1+2k(n−s))) − 2(a−2kn)

)
−k2(α(β+2τ(2ns−n2

−s2))+2(n2+2s−s2))
)

4bse
.

(2.54)

The sign of the numerator depends on the capacity level k. The interval in which
capacities can lie is given by assumption (A1), i.e., k ∈ [a/(n − 1), a/2). Substituting
k = a/(n − x) with x ∈ [1,n − 2) in IH

s (k, δ̃IN
s ) yields

I
H
s (x, δ̃IN

s ) =
a2αβ

[
s2(2 + α(β + 2τ)) − 2s(2 + xα(β + 2τ)) − x2(2 − α(β + 2τ))

]
4bs(n − x)2e

. (2.55)

The denominator is positive with e > 0. The sign of the numerator depends on the
sign of the factor in square brackets [·]. The lower bound of capacity level k is reached
for x = 1; inserting x = 1 into [·] yields

α(β + 2τ)(s2 + 1 − 2s) + 2(s2
− 2s − 1) (2.56)
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A necessary and sufficient condition for (2.56) being positive is s > 2. Note that no
δ̃Ii

2 < 1 can exist since competitive profits would be zero when a former cartel member
leaves a coalition of size 2. Hence, when x = 1, it follows that δ̃IH

s > δ̃IN
s .

Last, we derive the capacity level that satisfies IH
s (x, δ̃IN

s ) = 0. Solving the brack-
eted term of the numerator in (2.55) towards x gives

xs1 =
sαβ + 2sατ + 2

√
s2 − 2s + sαβ + 2sατ

−2 + αβ + 2ατ
; xs2 =

sαβ + 2sατ − 2
√

s2 − 2s + sαβ + 2sατ
−2 + αβ + 2ατ

.

Note that xs1 is negative since the denominator is smaller than zero with assumption (A2)
and the numerator is positive. This contradicts assumption (A1). Since IN

s (k, δ) and
I

H
s (k, δ) are both linearly decreasing in δ, we can conclude that from IH

s (x, δ̃IN
s ) > 0,

which is satisfied for x ∈ [1, xs2), follows that δ̃IH
s > δ̃IN

s . When x ∈ [xs2,n − 2) it
follows that IH

s (x, δ̃IN
s ) ≤ 0 and therefore that δ̃IN

s ≥ δ̃IH
s . �

Proof of Proposition 2.4.
Step III.1: Let δ̃Ii

s ≥ δ
i
s−1. When a firm is indifferent between leaving or staying in

coalition s at δ = δi
s−1 it is also indifferent for all δ > δi

s−1 since neither internal nor
external stability then depends on δ. Thus, from Proposition 2.3 follows that coalition
size s or s + 1 is reached since only these coalitions can be A-stable for sufficiently
large discount factors. We can conclude that for a specific capacity level k, only
one indifferent discount factor can lie in interval 3: capacity levels which satisfy
indifference between coalitions s and s + 1 for δ ≥ δi

s differ, i.e., k̃A
s < k̃N

s < k̃H
s . Thus,

with k = k̃A
s , δ̃IA

s+1 will exist but coalition s is alsoA-stable when firms do not have to

compensate for umbrella losses; δ̃I j
s+1 with j ∈ {H,N} will lie in interval 1 or 2. With

k > k̃A
s , δ̃IA

s+1 will not exist but coalition s may form when outside customers do not
have legal standing.

Step III.2: We next prove uniqueness of δ̃Ii
s ∈ (δmi

s , δ
i
s−1). Collusive profits of coalition s

are continuously increasing when δ lies in interval 1. Also profits of non-cartel
members, given that coalition s − 1 operates, are strictly increasing in δ as long as
coalition s−1 is dynamically sustainable. Since the internal stability conditionIi

s(k, δ)
is strictly concave in the discount factors δ if δ lies in interval 1 and positive for δ ≈ δmi

s ,
there is a unique discount factor δ̃Ii

s , which satisfies Ii
s(k, δ) = 0 for δ̃Ii

s ∈ (δmi
s , δ

i
s) (see

proof of Lemma 2.3). Additionally, note that Ii
s(k, δi

s) > 0 when δ̃Ii
s does not lie in

interval 1. With further increasing discount factors, that is, interval 2 is relevant,
a cartel member’s collusive profit of coalition s no longer depends on the discount
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factor, since the DICC is not binding. Outside profits however continuously increase
until δi

s−1 (see proof of Lemma 2.4). Thus, starting from Ii
s(k, δi

s) > 0, incentives to
leave coalition s continuously increase with increasing discount factors. Hence, if
δ̃Ii

s ∈ (δmi
s , δ

i
s−1) exists, it is unique.

Step III.3: In Step III.1 we already showed that δ̃I j
s with j ∈ {N,H}will lie in interval 1

or 2 when δ̃IA
s lies in interval 3. Next, assume that δ̃IA

s lies in interval 1. From
uniqueness of δ̃Ii

s ∈ (δmi
s , δ

i
s−1) and from δ̃IA

s > δ̃IH
s > δ̃IN

s when δ̃Ii
s lies in interval 1

(see Lemma 2.3) follows that δ̃I j
s with j ∈ {N,H} also lies in interval 1.36 Finally, when

δ̃IA
s lies in interval 2, δ̃I j

s with j ∈ {N,H} will exist; additionally, δ̃I j
s is unique (see

Step III.2). From δ̃IA
s > δ̃I j

s with j ∈ {N,H}when δ̃IA
s lies in interval 2 (see Lemma 2.4)

then follows that interval 1 can be relevant for the cases j ∈ {N,H}. Since lower
bounds of interval 2 are increasing with an extended legal standing (see Step I), it
follows that δ̃IA

s > δ̃I j
s with j ∈ {N,H}. �

36δ̃I j
s with j ∈ {H,N} exists when δ̃IA

s exists since the coalition size of anA-stable cartel for δ ≥ δi
s is

weakly larger when firms have to compensate for umbrella losses compared to the case where they
do not have to compensate these losses (see Prop. 2.1 and 2.3).





Chapter 3

Shapley Apportioning of Cartel Damages by
Relative Responsibility

Cartels are illegal because they generally harm customers and suppliers of the in-
volved firms and possibly others. Victims have for long had a right to compensation
but the pertinent legal hurdles used to be high. Annually up to 23.3 billion euro of
damages have remained unclaimed from EU-wide cartels according to the European
Commission (SWD/2013/203/Final, recital 67). This was a main reason in 2014 for the
European Commission to revise rules and establish a Directive on Antitrust Damages
Actions (2014/104/EU). The position of plaintiffs has since improved and some big
cases are pending – e.g., against the air cargo, elevator, or truck cartels.

Two provisions for the compensation of cartel victims in the Directive motivate
this chapter. First, the members of a cartel are liable jointly and severally. An injured
party can sue any cartel member for the full amount of its damages; if courts confirm
the claim, the defendant must compensate the plaintiff on behalf of the entire cartel.
This is regardless of whether the plaintiff made its purchases from the sued firm or
other ones. Similar provisions apply in Australia, Japan, and the US.

Second, the sued cartel member is entitled to internal redress. Such a rule of
contribution existed in the EU before but details differed across member states. It
contrasts with the no contribution rule in federal US antitrust cases and somewhat
opaque rules in Australia and Japan.

The goal of this chapter is to operationalize the contribution norm established by
the European Union in its Directive 2014/104/EU in an economically sensible way.1

1The issue of how alternative norms, such as the no contribution rule in the US, affect incentives
for cartel formation, whistleblowing, settlements, etc. is here left aside. See, for instance, Landes and
Posner (1980), Polinsky and Shavell (1981) or Hviid and Medvedev (2010).
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We focus on the question: how are damages of a cartel to be apportioned among
its potentially heterogeneous members? According to the Directive, cartelists’ inter-
nal obligations in compensating any external claimant must reflect “. . . their relative
responsibility for the harm caused by the infringement of competition law” (Article 11(5)).
The Directive is not specific on how “relative responsibility” should be quantified but
leaves doors open by stating that “. . . determination of that share [of compensation]
as the relative responsibility of a given infringer, and the relevant criteria such as
turnover, market share, or role in the cartel, is a matter for the applicable national
law, while respecting the principles of effectiveness and equivalence” (recital 37).

This chapter focuses on the economic quantification of relative responsibility but
this is based on the canonical causal conception of legal and moral responsibility for
damages. See Feinberg (1970, p. 195f) for a classical discussion of its three parts:
firstly, the defendant was at fault in acting. This clearly applies if, for instance,
firm i’s manager illegally coordinated its commodity production with competitors
over dinner, violating antitrust laws. Secondly, the faulty act caused the harm: these
conversations resulted in a price increase for the customer. And, finally, the faulty as-
pects of the act were relevant to its causal connection to the harm: illegal coordination
by the managers – not, perhaps, just the reaction of commodity speculators to ob-
serving them dine together – caused the increase. All three parts call for appropriate
verification in practical applications.

If legal responsibility of the infringers for compensation has been affirmed, a sys-
tematic approach is warranted to determine individual contributions. A key reason
is that asymmetry of cartel members can translate very differently into asymmetric
turnover, market shares, etc. Picking one ad hoc criterion to determine contribu-
tions rather than another involves a high degree of arbitrariness and contrasts with
Article 11’s explicit reference to relative responsibility.2 One can do better.

In particular, one can specify several properties that contributions ought to satisfy:
first, in order to account for the Directive’s responsibility criterion, a firm should
contribute to compensating a given customer only if this customer’s damages would
have been lower had the firm refused to participate in the cartel. Second, contribution
levels ought to be determined by how much lower the respective damage would have
been if the firm (and possibly some others) had stayed legal. If cartel membership of
two firms had identical effects on harm then, third, both should contribute the same

2Complexity of the issue and disagreement on ad hoc criteria are explicitly cited in the US Supreme
Court’s no contribution ruling (cf. Texas Industries, Inc. v. Radcliff Materials, Inc., 451 U.S. 637–
38, 1981).
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to its remedy. Finally, a victim’s full compensation should be apportioned in a way
that neither depends on the unit of account nor on whether multiple damages are
dealt with separately or jointly.

These properties translate into mathematical conditions that are well-known in
cooperative game theory – as null player, marginality, symmetry, efficiency and
linearity axioms. Classical results by Shapley (1953b) and Young (1985) imply that
the Shapley value of an appropriately defined game is the right way to split external
compensation obligations internally among the offenders.

The Shapley value is typically used for allocating costs and profits in joint ven-
tures.3 The corresponding rationale extends to joint liabilities. This has recently
been taken up by Dehez and Ferey (2013, 2016) and Huettner and Karos (2017) for
sequential liability games. These games reflect incremental harm caused by chronolog-
ically ordered acts of negligence; they differ from joint liability by cartels in that they
always have a non-empty core. Use of the Shapley value for the allocation of cartel
damages has been proposed by Schwalbe (2013) and Napel and Oldehaver (2015) to
law audiences. This chapter is the first to analyze its quantitative aspects and how
firms’ internal contributions relate to industry parameters.

Shapley contributions proportion overcharges according to individual abilities of
the participating firms to influence prices. We analyze how the resulting damage
shares are linked to demand and costs in linear market environments. We derive
bounds on a firm’s differing responsibility for its own overcharges and those of other
cartel members. We also compare Shapley apportionments to ad hoc ones based on
market shares or profits. Such divisions have been suggested by law practitioners
but tend to be at odds with relative responsibility.

We start our analysis with a more detailed description of the damage apportion-
ment problem (Section 3.1). We present the Shapley value in Section 3.2 along with a
useful way to calculate it in the given context. Section 3.3 specializes the analysis to
linear market environments. For these, heuristic apportionment rules are compared
to the Shapley benchmark. Section 3.4 discusses leniency and ringleader provisions.

3.1 Cartel Damages and Relative Responsibility

Antitrust victims have a right to be compensated. This means they should be put
in the position that they would have been in without the infringement. Cartel

3See Moretti and Patrone (2008) for an overview.
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customers usually suffer two types of damage. The first is the visible loss due to
higher prices (damnum emergens): each unit that was purchased involved an overcharge
damage. Further harm relates to deadweight losses: customers who would have
made (additional) purchases, and thus would have enjoyed surplus had prices been
competitive, failed to do so. This is acknowledged as lucrum cessans in the legal
literature but has played little role in practice yet.

We concentrate on overcharge damages and will assume that they were caused
by a hardcore cartel that fixed quantities, sales areas, or prices of differentiated
goods. This leaves aside other kinds of infringements, deadweight losses and gen-
eral equilibrium effects (see Eger and Weise 2015). The suggested approach can be
generalized, however. Changes in prices could, e.g., be replaced by lost downstream
profits or indirect utility of consumers. The scale invariance condition that will be
introduced below allows to deal naturally with the payment of interest, which is an
essential part of compensation (cf. Directive 2014/104/EU, recital 12).

Cartel overcharges are often determined on the basis of a monthly but-for es-
timation because they can change over time (see, e.g., Bernheim 2002, 2008). Our
presentation adopts a static perspective but, with sufficient data, it would be de-
sirable to apportion damages based on monthly estimations, too. A firm’s relative
responsibility may have varied as other firms joined or left the cartel as well as when
demand or costs changed the scope to influence prices.

A cartel member i having responsibility for damages of a given claimant k requires
that k’s damages are causally linked to i’s cartel membership, i.e., their scale, scope
or distribution would have differed without i’s illegal action. Identifying the causal
links between anticompetitive conduct and harm is generally fraught with difficulty
(see, e.g., Lianos 2015). What makes economic analysis of responsibility for cartel
damages particularly interesting, however, is that even symmetric cost and demand
structures may generate asymmetric links to harm suffered by a specific victim.
Namely, price effects of individual cartel membership in a but-for test differ across
cartelists as long as own-price and cross-price elasticities of the respective demands
differ.

As an example, consider n otherwise identical firms on a Salop circle. Think of
cement plants that are equally spaced on the shores of an unshippable lake. They
sold their cement at inflated prices to local construction companies around the lake.
Their cartel was busted and a customer of firm i sues. Firm i’s and another firm j’s
relative responsibilities for this customer’s damages are tied to the counterfactual
price that the customer would have paid had i or respectively j refused to participate.
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Unless transportation costs are zero, and thus all products perfect substitutes, cartel
membership of the northernmost vendor has smaller effect on overcharges faced by
customers in the south than does membership of southern vendors, and vice versa
(see, e.g., Levy and Reitzes 1992). The closer two firms are located and hence the
more intensely they would have competed in the absence of the cartel, the greater
the price effect of their collusion.

So counterfactual prices that the suing customer would have paid if i or if j
had not joined the cartel, but just best-responded to its practices, vary according
to i’s and j’s locations. Differential effects of cartel membership imply differential
responsibilities for a specific customer’s damage; hence different obligations for
compensation. Formally, i and j need not be symmetric players with respect to
individual damages even though they have symmetric roles in the market at large.

Of course, a symmetric market structure implies that obligations which i and j
have in compensating each others’ customers are the same. Mutual claims cancel out
if all constructors sue, or if equal measures of them do everywhere. However, they
do not cancel in almost all other situations – e.g., if just some construction companies
in the south go to court. A general analysis hence requires that responsibility be
allocated to the cartel members for the price overcharge on each single product in the
cartel portfolio. Asymmetric market structures make a focus on individual products
even more important.

A sound procedure for apportioning damages matters also for umbrella losses.4

These arise to victims that purchased from cartel outsiders at prices whose elevated
level derived from the infringement. Umbrella losses can be reclaimed from cartels
in the EU (CJEU C-557/12 2014). Since compensation is not linked to transactions
with a cartelist, apportionment based on one of the typically conflicting notions of
market shares – by sales, revenues or profits; in the cartel period, before, thereafter –
would be even more ad hoc than for damages to cartel customers.

Finally, note that apportionment is an issue also if litigants settle. In the EU,
an injured party’s claim after settling with a co-defendant “. . . should be reduced
by the settling infringer’s share of the harm caused to it, regardless of whether the
amount of the settlement equals or is different from the relative share of the harm
that the settling co-infringer inflicted upon the settling injured party. That relative
share should be determined in accordance with the rules otherwise used to determine

4See Inderst et al. (2014) for a general discussion on umbrella losses and Holler and Schinkel
(2017) for a correction. In Chapter 2 we discuss how a compensation for umbrella losses affects the
market price.
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the contributions among infringers” (Directive 2014/104/EU, recital 51). The settling
defendant’s relative responsibility thus affects litigants and all co-infringers.

3.2 The Shapley Value as a Tool for Apportioning Dam-
ages

We propose several conditions that a rule for apportioning damages in line with
relative responsibilities should satisfy. It turns out that all are verified by the Shapley
value while any other proportioning suggestion would violate at least one.

3.2.1 Preliminaries

In order to formalize sensitivity to individual responsibility and other desirable
properties of an apportioning rule, we adopt some terminology from the theory of
TU games. The latter describe situations in which transferable utility (TU), such as a
surplus or cost, is to be divided among players from a given set N = {1, . . . ,n}. In our
context, the players are the firms involved and N is the detected cartel.5

For every subset or coalition S ⊆ N of players who might cooperate with one
another, a real number v(S) generally captures the positive or negative worth which
cooperation by S creates and which may be shared arbitrarily. In our context, v(S)
describes damage inflicted if firms i ∈ S coordinate their actions while firms j ∈ NrS
maximize their respective profits in competitive fashion. Mapping v : 2N

→ R is
known as the characteristic function of TU game (N, v).

For strict subsets of N, v(S) reflects a counterfactual. This is necessary: respon-
sibility is driven by the fact that overcharges would have differed from the ob-
served damage v(N) if conducts had differed, i.e., if some firms had stayed out.
Directive 2014/104/EU explicitly acknowledges a role for counterfactual scenarios:
“. . . quantifying harm means assessing how the market in question would have
evolved had there been no infringement. This assessment implies a comparison with
a situation which is by definition hypothetical . . . ” (recital 46). Defining v(S) for
every set S ⊆ N extends this logic from quantifying harm to quantifying contributions to
harm.

5The relevant market may comprise firms j < N which did not partake in the cartel. They need
not contribute to compensations and matter as exogenous co-determinants of damage rather than
players.
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Naturally, v(S) = 0 if the set S of collaborators is either empty (S = ∅) or comprises
but a single firm, i.e., if #S = 1. For other coalitions S ⊂ N, an estimate v(S) is
needed. Intertemporal variation in cartel participation may help obtaining it but
simulation analysis is likely to be the best option. Market simulation is rather well-
established in merger control.6 There, parameters of a structural model of price or
quantity competition are estimated based on pre-merger observables; these generate
equilibrium predictions for when a subset of firms merge and internalize mutual
externalities, just as cartel members do. Analogous analysis of cartel behavior is
comparatively rare and its use for the estimation of function v is more tedious: many
scenarios rather than just a single proposed merger need to be evaluated. The model’s
calibration could, however, draw not only on pre-cartel (like pre-merger) observables
but also observations during and after the cartel’s operation. Former members may
have an interest to disclose cost information if they expect lower contributions than
under an ad hoc apportionment. Sensitive cost or demand data could be pooled
by a trusted intermediary (auditing or law firms) in order to reach a settlement on
apportionment.

We take no stance here on how sophisticated estimates v(S) ought to be in practice.
For instance, the analysis of a hypothetical scenario with a sub-cartel S , N may
consider the question of whether S satisfies suitable stability conditions, and put
v(S) = 0 if not. The illustrations below will keep things simple. Just note that each
number v(S) with i < S reflects a scenario for how the market might have evolved if
there had been no infringement by firm i. It is both possible that firm j , i would then
have joined the cartel anyhow ( j ∈ S) or that it would have stayed legal too ( j < S).
These scenarios need not have equal probability. But all partial cartels S ⊆ N r {i}
are, in principle, relevant in assessing i’s contribution to the situation which calls for
compensation, hence i’s relative responsibility.7

6COMP/M.5644–Kraft Foods/Cadbury or COMP/M.5658–Unilever/Sara Lee are key cases in Eu-
rope; prominent US cases include Dept. of Justice, Final Judgement: U.S. v. Kimberly-Clark Corp. and
Scott Paper Co., 1995. See Budzinski and Ruhmer (2010) for a survey, Weinberg (2011) or Knittel and
Metaxoglou (2011) for critical discussions.

7It is also conceivable that several partial cartels would have formed if i had refused to join. This
could be accommodated by considering (extensions of the Shapley value to) partition functions V from
the set of partitions P = {P1, . . . ,Pr} of N (satisfying

⋃
l Pl = N and Pl ∩ Pk = ∅ for any l, k ∈ {1, . . . , r})

to estimated damages V(P) instead of characteristic function v. See Ray and Vohra (1999).
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3.2.2 Desirable Properties of Responsibility-Based Allocations

With damages in the factual cartel scenario and related counterfactuals described by
(N, v), a damage apportioning rule is a mapping Φ from any conceivable cartel damage
problem (N, v) to a vector Φ(N, v) ∈ Rn. Such a mapping is referred to as a value in the
context of general TU games. The main restriction that the cartel context imposes is
that v({i}) = 0 for all i ∈ N. As prices of substitute goods are usually higher for bigger
cartels (see Davidson and Deneckere 1984, Deneckere and Davidson 1985), we can
take v to be monotonic in S but it will generally not be convex nor superadditive.8

The i-th component Φi(N, v) denotes the part of the compensation for damages v(N)
which cartel member i ∈ N must contribute.

That an apportioning rule reflects relative responsibilities can be translated into
several formal properties of a rule Φ. The first one is straightforward. Suppose that
participation or not of a particular firm i would never have made a difference to the
damage in question, i.e., removing player i if i ∈ S or adding player i if i < S does not
change v(S). If i’s conduct has no effect on damage the conditions are not met for i
being responsible (see Feinberg 1970). Hence, no responsibility-based obligations to
contribute follow. Technically, a player i for whom v(S) = v(S r {i}) for every S ⊆ N
is known as a null player. The first requirement for rule Φ to be based on relative
responsibility hence is the so-called null player property:

Φi(N, v) = 0 whenever i is a null player in (N, v). (NUL)

Presumably, the supply and demand conditions in real markets are rarely compatible
with a convicted cartel member being a null player, but (NUL) conducts a valid
thought experiment. It also formalizes a certain robustness to misspecification of
the relevant market. For instance, a large cartel may have caused damage in several
regions with independent costs and demand. If a firm is accidentally included as
‘player’ in a region where it had no role, (NUL) ensures it need not contribute there.

