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SHORT SUMMARY  

In people living with HIV who participate in the Swiss HIV Cohort Study, we observed state-

of-the-art performances in forecasting individual onsets of chronic kidney disease with 

different machine learning algorithms.   
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ABSTRACT  

Background: It is unclear whether data-driven machine learning models, which are trained 

on large epidemiological cohorts, may improve prediction of co-morbidities in people living 

with HIV. 

Methods: In this proof-of-concept study, we included people living with HIV of the 

prospective Swiss HIV Cohort Study with a first estimated glomerular filtration rate (eGFR) 

>60 ml/min/1.73 m2 after January 1, 2002. Our primary outcome was chronic kidney disease 

(CKD) ─ defined as confirmed decrease in eGFR ≤60 ml/min/1.73 m2 over three months 

apart. We split the cohort data into a training set (80%), validation set (10%), and test set 

(10%) ─ stratified for CKD status and follow-up length.  

Results: Of 12,761 eligible individuals (median baseline eGFR, 103 ml/min/1.73 m2), 1,192 

(9%) developed a CKD after a median of eight years. We used 64 static and 502 time-

changing variables: Across prediction horizons and algorithms and in contrast to expert-based 

standard models, most machine learning models achieved state-of-the-art predictive 

performances with areas under the receiver operating characteristic curve and precision recall 

curve ranging from 0.926 to 0.996 and from 0.631 to 0.956, respectively.  

Conclusions: In people living with HIV, we observed state-of-the-art performances in 

forecasting individual CKD onsets with different machine learning algorithms.  

 

Keywords: chronic kidney disease; digital epidemiology; HIV; machine learning; prediction.   
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INTRODUCTION  

With the advent of combined antiretroviral therapy, HIV-related morbidity and mortality 

have continuously decreased ─ with people living with HIV having nowadays, under optimal 

conditions, an almost identical life expectancy to the general population [1-4]. As HIV 

infection has become a chronic condition, accurate prediction of primarily non-HIV-related 

co-morbidities such as chronic kidney disease (CKD) have gained importance in the 

individualised care of people living with HIV [5].  

 

As the occurrence of CKD and of other non-HIV-related chronic conditions may be 

influenced by hundreds of potentially interacting, static and time-changing factors across the 

healthcare continuum, data-rich and well-curated HIV cohorts may offer ideal conditions to 

develop machine learning models and to validate their usefulness to optimise personalised 

prevention and treatment strategies in people living with HIV. Cohort-based machine 

learning is an evolving field in digital epidemiology, which has the potential to improve 

decision support and underlying prediction models [6, 7]. Previous prediction models of CKD 

and of other multifactorial conditions may be limited, as it is challenging to account for 

complex interactions and to analyse high-dimensional datasets (i.e. data collections with a 

multitude of variables) with standard regression models. Conversely, some machine learning 

prediction models have limited generalisability to other settings with intransparent 

predictions for single individuals [8].  

 

In the present proof-of-concept study conducted in people living with HIV, we aimed to 

evaluate different machine learning algorithms and modeling strategies for individual CKD 

prediction in order to exemplify whether machine learning models can be readily trained in a 
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high-dimensional cohort setting. The resulting machine learning prediction models of CKD 

onsets may become part of an integrated decision support tool for shared decision-making 

and personalisation of prevention and treatment strategies in people living with HIV. In a 

wider context, our investigation may be helpful for current large-scale cohorts to assess the 

feasability and challenges with cohort-based machine learning prediction. 

 

METHODS  

Swiss HIV Cohort Study 

The Swiss HIV Cohort Study (SHCS; www.shcs.ch) is a nationwide, prospective multicentre 

cohort study with semi-annual visits and blood collections ─ having enrolled >20,000 HIV-

infected adults who live in Switzerland [9]. The SHCS is representative of the HIV epidemic 

in Switzerland [9]. A standardised protocol is used in the SHCS for data collection: Socio-

demographic and clinical data are recorded at study entry and various laboratory tests are 

routinely performed at registration. At each follow-up visit, extensive laboratory, clinical and 

treatment information is recorded. Additional interim laboratory and clinical evaluations are 

recorded, if available. The SHCS is registered on the longitudinal study platform of the Swiss 

National Science Foundation (www.snf.ch/en/funding/programmes/longitudinal-studies).  

