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Quantifying Subjective Uncertainty in Survey
Expectations∗

Fabian Krüger Lora Pavlova
Karlsruhe Institute of Technology Karlsruhe Institute of Technology

March 30, 2020

Abstract

Several recent surveys ask for a person’s subjective probabilities that the inflation
rate falls into various outcome ranges. We provide a new measure of the uncertainty
implicit in such probabilities. The measure has several advantages over existing meth-
ods: It is robust, trivial to implement, requires no functional form assumptions, and is
well-defined for all logically possible probabilities. These advantages are particularly
relevant when analyzing large scale consumer surveys. We illustrate the new measure
using data from the Survey of Consumer Expectations.

1 Introduction

Expectations uncertainty matters in economics. Uncertain firms tend to respond less
to monetary or fiscal policy (Bloom, 2009). Monitoring inflation expectations and the
associated uncertainty may help recognize early signs of eroding central bank credibil-
ity or de-anchoring of inflation expectations (Grishchenko et al., 2019); central banks
are paying increasing attention to consumer and firm expectations for this purpose
(ECB, 2019). Subjective uncertainty also features prominently in theoretical models
of expectation formation, such as rational inattention (Sims, 2003; Mackowiak and
Wiederholt, 2009).

There is hence much interest in measuring uncertainty, both at the level of the
aggregate economy (e.g. Baker et al., 2016; Carriero et al., 2018) and at the level
of individual persons or firms. In the present paper, we propose a new measure of
individual-level uncertainty based on subjective survey probabilities. Such an uncer-
tainty measure is an important input to studies that consider either the determinants or
the consequences of subjective uncertainty. See, for example, Coibion et al. (2018) for
an analysis of firms’ expectations, Ben-David et al. (2019) for a household finance per-
spective, and Rich and Tracy (2010) for an analysis of macroeconomic expert forecasts.

∗Financial support from the German Research Foundation (DFG) via grant KR 5214/1-1 is gratefully
acknowledged. We thank seminar and conference participants at Heidelberg University, HKMEtrics, Joint
Conference on Household Expectations (Bundesbank - Banque de France), Humboldt-Universität Berlin and
IWH (Halle), as well as Konstantin Görgen, Axel Lindner, Malte Knüppel, Simas Kucinskas, Sebastian Rüth
and Michael Weber for helpful comments.
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Manski (2004, 2018) reviews a growing number of economic surveys in which par-
ticipants assess the probability of a variable falling into various outcome ranges. In
macroeconomics, the Survey of Professional Forecasters (SPF; Croushore, 1993) and
its European counterpart (Garcia, 2003) are popular data sources covering expert fore-
casts. Furthermore, several recent surveys address the probabilistic expectations of
consumers and firms. Examples include the Survey of Consumer Expectations (SCE)
launched by the Federal Reserve Bank of New York (Armantier et al., 2017), a similar
initiative by the Bank of Canada (Gosselin and Khan, 2015), and the firm survey by
Coibion et al. (2018). These data on probabilistic expectations promise to shed new
light on consumers’ uncertainty, complementing more traditional survey information
on point expectations. The latter do not contain direct information about uncertainty.
However, Binder (2017) uses information on whether numeric point expectations are
a multiple of five (indicating possible rounding and higher uncertainty) in order to
construct a measure of individual uncertainty.

Figure 1 illstrates subjective probability distributions (‘histograms’) from the April
2019 wave of the SCE.1 Each survey participant provides probabilities for various out-
come ranges (‘bins’) of next year’s inflation rate, as represented by the horizontal axis.
The SCE contains a substantial share of responses that use one or two bins only. Such
responses, which we call ‘sparse histograms’, are made by roughly a third of the SCE
participants. Sparse histograms pose a challenge for existing measures of individual
uncertainty (notably Engelberg et al., 2009, EMW) which are based on fitting a para-
metric distribution. For sparse histograms, fitting a flexible distribution is not possible,
and a simple triangular shape is commonly used instead (see the two examples in the
top row of Figure 1).

Motivated by the SCE data, we propose a new uncertainty measure that is transpar-
ent, trivial to implement, and is well-defined even for sparse histograms. By contrast,
existing approaches require assumptions on the support of the subjective histogram,
the distribution within each bin, or the functional form of the underlying continuous
distribution. Our proposed measure can be theoretically motivated as the general-
ized entropy function of the ranked probability score (Epstein, 1969), a strictly proper
scoring rule. We therefore refer to the new measure as ERPS, for Expected Ranked
Probability Score.

The remainder of this paper is structured as follows. Section 2 summarizes some
stylized facts of the SCE probabilities. Section 3 describes existing methods for quanti-
fying uncertainty. Section 4 develops the ERPS, detailing its advantages as mentioned
above. Sections 5 and 6 study the behavior of the ERPS for simulated and empirical
data, respectively. Section 7 concludes. The Online Appendix contains details, proofs,
and additional results.