As responsibility derives from the causal link between cartel membership and the
suffered harm, another straightforward requirement is that i’s damage share Φi(N, v)

8Convexity and therefore also superadditivity are however natural assumptions when cartel
formation is considered. To ensure that (i) existing coalition members have an incentive to accept a
new cartel member and (ii) a new cartel member simultaneously has an incentive to join a coalition,
games have to be superadditive. That most illegal agreements cover a huge share of the market
suggests that incentives for joining a coalition increase as the coalition grows, i.e., convexity. In
particular, many cartels, as the truck cartel, consist of all big players.
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should be determined by this link – and this link alone. Namely, presuming that v
correctly describes factual damages as well as the relevant counterfactuals, Φi(N, v)
shall be a function only of the differences v(S)− v(Sr {i}) that i makes to S ⊆ N. These
differences are also called i’s marginal contributions in (N, v). The corresponding formal
property of marginality, introduced by Young (1985), demands that i’s shares in two
apportioning problems (N, v) and (N, v′) ought to coincide whenever i’s marginal
contributions do:9

Φi(N, v) = Φi(N, v′) whenever v(S) − v(S r {i}) = v′(S) − v′(S r {i}) holds for all S ⊆ N.
(MRG)

Marginality does not pin down how Φi(N, v) should depend on the differences that i
makes to various coalition S. For instance, imposing (MRG) does not imply (NUL);
the properties formalize different aspects of Φ reflecting firms’ responsibilities.

A third such property refers to situations in which the roles of firms i and j in
determining damages v(S) are perfectly symmetric to another. Formally, players i
and j are called symmetric if v(S∪{i}) = v(S∪{ j}) for every coalition S ⊆ Nr{i, j}. When
adding i to a sub-cartel S has the same damage implications as adding j whenever
S previously contained neither, their responsibilities are the same. So Φ should also
satisfy symmetry:

Φi(N, v) = Φ j(N, v) whenever i and j are symmetric in (N, v). (SYM)

Irrespective of whether a damage apportionment reflects responsibility of the
involved players or alternative normative criteria, it is desirable that individual
contributions of all firms i ∈ N add up to v(N). In the context of TU games, this
condition is referred to as efficiency of a value:∑

i∈N

Φi(N, v) = v(N). (EFF)

Symmetry and efficiency imply that both participants in any 2-firm cartel must
contribute v(N)/2. Responsibilities are equal even if the firms are asymmetric in size,
costs, etc. because exit by either would have restored competition.

Scale invariance is another natural requirement: firms’ shares should not depend

9Note that criminal sanctions follow different principles than civil law obligations to victims or
co-offenders. We are concerned only with the latter. The former seek to punish and deter; they may
well differ for (N, v) and (N, v′) even if the respective marginal contributions are identical.
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on whether damages are expressed in US dollar or euro, nor on whether they already
include interest payments. So multiplying all numbers v(S) by an exchange rate or
interest factorλ > 0 should re-scale firms’ contributions by the same factor. Moreover,
if the same cartel N caused damages to suing customers in several markets – reflected
by a characteristic function v1 for market 1, by v2 for market 2, etc. – then the total
contribution of firm i ∈ N should not depend on whether the apportioning rule is
applied to damages vl in one market l at a time, or in one go to the total v = v1 +v2 + . . .

Different ‘markets’ could here refer to different plaintiffs or subsidiaries of the same
plaintiff, to different products in the cartel’s portfolio, or distinct quantities of the
same product.10 Additivity combines with scale invariance to the linearity condition:

Φ(N, λ · v + λ′ · v′) = λ ·Φ(N, v) + λ′ ·Φ(N, v′) (LIN)

for any scalars λ, λ′ ∈ R and any characteristic functions v, v′.

3.2.3 Shapley Value and Decomposition by Average Damage Incre-
ments

The above properties are more than is needed in order to conclude that the appor-
tioning rule should have a particular form:

Shapley-Young Theorem The following statements about a damage apportioning rule Φ

are equivalent:
(I) Φ satisfies (NUL), (SYM), (EFF) and (LIN).

(II) Φ satisfies (MRG), (SYM) and (EFF).

(III)

Φi(N, v) = ϕi(N, v) :=
∑
S⊆N

(s − 1)!(n − s)!
n!

·

[
v(S) − v(S r {i})

]
(3.1)

where s = #S denotes the cardinality of coalition S.

ϕ(N, v) is known as the Shapley value of (N, v). Equivalence of (I) and (III) was
established by Shapley (1953b); equivalence of (II) and (III) by Young (1985). See, e.g.,
Maschler et al. (2013, ch. 18) for an excellent exhibition.11 Even though formula (3.1)

10Additivity applies also to different types of damages described by v and v′ – for instance, over-
charge damages and deadweight losses.

11 Shapley’s proof indeed extends to the class of damage apportionment problems: cartels in which
i ∈ T ⊆ N produce perfect substitutes with competitive price p∗ = 0 and cartel price pC = 1 while j < T
operate in unrelated markets define the required carrier games (N,uT).
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may look unwieldy, the weight (s − 1)!(n − s)!/n! on i’s marginal contribution to a
given coalition S is the logical consequence of the desirable properties listed above.

An equivalent way of writing eq. (3.1) is

ϕi(N, v) =
v(N)

n
+

1
n

n−1∑
s=1

[
v̄i(s) − v̄i�(s)

]
. (3.2)

Here

v̄i(s) :=
(
n − 1
s − 1

)−1 ∑
S3i

#S=s

v(S) and v̄i�(s) :=
(
n − 1

s

)−1 ∑
S=i

#S=s

v(S) (3.3)

denote the average damages caused by coalitions of size s which include firm i and
which exclude firm i, respectively. Abbreviating κ(s) := (s − 1)!(n − s)!/n! = 1

n ·
(n−1

s−1

)−1
,

this follows from

ϕi(N, v) =
∑
S⊆N

κ(s) ·
[
v(S) − v(S r {i})

]
=

∑
S⊆N
S3i

κ(s)v(S) −
∑
S⊆N
S=i

κ(s + 1)v(S) (3.4)

= κ(n)v(N) +

n−1∑
s=1

[∑
S3i

#S=s

κ(s)v(S) −
∑
S=i

#S=s

κ(s + 1)v(S)
]

=
v(N)

n
+

1
n

n−1∑
s=1

[
v̄i(s) − v̄i�(s)

]
.

Equation (3.4) can be simplified further because any degenerate ‘cartel’ of size s = 1
leaves prices constant, i.e., v̄i(1) = v̄i�(1) = 0 for each i ∈ N.

In summary, we must use the Shapley apportioning rule

ϕi(N, v) =
v(N)

n
+

1
n

n−1∑
s=2

[
v̄i(s) − v̄i�(s)

]
(3.5)

if we deem properties (LIN), (EFF), (SYM), (NUL) and (MRG) desirable. Appor-
tionment by relative responsibility of the infringers thus means: start out with equal
shares per head; then add an n-th of the average size-specific damage increments that arise
due to a given firm i’s participation.

The addition accounts for asymmetric effects on harm that arise even in symmetric
market environments (cf. Section 3.1). The decomposition in eq. (3.5) provides a
useful perspective on ϕi and can simplify its calculation: symmetries among cartel
members reduce the sum of 2n differences in eq. (3.1) to less than n ones in (3.5).
This extends when asymmetries are such that i’s damage increments for specific
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coalition sizes s can be written as a function of ‘aggregate asymmetry’ among the
other firms (see Subsection 3.3.3). The calculation also simplifies if cartels of size s
below some threshold s are unstable (Bos and Harrington 2010) or if exchangeability
of the firms implies all damage increments v̄i(s) − v̄i�(s) are zero. For instance, the
second summand in (3.5) vanishes in undifferentiated Bertrand or Cournot oligopoly
with symmetric firms or whenever n = 2; then equal shares follow.

3.3 Apportionment in Linear Market Environments

Shapley apportioning requires estimates of counterfactual damages for all conceiv-
able partial cartels. This amplifies the analytical and empirical challenges associated
already with estimating a litigant’s damages. Four main approaches to quantifying
a customer’s harm are discussed in the literature (see, e.g., Inderst et al. 2013 or Eu-
ropean Commission 2013b): the pure forecasting or cartel dummy variable versions
of the regression approach, determination of but-for prices by default cost mark-ups,
financial performance comparisons, and simulation analysis of a structural market
model. The latter has been applied to cartel cases relatively rarely (see, e.g., Roos
2006) but is well-established in merger control. It gives rather straightforward esti-
mates of but-for prices for partial cartels and thus counterfactual damages.

We illustrate this here for situations in which the costs and demand for differen-
tiated goods are described, in acceptably good approximation, by linear functions.
Parameter restrictions in analogy to, e.g., the proportionality condition of Epstein
and Rubinfeld (2001) could reduce the data requirements in practical cases suffi-
ciently to be applicable. If the producers of differentiated products face at most one
kind of asymmetry, closed-form expressions for the Shapley shares can be derived
via eq. (3.5).12 This is often impossible in other applications of the Shapley value.
The parametric solutions allow to derive distinct upper and lower bounds on the
responsibility-based contribution by a firm to harm of its own and of other firms’
customers, respectively. It is possible to compare Shapley apportionments to those
implied by heuristic rules with numerical methods and, hence, to assess the degrees
to which, e.g., cartel-period market shares could be relied on as proxies for relative
responsibility in applications.

12Quadratic costs do not change the findings much: eq. (3.16) below then involves cost parameter γ
but remains independent of a. Later expressions get significantly more unwieldy, however.
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3.3.1 Model

We focus on a cartel by n ≥ 3 suppliers where each firm i ∈ N = {1, . . . ,n} produces a
single good.13 Firm i’s costs are given by

Ci(qi) = γiqi for γi ≥ 0. (3.6)

Demand at price vector p = (p1, . . . , pn) is described by

Di(p) = ai − di · pi +
∑

j∈Nr{i}

bi j · p j for ai > γi, di > 0, and bi j > 0 for all j , i. (3.7)

We presume Di(γ) > 0, i.e., demand is positive when all firms price at cost. The
corresponding parameter restriction is a+ (n−1)bγ > dγ in the symmetric case where
γi = γ, ai = a, di = d and bi j = b for all i , j ∈ N. Firms set prices simultaneously à la
Bertrand. If some group S ⊆ N of them forms a cartel, outsiders j < S best-respond
to the anticipated decisions of insiders.

Members of S ⊆ N maximize the sum of their profits

ΠS(p) =
∑
i∈S

(pi − γi)Di(p) (3.8)

with corresponding first-order conditions

∂ΠS(p)
∂p j

= D j(p) +
∑
i∈S

(pi − γi)
∂Di(p)
∂p j

for all j ∈ S. (3.9)

Analogous expressions hold if j is a cartel outsider. It is sufficient for existence and
uniqueness of a Nash equilibrium that a uniform increase of all prices or a unilateral
increase of any single price decreases the industry’s aggregated demand.14 Formally,
this requires

∑n
j=1 ∂Di/∂p j < 0 and

∑n
j=1 ∂D j/∂pi < 0, i.e., we will assume

αi := di/
∑
j,i

bi j > 1 and di >
∑
j,i

b ji for all i ∈ N. (3.10)

13If we have a multi-product firm and all its prices are determined either competitively or coopera-
tively then we would simply consider overcharges ∆pl = pC

l −pB
l , l ∈ P, for a set of products P which no

longer coincides with the set of players N. If, in contrast, the conduct decision is made autonomously
for each l by distinct departments of the firm, then each should be included as a player in N.

14See Vives (1999, Sec. 6.2) and Federgruen and Pierson (2011, Cor. 4.6).
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In the symmetric case, this simplifies to α := d
(n−1)b > 1.

Products are relatively good substitutes when αi is small; then price increases
by one firm significantly raise profits for other firms. The cartel internalizes this
externality; the price pi set by cartel member i will be the higher, the smaller αi.

For any given S ⊆ N, the (unique) Nash equilibrium pS summarizes equilibrium
prices pS

i of all products i ∈ N assuming firms in S coordinate and the remaining ones
act competitively. See, e.g., Davis and Garcés (2009, ch. 8).

3.3.2 Symmetric Case

In the symmetric case the cartel price evaluates to

pC := pN
i =

(
a

d − (n − 1)b
+ γ

)/
2 (3.11)

for each differentiated product i ∈ N.15 Corresponding competitive Bertrand prices
are

pB := p∅i =
a + dγ

2d − (n − 1)b
for all i ∈ N. (3.12)

This implies cartel overcharges of

∆p = pC
− pB =

a/d − γ(1 − 1
α )

4α − 6 + 2/α
with α =

d
(n − 1)b

> 1 (3.13)

for each product i ∈ N. They are homogeneous of degree one in (a, γ) and strictly
decreasing in differentiation parameter α as well as in unit costs γ. Overcharges
vanish if demand becomes independent, i.e., limα→∞ ∆p = 0.

If there is a partial cartel S of size s = 2, . . . ,n − 1, equilibrium prices are

pS
i =


a(2d + b) + γ

(
2d2 + bd(3 − 2s) + b2(ns − n − s2 + 1)

)
4d2 − 2(n + s − 3)bd + b2ηs

if i ∈ S,

a(2d − sb + 2b) + γ
(
2d2
− bd(s − 2) − b2(s2

− s)
)

4d2 − 2(n + s − 3)bd + b2ηs
if i < S

(3.14)

with ηs = s(n − s) − 2(n − 1) ≥ −(n − 1).16 Comparing the price pS
h of the “home”

product h ∈ N paid by a suing customer in case that the respective producer h is part
15All calculations underlying Section 3.3 are in Appendix B.
16Static stability of the industry-wide cartel requires that the degree of differentiation is not too
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of a cartel with s members, i.e., for h ∈ S, to the respective price pS
h if h is not, i.e., for

h < S, yields17

v̄h(s) − v̄h�(s) = ph(s) − ph�(s) =
b(s − 1)

(
a + (n − 1)bγ − dγ

)
4d2 − 2(n + s − 3)bd + b2ηs

> 0. (3.15)

Inserting this into eq. (3.5) gives the Shapley allocation in absolute terms. Division
by v(N) = ∆p yields h’s share as an explicit function of the model’s parameters:

ρ∗h :=
ϕh(N, v)

v(N)
=

1
n

+
n − 1

n

n−1∑
s=2

(s − 1) · (4α2
− 6α + 2)

4α2(n − 1)2 − 2(n + s − 3)(n − 1)α + ηs
. (3.16)

One can see that, in the symmetric case, the common unit cost γ and demand inter-
cept a have no effect on h’s share. It is determined only by the degree of differentiation,
i.e., ratio α = d/(n − 1)b of own and cross-price parameters. We can deduce ρ∗h > 1/n
for any α > 1 directly from v̄h(s) − v̄h�(s) > 0 and eq. (3.5).

If the degree of differentiation α is low, discipline by all cartel members is espe-
cially important for maintaining an overcharge. In the limit, each firm’s participation
is essential and affects damage equally:

lim
α→1

ρ∗h =
1
n

and lim
α→1

ρ∗j =
1
n

for j , h. (3.17)

This generalizes to non-linear settings: for perfect substitutes and identical technol-
ogy each firm has identical influence on the price and, by (SYM), must contribute the
same.

If, in contrast, firms produce highly differentiated goods, eq. (3.16) yields

lim
α→∞

ρ∗h =
1
n

+
1

n(n − 1)

n−1∑
s=2

(s − 1) =
1
2
. (3.18)

So seller h must cover up to half of the compensation for its overcharges.18 Checking

large for n > 3. This is no concern, however, in the derivation of bounds on contributions. See
Deneckere and Davidson (1985), Weikard (2009) and Federgruen and Pierson (2011) on cartel profits
under price competition and their relation to internal vs. external stability.

17 The three factors in the numerator are strictly positive. Invoking s ≤ n − 1 and ηs ≥ −(n − 1)
first, and d > (n − 1)b next, the denominator can be bounded below by 2d[2d − 2(n − 2)b] − b2(n − 1) >
2d[2(n − 1)b − 2(n − 2)b] − bd = 3bd > 0. Hence ph(s) − ph�(s) > 0.

18Recall however that ∆p vanishes as α→∞.
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Figure 3.1 Share ρ∗h of overcharge damages on product h attributed to its vendor
(a = 10, d = 2, γ = 0, b = 2/(n − 1)α)

that ρ∗h is strictly increasing in α yields:

Proposition 3.1. Suppose n ≥ 3 firms are symmetric in the linear market environment
defined by equations (3.6), (3.7) and (3.10). If v reflects damages to a customer of firm h ∈ N,
then

ϕi(N, v) ∈


(

v(N)
n , v(N)

2

)
if i = h,(

v(N)
2(n−1) ,

v(N)
n

)
if i , h.

(3.19)

Figure 3.1 illustrates the behavior of ϕh(N, v) for intermediate degrees of differenti-
ation. That firm h’s share strictly exceeds 1/n extends to symmetric differentiated
goods with more general non-linear cost and demand structures (see Appendix A).

3.3.3 Asymmetric Case

Bounds for the symmetric case provide guidance for mildly asymmetric markets
by continuity. But when firms are sufficiently heterogeneous, it is possible that
the producer of a good h will be assigned a smaller share of compensation than
the competitors, i.e., ϕh(N, v) < v(N)/n. This happens when the cross-price effects
involving firm h are sufficiently smaller than those between other cartel members.
We can, e.g., have three firms such that demands of firm 1 and 2 involve high mutual
cross-price reactions b12 and b21, while there are only small linkages bi3 and b3i with
firm 3 (i , 3). Firm 3’s cartel participation contributes to the overcharges on p1, p2 and
p3 if all parameters are positive. But a significant increase of p3 would have occurred
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even if firm 3 had not been part of the cartel and had just best-responded. This part
of ∆p3 is caused by price increases on goods 1 and 2, which are mostly driven by
shutting down competition between firms 1 and 2, not firm 3. Hence the former bear
greater responsibility for ∆p3 than the latter.19 Asymmetry in cross-price effects does
not come with useful bounds.

Asymmetry in the demand parameters ai or costs γi can be dealt with, though
calculations become very tedious. Supposingγ = 0 and that firm-specific intercepts ai

are the only asymmetry, one can for instance compute

∆ph = pC
h − pB

h =
b(n − 1)[b(3d + 2b − bn)ah + (2d2 + b2n − b2)ā−h]

2(d + b)(2d + b)(d + b − bn)(2d + b − bn)
(3.20)

as the cartel’s price increase for product h. It rises in the saturation level ah of
firm h’s demand as well as in the average saturation quantity ā−h :=

∑
i,h ai/(n − 1) of

firms i , h. The corresponding Shapley value of firm h in the apportioning of ∆ph is

ϕh =
∆ph

n
+

1
n

n−1∑
s=2

b(s − 1)[b(6d + b(s + 4 − n))ah + (4d2 + τsb2)ā−h]
2(d + b)(2d + b)(4d2 − (2n − 6 + 2s)db + ηsb2)

(3.21)

with τs := (n− s− 2) and ηs := s(n− s)− 2(n− 1). The implied damage share of firm h
can, after suitable algebraic manipulation, be written as a function of α = d

b(n−1) and
ā−h/ah as follows

ρ∗h =
1
n

+
1

n(n − 1)

n−1∑
s=2

(s − 1)
[
6α(n − 1) + (s + 4 − n) +

(
4α2(n − 1)2 + τs

)
ā−h
ah

]
· (α − 1)(2α − 1)(

4α2(n − 1) − (2n − 6 + 2s)α +
ηs

n−1

)
·

[
(3α + 2−n

n−1 ) + (2α2(n − 1) + 1) ā−h
ah

] .
(3.22)

Ratio ā−h/ah relates the market sizes of firm h and its competitors: a large ratio means
firm h is comparatively small, a ratio close to zero that h’s market is big.

It can be checked that ρ∗h is strictly decreasing in ā−h/ah. From that follows

ρ∗h ≤ lim
ā−h/ah→ 0

ρ∗h =
1
n

+
1
n

n−1∑
s=2

(s − 1)
(n − 1)

·

[
6α(n − 1) + (s + 4 − n)

]
· (α − 1)(2α − 1)(

4α2(n − 1) − (2n − 6 + 2s)α +
ηs

n−1

)
·

(
3α + 2−n

n−1

) .
(3.23)

The right-most fraction, with terms involving α, is maximal for s = n − 1. This

19 For instance, assuming ai = 10, di = 3,γi = 0 for i ∈ {1, 2, 3}, b12 = b21 = 2, b13 = b23 = b31 = b32 = 0.5
and considering v(N) = ∆p3, the Shapley shares evaluate to ρ∗1 = ρ∗2 ≈ 35.1% > ρ∗3 ≈ 29.8%.
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maximum can be shown to be strictly increasing in α. It is hence bounded by its limit
as α→∞, which evaluates to 1. This gives

ρ∗h ≤
1
n

+
1
n

n−1∑
s=2

s − 1
n − 1

=
1
2

(3.24)

as an upper bound. 1/n ≤ ρ∗h follows from considering ā−h/ah →∞ and α→ 1.

So if only demand parameters ai vary and we focus on firm h’s share then the
same bounds obtain as under symmetry. Things differ for a firm j , h, however. The
key determinant of j’s share in ∆ph is ã−h, j :=

∑
i∈Nr{h, j} ai/(n − 2), the average demand

intercept of firms other than h and j. If a j � ã−h, j then j is the only large competitor
of h and both end up splitting ∆ph about 50 : 50. If conversely the market size of j is
negligible compared to that of h’s other competitors (i.e., a j � ã−h, j) then j is basically
a null player.

These observations are summarized by the following analogue to Proposition 3.1:

Proposition 3.2. Suppose n ≥ 3 firms are symmetric except for the demand intercepts
a1, . . . , an in the linear market environment defined by equations (3.6), (3.7) and (3.10) with
γ = 0. If v reflects damages to a customer of firm h ∈ N, then

ϕi(N, v) ∈


(

v(N)
n , v(N)

2

)
if i = h,(

0, v(N)
2

)
if i , h.

(3.25)

Bounds concerning competitors i , h of the suing customer’s seller are now so wide
that they are unlikely to be of practical help.

The same bounds apply to firms which are symmetric in all but technology. This
is illustrated in Figure 3.2. It considers two low-cost and two high-cost producers
with common parameters a = 10, d = 2, and b = 2

3α . No matter whether the selling
firm has (a) low costs γi = 1 or (b) high costs γ j = 5, it bears between 25% and 50%
of overcharges on its product, and always the greatest share. In the former case, the
share of the other low-cost firm increases in differentiation and approaches 50% for
α→ ∞. The share of a high-cost firm in overcharges on the product of a competitor
falls in α and vanishes.
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(a) ∆p1 (b) ∆p3
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Figure 3.2 Shares ρ∗ for cost leaders i = 1, 2 and laggards j = 3, 4

3.3.4 Comparison to Heuristic Apportioning

A reliable heuristic could save the complications of calibrating a structural model.
Perhaps market shares, which are much easier to obtain, are a good proxy for whose
cartel participation contributed how much to damages, at least under some identi-
fiable circumstances? If yes, should we use sales or revenues? From the cartel or
competitive regime? Or perhaps better use a profit measure?

We address these questions by doing some in vitro comparisons. Specifically, we
consider Shapley apportioning under a range of parameter choices and numerically
compare deviations from this benchmark for several apportioning heuristics.