 

For the training of pragmatic and individualised machine learning models, most SHCS 

variables have been used, but potentially identifying variables (including living/working 

situations), information on sexual behaviour, variables recorded only within a short period, 

genetic/-omics data, and some metadata (e.g. name of study nurse) were omitted as defined a 

priori in the study group and as discussed with a national representative of people living with 

HIV. Where applicable, we followed ‘The Strengthening the Reporting of Observational 
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Studies in Epidemiology’ and the ‘Transparent Reporting of a Multivariable Prediction 

Model for Individual Prognosis Or Diagnosis’ statement when reporting our study results [10, 

11]; furthermore, we used the reporting criteria developed by Luo et al. (2016) [12].  

 

Study population and definitions 

After January 1, 2002, when calibrated creatinine measurements were incorporated in the 

SHCS, we included HIV-infected individuals aged ≥18 years with a baseline estimated 

glomerular filtration rate (eGFR) >60 ml/min/1.73 m2 ─ independent of antiretroviral 

treatment regimens/status ─ and at least three calibrated serum creatinine measurements 

before October 10, 2018. Individuals with a baseline eGFR ≤60 ml/min/1.73 m2, less than 

three creatinine measurements, and/or less than three months of follow-up were excluded.  

 

We defined the baseline as the first creatinine measurement after January 1, 2002. We 

followed individuals from baseline until occurrence of CKD or the last recorded creatinine 

measurement, whichever came first. However, we used horizons of three to twelve months 

for machine learning prediction of CKD onset. 

 

We defined CKD, our a priori primary outcome, as a confirmed (over three months apart) 

decrease in eGFR ≤60 ml/min/1.73 m2, in line with the ‘Kidney Diseases ─ Improving 

Global Outcomes’ algorithm and previous large-scale investigations on CKD in people living 

with HIV [5, 13]. As a measure of kidney function, we calculated the eGFR using the well-

established ‘Chronic Kidney Disease Epidemiology Collaboration’ equation, which had been 

validated extensively in people living with HIV [14-17].  
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All participants in the SHCS provided informed consent and the study was approved by the 

ethical committees of the respective participating centers (EKNZ project No. 2017─02252). 

We report deviations from the study protocol in the appendix (page 3).  

 

Predictive modeling  

We trained a set of data-driven machine learning models (full models) to predict CKD events 

within prespecified prediction horizons ─ representing a classification problem, which relied 

on both static and irregularly sampled time and event series data. We applied the following 

five machine learning algorithms for CKD prediction with single patient visits as unit of 

observation and parameter tuning (selection) on the validation set:  

 

(i) Elastic net is a regularised, linear logistic regression method that includes both the lasso 

(L1) and the ridge (L2) penalty via a linear combination [18]. It optimises the following 

objective: 

max
𝛽,𝜆,𝜈

log∑ log𝑝(𝑦𝑖|𝑥𝑖, β𝑖)

𝑁

𝑖=1

+ λ||𝛃||
2
+ ν||𝜷||

1
 

where {(𝑥1, 𝑦1), (𝑥3, 𝑦2), … , (𝑥𝑁, 𝑦𝑁)} is the training dataset, and ,  and  are the model 

parameters. 

 

(ii) Random forest models [19] average a collection of decorrelated classification or 

regression trees, in which a prespecified number of trees are fitted ─ each on a separate 

bootstrap sample drawn with replacement from the training data. We describe the details of 

the algorithm in appendix table 1. 
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(iii) Gradient boosting machine [20] is an ensemble approach that iteratively adds simple 

models to the ensemble such that in each iteration a new model is trained with respect to the 

updated error of the ensemble learned in the previous iteration. We describe the details of the 

respective training algorithm in appendix table 2. 