1Source: Survey of Consumer Expectations c©, 2013-2020 Federal Reserve Bank of New York (FRBNY).
The SCE data are available without charge at http://www.newyorkfed/microeconomics/sce and may
be used subject to license terms posted there. FRBNY disclaims any responsibility for this analysis and
interpretation of Survey of Consumer Expectations data.
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Figure 1: Illustration of probabilistic inflation expectations from the April 2019 wave of the
SCE. The area of a rectangle corresponds to the subjective probability of the corresponding
outcome range. For example, in the bottom left panel, the probability for an outcome
between 4 and 8 equals 4 × 1/20 = 1/5. Solid lines indicate fitted probability density
functions via the EMW method.
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2 Subjective probabilities in the SCE data

The SCE is conducted at a monthly frequency with a sample size of about 1,200-1,300
respondents per month. The core module of the SCE asks, among others, for subjec-
tive probabilities of various outcome ranges, covering three variables: The Consumer
Price Index (CPI) at two different horizons, real estate prices, and the respondent’s
personal earnings. In the SCE questionnaire made available by Federal Reserve Bank
of New York (2020), the relevant question codes are Q9 and Q9c (CPI inflation rate),
C1 (growth rate of the average home price nationwide) and Q24 (growth rate of the
respondent’s personal earnings). The relevant outcome ranges (in percent), which are
the same for all variables, can be represented by the intervals

(−∞,−12]; (−12,−8]; (−8,−4]; (−4,−2]; (−2, 0); [0, 2); [2, 4); [4, 8); [8, 12); [12,∞).

These outcome ranges are reflected in the horizontal axis labels of Figure 1. In the case
of inflation, for example, the two rightmost intervals refer to an inflation rate between
8% and 12% and to an inflation rate of 12% or more.2

Table 1 compares the SCE to expert forecasts in the SPF, in terms of partici-
pants’ probability reponses. The table’s upper panel presents summary statistics on
the number of histogram bins used by SCE participants (that is, the number of bins
containing strictly positive probability mass). We focus on the time period from Jan-
uary 2014 to March 2019 for comparability to the SPF (see below). For inflation and
the average home price, around 30% of the participants uses one or two bins (‘sparse
histograms’). For personal earnings, roughly half of the participants use one or two
bins. The mean number of bins used is somewhat higher for inflation and the average
home price (4.2 − 4.4), compared to personal earnings (3.3). Finally, more than a
quarter of the participants use one or both of the outer bins that correspond to the
intervals (−∞,−12] and [12,∞).

The lower panel of Table 1 presents analogous statistics for the SPF. The SPF
histograms are similar in design to those of the SCE, except that the two surveys use
different numerical ranges for the histogram bins. While the SPF’s bin definitions have
been adapted over time (Federal Reserve Bank of Philadelphia, 2020), they are con-
stant over the time period reported in Table 1. The number of bins (ten) is the same
as in the SCE, except for GDP (eleven). While the share of participants using two bins
and the mean number of bins used are comparable to the SCE, there are some major
differences to the SCE: First, the SPF features a much smaller share of participants
who use a single bin. For example, this share is about ten percentage points lower for
the inflation variables. Second, the share of participants using at least one outer bin
is much smaller in the SPF. For example, this share is more than 20 percentage points
lower for the inflation variables.

Given its large sample size and the empirical patterns just reported, the SCE nec-
essarily contains some histograms with non-standard shapes that are hard to capture

2The inclusion (or exclusion) of interval limits is not specified by the SCE survey questions. For example,
the survey question leaves it unspecified whether an inflation rate of exactly 12% belongs to the last or
penultimate bin. Our choice of half-open intervals (with the exception of the (−2, 0) interval) are arbitrary
– as is any choice in that regard – but seem unlikely to be of empirical relevance.
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Share of respondents using Mean nr.
n one bin two bins outer bin(s) of bins

SCE

Average Home Price 71477 16.1 15.9 39.8 4.2
Inflation (one-year) 81483 12.4 17.1 39.3 4.4
Inflation (three-year) 81640 13.0 17.6 39.0 4.4
Personal Wage 54933 26.7 23.9 28.5 3.3

SPF

Inflation (GDP def.) 719 2.2 14.0 17.0 4.5
GDP 748 3.2 19.1 7.2 4.5
Inflation (CPI) 724 1.4 14.1 13.5 4.6
Inflation (PCE) 687 0.9 16.3 13.5 4.6
Unemployment 713 8.3 30.3 44.2 3.2

Table 1: Summary statistics on the number of bins used in the SCE (January
2014 to March 2019 waves) and SPF (2014:Q1 to 2019:Q1 waves); n denotes
the total number of responses. We exclude histograms that do not sum to one
(less than 0.3% of responses in both surveys).

by parametric distributions. Examples include positive probability on exactly two
non-adjacent bins, or substantial probability mass in one or both outer bins. These
features call for simple and robust methods that allow to quantify the uncertainty in
any possible histogram.

3 Existing uncertainty measures

Survey probabilities as in Figure 1 do not specify a full probability distribution since
the endpoints of the histogram’s support as well as the distribution within each bin
are unknown. Based on the raw probabilities alone, it is hence impossible to compute
each participant’s subjective mean or variance. Here we briefly review two methods
that use parametric assumptions in order to account for missing information.