We adopt an aggregate perspective here and suppose that every harmed customer
goes after the cartel. Then the total overcharge damage

D :=
∑
i∈N

qC
i · ∆pi (3.26)

will either be allocated according to the Shapley value ϕ(N, v j) for each individual
product j, or according to some heuristic. Firm i’s aggregate Shapley payments are

Φi :=
∑
j∈N

ϕi(N, v j) =
∑
j∈N

qC
j · ∆p j · ρ

∗

i (N, v
j). (3.27)

Absolute values of over or under-payments relative to Φi are summed across firms
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and normalized to give an index of aggregate mis-allocation of damages

Mρ =
∑
i∈N

| Φi −Hρ
i |

/
D (3.28)

where Hρ
i denotes aggregate payments by firm i according to heuristic shares ρ. Mρ

is proportional to the expected mis-allocation of compensation for a unit purchase by
a randomly drawn customer, for a customer who made purchases from all firms in
proportion to their cartel sales, or when all customers go after the cartel with identical
positive probabilities.20 Considering Mρ rather than over and under-payments at the
product-specific level gives heuristics a good shot: differential responsibilities for
own and other firms’ customers can net out across products. In particular, an equal
distribution per head, by market shares, or by profits all yield zero aggregate mis-
allocation for symmetric environments.

We hence focus on asymmetric configurations and report on six distinct variations
of the example underlying Figure 3.2. The baseline parameters are γ = 1, a = 10, d = 2
and b = d/3α; we break symmetry for one parameter at a time. Several variations
which we tried, e.g., with six firms instead of four, yielded similar patterns.

The two top panels of Figure 3.3 consider heterogeneity in firm-specific market
sizes ai. Panel (a) involves two large and two small firms; in panel (b) all differ.
An equal per head allocation ρ0 non-surprisingly performs well when differentiation
is very low. It soon loses out to allocating damages in proportion to market shares
based on competitive sales ρ4 and to market shares based on cartel sales ρ2. Market
shares determined by cartel revenues ρ1 or competitive revenues ρ3 produce high mis-
allocations at all levels of differentiation. Only apportioning in proportion to cartel
profits ρ5 is worse.

Panels (c) and (d) assume an intermediate and a big cost asymmetry between
firms 1 and 2 vs. firms 3 and 4. The deviations from the Shapley payments, aggregated
for each firm across all four overcharges, is significantly higher with the bigger
asymmetry in (d). The kink which is visible in panel (c) for ρ3 – or ρ2 in (e) – results
from cancellation of product-specific deviations at the firm level when these initially
have opposite signs but switch to same sign. Revenue-based market shares ρ1 or ρ3

and sales-based competitive market shares ρ4 all perform well.

20The latter may be a plausible a priori assumption. It suggests that cartel members should pool
their obligations in a kind of trust in order to save on transaction costs. Symmetry of firms would call
for symmetric shares in the trust. The analysis in this section shows, however, that no simple market
or profit share rule applies to funding the trust under asymmetry.
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(a) ai = a j/3 = a (b) a1 = a2/3 = a3/7 = a4/10 = a
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Figure 3.3 Mis-allocation Mρ by different heuristics considering i = 1, 2 and j = 3, 4

Panel (e) assumes firms 3 and 4 face bigger own-price elasticities than firms 1
and 2. Market shares based on cartel sales or competitive revenues are close to the
Shapley value, as far as aggregate payments to all victims are concerned. The final
panel (f) assumes heterogeneity in cross-price effects: firms 1 and 2 face a fixed cross-
price parameter of 1/4, competition between firms 3 and 4 is more intense by some
factor β. Somewhat unexpectedly, after investigating five environments in which
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its ranking was consistently low, apportioning by cartel profits ρ5 comes closest to
representing a short-cut to the exact Shapley payments.

Overall, there is no heuristic which always outperforms the others. Those based
on market shares – preferably sales-based for heterogeneity in ai, otherwise revenue-
based – tend to score better than a profits-based division; but panel (f) provides an
exception to the rule. Generally, when firms produce close substitutes and hence
ratio α = d/(n − 1)b is close to 1, an equal division by heads performs well. This
comes with the warning that all figures consider aggregate mis-allocation. If firm-
specific fractions of customers seek compensation for their harm, the picture looks
much worse.

3.4 Ring Leaders and Leniency Applicants

Regarding the conduct of a firm, we have so far discriminated only between being
a member of the cartel or competing with it. There are at least two cases where the
specific roles of firms require attention.

First, some members may have acted as ringleaders of the cartel and therefore
bear greater responsibility for inflicted harm. The legal literature points to the role
of leader in an infringement, i.e., in organizing the operations of an existing cartel,
and of instigator of an infringement by particularly furthering the establishment or
enlargement of a cartel (see EC Case T-15/02 (14)). A cartel’s success and therefore
the harm it causes are known to vary in its organizational characteristics (see, e.g.,
Davies and De 2013). Attributions of relative responsibility based only on a model
of cost and demand likely understate a ringleader’s due share.

Second, former offenders that cooperate with the authorities often enjoy reduced
obligations. Leniency applicants tend to attract the main damage cases because
they were first to admit wrong; liability exemptions partly offset this effect and raise
the attractiveness of coming clean just like immunity from criminal charges and
fines does (e.g., detrebling of damages in the US). This is appreciated in Directive
2014/104/EU (see recital 38) and Article 11(4) makes the leniency provision that “. . . an
immunity recipient is jointly and severally liable as follows: (a) to its direct or indirect
purchasers or providers; and (b) to other parties only where full compensation cannot
be obtained from the other undertakings that were involved in the same infringement
of competition law.”

The restricted role of an immunity recipient in compensating victims can be
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incorporated into the proposed approach rather easily when only one firm is granted
immunity or when the analysis is restricted to almost positive games.21 The key
modification is to replace symmetry condition (SYM). This leads to the use of weighted
Shapley values, which were first suggested by Shapley (1953a).

A prominent axiomatic characterization by Kalai and Samet (1987) relaxes sym-
metry to requiring merely that v(S) is distributed in a consistent way whenever S is a
so-called “partnership”; that is, when members of S make contributions to coalitions
of other players only if they are together, i.e., v(R ∪ T) = v(R) for any strict subset
T ⊂ S and any R ⊆ N r S. The members of a partnership are symmetric to another
in terms of their marginal contributions. If surplus or costs must be split asymmetri-
cally, for reasons not reflected by v, at least there should be no inconsistency between
a two-step allocation – first to partnerships in their entirety, then internally – or one
directly to individual members.

Including this requirement, while dropping symmetry, turns out to impose a non-
negative vector ω = (ω1, . . . , ωn) of weights. This modifies the symmetric Shapley
value ϕ to ϕω such that the shares of players i ∈ T in any carrier game (N,uT) over
T ⊆ N (where uT(S) = 1 if T ⊆ S and 0 otherwise) are proportional to their weights,
i.e., ϕωi (N,uT) = ωi/

∑
j∈T ω j if i ∈ T and 0 otherwise.

The leniency rules in Article 11(4) can therewith be accommodated as follows:22

(i) use ϕω with ω = (1, . . . , 1), i.e., the standard Shapley value ϕ, for allocating any
overcharge damages (N, vl) which have accrued on goods produced by leniency
recipient l ∈ N; (ii) by contrast use ϕω̃ with ω̃ = (1, . . . , 1, 0, 1, . . . , 1) where ω̃l = 0
when overcharges by l’s competitors are concerned. This can be generalized to the
case of multiple immunity recipients L ⊂ N: useϕω̃ with ω̃i = 1 if i < L or overcharges
∆pi are concerned, and ω̃i = 0 otherwise.23

The same kind of extension can account for elevated responsibilities that derive
from ringleader positions. Namely, use ϕω̃ with ω̃r = κ > 1 for any ringleader
r ∈ R ⊂ N, and ω̃i = 1 for conventional cartel members i < R. The appropriate value

21The set of almost positive games is a subset of the class of convex games (see Derks et al. 2000).
For almost positive games, higher (lower) weights also imply higher (lower) contribution shares. This
is not generally true when a game is not almost positive and more than one firm’s weight has to be
scaled up or down (see Owen 1968).

22Same applies to the liability restriction in Article 11(2) for small or medium-sized enterprises.
23We simplify here. Potential divisions by zero are avoided by actually working with a lexico-

graphic weight system, consisting of strictly positive weights and an ordered partition of N into classes
N1, . . . ,Nm. Members of Np receive zero when a carrier T also involves members of Nq with p < q. See
Kalai and Samet (1987). Also see Nowak and Radzik (1995) on axiomatizing ϕω based on (MRG) and
(EFF).
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for κ – or possibly different levels κ1 ≥ κ2 ≥ . . . > 1 when there existed multiple
ringleaders – depends on how pronounced the respective leadership or instigating
role was. This is outside the scope of our setup. Criminal rulings and fines that
precede civil-law proceedings may provide a reference point.

3.5 Concluding Remarks

We have argued in this chapter that a non-arbitrary way of apportioning contributions
in line with relative responsibilities exists. The co-infringers are to start out with equal
shares of any compensation payment; these shares then are to be corrected in a well-
defined way for greater or smaller-than-average effects on the damage in question.
This follows from translating the legal stipulation that contributions track relative
responsibilities for harm into the marginality property of Young (1985) and other
natural requirements.

The requirements’ satisfaction makes the Shapley value the right instrument for
allocating cartel damages. This chapter investigated what its use entails and how it
relates to ad hoc approaches. We focused on linear cost and demand in Section 3.3
in order to obtain general parametric expressions. Quadratic costs can be handled
analogously, but yield very unwieldy results; numerical analysis could cope with
more general non-linear environments.

The merits of the damage apportionments that result from applying the Shapley
value clearly depend on the quality of its input, i.e., the description of counterfactual
damage scenarios by characteristic function v. Reaching a reasonable level of agree-
ment on it among the former cartel members or in court is bound to be difficult. That,
however, is no unsurmountable hurdle. Estimating v essentially means calibrating
and simulating a structural model of the relevant market. The pertinent trade-offs
between tractability and temporal, spatial, or other details are known, e.g., from
merger simulation and also arise when quantifying harm in the first place.

Former cartel members may, of course, settle internal redress claims as they
please. Market or profit share heuristics provide a tempting short-cut. But – see
Subsection 3.3.4 – they are generally inconsistent with one another and are unreliable
proxies of relative responsibility. If one tries to operationalize the redress norm in
Directive 2014/104/EU in a systematic way, the Shapley value should be invoked.
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3.6 Appendix A
Symmetric Differentiated Substitutes

Customers pay a firm-specific price pi = pi(S) for purchases from i when cartel S is
formed and this generally depends on the composition of S rather than just its size.
We will consider a particularly well-behaved environment with n ≥ 3 firms

Let the profits Πi of every firm i ∈ N be a smooth, strictly concave function of a
profile y = (y1, . . . , yn) of ‘actions’ of all firms with∂Πi/∂yi

∣∣∣
y=0

> 0. These actions could
be price choices, production levels, choices on the geographic radius of operation,
etc. We presume that the associated prices p = (p1, . . . , pn) are smooth functions of y,
too, and if ∂pi/∂yi is positive (negative) then the same should go for the sign of the
externality ∂Π j/∂yi that firms exert on each other.24 Specifically, we think of goods
as differentiated substitutes and require

∂Π j

∂yi
·
∂pi

∂yi
> 0 for all i , j ∈ N (3.29)

for the relevant range of actions. For instance, if firm i’s output choice yi negatively
affects its own price pi, we assume it also has a negative effect on any competitor’s
profits Π j. If i’s action is its price, i.e., pi(y) ≡ yi, then Π j increases in yi.

A coalition S , ∅ chooses (yi)i∈S to maximize ΠS(y) =
∑

i∈S Πi(y) for given actions
y−S = (y j) j<S of outsiders. If S is a singleton, this corresponds to individual profit
maximization by all, implying the competitive benchmark prices p∗1, . . . , p

∗

n. We as-
sume that a unique, interior profit maximizer exists for each non-empty S ⊆ N. So,
for any fixed cartel S, reaction functions RS(y−S) and (R j(y− j)) j<S are well-defined by
the first-order conditions

dΠi

dyi
=
∂Πi

∂yi
= 0 if i < S, (3.30)

dΠS

dyi
=

∑
j∈S

∂Π j

∂yi
= 0 if i ∈ S. (3.31)

We further specialize this to strongly symmetric situations in which profits Πi and
prices pi depend identically on i’s own action yi for each i ∈ N and identically also on
any respective action y j by a firm j , i. Formally, for each i , j and every permutation

24Without an externality, competitive and cartel behavior would not differ and no harm arise.
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% : N→ N with %(i) = j and %( j) = i

pi(y1, . . . , yn) ≡ p j(y%(1), . . . , y%(n)) and Πi(y1, . . . , yn) ≡ Π j(y%(1), . . . , y%(n)). (3.32)

One can, e.g., think of equal measures of customers with a favorite product i to
whom all varieties j , i are identically imperfect substitutes. This assumes greater
symmetry than the Salop model.25 In particular, cross effects on prices and profits
are identical for all firms. The first-order condition (3.31) for a cartel member i ∈ S
then simplifies to

dΠS

dyi
=
∂Πi

∂yi
+ (s − 1)

∂Π j

∂yi
= 0. (3.33)

The only asymmetry is that i’s own actions may affect pi and Πi differently from
the actions of j , i. We will suppose own actions have bigger effects and therefore∣∣∣∣∣∂pi

∂yi

∣∣∣∣∣ >
∣∣∣∣∣∣∂pi

∂y j

∣∣∣∣∣∣ . (3.34)

The inequality is trivially satisfied for price competition. Otherwise it formalizes that
inverse demand responds more to changes of the quantity, delivery range, etc. of the
product in question than that of others.

We assume that for any fixed cartel S, the simultaneous best-response behavior by
it and any outsiders j ∈ N r S determine a unique type-symmetric Nash equilibrium
profile y∗(S) = (y∗1(S), . . . , y∗n(S)) where y∗i (S) ≡ yC(S) if i ∈ S, and y∗i (S) ≡ yO(S) if i < S.
We will drop the argument S below when the reference is clear. Sufficient conditions
for such an equilibrium to exist can be found in Section 3.3.

The first-order conditions (3.30) and (3.33) cannot simultaneously be satisfied for
s > 1 if yC = yO: ∂Π j/∂yi , 0 implies either yC > yO or yC < yO in equilibrium. The
former holds if the externality is positive, the latter if it is negative.

For specificity, suppose quantity competition with a negative externality∂Π j/∂yi <

0 and ∂pi/∂yi < 0 for a moment. The key observation then will be that yC < yO trans-
lates into higher prices for the goods sold by cartel members. This implies that for a
cartel S of a fixed size s, firm i’s prices – and hence its customers’ damages – depend
on whether i is an element of S or not. In particular, if v describes the damages of a
customer of good i then v̄i(s) > v̄i�(s).

To see this formally, let S = {1, . . . , s}w.l.o.g. and consider the straight line L which

25There, some permutation % with %(i) = j and %( j) = i satisfies (3.32), not every such permutation.
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connects profile ŷ = (yO, yC, . . . , yC, yO, . . . , yO, yC) to ˆ̂y = (yC, yC, . . . , yC, yO, . . . , yO, yO)
in the space of output choices. L can be parameterized by

r(t) = (yO
− t, yC, . . . , yC︸               ︷︷               ︸

s terms

, yO, . . . , yO, yC + t︸               ︷︷               ︸
n−s terms

) (3.35)

with t ∈ [0, yO
− yC], i.e., we simultaneously decrease firm 1’s action and increase

firm n’s action by identical amounts as we move along L. The gradient ∇pn =(
∂pn

∂y1
, . . . , ∂pn

∂yn

)
of function pn can be used in order to evaluate the price change caused

by switching from ŷ to ˆ̂y. In particular, the gradient theorem for line integrals (see,
e.g., Protter and Morrey 1991, Thm. 16.15) yields

pn( ˆ̂y) − pn(ŷ) =

∫
L
∇pn dr =

∫ yO
−yC

0
∇pn(r(t)) · r′(t) dt (3.36)

=

∫ yO
−yC

0

(∂pn

∂y1
, . . . ,

∂pn

∂yn

)∣∣∣∣∣∣
y=r(t)

·

(
− 1, 0, . . . , 0, 1

)
dt (3.37)

=

∫ yO
−yC

0

[
∂pn(r(t))
∂yn

−
∂pn(r(t))
∂y1

]
dt < 0. (3.38)

The inequality follows from own actions having bigger effects than a competitor’s
actions: (3.34) entails ∂pn

∂yn
< ∂pn

∂y1
when ∂pn/∂yn < 0. The strong symmetry of the

considered setting (see condition (3.32)) then implies

p1(s) := p1(yC, yC, . . . ,yC, yO, . . . , yO, yO) = pn(yO, yC, . . . , yC, yO, . . . , yO, yC) (3.39)

= pn(ŷ) > pn( ˆ̂y) = pn(yC, yC, . . . , yC, yO, . . . , yO, yO) := pn�(s).

That is, the price p1(s) of good 1 when its producer is one of s symmetric cartel
members exceeds the price pn�(s) of good n when firm n is not part of a cartel with s
members.

By symmetry, we have p1�(s) = pn�(s) and p1(s) = pn(s). So we can conclude
p1(s) > p1�(s) from (3.39) for 1 < s < n.26 The same applies to any other firm, too – for
instance, the plaintiff’s ‘home’ firm h ∈ N from which its disputed purchases were
made:

ph(s) > ph�(s) for any s = 2, . . . ,n − 1. (3.40)

The average per-unit damage to h’s customer in scenarios where h behaves anti-

26Recall that there is no well-defined partial cartel for s = 1 or n.
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competitively is
v̄h(s) = ph(s) − p∗h (3.41)

where p∗h is h’s price in the competitive benchmark (identical across firms). The price
of firm h does not depend on the specific s − 1 firms with which h colludes, and
neither does the damage. Analogously, the per-unit damage when firm h behaves
competitively but s others collude is

v̄h�(s) = ph�(s) − p∗h. (3.42)

Inequality (3.40) then yields

v̄h(s) − v̄h�(s) = ph(s) − ph�(s) > 0 for any s = 2, . . . ,n − 1. (3.43)

So all summands in the Shapley value’s correction term in equation (3.5) are positive.
It follows that the ‘home’ firm’s share in compensating overcharges on its own sales
must strictly exceed 1/n; that of others must consequently be less than 1/n.

This extends to other interpretations of variables y1, . . . , yn, notably price com-
petition: inequalities (3.40) and hence (3.43) also follow when positive externalities
∂Π j/∂yi > 0 and ∂pi/∂yi > 0 are concerned. The cartel members choose yC(S) > yO(S)
for any fixed S; the reversed orientation as we integrate from t = 0 to yO

− yC < 0 in
(3.38) and the reversed sign of integrand ∂pn/∂yn − ∂pn/∂y1 cancel. In summary, we
have:

Proposition 3.3. Let n ≥ 3 firms be strongly symmetric in the sense of (3.32) and let
assumptions (3.29) and (3.34) be satisfied by smooth own and cross-effects of firms’ actions.
If v reflects damages to a customer of firm h ∈ N, then

ϕi(N, v)

>
v(N)

n if i = h,

< v(N)
n if i , h.

(3.44)

Simple rules of thumb like distributing damages on a per-head basis or according
to market shares, profits, etc. will allocate exactly 1/n-th of compensation payments to
all producers if they are symmetric. Proposition 3.3 shows that this generally clashes
with a responsibility-based allocation. Only if identical numbers of customers of
all firms act against the cartel, each h ∈ N is the ‘home’ producer equally often
and asymmetric responsibilities for overcharges ∆ph perfectly net out. Otherwise,
responsibility of vendor h is underestimated and that of its collaborators j , h
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overestimated.

3.7 Appendix B
Calculations Underlying Section 3.3

We first consider symmetric firms; the case of firms that differ in demand saturation
parameter ai is addressed afterwards.

3.7.1 Symmetric Firms

3.7.1.1 Price Overcharge

We assumeα := d
(n−1)b > 1, i.e., d > (n−1)b, in order to ensure existence and uniqueness

of a symmetric Nash equilibrium (see (3.47), (3.50), (3.58) and (3.59) below). The profit
maximization problem (PMP) of firm i is

max
pi

πi =
(
a − dpi + b

n∑
l=1,i

pl

)
pi − γ

(
a − dpi + b

n∑
l=1,i

pl

)
(3.45)

if all firms act competitively. The FOC yields

∂πi

∂pi
= a − 2dpi + b

n∑
l=1,i

pl + γd = 0. (3.46)

Solving for a symmetric Nash equilibrium gives the unique Bertrand price

pB =
a + γd

2d − (n − 1)b
. (3.47)

Di(γ) > 0 ensures pB > γ. If the industry-wide cartel forms, the coalition profit is

πN =
(
a − dpi + b

n∑
t=1,i

pt

)
pi +

n∑
t=1,i

(
a − dpt + b

n∑
r=1,t

pr

)
pt

−γ
(
a − dpi + b

n∑
t=1,i

pt

)
− γ

n∑
t=1,i

(
a − dpt + b

n∑
r=1,t

pr

)
. (3.48)
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The FOC gives

∂πi

∂pi
= a − 2dpi + 2b

n∑
t=1,i

pt + γd − γ(n − 1)b = 0 for each i ∈ N. (3.49)

So, invoking symmetry, the grand coalition has each firm charge cartel price

pC =
a + γ(d − (n − 1)b)

2(d − (n − 1)b)
=

(
a

d − (n − 1)b
+ γ

)/
2. (3.50)

The resulting cartel overcharge per unit is

∆p = pC
− pB (3.51)

=
(a + γ(d − (n − 1)b))(2d − (n − 1)b) − (2d − 2(n − 1)b)(a + γd)

(2d − 2(n − 1)b)(2d − (n − 1)b)

=
a[2d−(n−1)b−2d+2(n−1)b]+ γ[(d−(n−1)b)(2d−(n−1)b)−d(2d−2(n−1)b)]

(2d−2(n−1)b)(2d−(n−1)b)

=
a[(n − 1)b] + γ[(n − 1)2b2

− (n − 1)bd]
(2d − 2(n − 1)b)(2d − (n − 1)b)

=
(n − 1)b[a − γ(d − (n − 1)b)]

4d2 − 6(n − 1)bd + 2(n − 1)2b2 . (3.52)

3.7.1.2 Shapley Value of Firm i

W.l.o.g. let members of S = {1, . . . , s} coordinate their actions in case of a partial cartel.
The remaining firms s + 1, . . . ,n act competitively. Then the PMP of firm i ∈ S is

max
pi
πi =

(
a − dpi + b

s∑
t=1,i

pt + b
n∑

l=s+1

pl

)
pi +

s∑
t=1,i

(
a − dpt + b

s∑
r=1,t

pr + b
n∑

l=s+1

pl

)
pt

− γ
(
a − dpi + b

s∑
t=1,i

pt + b
n∑

l=s+1

pl

)
−

s∑
t=1,i

γ
(
a − dpt + b

s∑
r=1,t

pr + b
n∑

l=s+1

pl

)
.