 

(iv) Multilayer perceptron [21] is a non-linear machine learning approach ─ representing a 

feedforward neural network with at least three fully connected layers. We used the rectified 

linear unit: 

𝑓(𝑥) = max(0, 𝑥) as activation function.  

 

(v) Recurrent neural networks (RNNs) are artificial neural networks that use a directed graph 

to model the connections between the nodes and are thus directly applicable to temporal 

sequence data. We used the ‘Long Short Term Memory’ (LSTM) architecture [22]. We 

describe the details of the respective training algorithm in appendix table 3.  

 

For comparison with data-driven machine learning models, we have manually built logistic 

regression models (short models) for the different prediction horizons – in analogy to the 

well-established full risk score model by Mocroft et al. for prediction of CKD in people 

living with HIV.13 We used the following predictors: HIV exposure through intravenous drug 

use (yes, no, or unknown), hepatitis C coinfection (yes or no), birth year, estimated 

glomerular filtration rate until day of prediction (normalized scale; modelled as described for 

the data-driven machine learning models), sex (male or female), CD4 count until day of 
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11 

prediction (normalized scale; modelled as described for the data-driven machine learning 

models), hypertension (yes, no, or unknown), prior cardiovascular diseases (yes or no), and 

diabetes mellitus (yes or no). Our manually built logistic regression models use the last two 

most recent measurements of the considered variables along with the summary statistics of all 

their previous measurements. 

 

Dataset representation 

To train our machine learning models, we extracted the anonymised study data from the 

SHCS main database ─ comprising a vast collection of static and time-changing (dynamic) 

variables, which were often irregularly measured as part of the clinical routine. The RNN-

based methods process sequences of inputs and can thus use the visit sequence directly. For 

the remaining machine learning methods, the input information for each individual is a 

concatenation of the information from the two last (most recent) hospital visits and the 

corresponding summary statistics (mean, median, max, standard deviation) from all previous 

visits. Note that the visit sequence for each patient is derived from the considered observation 

period determined by the target prediction horizon and the last (most recent) visits refer to 

these derived sequences. We describe the detailed data representation and missing value 

imputation strategy in the appendix (page 4).  
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Model evaluation  

To evaluate the performance of the different machine learning approaches and models, we 

split all study data into three subsets, namely a training set, a validation set and a test set. We 

created the validation and test sets by randomly sampling (without replacement) 10% of the 

study population. The sampling was stratified with respect to the follow-up length and CKD 

status, i.e. 10% of individuals were at first randomly sampled from the group of individuals 

that have developed CKD and then 10% were randomly sampled from the group of the 

individuals that did not develop CKD. The remaining 80% of the individuals comprised the 

training set.  

 

We applied each of the described machine learning methods to predict CKD events as a set of 

adjusted hyperparameters to deliver accurate predictions on unseen data. We performed the 

model selection/hyperparameter tuning process on the validation set. Finally, we evaluated 

the predictive performance of the best-performing model for each considered approach on the 

test set (reported in the results section). We considered four different evaluation scenarios, 

each with a different prediction horizon, namely 90, 180, 270, and 365 days. The prediction 

horizon specifies how many days in advance we aimed to predict the occurrence of CKD 

where the time of diagnosis is determined by the second eGFR measurement of the CKD 

definition used. 
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Performance measures 

Due to the large CKD imbalance in our dataset (i.e. most individuals did not develop CKD), 

the classification accuracy was not suitable to measure the models’ performance. Therefore, 

we calculated five well-established measures for the class imbalance scenario; namely, the F-

score, precision (i.e. positive predictive value), recall (i.e. sensitivity), area under the receiver 

operating characteristic curve (ROC-AUC), and area under the precision recall curve (PR-

AUC). The precision, recall and F-score are defined as follows: 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
TP

TP + FP
 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

𝐹 − 𝑠𝑐𝑜𝑟𝑒 =
2 ∙ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

 

where TP denotes the true positives, FP denotes the false positives, FN denotes the false 

negatives and positives refer to the minority class (in our case individuals with CKD onset).  