3.1 Distribution fitting

Following earlier work by Dominitz and Manski (1997), Engelberg et al. (2009, EMW)
propose to fit a continuous distribution to the histogram probabilities. Their choice of
continuous distribution depends on the number of histogram bins being used: EMW
propose to fit a simple triangular distribution if the histogram is sparse, and to fit
a flexible generalized Beta distribution if the forecaster uses three or more bins. In
case the forecaster uses the leftmost bin (left limit of −∞) or rightmost bin (right
limit of +∞), EMW propose to treat the limits of the distribution’s support as a free
parameter. We provide formal details on the EMW method in Online Appendix A.
The method is used to derive uncertainty measures that are reported in official SCE
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publications such as Armantier et al. (2017), and are made available for download by
Federal Reserve Bank of New York (2020).

The EMW method provides a full analytical distribution from which any feature of
interest (such as subjective measures of location, spread, or tail risk) can be computed.
However, this wealth of information comes at a cost: First, the choice of a particular
parametric distribution is potentially restrictive, and seems hard to justify if the his-
togram is sparse. Second, the approach entails a discontinuity when moving from two
bins (approximated via a triangular distribution) to three bins (approximated via a
generalized beta distribution). Finally, practical implementation requires judgmental
choices pertaining, e.g., to parameter limits imposed in numerical optimization, or to
the handling of certain ‘undefined’ cases that are not covered by EMW’s original pro-
posal, because they did not occur in their SPF data. These choices may reasonably
be made differently by different authors. Full reproducibility hence requires careful
documentation of all implementation choices.

For the SPF data, the drawbacks of the EMW method arguably play a minor role
since both the share of sparse histograms and the share of ‘undefined’ cases is small.
This observation explains the widespread and successful use of the EMW method for
the SPF and similar data sets. By contrast, given the properties of the SCE discussed
above, the EMW method seems less well adapted to larger-scale consumer surveys.

3.2 Mass-at-midpoint method

The mass-at-midpoint (MAM) method (see Glas, 2019, and the references therein)
assumes that the subjective distribution is discrete, with point mass at {mk}k:pk>0,
where mk denotes the midpoint of bin k = 1, . . . ,K. Hence the method assumes point
mass at the subset of bins that receive nonzero probability. Under this assumption,
the subjective mean and standard deviation can easily be computed. An advantage
of this method is that it can be applied irrespectively of the number of bins used. In
particular, it avoids the discontinuity inherent in the EMW method. A disadvantage
of the MAM method arises whenever the participants uses one of the outer bins (i.e.,
whenever p1 > 0 or p10 > 0). In this case, the subjective mean and standard deviation
depend on the endpoints of the outer bins, which are not specified by the survey design
and for which assumptions seem hard to justify. This disadvantage is especially relevant
for the SCE, where about one third of the participants uses at least one outer bin (see
Appendix A for details). In the following, we therefore focus on the more widely used
EMW method as a benchmark for our proposed method.

4 A new approach to quantifying uncertainty in

survey histograms

4.1 General idea: Quantifying uncertainty via entropy

We treat each survey response as a vector of probabilities p :=
(
p1, p2, . . . , pK

)′
,

where pk denotes the subjective probability that the inflation rate is within the inter-
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val rk that defines the range of bin k. In practice, the intervals {rk}Kk=1 are disjoint
and their union is the real line. Hence the probabilities p form a subjective survey
histogram as in Figure 1.

Our proposed measure of uncertainty is based on the concept of entropy. Informally,
if the entropy of distribution p is large, then a forecaster with subjective distribution p
places a high probability on making large forecast errors. In that sense, p corresponds
to high uncertainty. Vice versa, under a low-entropy distribution p, large forecast er-
rors are unlikely, and hence low entropy corresponds to low uncertainty.

More formally, entropy relates to strictly proper scoring rules (Gneiting and Raftery,
2007). In economics, scoring rules are commonly used for eliciting beliefs in experi-
ments (Schotter and Trevino, 2014) and for evaluating probabilistic forecasts (e.g.
Boero et al., 2011). In a discrete setup, scoring rules are functions of the form S(p, k∗)
that measure the performance of the probabilistic forecast p if the outcome k∗ realizes.
The integer k∗ ∈ {1, 2, . . . ,K} indicates the histogram bin that contains the realiza-
tion. We consider specific choices of S below. For each of these choices, a smaller value
of S indicates a better forecast. A scoring rule S is called strictly proper if a forecaster
minimizes their expected score by stating what they think is the true probability dis-
tribution p (conditional on their information set); see Gneiting and Katzfuss (2014,
Section 3.1.1) for a formal definition. The function

ES(p) =

K∑
k=1

pk S(p, k)

is called the entropy function associated with the scoring rule S (e.g. Gneiting and
Raftery, 2007, Section 2.2). We propose to use this function in order to measure the
subjective uncertainty in a probabilistic survey forecast p.