(3.53)

If firm j < S acts competitively its PMP is

max
p j

π j =
(
a − dp j + b

s∑
t=1

pt + b
n∑

l=s+1, j

pl

)
p j − γ

(
a − dp j + b

s∑
t=1

pt + b
n∑

l=s+1, j

pl

)
. (3.54)

Let ps
i ≥ 0 denote the price of firm i in case it is part of the cartel and ps�

j ≥ 0 the price
of firm j in case this firm is not among the s cartelists. We can focus on symmetric
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strategies among insiders and outsiders respectively. The FOC then yields

∂πi

∂ps
i

=a − 2dps
i + 2(s − 1)bps

i + (n − s)bps�
j + γd − γ(s − 1)d = 0 (3.55)

∂π j

∂ps�
j

=a − 2dps�
j + sbps

i + (n − s − 1)bps�
j + γd = 0. (3.56)

Solving for ps
i and ps�

j gives the best response functions

Rs
i (p

s�
j ) =

a + (n − s)bps�
j + γd − γ(s − 1)b

2d − 2(s − 1)b
and Rs�

j (p
s
i ) =

a + sbps
i + γd

2d − (n − s − 1)b
. (3.57)

Solving ps
i = Rs

i (R
s�
j (p

s
i )) yields the symmetric equilibrium price of any firm i that is

part of the cartel:

ps
i =

a + (n − s)b
a+sbps

i +γd
2d−(n−s−1)b + γd − γ(s − 1)b

2d − 2(s − 1)b

⇔ ps
i =

a(2d + b) + γ[2d2 + bd(3 − 2s) + b2(ns − n − s2 + 1)]
4d2 − (2n − 6 + 2s)bd + b2(2 − 2n + sn − s2)

. (3.58)

Analogously, the equilibrium price of a firm j which is not part of a cartel with s
members is

ps�
j =

a + sb a(2d+b)+γ(2d2+bd(3−2s)+b2(ns−n−s2+1))
4d2−(2n−6+2s)bd+b2(2−2n+sn−s2) + γd

2d − (n − s − 1)b

⇔ ps�
j =

a(2d − sb + 2b) + γ[2d2
− bd(s − 2) − b2(s2

− s)]
4d2 − (2n − 6 + 2s)bd + b2(2 − 2n + sn − s2)

. (3.59)

Symmetry implies ps�
j = ps�

i . The price effect of a given firm i being part of a cartel with
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s members rather than not therefore is

ps
i − ps�

i =
a(2d + b) + γ[2d2 + bd(3 − 2s) + b2(ns − n − s2 + 1)]

4d2 − bd(2n − 6 + 2s) + b2(2 − 2n + sn − s2)

−
a(2d − sb + 2b) − γ[2d2

− bd(s − 2) − b2(s2
− s)]

4d2 − bd(2n − 6 + 2s) + b2(2 − 2n + sn − s2)

=
a[sb−b]+γ[bd−sbd+b2ns−b2n+b2

−sb2]
4d2−bd(2n−6+2s)+b2(2−2n+sn−s2)

=
b(s−1)(a−(b+d−bn)γ)

4d2−2bd(n−3+s)+b2(2+n(s−2)−s2)
.

(3.60)

Fixing a particular firm i = h as the “home firm” from which a suing customer made
purchases, the corresponding Shapley value is

ϕh(N, v) =
∆p
n

+
1
n

n−1∑
s=2

[ps
i − ps�

i ] (3.61)

=
∆p
n

+
1
n

n−1∑
s=2

b(s − 1)(a − γ(d − (n − 1)b))
4d2 − 2bd(−3 + n + s) + b2(2 + n(s − 2) − s2)

(3.62)

by Theorem 2. Firm h’s resulting share ρ∗h = ϕh(N, v)/∆p in overcharge compensations
on its own sales is

ρ∗h =
1
n

+
1
n

n−1∑
s=2

b(s−1)(a−(d−(n−1)b)γ)
4d2−2bd(−3+n+s)+b2(2+n(s−2)−s2)

b(n−1)[a−(d−(n−1)b)γ]
4d2−6(n−1)bd+2(n−1)2b2

=
1
n

+
1
n

n−1∑
s=2

(s − 1)(4d2
− 6(n − 1)bd + 2(n − 1)2b2)

(n − 1)[4d2 − 2bd(−3 + n + s) + b2(2 + n(s − 2) − s2)]
.

(3.63)

Substituting d = α(n − 1)b and rearranging gives

ρ∗h =
1
n

+
1
n

n−1∑
s=2

(s − 1)(4(α(n − 1)b)2
− 6(n − 1)bα(n − 1)b + 2(n − 1)2b2)

(n − 1)[4(α(n − 1)b)2 − 2bα(n − 1)b(−3 + n + s) + b2(2 + n(s − 2) − s2)]

=
1
n

+
1
n

n−1∑
s=2

(s − 1)(n − 1)2b2(4α2
− 6α + 2)

(n − 1)b2[4α2(n − 1)2 − 2(n − 1)(−3 + n + s)α + s(n − s) − 2(n − 1)]

=
1
n

+
n − 1

n

n−1∑
s=2

(s − 1) · (4α2
− 6α + 2)

4α2(n − 1)2 − 2(n + s − 3)(n − 1)α + ηs
(3.64)
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with ηs := s(n − s) − 2(n − 1).

3.7.1.3 Monotonicity of ρ∗h

Firm h’s Shapley share, written yet more concisely as

ρ∗h =
1
n

+
n − 1

n

n−1∑
s=2

(s − 1) · (4α2
− 6α + 2)

4α2(n − 1)2 − λsα + ηs
(3.65)

with ηs = s(n − s) − 2(n − 1) and λs = 2(n + s − 3)(n − 1), strictly increases in α if

f (α) :=
4α2
− 6α + 2

4α2(n − 1)2 − λsα + ηs
(3.66)

strictly increases in α. The first derivative with respect to α is

∂ f (α)
∂α

=
(8α − 6)(4α2(n − 1)2

− λsα + ηs) − (4α2
− 6α + 2)(8α(n − 1)2

− λs)
(4α2(n − 1)2 − λsα + ηs)2 . (3.67)

The denominator is always positive. Hence, it remains to show that also the numer-
ator is positive. Denoting this numerator by g(α) and inserting λs and ηs yields

g(α) : = (8α − 6)(4α2n2
− 8α2n + 4α2

− 2n2α + 8nα − 6α− 2snα + 2sα + sn − s2
− 2n + 2)

− (4α2
− 6α + 2)(8αn2

− 16αn + 8α − 2n2 + 8n − 6 − 2sn + 2s)

= 16α3n2
− 32α3n + 16α3

− 8n2α2 + 32nα2
− 24α2

− 8snα2 + 8sα2 + 4snα − 4s2α

− 8nα + 8α − 12α2n2 + 24α2n − 12α2 + 6n2α − 24nα + 18α + 6snα − 6sα

− 3sn + 3s2 + 6n − 6 − 16α3n2 + 32α3n − 16α3 + 4n2α2
− 16nα2 + 12α2 + 4α2sn

− 4sα2 + 24α2n2
− 48α2n + 24α2

− 6αn2 + 24αn − 18α − 6αsn + 6αs − 8αn2

+ 16αn − 8α + 2n2
− 8n + 6 + 2sn − 2s

= 8n2α2
− 8nα2

− 4(snα2+ sα2+ snα − s2α) + 8nα − 8n2α + sn + 3s2
− 2n + 2n2

− 2s

= 4α2 (2n2
− 2n − sn + s)︸                 ︷︷                 ︸

(a)

+4α(sn − s2 + 2n − 2n2) + n(s − 2 + 2n) + s(3s − 2).

(3.68)
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Note that (a) is strictly positive: it decreases in s, since sn > s. Inserting s = n − 1
gives

2n2
− 2n − sn + s ≥ 2n2

− 2n − (n − 1)n + n − 1 = n2
− 1 > 0. (3.69)

This and α > 1 imply that the first derivative of g(α) with respect to α is larger than
zero:

∂g(α)
∂α

= 8α(2n2
− 2n − sn + s) + 4sn − 4s2 + 8n − 8n2

≥ 8(2n2
− 2n − sn + s) + 4sn − 4s2 + 8n − 8n2 = 2n2

− 2n − ns + 2s − s2

≥ 2n2
− 2n − n(n − 1) + 2(n − 1) − (n − 1)2 = 3n − 3 > 0. (3.70)

The first ’≥’ in equation (3.70) directly uses (3.69) and α > 1, the last ’≥’ follows since
(2n2

− 2n − ns + 2s − s2) is decreasing in s for n > 2 and s ≥ 2; therefore s = n − 1
minimizes the expression.

Since function g(α) is strictly increasing in α, for all α > 1

g(α) ≥ 4(2n2
− 2n − sn + s) + 4(sn − s2 + 2n − 2n2) + n(s − 2 + 2n) + s(3s − 2)

= 2n2
− 2n + ns + 2s − s2

≥ 2n2 > 0. (3.71)

The last ’≥’ in equation (3.71) follows since (−2n + ns + 2s− s2) ≥ 0. This follows from

− 2n + ns + 2s − s2 = (n − s)(s − 2) ≥ 0 for n ≥ s ≥ 2. (3.72)

So, overall, we can conclude that f (α) has a positive first derivative for α > 1.
Hence, ρ∗h strictly increases as products become more differentiated.

3.7.2 Asymmetric Firms

Assume γ = 0 and that firms differ only in ai. Again let d > (n − 1)b.

3.7.2.1 Price Overcharge

If all firms i ∈ {1, . . . ,n} act competitively the profit of firm i is

πi =
(
ai − dpi + b

n∑
l=1,i

pl

)
pi. (3.73)
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Taking first derivatives gives the FOC

∂π1

∂p1
=a1 − 2dp1 + b

n∑
l=2

pl = 0

∂π2

∂p2
=a2 − 2dp2 + bp1 + b

n∑
l=3

pl = 0

...

∂πn

∂pn
=an − 2dpn + bp1 + b

n−1∑
l=2

pl = 0.

(3.74)

The FOC of firm i can also be written as

∂πi

∂pi
= ai − 2dpi + b(n − 1)p̄−i = 0 (3.75)

with p̄−i =
∑n

l=1,i pl/(n − 1). Solving for pi gives the best response function of firm i

Ri(p̄−i) =
ai + b(n − 1)p̄−i

2d
. (3.76)

The remaining (n − 1) FOC can be added to

n∑
l=1,i

∂πl

∂pl
=

n∑
l=1,i

al − 2d
n∑

l=1,i

pl + (n − 1)bpi + (n − 2)b
n∑

l=1,i

pl = 0. (3.77)

Dividing by (n − 1) yields

ā−i − 2dp̄−i + bpi + (n − 2)bp̄−i = 0 (3.78)

with ā−i =
∑n

l=1,i al/(n − 1). Solving for p̄−i gives

p̄−i =
ā−i + bpi

2d − b(n − 2)
. (3.79)
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Solving pi = Ri(p̄−i) for pi then yields

pi =
ai + b(n − 1) ā−i+bpi

2d−b(n−2)

2d
⇔ pB

i =
2aid − (n − 2)aib + b(n − 1)ā−i

(2d + b)u
(3.80)

with u = 2d + b − bn for i ∈ N.
For an industry-wide cartel, the coalition profit is

πN =
(
ai − dpi + b

n∑
j=1,i

p j

)
pi +

n∑
t=1,i

(
at − dpt + b

n∑
r=1,t

pr

)
pt. (3.81)

This corresponds to an encompassing multiproduct monopolist. Taking first deriva-
tives gives the FOC

∂πN

∂pi
= ai − 2dpi + 2b

n∑
t=1,i

pt = 0 ∀ i ∈ N. (3.82)

The FOC for a fixed product i can also be written as

ai − 2dpi + 2b(n − 1)p̄−i = 0 (3.83)

with p̄−i =
∑n

t=1,i pt/(n − 1). Solving for pi yields

pi =
ai + 2b(n − 1)p̄−i

2d
. (3.84)

Adding the remaining (n − 1) FOC and dividing by (n − 1) gives

ā−i − 2dp̄−i + 2b(n − 2)p̄−i + 2bpi = 0⇔ p̄−i =
ā−i + 2bpi

2d − 2b(n − 2)
. (3.85)

Substituting this for p̄−i in equation (3.84) yields

pi =
ai + 2b(n − 1) ā−i+2bpi

2d−2b(n−2)

2d
⇔ pC

i =
aid − (n − 2)aib + b(n − 1)ā−i

2(b + d)x
(3.86)

with x = d + b − bn.
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It follows that the resulting cartel overcharge is

∆pi = pC
i − pB

i

=
(aid−(n−2)aib+b(n−1)ā−i)(2d+b)u−(2aid−(n−2)aib+b(n−1)ā−i)2(b+d)x

2(b + d)(d + b − bn)(2d + b)(2d + b − bn)

=
ai[(d − (n − 2)b)(2d + b)u + ((n − 2)b − 2d)2(b + d)x]

2(b + d)(d + b − bn)(2d + b)(2d + b − bn)

+
ā−i[b(n − 1)(2d + b)u − b(n − 1)2(b + d)x]
2(b + d)(d + b − bn)(2d + b)(2d + b − bn)

. (3.87)

The bracketed factor on ai in the numerator, after substituting x and u, can be simpli-
fied to

(d − (n − 2)b)(2d + b)(2d + b − bn) + ((n − 2)b − 2d)2(b + d)(d + b − bn)

=2b3 + 9b2d + 12bd2 + 4d3
− 3b3n − 9b2dn − 6bd2n + b3n2 + 2b2dn2

− 4b3
− 12b2d − 12bd2

− 4d3 + 6b3n + 12b2dn + 6bd2n − 2b3n2
− 2b2dn2

=3b3n + 3b2dn − 3b2d − 2b3
− b3n2 = b2(n − 1)(3d + 2b − bn). (3.88)

Similarly the bracketed factor on ā−i is

b(n − 1)(2d + b)(2d + b − bn) − b(n − 1)2(b + d)(d + b − bn)

= − b3
− 4b2d − 4bd2 + 2b3n + 6b2dn + 4bd2n − b3n2

− 2b2dn2

− (−2b3
− 4b2d − 2bd2 + 4b3n + 6b2dn + 2bd2n − 2b3n2

− 2b2dn2)

=b3
− 2bd2

− 2b3n + 2bd2n + b3n2 = b(n − 1)(2d2 + b2n − b2). (3.89)

Inserting both factors back into equation (3.87) finally gives

∆pi =
b(n − 1)[b(3d + 2b − bn)ai + (2d2 + b2n − b2)ā−i]

2(d + b)(2d + b)(d + b − bn)(2d + b − bn)
. (3.90)

3.7.2.2 Shapley Value of Firm i

As above, let firms S = {1, . . . , s} coordinate their actions while the remaining firms
s + 1, . . . ,n act competitively. First, the price of a cartel outsider given coalition size s
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will be derived. W.l.o.g. focus on outsider firm n. Profits for S and the outsiders are

πS =

s∑
t=1

(
at − dpt + bpn + b

s∑
r=1,t

pr + b
n−1∑

l=s+1

pl

)
pt

πs+1 =
(
as+1 − dps+1 + bpn + b

s∑
t=1

pt + b
n−1∑

l=s+2

pl

)
ps+1

...

πn =
(
an − dpn + b

s∑
t=1

pt + b
n−1∑

l=s+1

pl

)
pn. (3.91)

Taking first derivatives gives the FOC

∂πS

∂p1
= a1 − 2dp1 + bpn + 2b

s∑
t=2

pt + b
n−1∑

l=s+1

pl = 0

...

∂πS

∂ps
= as − 2dps + bpn + 2b

s−1∑
t=1

pt + b
n−1∑

l=s+1

pl = 0

∂πs+1

∂ps+1
= as+1 − 2dps+1 + bpn + b

s∑
t=1

pt + b
n−1∑

l=s+2

pl = 0

...

∂πn

∂pn
= an − 2dpn + b

s∑
t=1

pt + b
n−1∑

l=s+1

pl = 0. (3.92)

The FOC of firm n can be rewritten as

∂πn

∂pn
= an − 2dpn + bsp̄s + b(n − s − 1)p̄s�

−n (3.93)

with p̄s =
∑s

t=1 pt/s and p̄s�
−n =

∑n−1
l=s+1 pl/(n−s−1). Solving for pn gives the best response

function of firm n:

Rn(p̄s; p̄s�
−n) =

an + bsp̄s + b(n − s − 1)p̄s�
−n

2d
. (3.94)
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The FOC for all i ∈ S can be added to

s∑
t=1

∂πS

∂pt
=
∂π1

∂p1
+ . . . +

∂πs

∂ps
=

s∑
t=1

at − 2d
s∑

t=1

pt + sbpn + 2b(s − 1)
s∑

t=1

pt + sb
n−1∑

l=s+1

pl = 0.

(3.95)

Dividing by s gives:

ās
− 2dp̄s + bpn + 2b(s − 1)p̄s + b(n − s − 1)p̄s�

−n = 0

⇔ p̄s(pn; p̄s�
−n) =

ās + bpn + b(n − s − 1)p̄s�
−n

2d − 2b(s − 1)
(3.96)

with ās =
∑s

t=1 at/s. Doing the same for all i ∈ {s + 1, . . . ,n − 1} gives:

n−1∑
s+1

∂πl

∂pl
=
∂πs+1

∂ps+1
+ . . . +

∂πn−1

∂pn−1
(3.97)

=

n−1∑
l=s+1

al − 2d
n−1∑

l=s+1

pl + (n − s − 1)bpn + b(n − s − 1)
s∑

t=1

pt + (n − s − 2)b
n−1∑

l=s+1

pl = 0.

(3.98)

Dividing by (n − s − 1) then yields

ās�
−n − 2dp̄s�

−n + bpn + bsp̄s + (n − s − 2)bp̄s�
−n = 0⇔ ps�

−n(pn; p̄s) =
ās�
−n + bpn + bsp̄s

2d − b(n − s − 2)
(3.99)

with ās�
−n =

∑n−1
l=s+1 al/(n − s − 1).

It remains to solve for pn. Inserting ps�
−n(pn; p̄s) into Rn(p̄s; p̄s�

−n) resp. p̄s(pn; p̄s�
−n) gives

Rn(p̄s; ps�
−n(pn; p̄s)) =

an + bsp̄s + b(n − s − 1) ās�
−n+bsp̄s+bpn

2d−(n−s−2)b

2d

⇔ Rn(p̄s) =
an(b(−2 + n − s) − 2d) + b(ās�

−n(1 − n + s) − s(b + 2d)p̄s)
(b + 2d)(−2d + b(−1 + n − s))

; (3.100)

p̄s(pn; ps�
−n(pn; p̄s)) =

ās + bpn + b(n − s − 1) ās�
−n+bsp̄s+bpn

2d−(n−s−2)b

2d − 2(s − 1)b

⇔ p̄s(pn) =
b(b + 2d)pn + ās�

−nb(−1 + n − s) + ās(2d + b(2 − n + s))
4d2 − 2bd(−4 + n + s) + b2(4 + n(−2 + s) − s − s2)

. (3.101)

Inserting p̄s(pn) into Rn(p̄s) and noting that firm n can be replaced by any firm i < S
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gives

ps�
i =

ai(b(−2 + n − s) − 2d) + b
(
ās�
−i(1 − n + s) − s(b + 2d)

b(b+2d)pi+ās�
−ib(−1+n−s)+ās(2d+b(2−n+s))

4d2−2bd(−4+n+s)+b2(4+n(−2+s)−s−s2)

)
(b + 2d)(−2d + b(−1 + n − s))

=
ai(4d2

− 2bd(n + s − 4) + b2µs) + āsb(b + 2d)s + ās�
−ib(b(s − 2) − 2d)(1 − n + s)

(2d + b)[4d2 − (2n − 6 + 2s)bd + b2(2 − 2n + sn − s2)]
(3.102)

with µs = 4 − 2n + sn − s2
− s.

Next, the price of a cartel insider given coalition size s will be derived. W.l.o.g
focus on insider i = 1. The profit functions in equation (3.91) can also be written as

πS =
(
a1 − dp1 + b

s∑
t=2

pt + b
n∑

l=s+1

pl

)
p1 +

s∑
t=2

(
at − dpt + b

s∑
r=1,t

pr + b
n∑

l=s+1

pl

)
pt

πs+1 =
(
as+1 − dps+1 + bp1 + b

s∑
t=2

pt + b
n∑

l=s+2

pl

)
ps+1

...

πn =
(
an − dpn + bp1 + b

s∑
t=2

pt + b
n−1∑

l=s+1

pl

)
pn. (3.103)

Respective FOC are given by (3.92) above which we can also write as

∂πS

∂p1
= a1 − 2dp1 + 2b

s∑
t=2

pt + b
n∑

l=s+1

pl = 0

...

∂πS

∂ps
= as − 2dps + 2bp1 + 2b

s−1∑
t=2

pt + b
n∑

l=s+1

pl = 0

∂πs+1

∂ps+1
= as+1 − 2dps+1 + bp1 + b

s∑
t=2

pt + b
n∑

l=s+2

pl = 0

...

∂πn

∂pn
= an − 2dpn + bp1 + b

s∑
t=2

pt + b
n−1∑

l=s+1

pl = 0. (3.104)
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Rearranging the FOC for product 1 gives

∂πS

∂p1
= a1 − 2dp1 + 2(s − 1)bp̄s

−1 + b(n − s)p̄s� = 0

⇔ R1(p̄s
−1; p̄s�) =

a1 + 2(s − 1)bp̄s
−1 + b(n − s)p̄s�

2d
(3.105)

with p̄s
−1 =

∑s
t=2 pt/(s − 1) and p̄s� =

∑n
l=s+1 pl/(n − s). The FOC for products 2, . . . , s can

be added to

s∑
t=2

∂πS

∂pt
=
∂π2

∂p2
+ . . . +

∂πs

∂ps

=

s∑
t=2

at − 2d
s∑

t=2

pt + 2(s − 1)bp1 + 2b(s − 2)
s∑

t=2

pt + (s − 1)b
n−1∑

l=s+1

pl = 0.

(3.106)

Dividing by (s − 1) and solving for p̄s
−1 yields

ās
−1 − 2dp̄s

−1 + 2bp1 + 2b(s − 2)p̄s
−1 + b(n − s)p̄s� = 0

⇔ p̄s
−1(p1; p̄s�) =

ās
−1 + 2bp1 + b(n − s)p̄s�

2d − 2b(s − 2)
(3.107)

with ās
−1 =

∑s
t=2 at/(s − 1). Doing the same for all i < S gives

n∑
s+1

∂πl

∂pl
=
∂πs+1

∂ps+1
+ . . . +

∂πn

∂pn

=

n∑
l=s+1

al − 2d
n∑

l=s+1

pl + (n − s)bp1 + b(n − s)
s∑

t=1

pt + (n − s − 1)b
n∑

l=s+1

pl = 0.

(3.108)

Dividing by (n − s) yields

ās�
− 2dp̄s� + bp1 + b(s − 1)p̄s

−1 + (n − s − 1)bp̄s� = 0

⇔ p̄s�(p1; p̄s
−1) =

ās� + bp1 + b(s − 1)p̄s
−1

2d − (n − s − 1)b
(3.109)

with ās� =
∑n

l=s+1 al/(n − s).