 

The precision recall curve is a plot of the recall versus the precision for all possible decision 

thresholds. As the precision and recall focus only on the correct prediction of the minority 

class (i.e. CKD), the F-Score and the PR-AUC reflect the model’s prediction quality for CKD 

events. The receiver operating characteristic curve is a widely used plot of the false positive 

rate (the proportion of false positives out of all negatives) versus the true positive rate (the 

proportion of true positives out of all positives) for all possible decision thresholds. The 

ROC-AUC thus illustrates the ranking ability in binary classification: A ROC-AUC of, for 

instance, 0.80 indicates that 80% of the predictions are correctly classified (for pairs of 
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individuals with and without the endpoint). For model selection, we used the F-score for the 

RNN-based approaches and the log loss for the remaining approaches.  

 

Due to the time-consuming model selection process, we performed all experiments and 

computed all relevant evaluation metrics for one training, validation and test split. We believe 

that our results reflect the predictive quality of the considered machine learning models, as 

our test set was fairly large.    

 

RESULTS 

Within the study period, 12,761 individuals were included in the final analysis ─ with 10,209 

(80%), 1,276 (10%), and 1,276 (10%) of participants’ prospectively collected cohort records 

contributing to the machine learning model training, validation, and test sets, respectively 

(figure 1). We describe the main characteristics of the study population in table 1: Overall, 

1,192 of 12,761 (9%) individuals developed a CKD within the study period; the median 

follow-up in individuals with and without CKD was 8 years (interquartile range [IQR], 4 to 

12 years) and 9 years (IQR, 4 to 15 years), respectively.  

 

We describe the eGFR distribution of individuals with and without CKD in figure 2: At 

baseline, eGFR distributions were partly overlapping between individuals with and without a 

subsequent CKD ─ with increased eGFRs of individuals without subsequent CKD onset 

across prediction horizons. For individuals with and without subsequent CKD, the overlap in 

eGFR distributions increased over longer prediction horizons. Overall, at day of prediction, 

the frequency of subsequent eGFR measurements within 365 days was slightly increased for 
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individuals with a decreased eGFR of ≤60 ml/min/1.73 m2 compared to individuals with 

eGFRs >60 ml/min/1.73 m2 (median, 1.8 measurements per month; IQR, 1.0 to 2.5; versus; 

median, 1.5 measurements per month; IQR, 0.7 to 2.3).  

 

We used 64 static and 502 dynamic variables for machine learning model development (full 

models) ─ including 28 demographic variables, 159 variables pertaining to treatment 

information, 93 laboratory variables, and 286 clinical variables: Across prediction horizons 

and machine learning algorithms, most models achieved similar predictive performances with 

ROC-AUCs and PR-AUCs ranging from 0.926 to 0.996 (i.e. 92.6% to 99.6% of predictions 

are correctly classified for pairs with and without CKD) and from 0.631 to 0.956, 

respectively (table 2). In regard to ROC-AUCs and PR-AUCs, the machine learning models’ 

classification performance can be considered as excellent and moderate to excellent, 

respectively: The PR-AUCs were lower than the corresponding ROC-AUCs, as CKD events 

were relatively rare. For comparison with the full machine learning models, we have 

manually built logistic regression models (short models) based on well-established predictors 

(table 2): In most cases, these short models had a worse predictive performance than the full 

machine learning models for CKD prediction.  

 

For illustration purposes, we describe in figure 3 the variable importance of the highest 

scoring predictors for the gradient boosting model (prediction horizon, 180 days): Overall, 

the eGFR information was the most important marker for CKD prediction within 180 days. 

Across prediction horizons, we describe the gradient boosting models’ output and individual 

key predictors for three complex cases (table 3): Information on predicted outcome 
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probabilities and the individual variable importance can be obtained for all applied machine 

learning algorithms to increase the interpretability/transparency of machine learning models 

and to potentially personalise prevention and treatment decisions.    