4.2 Expected Ranked Probability Score (ERPS)

As our preferred choice of scoring rule S, we consider the ranked probability score
(RPS; Epstein, 1969):

RPS(p, k∗) =

⎧⎨
⎩
∑K

k=1(1− Pk)
2 if k∗ = 1∑k∗−1

k=1 (Pk)
2 +

∑K
k=k∗(1− Pk)

2 if k∗ ∈ {2, 3, . . . ,K},

where Pk =
∑k

j=1 pj is the cumulative probability of the first k bins. As its name
suggests, the RPS is designed for ranked categorical variables. That is, the RPS treats
the realizing bin k∗ ∈ {1, . . . ,K} as an ordinal variable, with k∗ = 1 representing a
smaller outcome than k∗ = 2. Thus, the RPS rewards forecasters who put much prob-
ability mass into bins that are equal or close to the realizing bin k∗. For example, if
a forecaster places unit probability mass on the first bin, then k∗ = 2 yields a lower
(i.e., better) RPS than k∗ = 3. Boero et al. (2011) pervasively argue that this feature
of the RPS is well in line with survey histograms, and propose to use it for evaluating
the histograms’ predictive accuracy.
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The entropy function of the RPS is given by

ERPS(p) =

K∑
k=1

pk RPS(p, k)

=
K∑
k=1

Pk(1− Pk). (1)

The latter equation, which is our proposed uncertainty measure, is trivial to compute
from the histogram probabilities.

Since it attaches only an ordinal but not a numerical interpretation to the bins,
the ERPS at (1) does not depend on the bins’ outcome ranges or the (unknown)
distribution of probability mass within each bin. The ordinal interpretation hence
renders parametric assumptions obsolete, and explains the simplicity and robustness of
the ERPS. A drawback of the ordinal interpretation is that the ERPS is not comparable
across different bin definitions, such as design A involving ten bins of length one and
design B involving five bins of length two. This concern may be relevant if the bin
definitions must be adapted over time in order to account for changes in the distribution
of the predictand. Such redefinitions occurred for the SPF which started in 1968 (see
Federal Reserve Bank of Philadelphia, 2020). The concern seems largely irrelevant for
the SCE, where the bins cover a very wide range of outcome values (see Section 2).
Hence redefinitions have not occurred until now, and seem unlikely in the future.

4.3 Comparison to other entropy-based measures

Here we relate the ERPS to entropy functions for two other popular scoring rules. The
logarithmic score (LS; Good, 1952) and Brier score (BS; Brier, 1950) are given by

LS(p, k∗) = − log pk∗

BS(p, k∗) =

K∑
k=1

(Ik=k∗ − pk)
2,

where Ik=k∗ is an indicator function that equals one if k = k∗, and equals zero otherwise.
Their respective entropy functions are given by

ELS(p) = −
K∑
k=1

pk log pk.

EBS(p) =

K∑
k=1

pk(1− pk).

The ELS was famously developed by Shannon (1948) and is typically called ‘Shannon
Entropy’. In economics, it plays a key role in the theory of rational inattention (Sims,
2003). The EBS is much less widely used, with the interesting exception of López-
Menéndez and Pérez-Suárez (2019) who quantify uncertainty in (aggregate) tendency
surveys.
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The BS are LS are both designed for multinomial random variables, that is, the
outcome categories k∗ ∈ {1, . . . ,K} are viewed as interchangeable. Hence the EBS
and ELS are invariant to permutations of the histogram probabilities p1, . . . , pK . For
example, for a hypothetical three-bin histogram, the probabilities p

a
= (1/4, 1/2, 1/4)′

yield the same EBS as the probabilities p
b
= (1/2, 1/4, 1/4)′. This assessment seems

implausible, given that p
b
is obtained from p

a
by shifting probability mass from the

central bin to the more extreme leftmost bin. Under the ERPS, which utilizes an or-
dinal interpretation, p

b
is considered more uncertain than p

a
.

ELS and EBS are both maximized by the vector

p∗∗ = τ × (1/K),

where τ is a K × 1 vector of ones (see Shannon 1948 and López-Menéndez and Pérez-
Suárez 2019). Hence flat probabilities represent maximal uncertainty, as seems natural
in a multinomial setup. By contrast, we show in Online Appendix B that the maximal
ERPS is attained for the vector

p∗ =
(
1/2, 0, . . . , 0, 1/2

)′
that places probability one half on each of the two outer bins. The intuition for this
solution is that under p∗, it is certain that one of the two outer bins will materialize.
Both outcomes produce a large score RPS(p∗, k), since p∗ places no probability mass
on the neighboring bins.

5 Simulation study on sparse histograms

As we have argued, a key advantage of the ERPS over the EMW method is that the
former requires no case distinction when moving from a sparse histogram (using two
bins) to a histogram using three bins. We demonstrate the quantitative relevance of
this point in a simulation study based on the June 2013 to April 2019 waves of the
SCE. We focus on participants who use two adjacent bins, none of which is an outer
bin in the SCE’s histogram design shown in Section 2. We further require that the
histogram probabilities sum to one and exceed one percent, which is the magnitude of
the perturbation we consider. These selection criteria leave us with 13518 two-bin his-
tograms. For each of these histograms, we consider two simple perturbations: First, we
move one percentage point of probability mass from the left bin to its left neighboring
bin. For example, suppose that the original histogram allocates 50% probability to the
two bins [0, 2) and [2, 4). The perturbed histogram then places probability 1%, 49%
and 50% to the three bins [−2, 0), [0, 2) and [2, 4) respectively. Second, we apply an
analogous perturbation to the right histogram bin, such that the perturbed histogram
contains one percent of probability mass in a third bin located to the right of the orig-
inal histogram. We choose a perturbation size of one percentage point since it is the
smallest size that seems empirically plausible.