98 Chapter 3. Shapley Apportioning of Cartel Damages by Relative Responsibility

Next, solve for p1. Inserting ps�(p1; p̄s
−1) into R1(p̄s

−1; p̄s�) resp. p̄s
−1(p1; p̄s�) then gives

R1(p̄s
−1; ps�(p1; p̄s

−1)) =
a1 + 2(s − 1)bp̄s

−1 + b(n − s)
ās�+b(s−1)p̄s

−1+bp1

2d−b(n−s−1)

2d

⇔ R1(p̄s
−1) =

a1(2d + b(1 − n + s)) − b[ās�(s − n) − p̄s
−1(s − 1)(4d + b(2 − n + s))]

(b + 2d)(2d − b(n − s))

(3.110)

and

p̄s
−1(p1; ps�(p1; p̄s

−1)) =
ās
−1 + 2bp1 + b(n − s)

ās�+bp1+b(s−1)p̄s
−1

2d−(n−s−1)b

2d − 2b(s − 2)

⇔ p̄s
−1(p1) =

ās
−1(2d + b(1 − n + s)) + b[ās�(n − s) + p1(4d + b(2 − n + s))]

4d2 − 2bd(n − 5 + s) + b2(4 + n(s − 3) + s − s2)
. (3.111)

Inserting p̄s
−1(p1) into R1(p̄s

−1) yields

ps
i =

ai(2d + b(1 − n + s))
(b + 2d)(2d − b(n − s))

·

−b
[
ās�(s − n) −

ās
−i(2d+b(1−n+s))+b[ās�(n−s)+ps

i (4d+b(2−n+s))]
4d2−2bd(n−5+s)+b2(4+n(s−3)+s−s2) (s − 1)(4d + b(2 − n + s))

]
(b + 2d)(2d − b(n − s))

=
ai(4d2

− 2bd(n + s − 5) + b2κs) + 2ās�b(b + d)(n − s) + ās
−ib(s − 1)(4d + b(2 − n + s)))

2(b + d)[4d2 − (2n − 6 + 2s)bd + b2(2 − 2n + sn − s2)]
(3.112)

with κs = sn − 3n − s2 + s + 4 for i = 1 as well as any other i ∈ S.

The average of coefficients ai for cartel members resp. non-cartel members in
(3.102) and (3.112) can depend on the specific i considered and on coalition size s. It
is possible that ās , ās� , ās

−i , ās�
−i depending on the specific asymmetries between

firms. Proposition 1 however establishes that only the average price for product i
given coalition size s is needed in order to determine the Shapley value of firm i.
To derive the average price of product i for all S 3 i with coalition size s, one can
enumerate all such coalitions S with i ∈ S and add the resulting prices ps

i . The same
applies for all S = i and ps�

i . In these sums, all firm-specific saturation quantities occur
equally many times. Dividing by the cardinalities #{S : i ∈ S} and #{S : i < S} it turns
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out that only the average coefficient ā−i =
∑n

j,i a j/(n − 1) matters and we obtain

p̄s
i =

ai(4d2
− 2bd(n + s − 5) + b2κs) + ā−ib(2d(n + s − 2) − b(2 + n(s − 3) + s − s2))

(2d + 2b)[4d2 − (2n − 6 + 2s)bd + b2(2 − 2n + sn − s2)]

p̄s�
i =

ai(4d2
− 2bd(n + s − 4) + b2µs) + ā−ib(2d(n − 1) + b(s2

− 2 − n(s − 2)))
(2d + b)[4d2 − (2n − 6 + 2s)bd + b2(2 − 2n + sn − s2)]

. (3.113)

The denominators of p̄s
i and p̄s�

i differ only in the first factor. In order to compute
p̄s

i − p̄s�
i it is convenient to define

Ai :=(4d2
− 2bd(n + s − 5) + b2(sn − 3n − s2 + s + 4))(2d + b)

− (4d2
− 2bd(n + s − 4) + b2(4 − 2n + sn − s2

− s))2(b + d)

=4b3+18b2d+24bd2+8d3
−3b3n−8b2dn−4bd2n+b3s−4bd2s+b3ns+2b2dns−b3s2

−2b2ds2
− [8b3 + 24b2d + 24bd2 + 8d3

− 4b3n − 8b2dn − 4bd2n − 2b3s − 6b2ds

− 4bd2s + 2b3ns + 2b2dns − 2b3s2
− 2b2ds2]

= − 4b3
− 6b2d + b3n + 3b3s + 6b2ds − b3ns + b3s2 = b2(s − 1)(6d + b(s + 4 − n))

(3.114)

and similarly

A−i :=b[(2d(n+s−2)−b(2+n(s−3)+s−s2))(2d+b)−(2d(n−1)+b(s2
−2−n(s−2)))2(b+d)]

=b[−2b2
− 8bd − 8d2 + 3b2n + 8bdn+4d2n−b2s+4d2s−b2ns−2bdns+b2s2+2bds2

− [−4b2
− 8bd − 4d2 + 4b2n + 8bdn + 4d2n − 2b2ns − 2bdns + 2b2s2 + 2bds2]]

=b[2b2
− 4d2

− b2n − b2s + 4d2s + b2ns − b2s2] = b(s − 1)(4d2 + b2(n − s − 2)).
(3.115)

With these terms we can first move to a common denominator and then simplify to

ps
i − ps�

i =
ai · Ai + ā−i · A−i

(2d + 2b)(2d + b)[4d2 − (2n − 6 + 2s)db + b2(2 − 2n + sn − s2)]

=
b(s − 1)[b(6d + b(s + 4 − n))ai + (4d2 + τsb2)ā−i]

(2d + 2b)(2d + b)[4d2 − (2n − 6 + 2s)db + b2(2 − 2n + sn − s2)]
(3.116)

with τs = n − s − 2.

Now fix firm i = h as the firm which sold the product whose overcharges are to
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be allocated. The Shapley value of this “home firm” is

ϕh(N, v) =
∆ph

n
+

1
n

n−1∑
s=2

[ps
h − ps�

h] (3.117)

=
∆ph

n
+

1
n

n−1∑
s=2

b(s − 1)[b(6d + b(s + 4 − n))ah + (4d2 + τsb2)ā−h]
2(d + b)(2d + b)[4d2 − (2n − 6 + 2s)db + b2(2 − 2n + sn − s2)]

(3.118)

by Theorem 2.

To obtain the share firm h has to contribute, divideϕh(N, v) by ∆ph (see equ. (3.90)).
This yields

ρ∗h =
ϕh

∆ph
=

1
n

+
1
n

n−1∑
s=2

(s−1)b[b(6d+b(s+4−n))ah+(4d2+τsb2)ā−h]
2(d+b)(2d+b)[4d2−(2n−6+2s)db+b2(2−2n+sn−s2)]

b(n−1)[b(3d+2d−bn)ah+(2d2+b2n−b2)ā−h]
2(d+b)(2d+b)(d+b−bn)(2d+b−bn)

=
1
n

(
1

+

n−1∑
s=2

(s − 1)
[
b(6d + b(s + 4 − n))ah + (4d2 + τsb2)ā−h

]
· (d + b − bn)(2d + b − bn)(

4d2 − (2n − 6 + 2s)db + ηsb2
)
· (n − 1)

[
b(3d + 2b − bn)ah + (2d2 + b2n − b2)ā−h

]).
(3.119)

Substituting d = α(n − 1)b and rearranging gives(
ρ∗h −

1
n

)
n

=

n−1∑
s=2

b4(s − 1)[6α(n − 1) + (s + 4 − n) + (4α2(n − 1)2 + τs)
ā−h
ah

](α − 1)(2α − 1)(n − 1)2

b4(4α2(n−1)2−(2n−6+2s)α(n−1)+ηs)(n−1)[(3α(n−1)+2−n)+(2α2(n−1)2+n−1) ā−h
ah

]

=

n−1∑
s=2

(s − 1)[6α(n − 1) + (s + 4 − n) + (4α2(n − 1)2 + τs)
ā−h
ah

] · (α − 1)(2α − 1)

(4α2(n − 1)2 − (2n − 6 + 2s)(n − 1)α + ηs) · [(3α + 2−n
n−1 ) + (2α2(n − 1) + 1) ā−h

ah
]

and finally

ρ∗h =
1
n

+
1

n(n−1)

n−1∑
s=2

(s − 1)
[
6α(n−1) + (s + 4 − n) +

(
4α2(n−1)2 + τs

)
ā−h
ah

]
(α − 1)(2α − 1)(

4α2(n−1) − (2n − 6 + 2s)α +
ηs

n−1

)[
(3α + 2−n

n−1 ) + (2α2(n−1) + 1) ā−h
ah

]
(3.120)
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with α = d
(n−1)b , ηs = s(n − s) − 2(n − 1) and τs = n − s − 2.

3.7.2.3 Shapley Value of Firm j

Given h ∈ S, firm j can either compete or not. The same applies for h < S. Then, it
could be the case that ps� s� , ps s� , ps� s , ps s (defined below). The first superscript
indicates behavior of firm h; the second superscript behavior of firm j. ps s� for example
denotes the price when firm h is part of the coalition but firm j not; the price when
both firms compete is ps� s�. Prices ps� s and ps s are defined accordingly.

To derive these prices, we start with average prices given coalition size s defined
in equation (3.113) with h = i. Note that the bracketed term after ah and also the
denominator of equation (3.113) will only depend on the fact whether firm h is part
of the coalition or not. Hence, these parts stay unchanged for ps s, ps s�, ps� s and ps� s�.
The bracketed factor after ā−h can be separated into a j + ã with ã =

∑n
t,h, j at/(n − 2).

Prices are therefore given by

ps s :=
ah(4d2

−2bd(n+s−5)+b2κs)+a j(4bd−τsb2)+ã(2bd(n+s−4)−b2(ns−s2+4−4n+2s))
2(b + d)[4d2 − (2n − 6 + 2s)bd + b2(2 − 2n + sn − s2)]

ps s� :=
ah(4d2

−2bd(n+s−5)+b2κs)+a j(2bd+2b2)+ã(2bd(n+s−3)−b2(ns−s2
−3n+s+4))

2(b+d)[4d2−(2n−6+2s)bd+b2(2−2n+sn−s2)]

ps� s :=
ah(4d2

− 2bd(n + s − 4) + µsb2) + a j(2bd + b2) + ã(2bd(n − 2) + b2(2n − 3 − sn + s2))
(2d + b)[4d2 − (2n − 6 + 2s)bd + b2(2 − 2n + sn − s2)]

ps� s� :=
ah(4d2

−2bd(n+s−4)+b2µs)+a j(2bd+b2(2−s))+ã(2bd(n−2)+b2(2n+s−4−sn+s2))
(2d + b)[4d2 − (2n − 6 + 2s)bd + b2(2 − 2n + sn − s2)]

.

By formula (3.5), only average prices for each coalition size matter. Thus, we next
derive the cardinality these prices occur, given coalition size s:

C1 : = #ps s =
(n − 2)!

(s − 2)!(n − s)!
; C2 := #ps� s =

(n − 2)!
(s − 1)!(n − 1 − s)!

;

C3 : = #ps s� =
(n − 2)!

(s − 1)!(n − 1 − s)!
; C4 := #ps� s� =

n!
s!(n − s)!

−
(n − 2)!(s − 1 + 2(n − s))

(n − s)!(s − 1)!
.

(3.121)
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The Shapley value of firm j therefore is

ϕ j(N, v) =
∆ph

n
+

1
n

n−1∑
s=2

[C1ps s + C2ps� s

C1 + C2
−

C3ps s� + C4ps� s�

C3 + C4

]
. (3.122)

Substituting the terms C1, ps s, etc. and summarizing yields

ϕ j(N, v) =
∆ph

n

+
1

2n(n − 1)

n−1∑
s=2

[ b(s − 1)[ahb(b(n − 4 − s) − 6d) + (a j − 2ã)(4d2 + b2τs)]
(2d + b)(b + d)[4d2 − bd(−6 + 2n + 2s) + b2(2 − 2n + ns − s2)]

]
.

(3.123)

3.7.2.4 Monotonicity of ρ∗h

Firm h’s Shapley share (3.120) in compensation to its own customers has two sum-
mands. The second one can only be non-zero for n ≥ 3: for n = 2 the Shapley value
entails an equal allocation by heads (which follows directly from (SYM) and (EFF)).
So consider n ≥ 3 from now on.

Let us first show that ρ∗h is strictly decreasing in ā−h/ah. Some placeholders are
introduced to simplify notation:

ρ∗h =
1
n

+
1

n(n − 1)

n−1∑
s=2

=:A︷︸︸︷
(s − 1)

[ =:B︷                      ︸︸                      ︷
6α(n − 1) + (s + 4 − n) +

( =:C︷             ︸︸             ︷
4α2(n − 1)2 + τs

) =:D︷︸︸︷
ā−h

ah

] =:E︷            ︸︸            ︷
(α − 1)(2α − 1)(

4α2(n − 1) − (2n − 6 + 2s)α +
ηs

n − 1︸                                        ︷︷                                        ︸
=:F

)[ (
3α +

2 − n
n − 1

)
︸         ︷︷         ︸

=:G

+(2α2(n − 1) + 1︸           ︷︷           ︸
=:H

) ā−h
ah

]

=
1
n

+
1

n(n − 1)

n−1∑
s=2

A · [B + C ·D] · E
F · [G + H ·D]︸                ︷︷                ︸

=:ρ̃s
h

. (3.124)

We start by showing that all placeholders are positive. This is obvious for A,D,E,G
and H given s ≥ 2, positive saturation quantities ai > 0 and α > 1. Part B is increasing
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in s and α, hence

B = 6α(n − 1) + s + 4 − n ≥ 6α(n − 1) + 6 − n ≥ 5n > 0 (3.125)

for s ≥ 2 and α > 1. Part C is decreasing in s and increasing in α. From s ≤ n − 1 and
α > 1 follows

4α2(n − 1)2 + n − s − 2 ≥ 4(n − 1)2
− 1 > 0. (3.126)

It remains to show that part F is positive. We first argue that

t(α) := 4α2(n − 1) − (2n − 6 + 2s)α +
s(n − s) − 2(n − 1)

n − 1
(3.127)

is increasing in α. This follows, since

∂t(α)
∂α

= 8α(n − 1) − 2n + 6 − 2s ≥ 8α(n − 1) − 2n + 6 − 2(n − 1)

⇔
∂t(α)
4∂α

≥ 2α(n − 1) − n + 2 > 0. (3.128)

The last inequality is satisfied since 2α > (n − 2)/(n − 1). So for all α > 1 we can
conclude

t(α) > t(1) = 4(n − 1) − (2n − 6 + 2s) +
s(n − s) − 2(n − 1)

n − 1
. (3.129)

To show that t(1) > 0 it is sufficient to prove that

t̃(1) := (n − 1)t(1) = 4(n − 1)2
− (2n − 6 + 2s)(n − 1) + s(n − s) − 2(n − 1) > 0. (3.130)

Collecting the terms in (3.130) which depend on s yields 2s − sn − s2. t̃(1) is therefore
decreasing in s for n ≥ 3 and s ≥ 2. Inserting s = n − 1 gives

t̃(1) ≥ 4(n − 1)2
− (2n − 6 + 2(n − 1))(n − 1) + (n − 1)(n − (n − 1)) − 2(n − 1)

= (n − 1)[4n − 4 − 4n + 8 + 1 − 2] = (n − 1)3 > 0. (3.131)

So part F and hence all parts of ρ∗h are positive.

Next we show that each addend ρ̃s
h = A·[B+C·D]·E

F·[G+H·D] of ρ∗h in equation (3.124) decreases
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in D = ā−h
ah

. In particular, taking the first derivative with respect to D yields

∂ρ̃s
h

∂D
=

ACEF[G + HD] − A[B + CD]EFH
F2[G + HD]2 =

>0︷︸︸︷
ACE [CG − BH]

F[G + HD]2︸        ︷︷        ︸
>0

. (3.132)

It remains to show that CG − BH < 0. Substituting the terms C, G, B and H gives

CG − BH =(4α2(n − 1)2 + n − s − 2)
(
3α +

2 − n
n − 1

)
− (6α(n − 1) + s + 4 − n)(2α2(n − 1) + 1)

=(4α2(n−1)2+n−s−2)(3α(n−1)−n+2))−(6α(n−1)+s+4−n)(2α2(n−1)2+n−1)

=(4α2n2
− 8α2n + 4α2 + 2 − s − 2)(3αn − 3α − n + 2)

− (6αn − 6α + s + 4 − n)(2α2n2
− 4α2n + 2α2 + n − 1)

=12α3n3
− 12α3n2

− 4α2n3 + 8α2n2
− 24α3n2 + 24α3n + 8α2n2

− 16α2n + 12α3n

− 12α3
− 4α2n + 8α2 + 3αn2

− 3αn + n2 + 2n − 3αns + 3αs + ns − 2s − 6αn

+ 6α + 2n − 4 − [12α3n3
− 12α3n2 + 2α2n2s + 8α2n2

− 2α2n3
− 24α3n2

+ 24α3n − 4α2ns − 16α2n + 4α2n2 + 12α3n − 12α3 + 2α2s + 8α2
− 2α2n

+ 6αn2
− 6αn + sn + 4n − n2

− 6αn + 6α − s − 4 + n]

= −2α2n3+4α2n2
−2α2n−3αn2+3αn−n−3αns+3αs−s−2α2n2s+4α2ns−2α2s

= − (n − s)︸ ︷︷ ︸
>0

(1 + 3(n − 1)α + 2(n − 1)2α2)︸                              ︷︷                              ︸
>0

< 0. (3.133)

So each addend ρ̃s
h decreases in D. It follows that also ρ∗h is decreasing in ā−h/ah.

3.7.2.5 Upper Bound

Since ρ∗h is decreasing in ā−h/ah we can conclude that

ρ∗h ≤ lim
ā−h/ah→ 0

ρ∗h =
1
n

+
1
n

n−1∑
s=2

(s − 1)
(n − 1)

·

[
6α(n − 1) + (s + 4 − n)

]
· (α − 1)(2α − 1)(

4α2(n − 1) − (2n − 6 + 2s)α +
ηs

n−1

)
·

(
3α + 2−n

n−1

)
(3.134)

with ηs = s(n−s)−2(n−1). The right-most fraction, with numerator [. . .]·(α−1)(2α−1),
is maximal for s = n − 1, since the numerator is positive and increasing in s whereas
the denominator is also positive but decreasing in s: positivity of the denominator
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follows from equations (3.127)–(3.131) and (3α + (2 − n)/(n − 1)) > 0. To see that the
denominator is decreasing in s note that the parts in the denominator which depend
on s can be collected to

Ds :=
s · (−2α(n − 1) + n − s)

n − 1
. (3.135)

The factor in parentheses in equation (3.135) is negative and decreasing in s for
n ≥ 3, s ≥ 2 and α > 1. Higher s therefore lead to more negative values of Ds.
The denominator in (3.134)’s right-most fraction is therefore decreasing in s. We can
conclude that a greater s leads to a larger value of the right-hand side of (3.134).

Inserting s = n − 1 into (3.134)’s right-most fraction gives

ρ∗h ≤ lim
ā−h/ah→ 0

ρ∗h ≤ ρ̄
∗

h :=
1
n

+
1
n

[
6α(n − 1) + 3

]
· (α − 1)(2α − 1)(

4α2(n − 1) − (4n − 8)α − 1
)
·

(
3α + 2−n

n−1

) · n−1∑
s=2

(s − 1)
(n − 1)

.

(3.136)

Next we will show that ρ̄∗h is strictly increasing in α. It is sufficient to establish that

z(α) :=

=:N︷                                  ︸︸                                  ︷[
6α(n − 1) + 3

]
· (α − 1)(2α − 1)(

4α2(n − 1) − (4n − 8)α − 1
)
·

(
3α +

2 − n
n − 1

)
︸                                                 ︷︷                                                 ︸

=:E

(3.137)

strictly increases in α. The first derivative with respect to α gives

∂z(α)
∂α

=
[6(n − 1)(2α2

− 3α + 1) + (6α(n − 1) + 3)(4α − 3)] · E
E2 (3.138)

−
N · [(8α(n − 1) − (4n − 8))(3α + 2−n

n−1 ) + (4α2(n − 1) − (4n − 8)α − 1)3]
E2 .

(3.139)

Since E2 is always positive, we have to show that

z̄(α) :=[6(n − 1)(2α2
− 3α + 1) + (6α(n − 1) + 3)(4α − 3)] · E

− N ·

[
(8α(n − 1) − (4n − 8))

(
3α +

2 − n
n − 1

)
+ (4α2(n − 1) − (4n − 8)α − 1)3

]
> 0.

(3.140)
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Substituting E andN and simplifying gives

z̄(α) =3(n − 1)
{
[12α2n − 12αn + 2n − 12α2 + 16α − 5]

· [12α3n2
− 24α3n + 12α3

− 16n2α2 + 48nα2
− 32α2

− 19αn + 19α + 4n2α − 2 + n]

− [4α3n − 6α2n + 2αn − 4α3 + 8α2
− 5α + 1]

· [36α2n2
− 72α2n + 36α2

− 32αn2 + 96αn − 64α − 19n + 19 + 4n2]
}
. (3.141)

Since 3(n − 1) is always positive for n ≥ 3 it suffices to show that

ẑ(α) :=[12α2n − 12αn + 2n − 12α2 + 16α − 5]

· [12α3n2
− 24α3n + 12α3

− 16n2α2 + 48nα2
− 32α2

− 19αn + 19α + 4n2α

− 2 + n] − [4α3n − 6α2n + 2αn − 4α3 + 8α2
− 5α + 1]

· [36α2n2
− 72α2n + 36α2

− 32αn2 + 96αn − 64α − 19n + 19 + 4n2] > 0. (3.142)

Expansion of the product gives

ẑ(α) = 144α5n3
− 288α5n2 + 144α5n − 192α4n3 + 576α4n2

− 384α4n − 228α3n2 + 228α3n

+ 48n3α3
− 24α2n + 12α2n2

− 144α4n3 + 288α4n2
− 144α4n + 192α3n3

− 576α3n2

+ 384α3n + 228α2n2
− 228α2n − 48α2n3 + 24αn − 12αn2

− 144α5n2 + 288α5n − 144α5

+ 192α4n2
− 576α4n + 384α4 + 228α3n − 228α3

− 48α3n2 + 24α2
− 12α2n + 24α3n3

− 48α3n2 + 24α3n − 32α2n3 + 96α2n2
− 64α2n − 38αn2 + 38αn + 8αn3

− 4n + 2n2

+ 192α4n2
− 384α4n + 192α4

− 256α3n2 + 768α3n − 512α3
− 304α2n + 304α2 + 64α2n2

− 32α + 16αn − 60α3n2 + 120α3n − 60α3 + 80α2n2
− 240α2n + 160α2

+ 95αn − 95α − 20αn2 + 10 − 5n

− [144α5n3
− 288α5n2 + 144α5n − 128α4n3 + 384α4n2

− 256α4n − 76α3n2 + 76α3n

+ 16α3n3
− 216α4n3 + 432α4n2

− 216α4n + 192α3n3
− 576α3n2 + 384α3n + 114α2n2

− 114α2n − 24α2n3 + 72α3n − 144α3n2 + 72α3n − 64α2n3 + 192α2n2
− 128α2n − 38αn2

+ 38αn + 8αn3
− 144α5n2 + 288α5n − 144α5 + 128α4n2

− 384α4n + 256α4 + 76α3n

− 76α3
− 16α3n2 + 288α4n2

− 576α4n + 288α4
− 256α3n2 + 768α3n − 512α3

− 152α2n

+ 152α2 + 32α2n2
− 180α3n2 + 360α3n − 180α3 + 160α2n2

− 480α2n + 320α2 + 95αn

− 95α − 20αn2 + 36α2n2 + 72α2n + 36α2
− 32αn2 + 96αn − 64α − 19n + 19 + 4n2].