 

The preparation and structuring of our datasets for machine learning training required one-

month full-time work. The RNN-based model selection procedure was computing-intensive 

and required 20 to 30 hours on a high-performance computing cluster. The corresponding 

computing time for model selection among the remaining non-linear approaches was in the 

order of one to two hours each. The final model training was fast for all machine learning 

methods except for the RNN-based methods, which required approximately 30 minutes. 

Obtaining individual predictions with a trained model was fast (couple of minutes at most) 

for all machine learning methods.  

 

 

DISCUSSION  

In this large cohort study, we have developed pragmatic machine learning models to predict 

CKD onset and derive CKD development probabilities at the point of care in single 

individuals living with HIV. The respective machine learning models had a rather high 

predictive performance despite using prediction horizons of three to twelve months, which 

may decrease the precision (i.e. positive predictive value) for CKD predictions. We measured 

our machine learning models’ predictive power by a set of well-established metrics to 

improve the comparability across models and studies. In contrast to previous studies, we have 
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included a multitude of static and dynamic factors in our prediction models (data-driven 

machine learning modeling), which resulted mostly in improved performances for CKD 

prediction compared to manually built regression models based on a few predictor variables 

(table 2) [13, 23]. Our proof-of-concept study provides a “reality-check” of the feasability of 

machine learning prediction studies nested within large epidemiological cohorts.   

 

To the best of our knowledge, this is the first study, in which different machine learning 

models have been developed and internally validated in people living with HIV for 

individualised CKD prediction. Previous studies have developed standard regression-based 

models and scores (e.g. by use of Poisson regression) for long-term CKD prediction, which 

had a good discrimination in external validation [5, 13, 23, 24]. For instance, as part of the 

‘Data Collection on Adverse Events of Anti-HIV Drugs’ study, a full and short risk score 

were developed to predict CKD over 5 years (but not for shorter prediction horizons) ─ with 

the short risk score demonstrating a relatively good predictive performance in external 

validation (ROC-AUC, 0.85) [13, 24]: These widely used full and short risk scores were 

developed in individuals living with HIV who were not previously exposed to a potentially 

nephrotoxic antiretroviral agent and included nine and six predictor variables, respectively. In 

contrast to these two CKD risk scores, we used a set of machine learning algorithms and 

short-term prediction horizons ─ accounting for individuals with any antiretroviral treatment 

status and incorporating a variety of static and time-changing variables. These various short-

term prediction horizons may be useful to differentiate acute and chronic kidney disease and 

to evaluate the dynamics and plausibility of machine learning predictions in single 

individuals over time. For individual CKD predictions, we achieved moderate to excellent 

discrimination with the given machine learning models. Therefore, our models can be 
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investigated as part of a subsequent implementation study to assess the clinical utility and 

validity of the present machine learning models ─ also for complex cases (table 3).  

 

Of interest, as illustrated in the variable importance plot of the gradient boosting model 

(figure 3), we observed a number of predictors, which are well-established risk factors for 

CKD (e.g. treatment with tenofovir disoproxil fumarate containing regimens [25]) as well as 

proxy variables and markers, which may not have a direct effect on CKD development (e.g. 

alkaline phosphatase). This observation highlights that predictive machine learning models 

may help to build novel causal hypotheses, which can be validated in subsequent causal 

studies. However, machine learning predictions and corresponding variable importance plots 

should not be used per se for causal inference, as it requires expert guidance and causal 

concepts.  