For each setup (no perturbation, left perturbation, and right perturbation), we con-
sider the ERPS as well as the standard deviation (EMW-SD) and interquartile range
(EMW-IQR) of the distribution produced via the EMW method. Given the small per-
turbation size, we contend that an uncertainty measure should be robust across the
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three setups. As a scale-free measure of robustness, we consider the rank correlation of
uncertainty across the three setups. For EMW-SD, the rank correlation between the
baseline setup and two perturbed versions is at 0.704 and 0.465 for left and right per-
turbation, respectively. The results for EMW-IQR are similar, with rank correlations
of 0.711 and 0.632. Given that these numbers are considerably smaller than one, both
EMW-SD and EMW-IQR are sensitive to small shifts of probability mass.

The reported correlations further indicate that the impact of right perturbation is
larger than the impact of left perturbation. This effect is due to the empirical pattern
that many of the two-bin histograms focus on the bins [2, 4) and [4, 8). According to
the SCE’s bin design shown in Section 2, the left neighbor of these bins is at [0, 2),
whereas the right neighbor is at [4, 8). Hence left perturbation expands the support of
the histogram by two units, whereas right perturbation expands the support by four
units. This asymmetry matters here since the Engelberg et al. (2009) algorithm adopts
the support of the histogram if only interior bins are used.

For ERPS, the impact of the perturbation can be described analytically. Let p
denote a two-bin histogram, and p̃

L
and p̃

R
its perturbed version with probability mass

shifted to the left and right neighboring bin. Let δ denote the size of the perturbation
(with δ = 0.01 in our simulation study). Then Equation (1) yields that

ERPS(p̃
L
) = ERPS(p̃

R
) = ERPS(p) + δ (1− δ),

i.e. both perturbations lead to an additive increase in ERPS by δ (1 − δ). Hence
perturbation affects all histograms in exactly the same way, leading to rank correlations
of one which demonstrate the robustness of the ERPS.

6 Empirical comparisons

We next provide a brief empirical comparison between the ERPS and the EMW
method. We focus on the EMW-SD variant; the results based on EMW-IQR are
qualitatively identical and are hence omitted for brevity.

In order to summarize the similarity of the ERPS and the EMW method for the
SCE data, we compute the rank correlation of ERPS and EMW-SD, separately for each
survey wave and for each of the four probability variables (inflation at two horizons,
house prices, and personal earnings). The resulting correlation coefficients range from
0.871 to 0.951, indicating fairly close overall correspondence between the two uncer-
tainty measures. Hence, the ERPS captures uncertainty in a similar way as the EMW
method.

We next analyze whether respondents who express high uncertainty about inflation
also express high uncertainty about house prices and their personal earnings. To this
end, Figure 2 plots the rank correlation coefficient of uncertainty across variables, based
on either ERPS or EMW-SD. At each date, we consider the average rank correlation
over six pairs of probability variables. As shown by the figure, the ERPS produces
higher correlations in each sample period. The same pattern holds for each of the
six pairwise coefficients (see Figure 1 in the Online Appendix). There is hence clear
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Figure 2: Average pairwise rank correlation of uncertainty across four variables (inflation at
two different horizons, house prices, personal earnings).

evidence that the ERPS is more consistent across variables than the EMW method.
In the absence of a ‘ground truth’ measure of uncertainty, we cannot tell whether this
feature of the ERPS is desirable. However, these findings do point to an interesting
and robust difference between both measures.

We further compare the persistence of uncertainty as measured by EMW versus
ERPS. We measure persistence by the rank correlation of uncertainty in two subse-
quent SCE waves, for the subset of participants who are present in both waves. In
principle, small rank correlation may indicate a genuine shift in relative uncertainty
from one month to the next (e.g., Anne is more uncertain than Bob in January, whereas
Bob is more uncertain than Anne in February). Alternatively, small rank correlation
may simply reflect noise in the uncertainty measure.

Figure 3 presents results on the persistence of uncertainty, as measured by ERPS
versus EMW-SD. For personal earnings, the persistence of ERPS and EMW-SD is
similar. Genuine shifts in relative uncertainty seem particularly plausible for this vari-
able since it is individual-specific and hence prone to idiosyncratic information updates
(such as Anne signing a new labor contract in February). For house prices and inflation,
the rank correlation for ERPS (yellow line) exceeds the rank correlation for EMW-SD
(purple line) in the clear majority of time periods (100 % of time periods for house
prices, 91.4% and 95.7% for inflation). Similar to the findings across variables, and
reflecting a broader theme in this paper, this indicates that the ERPS is less sensitive
to small changes in the raw probabilities p.