(3.143)
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Aggregating and collecting powers αi with i ∈ {0, 1, 2, 3, 4} yields

ẑ(α) = − 9 + 10n − 2n2 + α(32 − 56n + 20n2) + α2(−20 + 74n − 54n2 + 8n3)

+ α3(−32 + 16n + 32n2
− 16n3) + α4(32 − 56n + 16n2 + 8n3). (3.144)

We will show in several steps that ẑ(α) is strictly increasing in α and that ẑ(1) > 0
from which we will be able to conclude that ẑ(α) is strictly positive for α > 1.

The first derivative of ẑ(α) with respect to α is

ẑ′(α) =
∂ẑ(α)
∂α

= 32 − 56n + 20n2 + 2α(−20 + 74n − 54n2 + 8n3)

+ 3α2(−32 + 16n + 32n2
− 16n3) + 4α3(32 − 56n + 16n2 + 8n3).

(3.145)

To see that ẑ′(α) > 0 consider

ẑ′(1) = 32 − 56n + 20n2
− 40 + 148n − 108n2 + 16n3

− 96 + 48n + 96n2
− 48n3 + 128

− 224n + 64n2 + 32n3

= 72n2
− 84n + 24 > 0 (3.146)

and

ẑ′′(α) =
∂ẑ′(α)
∂α

= 2(−20 + 74n − 54n2 + 8n3) + 6α(−32 + 16n + 32n2
− 16n3)

+ 12α2(32 − 56n + 16n2 + 8n3). (3.147)

For this we have

ẑ′′(1) = −40 + 148n − 108n2 + 16n3
− 192 + 96n + 192n2

− 96n3 + 384 − 672n

+ 192n2 + 96n3

= 16n3 + 276n2
− 428n + 152 > 0 for n ≥ 3 (3.148)

and

ẑ(3)(α) =
∂ẑ′′(α)
∂α

= 6(−32 + 16n + 32n2
− 16n3) + 24α(32 − 56n + 16n2 + 8n3) (3.149)
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where

ẑ(3)(1) = − 192 + 96n + 192n2
− 96n3 + 768 − 1344n + 384n2 + 192n3

=96n3 + 576n2
− 1248n + 576 > 0 for n ≥ 3 (3.150)

and

ẑ(4)(α) =
∂ẑ(3)(α)
∂α

=24(32 − 56n + 16n2 + 8n3) > 0 for n ≥ 3. (3.151)

So ẑ(3)(α) is positive and increasing for all α > 1; this extends to ẑ′′(α) by (3.147)–
(3.148), and to ẑ′(α) by (3.145)–(3.146). It therefore remains to check that ẑ(1) > 0. We
have

ẑ(1) = − 9 + 10n − 2n2 + (32 − 56n + 20n2) + (−20 + 74n − 54n2 + 8n3)

+ (−32 + 16n + 32n2
− 16n3) + (32 − 56n + 16n2 + 8n3). (3.152)

Simplifying yields

ẑ(1) = −29 − 12n + 12n2 > 0 for n ≥ 3. (3.153)

This concludes the proof that ρ̄∗h is strictly increasing in α. The Shapley share of firm
h is therefore bounded above by

ρ∗h ≤ lim
α→∞

ρ̄∗h =
1
n

+
1
n

n−1∑
s=2

s − 1
n − 1

=
1
2
. (3.154)

3.7.2.6 Lower Bound

Next we will show that 1/n is a lower bound to the Shapley share ρ∗h. It follows from
equations (3.125)–(3.133) that ρ∗h is decreasing in ā−h/ah and therefore

ρ∗h ≥ lim
ā−h/ah→∞

ρ∗h =
1
n

+
1
n

n−1∑
s=2

(s − 1)
(n − 1)

·

[
4α2(n − 1) + n − s − 2

]
· (α − 1)(2α − 1)(

4α2(n−1)−(2n−6+2s)α+
ηs

n−1

)
·

(
2α2(n−1)+1

) .
(3.155)

It remains to establish that the right-hand side of (3.155) is increasing inα; then a lower
bound follows from considering α → 1. The numerator as well as the denominator
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of the fraction in (3.155) which depends on α are positive and decreasing in s (see
equation (3.135)). Hence, inserting s = n − 1 in the numerator and s = 2 in the
denominator yields:

ρ∗h ≥ lim
ā−h/ah→∞

ρ∗h ≥ ρ
∗

h
:=

1
n

+
1
n

n−1∑
s=2

(s − 1)
(n − 1)

·
[4α2(n − 1) − 1](α − 1)(2α − 1)

(4α2(n−1)−(2n−2)α− 3
n−1 )(2α2(n−1)+1)

.

(3.156)

To show that ρ∗
h

is increasing in α it is sufficient to show that

v(α) :=

=:M︷                                 ︸︸                                 ︷
[4α2(n − 1) − 1](α − 1)(2α − 1)

(4α2(n − 1) − (2n − 2)α −
3

n − 1
)(2α2(n − 1) + 1)︸                                                        ︷︷                                                        ︸

=:F

(3.157)

strictly increases in α. The first derivative with respect to α yields

∂v(α)
∂α

=
[(8αn − 8α)(2α2

− 3α + 1) + (4α2n − 4α2
− 1)(4α − 3)] · F

F 2

−
2M[(4αn−4α−n+1)(2α2n−2α2+1) + 2α(2α(2αn−2α−n+1) − 3

n−1 )(n−1)]
F 2 .

(3.158)

We have to show that

v̄(α) : = [(8αn − 8α)(2α2
− 3α + 1) + (4α2n − 4α2

− 1)(4α − 3)] · F

−M · [(8αn − 8α − 2n + 2)(2α2n − 2α2 + 1)

+ (4α2n − 4α2
− 2nα + 2α −

3
n − 1

)(4αn − 4α)] > 0. (3.159)
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SubstitutingM and F and simplifying gives

v̄(α) =(n − 1)[−32α3 + 36α2
− 12α + 32α3n − 36α2n + 8αn + 3] · [−8α4 + 4α3 + 10α2

− 2α + 8α4n3
− 4α3n3

− 24α4n2 + 12α3n2 + 4α2n2
− 2αn2 + 24α4n − 12α3n

− 14α2n + 4αn − 3] − [−8α4 + 12α3
− 6α2 + 3α + 8α4n − 12α3n + 4α2n − 1]

· [−32α3 + 12α2 + 20α + 32α3n3
− 12α2n3

− 96α3n2 + 36α2n2 + 8αn2
− 2n2

+ 96α3n − 36α2n − 28αn + 4n − 2]. (3.160)

Since n − 1 > 0 we have to prove that

v̂(α) =[−32α3 + 36α2
− 12α + 32α3n − 36α2n + 8αn + 3] · [−8α4 + 4α3 + 10α2

− 2α

+ 8α4n3
− 4α3n3

− 24α4n2 + 12α3n2 + 4α2n2
− 2αn2 + 24α4n − 12α3n − 14α2n

+ 4αn − 3] − [−8α4 + 12α3
− 6α2 + 3α + 8α4n − 12α3n + 4α2n − 1] · [−32α3

+ 12α2 + 20α + 32α3n3
− 12α2n3

− 96α3n2 + 36α2n2 + 8αn2
− 2n2 + 96α3n

− 36α2n − 28αn + 4n − 2] > 0. (3.161)

Expanding and aggregating powers αi with i ∈ {0, 1, 2, 3, 4, 5, 6} yields

v̂(α) = − 11 + 4n − 2n2 + α(56 − 52n + 8n2) + α2(−114 + 82n + 52n2
− 20n3)

+ α3(−8 + 216n − 312n2 + 104n3) + α4(264 − 736n + 696n2
− 240n3 + 16n4)

+ α5(−256 + 736n − 768n2 + 352n3
− 64n4)

+ α6(64 − 256n + 384n2
− 256n3 + 64n4). (3.162)

We want to show that v̂(α) is increasing in α. Taking the first derivative with respect
to α gives

v̂′(α) =
∂v̂(α)
∂α

= (56 − 52n + 8n2) + 2α(−114 + 82n + 52n2
− 20n3)

+ 3α2(−8 + 216n − 312n2 + 104n3) + 4α3(264 − 736n + 696n2
− 240n3 + 16n4)

+ 5α4(−256 + 736n − 768n2 + 352n3
− 64n4)

+ 6α5(64 − 256n + 384n2
− 256n3 + 64n4) (3.163)

with

v̂′(1) = 4(−9 − 10n + 106n2
− 116n3 + 32n4) > 0 for n ≥ 3. (3.164)
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Doing five iterations along the lines of the derivations in equations (3.145)–(3.151),
where the value of each corresponding derivative can be shown to be positive for
α = 1, it follows from

v̂(6) = 720 · 64(n − 1)4 > 0 for n ≥ 3 (3.165)

that the derivative v̂′(α) of v̂(α) and all intermediate derivatives v̂′′(α), . . . , v̂(5)(α) are
positive, too. Inserting α = 1 into v̂(α) and simplifying gives

v̂(1) = −5 − 6n + 58n2
− 60n3 + 16n4 > 0 for n ≥ 3. (3.166)

Hence v̂(α) > 0 and v̄(α) > 0 for α > 1. We can conclude that ρ∗
h

is increasing in α.
The Shapley share of firm h is therefore bounded below by

ρ∗h ≥ lim
α→1

ρ∗
h

=
1
n
. (3.167)





Chapter 4

Simple Games and Cartel Damage Proportion-
ing

A simple game partitions the set of all possible coalitions among a given set N of play-
ers into two categories: a coalition S ⊆ N is either ‘winning’ (denoted by v(S) = 1)
or ‘losing’ (v(S) = 0). Simple games are a subclass of cooperative games with trans-
ferable utility, i.e., TU games. They received an entire chapter’s attention already by
von Neumann and Morgenstern (1953, ch. 10). More recently, Taylor and Zwicker
(1999) devoted a full-length monograph to them, and the investigation of their prop-
erties – e.g., the dimensionality of representations of a given characteristic function v
by means of integer weight vectors and weight thresholds (Kurz and Napel 2016) –
still goes on.

The long list of applications of simple games is dominated by voting bodies, such
as the US Electoral College, the Board of Governors or the Board of Directors of the
International Monetary Fund, the EU Council of Ministers, shareholder meetings,
etc. The typical concern is the distribution of voting power implied by a given
function v.1 Simple games also play an important technical role in cooperative game
theory because their subclass of unanimity games forms a basis of the vector space
of general TU games. Shapley (1953b) provided the first axiomatic characterization
using this observation, and many later authors proceed similarly in their axiomatic
work.

We here propose a new domain of application for simple games: they can serve
as useful first approximations in the proportioning of cartel damages. The European
Commission has passed its Directive on Antitrust Damages Actions (2014/104/EU) in

1See Napel (2019), for instance, for an overview. For an application of simple games and power
indices without voting context see Kovacic and Zoli (2018).
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order to reduce legal and procedural hurdles for cartel victims to reclaim antitrust
damages. The Directive is based on the observation that “. . . total annual cost for
hardcore cartels in the EU can be estimated to range from approximately e25 bil-
lion [. . . ] to approximatelye69 billion. . . ” and only a small share of accrued damages
are reclaimed later (see SWD/2013/203/Final, recitals 65, 67).

When a detected cartel is litigated, all infringers are jointly liable in the EU. That
means a customer who has suffered a cartel-related price overcharge on its purchases
can sue any cartel member for any desired share of their total compensation – in-
dependently of whether the purchases were made from this or another firm.2 A
co-defendant that was sued and convicted to pay compensation to victims how-
ever has a right to force other cartel members to contribute “. . . if it has paid more
compensation than its harm” (Directive 2014/104/EU, recital 37). Or when litigants
should settle sequentially, “. . . the claim of the injured party should be reduced by
the settling infringer’s share of the harm caused to it . . . ” (Directive 2014/104/EU,
recital 51). A firm’s share is explicitly tied to its “. . . relative responsibility for the harm
caused by the infringement of competition law” by Article 11(5) of the Directive.

How to economically quantify this norm was already discussed by Schwalbe
(2013), Napel and Oldehaver (2015) and in Chapter 3. The Shapley value is argued
to be most suitable for allocating damage by relative responsibility. In particular,
Subsection 3.2.2 highlights desirable properties that a responsibility-based allocation
should satisfy: first, it is indisputable that the entire damage should be allocated
among cartel members (efficiency) and that a firm’s damage share should not de-
pend on currency choice, interest or on whether all customers simultaneously or
sequentially act against former cartel members (linearity). To reflect responsibility,
it is additionally sensible to require that infringers who have identical influence on
a victims damage, should contribute the same to the compensation (symmetry) and
that a firm which has not caused any damage need not contribute at all (null-player).
Most importantly, marginality, introduced by Young (1985), reflects that the causal
relation between the size of a customer’s damage and firm i’s cartel membership
crucially determines relative responsibility of firm i. The Shapley value is the unique
value which satisfies all these properties.

That it makes good economic sense to use the Shapley value for allocating cartel
damages is accepted by legal practitioners: “Shapley values consistently deliver an
apportionment according to the relative responsibility for the harm” (Bornemann 2018,

2Litigants can also strive to find out-of-court settlements, or settle with some firms and take the
remaining ones to court.
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recital 123). Nevertheless, a major disadvantage of applying the Shapley value
is that many market parameters are needed for its calculation. Bornemann (2018,
recital 124) holds that: “. . . for almost all real-life cases, such a data panel will be exceedingly
difficult or downright impossible to obtain”. Thus, simple heuristics which are highly
incongruent with relative responsibility – for instance an allocation based on cartel or
competitive sales or revenues – have been suggested. As shown in Subsection 3.3.4,
selecting an appropriate heuristic depends on the kind of asymmetry between firms,
and even the heuristic which is closest to the Shapley value is in some cases far off.
In order to enable the Shapley value to be useful in legal practice, a central question
has to be answered: is there a simple approximation which on the one hand reflects
responsibility reasonable well but on the other hand can do without estimating a
wide range of market parameters?

We answer this affirmatively question by pointing to the use of simple games in
cartel damage contexts. We propose to categorize and normalize the damage of a
(partial) cartel S as either 1, in case this illicit conduct caused huge damage, or 0 when
the caused damage was rather small. In Section 4.3 we investigate such dichotomous
damage scenarios, that is, scenarios where different coalitions cause either a unit
damage or none. We elaborate for n ≤ 5, where n is the number of co-defendants,
all 179 dichotomous damage scenarios which can arise. The Shapley value, respec-
tively the Shapley-Shubik index, of the normalized damage allocation scenario yields
an allocation which is based on relative responsibility in the approximation of the
underlying market structure.

In Section 4.4, we compare this heuristic allocation based on dichotomous damage
scenarios with several ad hoc heuristics suggested by legal practitioners for two claim
scenarios. First, we assume that only customers of one former cartel member reclaim
antitrust damages. We then extend the analysis to market-wide claim scenarios. Even
though the discretization heuristic is easy to apply, it continuously outperforms most
other heuristics with respect to the accuracy of approximating the Shapley damage
shares in the original market model in both claim scenarios. In particular, from
a market-wide perspective, it is the unique heuristic which is always close to an
apportionment by non-approximated Shapley shares no matter whether firms differ
in size, efficiency or other market parameters.
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4.1 Illustration

Before formally introducing simple games and the Shapley value as a tool for allo-
cating damages in Section 4.2, let us illustrate the damage apportionment problem.

Consider a market with three producers of differentiated goods. Their respective
costs be C1(q1) = 30q1, C2(q2) = 20q2 and C3(q3) = 10q3 and they compete à la Bertrand.
Let demands be D1(p) = 100 − 4p1 + 3p2 + 0.4p3, D2(p) = 100 − 4p2 + 3p1 + 0.4p3 and
D3(p) = 150− 3p3 + 0.4(p1 + p2). So products 1 and 2 constitute closer substitutes than
product 3 and collaboration by firms 1 and 2 is likely to have the largest price effect.

The individual maximization of profits yields Bertrand equilibrium prices pB =

(44.7; 41.0; 35.7) rounded to one decimal place. The corresponding equilibrium out-
puts are qB = (58.7; 84.2; 77.1), with revenues of RB = (2622.5; 3453.7; 2755.1) and prof-
its of ΠB = (861.5; 1770.6; 1983.7). If the firms form a cartel and maximize total indus-
try profit, prices rise to pC = (82.2; 77.2; 47.9) while quantities fall to qC = (22; 57; 70).
Ignoring potential side payments, individual profits in the cartelized market are
ΠC = (1147.6; 3258.4; 2653.7) from revenues of RC = (1807.6; 4398.4; 3353.7).

Profits increase but each unit of good i which was purchased involved an over-
charge damage of ∆pi = pC

i − pB
i (referred to as damnum emergens in the legal literature).

Here, overcharges are ∆p = (37.5; 36.1; 12.2) per unit, resulting in product-specific
total overcharge damages of D = qC

· ∆p = (824.8; 2059.1; 853.7).3

Suppose now that a customer k who purchased xk
1 = 10 units from firm 1 at pC

1 ,
and nothing else, sues. The customer may take firm 2 to court because the plaintiff is
free to choose; perhaps k perceives the best odds for enforcing his claim against the
profit champion. If k is then granted compensation for his total overcharges Ok = 375,
firm 2 must pay out Ok. But it is entitled to reclaim some of this from firms 1 and 3.
Table 4.1 lists the respective shares of the three firms suggested by several allocation
rules ρ that have been discussed by legal practitioners.4

The table illustrates two shortcomings of ad hoc allocation rules. First, differences
in the compensation share for the firms seem arbitrary and there is wide scope for a
firm’s share of the compensation. It can increase by up to 20 percentage points when
switching from one rule to another (compare, e.g., ρ0, ρ2 and ρ7). Without further

3Further harm relates to deadweight losses: customers who would have made (additional) pur-
chases, and thus would have enjoyed surplus had prices only been pB, failed to do so (lucrum cessans).
We are unaware of cases in which compensation for it has successfully been claimed. We will disregard
those damages in what follows.

4The allocation rule by cartel benefits is derived by normalizing the relative profit increases of the
cartel members.
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Allocation rule (ρ) %-allocation
per head (ρ0) (33.3%; 33.3%; 33.3%)

by cartel revenue (ρ1) (18.9%; 46.0%; 35.1%)
by cartel sales (ρ2) (14.8%; 38.3%; 47.0%)

by competitive revenue (ρ3) (29.7%; 39.1%; 31.2%)
by competitive sales (ρ4) (26.7%; 38.4%; 35.1%)

by cartel profits (ρ5) (16.3%; 46.2%; 37.6%)
by competitive profits (ρ6) (18.7%; 38.3%; 43.0%)

by cartel benefits (ρ7) (22.0%; 55.6%; 22.4%)

Table 4.1 Allocation rules discussed by legal practitioners

economic analysis, there is no good reason why one allocation rule, e.g., by cartel
revenues, should be preferred over another allocation rule, e.g., a per head allocation.

Second, all rules assign firm 1 a share equal to or smaller than 33.3%. Thus,
the firm which sold the product has to contribute only a rather small share. This
is noteworthy since own-price demand parameters in this illustrative example are
larger than the sum of cross-price parameters: the behavior of the firm which sold
the product has the strongest effect on the price, that its customers pay. None of the
allocation shares in Table 4.2 reflect this fact.

An allocation based on Shapley shares ρ∗ = (46.0%; 44.7%; 9.3%), which is derived
in Section 4.2, takes into account that – without an infringement – competition is
closest between the first two firms. This is missed by the ad hoc heuristics in Table 4.1.
Competitive revenue shares ρ3 = (29.7%; 39.1%; 31.2%) happen to have smallest ‖ · ‖1-
distance to ρ∗. This distance is a measure of a heuristic’s aggregated mis-allocation
relative to Shapley shares. It amounts to 43.8% in the example. Thus, the allocation of
damages by ad hoc heuristics does not seem to be useful at all when each firm’s share
is meant to reflect its relative responsibility for harm. We will show that a heuristic
allocation based on the Shapley share in an appropriate binary approximation of the
market can do much better.

4.2 Preliminaries

We first introduce simple games, that is, transferable utility games where the worth
of any coalition is normalized to 0 or 1. Then, we turn to the Shapley value as a tool
for allocating antitrust damages.
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4.2.1 Notation and Setup

To discuss how to allocate cartel damages among co-defendants, we introduce trans-
ferable utility (TU) games. In TU games, surplus or costs are divided among a set
of players N = {1, . . . ,n}. In our context of cartel damage allocation we consider a
successfully reclaimed damage of an harmed antitrust victim, which has to be allo-
cated among the set of former cartel members N. In the EU, cartel members also
have to compensate for umbrella losses, i.e., they have to compensate customers who
suffered a damage but bought a product of firms i < N (see CJEU C-557/12 2014).
This influences absolute compensation payments but not the set of co-defendants N.

The real number v(S) assigns a (partial) cartel or coalition S ⊆ N of co-defendants
the damage or negative worth caused by this coalition. The characteristic function
v : 2N

→ R of the TU game (N, v) is generally customer harm specific.
A customer’s observed damage is v(N). This damage naturally differs from when

a coalition S ⊂ N had formed. Additionally, as long as firm i ∈ N is not a null-
player, a customer’s damage will depend on whether firm i is part of coalition S or
not. The decrease in a customer’s damage when firm i ∈ S leaves the cartel, that is
v(S)− v(Sr {i}), determines a firm’s economic responsibility.5 See Subsection 3.2.1 on
a detailed discussion why all counterfactual market scenarios play a role in assessing
a firm’s responsibility and how the analysis might be extended when several partial
cartels operated simultaneously.

Needless to say that damages in a cartel context can only be positive when at least
two firms coordinated strategies, that is, v(S) = 0 for S = ∅ or #S = 1.6 Whenever a
partial cartel of size #S > 1 formed while remaining firms j ∈ N r S acted competi-
tively, a full-blown merger simulation analysis is needed to specify v(S). Although
potential price effects caused by mergers are frequently predicted by discussing ap-
propriate oligopoly models (see, e.g., Peters 2006 or Garmon 2017), only few papers
determine a cartel’s damage by using a simulation approach (see, e.g., Roos 2006).
Determining the Shapley value for the TU game (N, v) is frequently not feasible for
data reasons and the general complexity of merger simulations. Thus, an appropriate
approximation is needed.

5We assume that firms’ roles in the cartel were identical. Thus, we do not consider ringleaders
or immunity recipients. One can adapt the analysis to these issues by considering weighted Shapley
values, which were introduced by Shapley (1953a). See Section 3.4 for their discussion in a cartel
context.

6With n = 2, both firms are needed to cause damage. Thus, each firm has to pay half of the
overcharge damage. See Hart and Mas-Colell (1989) for a detailed discussion.
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A first step to facilitate the computational complexity is to categorize and nor-
malize overcharge damages to ṽ(S) ∈ {0, 1}. That is, a useful way to approximate the
damage caused by a partial cartel S is to assume that its damage was either large
(which can be normalized to 1), or that its damage is comparatively small (normalized
to 0). This procedure suggests to use (monotonic) simple game (N, ṽ). They are defined
by the monotonicity condition S ⊆ T ⇒ ṽ(T) ≥ ṽ(S) and the restrictions ṽ(∅) = 0 and
ṽ(N) = 1 in cooperative game theory. Such games have been studied extensively (see,
e.g., Taylor and Zwicker 1999) and often arise in the context of voting and election
rules. Hence a coalition S such that ṽ(S) = 1 is typically referred to as winning and
one with ṽ(S) = 0 as losing. In our application, a winning coalition S ⊆ N corresponds
to a (partial) cartel which could profitably have imposed a big overcharge.

The assumption that if a given partial cartel S can ‘win’, so does a larger cartel
T which contains S, could be restrictive in very specific setups7 but generally is
innocuous. It allows to fully define the mapping ṽ by the listM(ṽ) = {S ⊆ N : ṽ(S) =

1 and T ⊂ S⇒ ṽ(T) = 0} of minimal winning coalitions (MWC). Any coalition S ∈ M(ṽ)
and all its supersets cause damage classified as large; collaboration by a strict subset
of S does not.

4.2.2 Shapley Value

Several solution concepts for coalition games, like the core or the nucleolus, could
be used to allocate damages among co-defendants. However, as shown by Shapley
(1953b) and Young (1985), only the Shapley value satisfies all properties listed in the
introduction. The Shapley value of game (N, v), which is is a single-valued solution
concept, is given by

Φi(N, v) = ϕi(N, v) :=
∑
S⊆N

(s − 1)!(n − s)!
n!

·

[
v(S) − v(S r {i})

]
(4.1)

where s = #S denotes the cardinality of coalition S.
As illustration, re-consider the overcharge damage which accrued to the exem-

plary purchaser of 10 units of good 1 in Section 4.1. If we want to proportion this to
the three firms in line with relative responsibility, we need to check their marginal
contributions to overcharge ∆p1 and weight them according to eq. (4.1). Table 4.2
collects the damages for all conceivable cartel scenarios S implied by the indicated

7Think of some cartel members producing complements rather than substitutes, which generates
non-monotonicities. Such cases seem rare but possible (e.g., the 1992–2004 bathroom fittings cartel).
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market model, and lists the respective differences that participation by a given firm
makes.

S v(S) v(S) − v(S r {1}) v(S) − v(S r {2}) v(S) − v(S r {3})
∅, {1}, {2}, {3} 0 0 0 0
{1, 2} 28.20 28.20 28.20 0
{1, 3} 1.67 1.67 0 1.67
{2, 3} 0.73 0 0.73 0.73
{1, 2, 3} 37.49 36.76 35.82 9.29

Table 4.2 Marginal contributions to ∆p1

The numbers confirm that cooperation by firm 1 and 2 is the main driver of
overcharges on product 1. Firm 3’s participation has an effect, too; but mainly when
1 and 2 are already collaborating. So, as economic intuition about collaboration of
firm 1 and firm 2 being the key driver of price increases had it, firm 3’s responsibility
for k’s damage is small. Those of firms 1 and 2 are similar to another, with a slightly
bigger average contribution for 1. Aggregating the figures according to eq. (4.1)
yields ϕ(N, v) = (17.2; 16.8; 3.5); normalization gives ρ∗ := 100% · ϕ(N, v)/v(N) =

(46.0%; 44.7%; 9.3%).
Similar computations yield allocations of compensation owed to customers of

firms 2 and 3. Conveniently, linearity of the Shapley value permits to focus on the
damage associated with a single unit of the respective good i. Obligations of the
three firms for compensating a plaintiff with purchases of x = (x1, x2, x3) then follow
from the matrix multiplication

(x1, x2, x3) ·


ϕ(N, v1)
ϕ(N, v2)
ϕ(N, v3)


where characteristic function vi reflects the price overcharge on a single unit of good i.

4.3 Dichotomous Approximation

A dichotomous approximation is straightforward in cases like the above where dam-
ages can naturally be categorized as either big or small, with minor differences within
each category. For instance, exact damages v(S) = 1.67 and 0.73 for coalitions {1, 3}
and {2, 3} are small compared to the damage values of 28.20 and 37.49 for coalitions
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{1, 2} and {1, 2, 3} in Table 4.2. Dividing by v(N) yields normalized values of 0.04, 0.02,
0.75 and 1.00, respectively. A corresponding binary approximation of v by ṽ with

ṽ(S) =

1 if {1, 2} ⊆ S,

0 otherwise
(4.2)

is not far off. It could in practice be derived from a qualitative assessment which
finds firms 1 and 2 competing a lot more closely with each other than firm 3 – without
full estimates of cost and demand functions. The corresponding normalized Shapley
shares ρD := 100%·ϕ(N, ṽ) = (50%; 50%; 0) are pretty close to ρ∗ = (46.0%; 44.7%; 9.3%)
computed for (N, v) with

∑3
i=1 | ρ

D
i − ρ

∗

i |= 18.6%. ρD is much closer to ρ∗ than
Section 4.1’s heuristic suggestions ρ0, ρ1, . . . derived from market or profit shares.

It is noteworthy that ρD is a product specific share whereas the heuristics intro-
duced in Table 4.1 do not depend on the firm which sold its product to a particular
victim. If for example firm 3 sold the product, heuristic suggestions would still be
unchanged whereas the Shapley value in the original game (N, v3) would change to
ρ∗ = (35.5%; 37.2%; 27.3%). In this case, the binary approximation ṽ3 which is closest
to the Shapley value in the original game would lead to normalized Shapley shares
ρD = (33.3̄%; 33.3̄%; 33.3̄%).

As illustration of how MWC can be used in order to approximate a given cartelized
market by a simple game, consider a market with N = {A, B, C, D}. Assume that
collaboration by firm A with at least one other firm implies a unit damage. The
corresponding set of MWC is

M(ṽ) = {AB, AC, AD}.

Here we write AB as shorthand for {A, B}, etc. Firm A’s participation is essential for
overcharges; non-participation by up to two other cartelists would not noticeably
change things. Many people’s intuition is probably that the singular importance of
A – with essentially a veto position – entails greater responsibility for compensating
victims. But how much greater? Operationalizing responsibility in a systematic
way yields the answer. Presuming one deems the Shapley properties desirable, the
allocation should be

ρD = 100% · ϕ(N, ṽ) =
(
75%; 8.3̄%; 8.3̄%; 8.3̄%

)
.
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M(ṽ) 100% · ϕ(N, ṽ) M(ṽ) 100% · ϕ(N, ṽ)

1. AB (50%; 50%; 0%; 0%) 11.AB, ACD, BCD (33.3̄%; 33.3̄%; 16.6̄%; 16.6̄%)

2. AB, AC (66.6̄%; 16.6̄%; 16.6̄%; 0%) 12.AB, AC, AD, BC, BD (33.3̄%; 33.3̄%; 16.6̄%; 16.6̄%)

3. AB, AC, BC (33.3̄%; 33.3̄%; 33.3̄%; 0%) 13.AB, BC, CD (16.6̄%; 33.3̄%; 33.3̄%; 16.6̄%)

4. ABC (33.3̄%; 33.3̄%; 33.3̄%; 0%) 14.AB, AC, AD, BC (41.6̄%; 25.0%; 25.0%; 8.3̄%)

5. ABC, ABD (41.6̄%; 41.6̄%; 8.3̄%; 8.3̄%) 15.ABC, ABD, ACD, BCD (25%; 25%; 25%; 25%)

6. ABCD (25%; 25%; 25%; 25%) 16.AB, AC, AD, BCD (50%; 16.6̄%; 16.6̄%; 16.6̄%)

7. AB, AC, BCD (41.6̄%; 25.0%; 25.0%; 8.3̄%) 17.AB, AC, AD, BC, BD, CD (25%; 25%; 25%; 25%)

8. AB, AC, AD (75.0%; 8.3̄%; 8.3̄%; 8.3̄%) 18.AC, AD, BC, BD (25%; 25%; 25%; 25%)

9. AB, CD (25%; 25%; 25%; 25%) 19.ABC, ABD, ACD (50%; 16.6̄%; 16.6̄%; 16.6̄%)

10.AB, ACD (58.3̄%; 25%; 8.3̄%; 8.3̄%) continued for n = 5 in Appendix B

Table 4.3 Shapley allocations for all dichotomous damage scenarios with n ≤ 4 firms

One can easily generalize the idea of dichotomous approximation to bigger sce-
narios: assume that one large firm A and n − 1 small firms operate. Let us also
presume that a unit damage accrues if and only if firm A and at least one more firm
cooperate. Determining the normalized Shapley value with v(S) = 1 if A ∈ S and
v(S) = 0 if A < S yields8

ϕA(N, ṽ) =
1
n

+
1
n

n−1∑
s=2

(1 − 0) =
n − 1

n
and ϕi(N, ṽ) =

1
n(n − 1)

for i , A. (4.3)

The first part of (4.3), that is, ϕA(N, ṽ) = (n− 1)/n, also defines an upper bound for
the contribution share of firm A in all TU games (N, v) (see Appendix A). Needless
to say that a firm which bears no responsibility, i.e., a null player, does not have
to contribute at all. Thus, the Shapley share Φi(N, v) is bounded by [0, (n − 1)/n].
This broad interval is insufficient as a first order approximation. However, for small
cartels, it is possible to enumerate all dichotomous damage scenarios which can arise.
They correspond to simple games (N, ṽ) with n players such that ṽ(S) = 1 implies
#S ≥ 2. Exactly 19 such scenarios exist for n ≤ 4 firms, up to relabeling. They are
listed in Table 4.3 with the corresponding Shapley shares.9

8The easiest way to determine the Shapley value in this scenario is to use equation (3.5) in
Subsection 3.2.3. A related non-dichotomous scenario would have all player pairs {A, i} ⊆ S with
i ∈ {B,C, . . .} cause incremental unit damages, independently of each other. The corresponding mapping
v with v(S) = s − 1 if A ∈ S and v(S) = 0 otherwise, assumes more than two values and is no simple
game. Still, it is not hard to conclude that ϕA(N, v) = 1

2 v(N) and ϕi(N, v) = 1
2(n−1) v(N) for i , A.

9The median number of firms in price fixing cartels is 4 in the US analysis by Levenstein and
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For instance, scenario 1 approximates situations in which only cooperation by
firms A and B is critical for the overcharges in question; then A and B share responsi-
bility for any damage 50 : 50. We saw that this is a reasonable approximation for the
example in Section 4.1. Scenario 2 corresponds to the big firm-small firm situation
in eq. (4.3) with n = 3. Here, firm D is – with the caveat that we deal with a binary
approximation of the real market – a null player; hence it bears no responsibility for
damages and need not contribute. In scenario 3, cooperation by any two firms from
{A, B, C} causes damage; while that of all three is necessary and sufficient for damage
in scenario 4; etc.

The number of distinct scenarios involving n firms is related to the Dedekind num-
bers in discrete mathematics. These grow at a doubly exponential rate. A list of all
dichotomous damage scenarios with n = 5 non-null players already involves 160
entries. They are collected in Appendix B.10 A comprehensive categorization may
be useful for ballpark assessments of responsibility in contribution settlements. The
key practical advantage is that binary approximations just require a big-or-small
classification of damages, not a full-blown market simulation. Even if some ap-
proximation error cannot be avoided, the corresponding Shapley allocations actually
reflect marginal contributions to harm and hence responsibility, in contrast to profits
or market shares.

4.4 Comparisons to Other Heuristics in Linear Market
Environments

Several simple heuristics have been proposed by legal and economic practitioners.
Baker (2004) suggested that an allocation by “. . . sales of the product during the
conspiracy . . . ” can be an appropriate benchmark. This was adopted in Portugal:
co-defendants are liable according to their average cartel market shares in the affected
market (see Lei n.0 23/2018, Art. 5(5)). We compare how a heuristic (ρD) based on

Suslow (2016), which encompasses 329 cases.
10See Straffin (1983) for n ≤ 4 and Baldan (1992) for n = 5. We have fewer games because ṽ(S) = 1

requires #S ≥ 2 in a cartel context. Appendix B corrects several hidden typos in Baldan’s list. Note
that some games in the list, such as scenario 9, would be considered as improper in the context of
voting: they involve disjoint winning coalitions. If we think of A and B as two producers and of C and
D as their retailers, damage may plausibly arise already if the producers or the retailers cooperate.
Presuming little scope for further marginalization by vertical coordination,M(ṽ) = {AB,CD} makes
good sense.



124 Chapter 4. Simple Games and Cartel Damage Proportioning

approximation by dichotomous damage scenarios performs compared to this and
other ad hoc heuristics in the linear setting introduced in Subsection 4.4.1. We first
analyse symmetric firms in Subsection 4.4.2; thereafter, in Subsection 4.4.3, firms are
assumed to be asymmetric.

ρD assigns to a set of MWC, i.e., a DDS, a vector of percentage numbers which
determines firms’ contribution shares.11 It builds on a dichotomous approximation
of a coalition‘s damage on a product-specific level. Thus, coalitions that caused use
damage (damage then is normalized to 1) are identified for each product sold by
a cartel member. This allows to derive a heuristic which is product-specific, while
ad hoc heuristics, e.g., based on market shares or revenues, do not depend on the
considered product.

We distinguish two claim scenarios in our analysis. First, we assume that only
customers who bought a product produced by one specific firm act against former
cartel members. Due to linearity, it is then irrelevant for firms’ compensation shares
whether plaintiffs demand compensation for one product unit or for several product
units. This claim scenario is particularly useful when firms supply specific groups of
consumers, e.g., when a cartel is composed of firms that produce premium and non-
premium products, respectively. Then, it could be the case that only some customers
(e.g., those who bought the premium product) ask for compensation. Calculating
contribution shares on an aggregated perspective would then be biased. Second,
we consider a market-wide perspective, i.e., all customers act against former cartel
members. This claim scenario can (due to linearity) be adopted when a uniform share
of all customers reclaim damages. Moreover, considering a market-wide perspective
is a good a priori assessment: without knowing more details about customers, it is a
reasonable assumption to say that a uniform share of all customers act against former
cartel members. This could, e.g., be useful when discussing the deterrent effect of
private antitrust enforcement.

4.4.1 Linear Market Model

Firms simultaneously set prices à la Bertrand. Best-responding non-cartel members
j < S maximize own profits whereas cartel members i ∈ S ⊆ N simultaneously
maximize joint collusive profits.

11It may be the case that the contribution shares for firms coincide although different DDS are
considered, as illustrated in Table 4.3. Below, we will discuss in more detail which DDS is used to
approximate the Shapley shares of the original game.
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Each firm i ∈ N = {1, . . . ,n} with n ≥ 3 produces a single good. Products are
differentiated substitutes. Firm-specific unit costs γi are constant with γi ≥ 0. A
firm’s demand function is assumed to be linear and decreasing in its own price. Let
p = (p1, . . . , pn) be the price vector. Firm i’s demand then is

Di(p) = ai − di · pi +
∑

j∈Nr{i}

bi j · p j for ai > γi, di > 0, and bi j > 0 for all j , i. (4.4)

Private antitrust enforcement would be superfluous if firm i does not face positive
demand even when pricing at costs. Hence, we assume Di(γ) > 0. To ensure
existence and uniqueness of a Nash equilibrium we will additionally assume that the
well-known dominant diagonal conditions are satisfied,12 i.e., we assume

αi := di/
∑
j,i

bi j > 1 and di >
∑
j,i

b ji for all i ∈ N. (4.5)

Parameter αi measures the degree of differentiation between the product pro-
duced by firm i and products of the remaining market participants j , i ∈ N. With
αi ≈ 1, products are close substitutes and cartel behavior causes huge damage. With
increasing values of αi, substitutability and also the price overcharge damage of a
cartel decrease.

The price vector pS = (pS
1 , . . . , p

S
n) denotes the Nash equilibrium resulting when

firms in S ⊆ N coordinate their strategies and remaining firms in N r S act competi-
tively. See Subsection 3.3.1 for a derivation of pS assuming that firms are symmetric
and Davis and Garcés (2009, ch. 8) for the basic procedure to determine pS in a general
linear market environment. Recall that ∆p = pC

−pB is the price overcharge vector. If,
e.g., a customer who bought one unit of product 1 acts against former cartel members,
overcharge ∆p1 has to be allocated among co-defendants.

4.4.2 Symmetric Firms

When firms are symmetric, that is, when ai = a, di = d, bi j = b and γi = γ, Subsection
3.3.2 shows that Shapley shares solely depend on the differentiation parameter α
and on the number of co-defendants n. The Shapley share of the firm which sold
the product (in the following referred to as the home firm) lies in (1/n, 1/2) whereas
remaining firms i , h have to contribute equally with ρ∗i ∈ (0.5/(n − 1), 1/n).

12See Vives (1999, Sec. 6.2) and Federgruen and Pierson (2011, Cor. 4.6).
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When precise estimates of own and cross price elasticities are not known, some
heuristic has to be used to divide damages and, ideally, to approximate a firm’s
Shapley share. First, assume that a single customer who bought one unit of a
cartelized product, say produced by firm 1, acts against its home firm. Firm 1 then
asks for internal contribution. All ad hoc heuristics ρ0 = ρ1 = ρ2 = . . . =: ρ̄ discussed
in Subsection 3.3.4 call for an equal per head allocation if firms are symmetric at the
market level. However, for a specific customer k, firms are not symmetric even when
products are (symmetrically) differentiated. Thus, with increasing heterogeneity,
that is, with increasing values of α, heuristic ρ̄ does not reflect relative responsibility.
This is illustrated in panel (a) of Figure 4.1 with n = 4, a = 30, γ = 2, d = 3 and
b = d/(3α). It shows (i) the Shapley share of the firm which sold the product (ρ∗1)
is increasing with an increasing differentiation parameter α, (ii) the Shapley share
of the remaining firms (ρ∗i,1) is decreasing in α, and (iii) the shares based on ad hoc
heuristics (ρ̄) are equal to 25%.13

(a) ρ∗1, ρ∗i,1 and ρ̄ (b) Dichotomous approximation
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Figure 4.1 Shapley shares vs. ad hoc heuristic shares and dichotomous approxima-
tion

Panel (b) of Figure 4.1 adds the Shapley shares in the dichotomous damage scenar-
ios which respectively minimize

∑
i∈N | ρ

∗

i−ρ
D
i | for givenα. Whenα is small, the Shap-

ley allocation in the dichotomous damage scenario coincides with ρ̄ since firms’ Shap-
ley shares in the original (non-dichotomous) game (N, v), ρ∗i (N, v), are relatively close
to 1/n. However, with α ≥ 1.8, the dichotomous scenario (50%; 16.6̄%; 16.6̄%; 16.6̄%)
fits best. Whereas deviations between ρ∗(N, v) and ρ̄ increase with increasing values
of α, the highest deviation using the discretization heuristic is reached when α ≈ 1.8.

13Note that a firm’s Shapley share ρ∗i and all heuristics are independent of a and γ when firms are
symmetric. However, these baseline parameters will matter for asymmetric firms below.
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Thus, with symmetric firms, ρD is always at least as good as ρ̄ with respect to the
accuracy of deviation.

Second, assume that all customers act against former cartel members. Then,
aggregated overcharge damages are O :=

∑
i∈N qC

i ·∆pi where qC
i is the cartel quantity

sold by firm i. The damage for each single good j then can be allocated according
to some heuristic or according to the Shapley allocation ρ∗(N, v j). Let Φi be firm i’s
aggregated Shapley payments, i.e.,

Φi :=
∑
j∈N

ϕi(N, v j) =
∑
j∈N

qC
j · ∆p j · ρ

∗

i (N, v
j), (4.6)

and let Hρ
i be i’s aggregated payments when heuristic ρ is applied. Firm i therefore

contributes too much compared to its relative responsibility when Hρ
i − Φi > 0 and

too little when Hρ
i −Φi < 0.

From a market-wide perspective, we are interested in the aggregated net mis-
allocation of damages, that is, in

∑
i∈N | Φi −Hρ

i |. Dividing the total mis-allocation by
the total overcharge damage O will make different numerical simulations comparable
and gives Mρ :=

∑
i∈N | Φi −Hρ

i | /O.
When firms are symmetric, Mρ is by definition zero: although Shapley shares ρ∗h

and ρ∗i differ among co-defendants, these differences cancel each other out when all
customers sue. An equal per head allocation applies. As the following subsection
will show, results do not generalize to firms that are asymmetric from a market-wide
perspective.

4.4.3 Asymmetric Firms

When firms differ in their saturation quantity ai or in their efficiency parameter γi,
Subsection 3.3.3 shows that bounds similar to the symmetric case exist. A home
firm’s Shapley share still lies in ρ∗h ∈ (1/n, 1/2) but the shares between remaining
firms i , h can range more widely with ρ∗i ∈ (0, 1/2). When firms differ in own or
cross price parameters, not even the derived bound for the home firm stays valid.
Thus, reliable heuristics are particularly important in the asymmetric case.

4.4.3.1 Product-Specific Perspective

We start by assuming that ∆pi has to be allocated among former cartel members. Can
ad hoc heuristics now be used to approximate Shapley shares ρ∗i (N, v) when firms
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are asymmetric, say when they differ in size? To answer this question we adapt
the example introduced in Subsection 4.4.2 with a1/3 = a2/3 = a3 = a4 = 30, γ = 2,
d = 3, n = 4 and b = d/(3α) = 1/α. Out of the 19 dichotomous damage scenarios that
exist for n = 4 (see Table 4.3) we choose the respective approximation to minimize∑

i∈N | ρ
∗

i − ρ
D
i |.

14

Figure 4.2 illustrates results. Panels (a1) and (a2) depict the Shapley share ρ∗h, the
discretization heuristic ρD

h and ad hoc heuristics for the home firm. When a large
(small) firm sold the product, it is assumed w.l.o.g. that it is firm 1 (3). A capital D
(small d) is used in the dichotomous scenario when the home firm is large (small).
Interestingly, Shapley shares ρ∗h with h ∈ {1, 3} are quite similar whereas ad hoc
heuristics significantly differ among small and large (home) firms when damage
is not allocated per head for which ρ0

1 = ρ0
3 holds. Ad hoc heuristics give a good

approximation of the Shapley share ρ∗1 but completely fail to apply for approximating
ρ∗3. This differs for the discretization heuristic which takes a firm’s ability to influence
the market price into account. Approximations ρD

1 and ρD
3 are rather good.