7 Discussion

This paper introduces the ERPS, a new measure of uncertainty in probabilistic survey
expectations. The ERPS is based on an ordinal interpretation of the survey outcome
categories which obviates any parametric assumptions and explains its simplicity and
robustness. The Engelberg et al. (2009, EMW) method, which is the current standard
for quantifying uncertainty in economic surveys, instead uses a numerical interpreta-
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Figure 3: Rank correlation of subjective uncertainty over two subsequent survey months,
based on participants who are present in both months.
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tion of outcome categories. The numerical interpretation is informationally more de-
manding and requires the researcher to make parametric assumptions about unknown
aspects of the histogram. In return, it provides a full picture of subjective uncertainty.

We think that a user’s choice between the ERPS and the EMW method should de-
pend on the signal-to-noise ratio in the subjective probability data. If this ratio is high,
then the EMW method – which is more sensitive to small changes in the probabilities –
seems more appropriate. Examples of this situation include average histograms across
time or across socio-demographic groups (which may be based on hundreds of individ-
ual responses), and perhaps probability assessments by individual expert forecasters.
By contrast, the ERPS seems preferable in the context of individual-level probabilities
by consumers, such as the ones covered by the SCE. This type of data is an innovative
source for monitoring the general public’s inflation expectations, and similar surveys
have recently been started by the Bank of Canada and the Bundesbank. In Online
Appendix D, we illustrate how the ERPS can be related to the socio-demographic in-
formation available in the SCE.

While we have focused on measuring subjective uncertainty by itself, an interesting
related question is whether subjective uncertainty lines up with measures of realized
uncertainty based on expectation errors. This comparison is of economic relevance
since over– or underestimating objective uncertainty has possibly severe implications
for decision making (see e.g. Ben-David et al., 2013). In Online Appendix E, we
demonstrate that the ERPS can usefully be applied in this context as well.
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This online appendix is structured as follows: Section A formally describes the Engelberg
et al. (2009, EMW) method. Section B proves a claim made in Section 4.3 of the paper.
Sections C and D provide additional empirical results. Section E describes a framework for
comparing subjective and objective uncertainty based on the ERPS.

A Details on the EMW method

Here we provide details related to the informal discussion in Section 3.1 of the paper.

Case A: Forecaster uses one or two bins

Following Engelberg et al. (2009, EMW), we construct isosceles triangles that are completely
characterized by their support which we denote by [a, b]. The mode of the distribution is
located at c = (a+ b)/2.

In case a forecaster uses only one bin, we use a triangular distribution with support equal
to the support of the bin used. This approach, which is recommended in EMW’s Section
4.1.1, differs from the SCE, which assumes a uniform distribution over the support of the
bin (Armantier et al., 2017, Footnote 28).

To discuss the two-bin case, suppose that a forecaster uses two adjacent bins, [l,m) and
[m, r), with l < m < r, probability mass α in the left bin [l,m), and probability mass (1−α)
in the right bin [m, r).

If α < 1/2, we set b = r and

a = m− (r −m) (α +
√
2α)

2− α
.

Hence the triangular distribution satisfies T ([a,m)) = α and T ([m, r)) = 1 − α, where
the notation T (I) indicates the probability mass assigned to the interval I. In that sense,

∗Financial support from the German Research Foundation (DFG) via grant KR 5214/1-1 is gratefully
acknowledged.
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the triangular distribution matches the bin [m, r) containing more probability mass. As
α → 1/2, a → m − (r − m), such that the fitted triangle is symmetric around m, and the
triangle’s base length is 2 (r −m).

If α ≥ 1/2, we set a = l and

b = m+
(m− l)

(
1− α +

√
2 (1− α)

)

1 + α
.

Hence it holds that T ([l,m)) = α and T ([m, b)) = 1 − α, i.e. the triangular distribution
matches the bin [l,m) containing more probability mass. For α = 1/2, the fitted triangle is
symmetric around m, with base length equal to 2 (m− l).

There are two scenarios that are not covered by the preceding description:
• The forecaster uses two non-adjacent bins such as [0, 2) and [4, 8).
• The forecaster uses one or two bins, including one of the outer bins (i.e., p1 > 0 or
pK > 0).

The EMW method does not prescribe a solution for the former scenario. In the latter
scenario, any solution would seem to depend on an arbitrary choice of support limit. In our
simulation analysis (Section 5 of the paper), we hence drop observations from either of the
two scenarios in order not to distort our findings on the EMW method.

Case B: Forecaster uses three or more bins

If the forecaster uses three or more bins, EMW propose to fit a generalized Beta distribution
given by

FgBeta(x; a, b, l, r) =

⎧⎪⎨
⎪⎩
0 x ≤ l,

1
B(a,b)

∫ x

l
(u−l)a−1(r−u)b−1

(r−l)a+b−1 du l < x ≤ r,

1 x > r,

(1)

B(a, b) =
Γ(a)Γ(b)

Γ(a+ b)
,

Γ(a) =

∫ ∞

0

ua−1 exp(−u) du.