Panels (b1) and (b2) consider a large firm i , h. The Shapley share ρ∗i with
i , h ∈ {1, 2} then varies around 1/n. This makes ρ0

i , which coincides with ρD
i when

the small firm sold the product the best approximation. Other ad hoc heuristics
are rather far off, in particular when the small firm sold the product. Dichotomous
scenarios are in a reasonable range, also for a large home firm.

Panels (c1) and (c2) illustrate a small firm i’s contribution share when i , h.
Heuristic ρ0

i now is only a good approximation when α is small. Other heuristics,
like an allocation based on competitive revenues ρ3

i , do much better for larger α. The
discretization heuristic is also pretty close to the Shapley share evaluated for (N, v),
in particular when a large firm sold the product.

To sum up: there is usually some ad hoc heuristic that can be used to approximate
a firm’s Shapley share ρ∗i (N, v) with i ∈ N reasonably well except for the case where
ρ∗h(N, v) with h ∈ {3, 4} has to be approximated. However, no single heuristic is always
close to ρ∗i (N, v). Thus, ad hoc heuristics are not a good approximation for damage
allocation by relative responsibility when only a single customer acts against former
cartel members. An allocation based on dichotomous damage scenarios is rather well
suited for use, irrespectively whether the large or the small firm sold the product.

14We rerun the analysis using the DDS which leads to the second closest distance to Shapley shares.
This robustness test leads to similar results.
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(a1) ρ∗h, ρD
h for large/small home firm (a2) Ad hoc heuristics for large/small home firm
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Figure 4.2 Shapley shares ρ∗i vs. ad hoc heuristic shares and dichotomous approxi-
mation with a1/3 = a2/3 = a3 = a4

4.4.3.2 Market-Wide Perspective

Contrary to the symmetric case, aggregate deviations between product-specific Shap-
ley shares ρ∗(N, v) and other heuristics do generally not vanish when firms are asym-
metric and all customers act against former cartel members. Note, however, that
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differences between an allocation based on the Shapley share ρ∗(N, v) and other
heuristics can partially cancel out across products.

In Figure 4.3 we illustrate how ad hoc heuristics and the discretization heuristic
fit, i.e., the percentage mis-allocation Mρ, for different kinds of asymmetries when
baseline parameters are a = 30, γ = 2, d = 3, n = 4, b = d/(3α).

In the two top panels (a) and (b), we allow that firms differ in their market
saturation quantity ai. Panel (a) reconsiders the example discussed in Subsection
4.4.3.1. The discretization heuristic ρD outperforms ad hoc heuristics for α > 1.4.
With increasing values of α, only an allocation based on competitive sales ρ4 comes
close to the Shapley based allocation ρ∗(N, v) in both panels. However, ρD does much
better and achieves smaller mis-allocation MρD for almost all levels of differentiation.

The discontinuous jumps occurring in the product-wise discretization heuristic
can be most easily explained by using panel (c) where two firms are twice as efficient
as their competitors. When α = 1.55, aggregated overcharge damages are roughly
O = 321. Then, using a dichotomous approximation requires each firm to contribute
share 1/n, that is, HρD

i = 80.3. Now fix an inefficient firm, say firm 3. Firm 3’s
Shapley shares ρ∗3(N, v) are (21%; 21%; 35.4%; 20.6%) in the four price overcharges
∆p1, ∆p2, ∆p3 and ∆p4; Φ3 = 77.2. Thus, ρD

3 = 25% significantly underestimates firm
3’s own part but slightly overestimates its contribution share when another firm sold
the product. Differences between over and underestimation of a firm’s contribution
share partially cancel and HρD

3 − Φ3 = 3.1. Hence, MρD
= 4 · 3.1/321 = 4.3%.15 Next,

consider α = 1.6; then, O = 286. Dichotomous damage shares for a high cost firm
abruptly changes to (16.6̄%; 16.6̄%; 25%; 25%) with HρD

3 = 58. Its respective Shapley
shares ρ∗3(N, v) are (20.8%; 20.8%; 35.9%; 20.4%) with Φ3 = 68.7. The product-specific
dichotomous approximations now always underestimate firm 3’s shares (except for
the case in which firm 4 sold the product), with a huge difference when its home
customers sue. The deviation increases to Φ3−HρD

3 = 10.7; MρD
= 4·10.7/286 = 14.9%.

Thus, the sum over the dichotomous approximations that minimize the product-
specific deviations – which change continuously in α – only minimizes market-
wide deviations by coincidence, not in general. In particular, on a market-wide
perspective, the “second-best” dichotomous approximation used in our robustness
analysis sometimes outperforms the approximation that minimizes

∑
i∈N | ρ

∗

i − ρ
D
i |.

In panels (c) and (d), an allocation based on competitive revenue shares ρ3 is very
close to Φi and frequently outperforms the discretization heuristic. In panel (c), ρD is

15Note that two firms are efficient and two firms inefficient each. When the efficient firms pay too
much, the inefficient firms have to pay too little since all discussed allocation rules satisfy efficiency.
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Figure 4.3 Mρ for different heuristics considering i ∈ {1, 2} and j ∈ {3, 4}

worst for some values of α. In this case, however, all heuristics could be used since
normalized deviations in panel (c) are all rather small.

When own-price effects of two firms increase by factor η (see panel (e)), some
ad hoc heuristics, in particular the one based on competitive revenue shares ρ3,
perform well. The discretization heuristic is sometimes best, but can also be worst
for a very small range of η. Nevertheless, ρD is close to the Shapley share ρ∗(N, v) for
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all relevant values of η; MρD is consistently below 15%.

Finally, panel (f) involves two firms with increasing cross-price effects. With
more intense competition, that is, with increasing values of β, only the discretization
heuristic is close to the Shapley value in the original game. With rather symmetric
firms, an allocation based on profit shares ρ5 performs relatively good.

To sum up: there is no ad hoc heuristic which is always close to the correct
Shapley shares evaluated for (N, v). This differs for a heuristic allocation based on
dichotomous damage scenarios. It does not only reflect responsibility, but MρD is
additionally always significantly below 20% in the discussed cases. Sometimes, it is
the only heuristic which is close to the Shapley value of the original game (N, v).16

4.5 Concluding Remarks

This chapter has argued that a responsibility-based allocation of cartel damages is
feasible even without a full-blown merger simulation analysis. This should receive
increasing attention in the EU since Directive 2014/104/EU has been transposed into
national law throughout the EU.

The question how to economically quantify the relative responsibility of a firm is
answered in Chapter 3: ideally use the Shapley value. Ad hoc heuristics could be used
to approximate the Shapley share in view of the former’s strong data requirements.
But no heuristic always outperforms the others. Thus, more details on the firms at
hand have to be known to argue which heuristic indeed fits best. Then, however,
the additional expense to answer the question which coalitions actually caused (or
would have caused, as counterfactual market scenarios are evaluated) huge damage,
is small. This leads to the proposal of a new heuristic, ρD, based on approximation by
dichotomous damage scenarios. Heuristic ρD has two main advantages compared to
ad hoc heuristics. First, it reflects relative responsibility and second, it rather robustly
offers a good approximation of the Shapely value in all considered market scenarios;
from a product but also from a market-wide perspective.

16 Interestingly, although baseline parameters in panels (a) – (f) differ from the ones used in the
simulations in Subsection 3.3.4, the ad hoc heuristic which is closest to the Shapley value in the
original game stays unchanged. Thus, baseline parameters are rather unimportant to evaluate and
select ad hoc heuristics; the asymmetry at hand matters.



4.6. Appendix A: Upper Bound of Φi(N, v) 133

4.6 Appendix A
Upper Bound of Φi(N, v)

We want to show that the upper bound of the Shapley share is (n − 1)/n for all cartel
damage allocation games. Recall that the Shapley value is given by

Φi(N, v) =
∑
S⊆N

(s − 1)!(n − s)!
n!

·

[
v(S) − v(S r {i})

]
.

In view of Φi’s linearity, it is without loss of generality to normalize damages to
v(N) = 1, v(S) ∈ [0, 1] and v(∅) = v({i}) = 0 for i ∈ N. The highest damage caused by a
coalition is therefore 1. The absolute Shapley values in the normalized game can be
interpreted as Shapley shares in the original cartel damage allocation game.

Next, consider firm A. The Shapley value of firm A (thus, its contribution pay-
ment) is maximal when firm A’s marginal contribution to all coalitions is maximal,
that is, when firm A is a dictator player: assuming that all coalitions including
A could cause a unit damage (v(S) = 1 ⇔ A ∈ S) would then lead to a Shapley-
(Shubik) power index of ΦDic

A = 1. However, from the assumption that v({i}) = 0
for i ∈ N follows that firm A causes zero damage when all firms compete. Then,
firm A’s marginal contribution is zero, that is, v({A}) − v(∅) = 0. Thus, the highest
Shapley value of a firm in cartel damage allocation games is reached by subtracting
(s−1)!(n−s)!

n! |s=1 ·[v({A}) − v(∅)] = (s−1)!(n−s)!
n! |s=1 ·1 from ΦDic

A . This yields

Φmax
A = ΦDic

A −
(n − 1)!

n!
= 1 −

1
n

=
n − 1

n

as the highest possible Shapley share in damages in markets in which at least two
players must cooperate to cause an overcharge.
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4.7 Appendix B
All Dichotomous Damage Scenarios with n = 5 Firms

M(ṽ) 60 · ϕ(N, ṽ) M(ṽ) 60 · ϕ(N, ṽ)

1.–19. see Table 4.3 on p. 122 71. AB, AC, ADE, BCDE (30, 10, 10, 5, 5)
20. AB, AC, AD, AE (48, 3, 3, 3, 3) 72. AB, AC, ADE, BDE, CDE (24, 9, 9, 9, 9)
21. AB, AC, AD, AE, BC (28, 13, 13, 3, 3) 73. AB, AC, BC, ADE (22, 17, 17, 2, 2)
22. AB, AC, AD, AE, BC, BD (23, 18, 8, 8, 3) 74. AB, AC, BC, ADE, BDE (19, 19, 14, 4, 4)
23. AB, AC, AD, AE, BC, BD, BE (21, 21, 6, 6, 6) 75. AB, AC, BC, ADE, BDE, CDE (16, 16, 16, 6, 6)
24. AB, AC, AD, AE, BC, BD, BE, CD (16, 16, 11, 11, 6) 76. AB, AC, BC, DE (14, 14, 14, 9, 9)
25. AB, AC, AD, AE, BC, BD, BE, CD, CE (14, 14, 14, 9, 9) 77. AB, AC, BCD, BCE (22, 17, 17, 2, 2)
26. AB,AC,AD,AE,BC,BD,BE,CD,CE,DE (12, 12, 12, 12, 12) 78. AB, AC, BCD, BCE, BDE (19, 19, 14, 4, 4)
27. AB, AC, AD, AE, BC, BD, BE, CDE (18, 18, 8, 8, 8) 79. AB, AC, BCD, BCE, BDE, CDE (16, 16, 16, 6, 6)
28. AB, AC, AD, AE, BC, BD, CD (18, 13, 13, 13, 3) 80. AB, AC, BCD, BDE (22, 17, 12, 7, 2)
29. AB, AC, AD, AE, BC, BD, CE (18, 13, 13, 8, 8) 81. AB, AC, BCD, BDE, CDE (19, 14, 14, 9, 4)
30. AB, AC, AD, AE, BC, BD, CE, DE (16, 11, 11, 11, 11) 82. AB, AC, BCDE (28, 13, 13, 3, 3)
31. AB, AC, AD, AE, BC, BD, CDE (20, 15, 10, 10, 5) 83. AB, AC, BD, ADE (22, 17, 7, 12, 2)
32. AB, AC, AD, AE, BC, BDE (25, 15, 10, 5, 5) 84. AB, AC, BD, ADE, BCE (19, 19, 9, 9, 4)
33. AB, AC, AD, AE, BC, BDE, CDE (22, 12, 12, 7, 7) 85. AB, AC, BD, ADE, BCE, CDE (16, 16, 11, 11, 6)
34. AB, AC, AD, AE, BC, DE (20, 10, 10, 10, 10) 86. AB, AC, BD, ADE, CDE (19, 14, 9, 14, 4)
35. AB, AC, AD, AE, BCD (33, 8, 8, 8, 3) 87. AB, AC, BD, CD, ADE (17, 12, 12, 17, 2)
36. AB, AC, AD, AE, BCD, BCE (30, 10, 10, 5, 5) 88. AB, AC, BD, CD, ADE, BCE (14, 14, 14, 14, 4)
37. AB, AC, AD, AE, BCD, BCE, BDE (27, 12, 7, 7, 7) 89. AB, AC, BD, CDE (17, 17, 12, 12, 2)
38. AB,AC,AD,AE,BCD,BCE,BDE,CDE (24, 9, 9, 9, 9) 90. AB, AC, BD, CE (12, 17, 17, 7, 7)
39. AB, AC, AD, AE, BCDE (36, 6, 6, 6, 6) 91. AB, AC, BD, CE, ADE (14, 14, 14, 9, 9)
40. AB, AC, AD, BC, BD, CDE (17, 17, 12, 12, 2) 92. AB, AC, BD, CE, DE (12, 12, 12, 12, 12)
41. AB, AC, AD, BC, BD, CE (15, 15, 15, 10, 5) 93. AB, AC, BDE (25, 15, 10, 5, 5)
42. AB, AC, AD, BC, BD, CE, DE (13, 13, 13, 13, 8) 94. AB, AC, BDE, CDE (22, 12, 12, 7, 7)
43. AB, AC, AD, BC, BDE (22, 17, 12, 7, 2) 95. AB, AC, DE (22, 7, 7, 12, 12)
44. AB, AC, AD, BC, BDE, CDE (19, 14, 14, 9, 4) 96. AB, AC, DE, BCD (19, 9, 9, 14, 9)
45. AB, AC, AD, BC, BE (20, 20, 10, 5, 5) 97. AB, AC, DE, BCD, BCE (16, 11, 11, 11, 11)
46. AB, AC, AD, BC, BE, CDE (17, 17, 12, 7, 7) 98. AB, ACD, ACE (37, 12, 7, 2, 2)
47. AB, AC, AD, BC, BE, DE (15, 15, 10, 10, 10) 99. AB, ACD, ACE, ADE (39, 9, 4, 4, 4)
48. AB, AC, AD, BC, DE (17, 12, 12, 12, 7) 100. AB, ACD, ACE, ADE, BCD (24, 14, 9, 9, 4)
49. AB, AC, AD, BCD, BCE (27, 12, 12, 7, 2) 101. AB, ACD, ACE, ADE, BCD, BCE (21, 16, 11, 6, 6)
50. AB, AC, AD, BCD, BCE, BDE (24, 14, 9, 9, 4) 102. AB, ACD, ACE, ADE, BCD, BCE, BDE (18, 18, 8, 8, 8)
51. AB, AC, AD, BCD, BCE, BDE, CDE (21, 11, 11, 11, 6) 103. AB,ACD,ACE,ADE,BCD,BCE,BDE,CDE (15, 15, 10, 10, 10)
52. AB, AC, AD, BCDE (33, 8, 8, 8, 3) 104. AB, ACD, ACE, ADE, BCD, BCE, CDE (18, 13, 13, 8, 8)
53. AB, AC, AD, BCE (30, 10, 10, 5, 5) 105. AB, ACD, ACE, ADE, BCD, CDE (21, 11, 11, 11, 6)
54. AB, AC, AD, BCE, BDE (27, 12, 7, 7, 7) 106. AB, ACD, ACE, ADE, BCDE (27, 12, 7, 7, 7)
55. AB, AC, AD, BCE, BDE, CDE (24, 9, 9, 9, 9) 107. AB, ACD, ACE, ADE, CDE (24, 9, 9, 9, 9)
56. AB, AC, AD, BE (25, 15, 5, 5, 10) 108. AB, ACD, ACE, BCD (22, 17, 12, 7, 2)
57. AB, AC, AD, BE, BCD (22, 17, 7, 7, 7) 109. AB, ACD, ACE, BCD, BCE (19, 19, 14, 4, 4)
58. AB, AC, AD, BE, BCD, CDE (19, 14, 9, 9, 9) 110. AB, ACD, ACE, BCD, BCE, CDE (16, 16, 16, 6, 6)
59. AB, AC, AD, BE, CDE (22, 12, 7, 7, 12) 111. AB, ACD, ACE, BCD, BDE (19, 19, 9, 9, 4)
60. AB, AC, AD, BE, CE (20, 10, 10, 5, 15) 112. AB, ACD, ACE, BCD, BDE, CDE (16, 16, 11, 11, 6)
61. AB, AC, AD, BE, CE, BCD (17, 12, 12, 7, 12) 113. AB, ACD, ACE, BCD, CDE (19, 14, 14, 9, 4)
62. AB, AC, AD, BE, CE, DE (18, 8, 8, 8, 18) 114. AB, ACD, ACE, BCDE (25, 15, 10, 5, 5)
63. AB, AC, AD, BE, CE, DE, BCD (15, 10, 10, 10, 15) 115. AB, ACD, ACE, BDE (22, 17, 7, 7, 7)
64. AB, AC, ADE (42, 7, 7, 2, 2) 116. AB, ACD, ACE, BDE, CDE (19, 14, 9, 9, 9)
65. AB, AC, ADE, BCD (27, 12, 12, 7, 2) 117. AB, ACD, ACE, CDE (22, 12, 12, 7, 7)
66. AB, AC, ADE, BCD, BCE (24, 14, 14, 4, 4) 118. AB, ACD, BCD, CDE (17, 17, 12, 12, 2)
67. AB, AC, ADE, BCD, BCE, BDE (21, 16, 11, 6, 6) 119. AB, ACD, BCDE (23, 18, 8, 8, 3)
68. AB, AC, ADE, BCD, BCE, BDE, CDE (18, 13, 13, 8, 8) 120. AB, ACD, BCE (20, 20, 10, 5, 5)
69. AB, AC, ADE, BCD, BDE (24, 14, 9, 9, 4) 121. AB, ACD, BCE, CDE (17, 17, 12, 7, 7)
70. AB, AC, ADE, BCD, BDE, CDE (21, 11, 11, 11, 6) 122. AB, ACD, CDE (20, 15, 10, 10, 5)
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M(ṽ) 60 · ϕ(N, ṽ)

123. AB, ACDE (33, 18, 3, 3, 3)
124. AB, AC, ADE, BDE (27, 12, 7, 7, 7)
125. AB, ACDE, BCDE (21, 21, 6, 6, 6)
126. AB, CD, ACE (17, 12, 17, 12, 2)
127. AB, CD, ACE, ADE (19, 9, 14, 14, 4)
128. AB, CD, ACE, ADE, BCE (16, 11, 16, 11, 6)
129. AB, CD, ACE, ADE, BCE, BDE (13, 13, 13, 13, 8)
130. AB, CE, ACE, BDE (14, 14, 14, 14, 4)
131. AB, CDE (18, 18, 8, 8, 8)
132. ABC, ABD, ABE (27, 27, 2, 2, 2)
133. ABC, ABD, ABE, ACD (32, 12, 7, 7, 2)
134. ABC, ABD, ABE, ACD, ACE (34, 9, 9, 4, 4)
135. ABC, ABD, ABE, ACD, ACE, ADE (36, 6, 6, 6, 6)
136. ABC, ABD, ABE, ACD, ACE, ADE, BCD (21, 11, 11, 11, 6)
137. ABC, ABD, ABE, ACD, ACE, ADE, BCD, BCE (18, 13, 13, 8, 8)
138. ABC, ABD, ABE, ACD, ACE, ADE, BCD, BCE, BDE (15, 15, 10, 10, 10)
139. ABC, ABD, ABE, ACD, ACE, ADE, BCD, BCE, BDE, CDE (12, 12, 12, 12, 12)
140. ABC, ABD, ABE, ACD, ACE, ADE, BCDE (24, 9, 9, 9, 9)
141. ABC, ABD, ABE, ACD, ACE, BCD (19, 14, 14, 9, 4)
142. ABC, ABD, ABE, ACD, ACE, BCD, BCE (16, 16, 16, 6, 6)
143. ABC, ABD, ABE, ACD, ACE, BCD, BDE (16, 16, 11, 11, 6)
144. ABC, ABD, ABE, ACD, ACE, BCD, BDE, CDE (13, 13, 13, 13, 8)
145. ABC, ABD, ABE, ACD, ACE, BCDE (22, 12, 12, 7, 7)
146. ABC, ABD, ABE, ACD, ACE, BDE (19, 14, 9, 9, 9)
147. ABC, ABD, ABE, ACD, ACE, BDE, CDE (16, 11, 11, 11, 11)
148. ABC, ABD, ABE, ACD, BCD (17, 17, 12, 12, 2)
149. ABC, ABD, ABE, ACD, BCD, CDE (14, 14, 14, 14, 4)
150. ABC, ABD, ABE, ACD, BCDE (20, 15, 10, 10, 5)
151. ABC, ABD, ABE, ACD, BCE (17, 17, 12, 7, 7)
152. ABC, ABD, ABE, ACD, BCE, CDE (14, 14, 14, 9, 9)
153. ABC, ABD, ABE, ACD, CDE (17, 12, 12, 12, 7)
154. ABC, ABD, ABE, ACDE (30, 15, 5, 5, 5)
155. ABC, ABD, ABE, ACDE, BCDE (18, 18, 8, 8, 8)
156. ABC, ABD, BCE (30, 10, 10, 5, 5)
157. ABC, ABD, ABE, CDE (15, 15, 10, 10, 10)
158. ABC, ABD, ACD, BCE (15, 15, 15, 10, 5)
159. ABC, ABD, ACD, BCE, BDE (12, 17, 12, 12, 7)
160. ABC, ABD, ACD, BCE, BDE, CDE (9, 14, 14, 14, 9)
161. ABC, ABD, ACD, BCDE (18, 13, 13, 13, 3)
162. ABC, ABD, ACE, ADE (32, 7, 7, 7, 7)
163. ABC, ABD, ACE, ADE, BCDE (20, 10, 10, 10, 10)
164. ABC, ABD, ACE, BCDE (18, 13, 13, 8, 8)
165. ABC, ABD, ACE, BDE (15, 15, 10, 10, 10)
166. ABC, ABD, ACE, BDE, CDE (12, 12, 12, 12, 12)
167. ABC, ABD, ACDE (28, 13, 8, 8, 3)
168. ABC, ABD, ACDE, BCDE (16, 16, 11, 11, 6)
169. ABC, ABD, CDE (13, 13, 13, 13, 8)
170. ABC, ABDE (23, 23, 8, 3, 3)
171. ABC, ABDE, ACDE (26, 11, 11, 6, 6)
172. ABC, ABDE, ACDE, BCDE (14, 14, 14, 9, 9)
173. ABC, ADE (28, 8, 8, 8, 8)
174. ABC, ADE, BCDE (16, 11, 11, 11, 11)
175. ABCD, ABCE (18, 18, 18, 3, 3)
176. ABCD, ABCE, ABDE (21, 21, 6, 6, 6)
177. ABCD, ABCE, ABDE, ACDE (24, 9, 9, 9, 9)
178. ABCD, ABCE, ABDE, ACDE, BCDE (12, 12, 12, 12, 12)
179. ABCDE (12, 12, 12, 12, 12)
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