Instead of the limits 0 and 1 of the regular Beta distribution, FgBeta entails flexible left and
right limits l, r ∈ R with l < r. The two shape parameters a, b ∈ R+ play the same role as
in regular Beta distributions. EMW impose the constraint that a > 1 and b > 1 in order to
obtain a unimodal shape, which seems plausible in the present context.

In order to fit the distribution at (1) to a vector of histogram probabilities p, EMW propose
to fix the limits l and r at the endpoints of the bins that are being used. If one or both of
the two outer bins are being used, the authors propose to treat the limits l and/or r as free
parameters to be estimated. That is, l is a free parameter if p1 > 0, and r is a free parameter
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if pK > 0, where K = 10 in the case of the SCE. Following Armantier et al. (2017, Appendix
C), we impose the constraint that l > −38 and that r < 38 when estimating l and/or r. We
further impose that l < −12 and r > 12, as is logically required by the SCE’s bin design.
The shape parameters a and b are estimated in either case. In the most general case where
l and r are both estimated, the fitting problem is thus given by

max
a > 1, b > 1,

−38 < l < −12,
12 < r < 38

K∑
k=1

[FgBeta(xk; a, b, l, r)− Pk]
2 ,

where xk is the right endpoint of the kth histogram bin, and Pk =
∑k

j=1 pj is the cumulative
probability of the first k bins.

B Maximal ERPS

Here we prove a claim made in Section 4.3 of the paper.

The ERPS of a distribution p is given by

ERPS(p) =
K∑
k=1

Pk(1− Pk)

In matrix notation, let p be theK×1 vector with probabilities pk, and P be the corresponding
vector of cumulative probabilities Pk. We have that P = C ′p, where C is a K × K upper
triangular matrix with all elements above the main diagonal equal to one, and all diagonal
elements equal to one. We can write

ERPS(p) = P ′(τ − P ) = p′Cτ − p′CC ′p,

where τ is a K×1 vector of ones. To find the maximand of the ERPS, we solve the following
problem:

arg maxp ERPS(p) such that p′τ = 1;

note that the constraint that probabilities be nonnegative need not be enforced explicitly.
Setting up the Langrangian and solving the resulting quadratic problem then shows that the
maximand is given by

p∗ =
(
1/2, 0, . . . , 0, 1/2

)′
;

note that the second-order condition for a maximum is satisfied since CC ′ is strictly positive
definite.

C Details on empirical comparisons

Here we provide additional details on Section 6 of the paper. In particular, Figure 1 presents
the rank correlation coefficient of uncertainty for six pairs of variables, separately for ERPS
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Figure 1: Rank correlation of subjective uncertainty for six pairs of variables.

versus EMW-SD. The figure shows that the correlation is higher for ERPS than for EMW-
SD, for each of the variable pairs and in each time period.

D Further empirical illustration

This section presents an empirical illustration of the ERPS as a measure of individual un-
certainty, in the spirit of Ben-David et al. (2019) who analyze uncertainty using the EMW
method. We consider respondents’ probabilistic forecasts about the inflation rate, change in
the average home price, and change in personal earnings, for the June 2013 to April 2019
waves of the SCE. All of these expectations are one year ahead and are taken from the
core module of the survey. Figure 2 plots the average ERPS across all respondents within
each wave. For comparability, it is based on respondents who provide expectations for all
variables. This implies in particular that it covers only participants who are employed since
earnings uncertainty is only available for these participants. Interestingly, respondents are
consistently more uncertain about the future development of the two macroeconomic out-
comes, as compared to uncertainty about personal earnings. The figure further shows that
average uncertainty about the three variables is fairly constant over time. This result can
perhaps be rationalized by the relatively long one-year horizon to be forecasted (such that
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conditioning information may be of limited subjective relevance), and by the short sample
period of the SCE we cover.
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Figure 2: Mean ERPS for each month and variable.

We next consider heterogeneity in subjective uncertainty. Following Federal Reserve Bank
of New York (2020), we distinguish respondents according to a number of demographic
and socioeconomic characteristics: Age, educational attainment, household income, as well
as financial literacy and numeracy skills. (The official SCE website by Federal Reserve
Bank of New York 2020 publishes graphical summaries of uncertainty for these demographic
groups. Regarding their age, survey participants are classified into three groups: ‘Under
40’, ‘40 to 60’ and ‘Over 60’ years. In terms of educational attainment, the SCE allows to
distinguish between respondents with no college education, some college education and a
fully accomplished college degree. Household income is reported in three categories: ‘Under
50k’, ‘50k to 100k’ and ‘Over 100k’. Finally, a measure of the respondents’ numeracy and
financial literacy is introduced, such that one can distinguish between respondents with
high and low literacy. Following a widely used approach, five questions in the survey aim to
evaluate respondents’ knowledge of concepts used in financial decision making such as interest
compounding, understanding of inflation and risk diversification. Respondents who give a
correct answer to four out of the five questions are categorized as having high numeracy and
financial literacy skills.) Figure 3 plots patterns in uncertainty by demographics, focusing on
inflation uncertainty for brevity. The figure indicates that younger, poorer, less educated and
less financially literate survey participants experience higher inflation uncertainty. This is
consistent with previous findings in the inflation expectations literature, which suggest that
the respective groups have shorter financial planning horizons, are more exposed to transitory
price shocks (Bruine de Bruin et al., 2010), and thus experience higher uncetrainty. The
differences across demographic and socioeconomic groups just reported are broadly similar
for inflation at a three-year horizon as well as for house prices and personal earnings at a
one-year horizon (not reported for brevity). Furthermore, our findings in Figures 2 and 3 are
qualitatively very similar to the ones reported by Federal Reserve Bank of New York (2020),
which are based on the EMW method.
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Figure 3: Mean ERPS across sociodemographic groups (inflation, one year ahead).

E Comparing subjective and objective

uncertainty

It is often relevant to ask whether a person’s subjective uncertainty is in line with an ob-
jective measure of uncertainty. In particular, miscalibrated probabilistic expectations (with
subjective uncertainty exceeding objective uncertainty or vice versa) may lead to suboptimal
decisions in a wide range of situations (see e.g. Ben-David et al., 2013, and the references
therein). In the macroeconomic literature, subjective and objective uncertainty are often
called ‘ex ante uncertainty’ and ‘ex post uncertainty’ (see e.g. Clements, 2014). This termi-
nology reflects the fact that subjective uncertainty is typically based on forecasts, whereas
objective uncertainty is based on subsequent realizations.

Following recent proposals by Clements (2014) and Galvao and Mitchell (2019), comparing
a forecaster’s ERPS to their RPS (on average across several time periods) yields a simple
and theoretically appealing comparison of ex ante and ex post uncertainty. (As detailed in
their Section 3.4, Galvao and Mitchell’s notion of uncertainty corresponds to the difference
between ex ante and ex post uncertainty. By contrast, we follow Jurado et al. 2015 and others
in measuring uncertainty via ex ante uncertainty.) We next provide a formal treatment
tailored to our setup. To this end, we consider a so-called prediction space setup (Gneiting
and Ranjan, 2013) that models the joint distribution of expectations and realizations. We
treat the K histogram probabilities p as a random vector, and denote the bin containing the
realization by the discrete random variable k∗ ∈ {1, . . . , K}. The sample space of interest, Ω,
consists of forecast-observation pairs (p,k∗). We omit time indexes for simplicity; to obtain
an intuition, subsequent realizations of (p,k∗) can be thought of as independent (whereas one
would expect contemporaneous dependence between p and k∗, of course). (It can be shown
that the methodology of comparing ERPS to RPS remains valid under serial dependence in
the forecast-observation tuples, as long as their joint process is strictly stationary. See Strähl
and Ziegel 2017 for a technical treatment of a prediction space under serial dependence.) As
in Ehm et al. (2016, Section 3.1), let Q be a probability measure on (A,Ω), where A is a
σ-field on Ω. The following result then provides a formal condition under which ex ante
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uncertainty and ex post uncertainty coincide in expectation.
Assumption 1. Assume that there is some information set F ⊆ A such that

Q(k∗ = k|F) = pk

holds almost surely for k = 1, . . . , K, where Q(k∗ = k|F) is the true conditional probability
that k∗ = k (conditional on the information set F), and pk is the kth element of p.

Proposition 1. Under Assumption 1, it holds that E(RPS(p, k∗)) = E(ERPS(p)).

Proof. We have that

E(RPS(p,k∗)) = E(E(RPS(p,k∗)|F))

= E(
K∑
k=1

pk RPS(p, k))

= E(ERPS(p)),

where the first equality follows from the law of iterated expectations, the second equality
follows from Assumption 1, and the final equality follows from the definition of ERPS.

Assumption 1 requires that the probability forecast p is correctly specified, in the sense
that there is some information set relative to which the forecast is optimal. Under this
assumption, Proposition 1 states that the RPS and ERPS of p coincide in expectation. As
a simple example (loosely following Gneiting et al., 2007, Table 1), let Y = X + ε, where
both variables on the right are independently standard normal. Suppose for simplicity that
there are only two outcome bins, r1 = (−∞, 0] and r2 = (0,∞). Consider forecaster A with
pA
1 = Φ(−X),pA

2 = 1 − Φ(−X) = Φ(X). For forecaster A, Assumption 1 is satisfied with
F = σ(X), the sigma algebra generated by X. In line with Proposition 1, it can be shown
that the expected RPS and expected ERPS of forecaster A are both equal to 1/6. (In the
notation of Proposition 1, it holds that E(RPS(pA, k∗)) = E(ERPS(pA)) = 1/6.) For a

second forecaster B with pB
1 = pB

2 = 0.5, Assumption 1 is satisfied with F = ∅, the empty
information set. The expected ERPS and expected RPS of forecaster B are both equal to
1/4, confirming the intuition that B’s forecast is less informative than A’s forecast.

We think that the ideas just sketched are a useful first step toward comparing subjective
and objective uncertainty based on the (E)RPS. That said, further questions need to be
addressed before applying the comparison to the SCE data, notably relating to the panel
structure of the data (with many cross-sectional units and relatively few time periods). We
leave these questions for future research.
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