 

While developing machine learning models for CKD prediction, we faced two main 

challenges. Firstly, the preparation and structuring of the datasets for machine learning 

training was time-consuming, as real-world HIV cohort data include a multitude of static and 

dynamic data, which are often measured irregularly. Nonetheless, we believe that our data 

representation can be valuable for future machine learning investigations relying on (HIV) 

cohort databases. Secondly, the machine learning model training and selection was 

computing-intensive and required a high-performance computing cluster. 
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Our study has some limitations. Firstly, our machine learning predictions models for CKD 

may not be generalisable to other healthcare settings and populations; specifically, the coding 

practices and parameters may differ between HIV cohorts, which may complicate the 

application of the same machine learning prediction models across HIV cohorts. Therefore, 

we did not intend to externally validate our machine learning prediction models as part of this 

proof-of-concept study. Secondly, as we used short prediction horizons, target leakage (i.e. 

models include information that is not yet available at the time of prediction) can result in 

biased and often too optimistic predictive performances. To safeguard against target leakage, 

we included only variables that were known at the prediction day [26]. However, we cannot 

exclude the possibility that a few parameters in our machine learning models (e.g. laboratory 

values) would be reported to the treating physician and/or clinical decision support tool some 

minutes or hours after a potential CKD prediction. Thirdly, follow-up studies should consider 

including proteinuria in the CKD outcome definition to capture CKD at earlier stages. With 

the present models, we are unable to predict proteinuria. Fourthly, a higher eGFR threshold 

>60 ml/min/1.73m2 could have been chosen for patient selection to prevent immediate 

switches from the at risk status to the CKD status; however, this would have excluded a 

substantial proportion of individuals in the SHCS, which are at highest risk of eGFR 

deterioration.  Lastly, our machine learning model training did not include genetic data (or 

other –omics data), which might have further improved the machine learning CKD 

predictions but which are often unavailable for a majority of individuals [27].  
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CONCLUSION 

In people living with HIV, we observed state-of-the-art performances in forecasting 

individual CKD onsets with different machine learning algorithms: The underlying machine 

learning methods may help to advance personalised predictions of co-morbidities in various 

populations.   
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FIGURE LEGENDS  

Figure 1: Study population   

 

Abbreviations: SHCS, Swiss HIV Cohort Study.  

a Calculated using the ‘Chronic Kidney Disease Epidemiology Collaboration’ equation.  

b We defined the baseline as the first creatinine measurement after January 1, 2002.  
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Figure 2: Overall glomerular filtration rates in people living with HIV (N = 12,761 

individuals) 

 

Abbreviations: CKD, chronic kidney disease; GFR, glomerular filtration rate [ml/min/1.73 m2].  

Note: This figure refers to the glomerular filtration rate at the last visit of the visit sequences in 

the considered observation period that is used to make predictions for 90 days, 180 days, 270 

days, and 365 days ahead subsequently. The middle line and box indicate the median and 

interquartile range, respectively. Whiskers cover the 1.5 interquartile range.  
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Figure 3: Variable importance plot of the gradient boosting model; 180 days prediction 

horizon  

 

Abbreviations: GFR, glomerular filtration rate; SHAP, shapley additive explanation; std, 

standard deviation.  

 

Note: This hypothesis-generating plot is for illustration purposes only. Suffix ‘2’ signifies that 

information from the latest visit was used, whereas suffix ‘1’ signifies that information from the 

preceding (penultimate) visit was used, both specified with respect to the visit sequence in the 

considered observation period. The different statistics (the median, standard deviation for 

numeric and max for the nominal variables) were computed for all the remaining visits in the 

target observed hospital visit sequence. The SHAP values describes for each variable and 

individual the change in the expected model prediction when conditioning on that variable.   
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Table 1: Main characteristics of the study population  

 

Variable/category  All 

(N = 12,761) 

Individuals without CKDa 

(N = 11,569) 

Individuals with CKDa 

(N = 1,192) 

N / median IQR / %  N / median IQR / % N / median IQR / % 

Age in years Baseline 

End of follow-up 

39 33 to 46 48 33 to 45 38 40 to 57 

49 41 to 56 56 41 to 55 49 50 to 65 

Sex Male 9,156 72 8,319 72 837 70 

Female 3,605 28 3,250 28 355 30 

Ethnicity White 9,964 78 8,851 77 1,113 93 

Black 1,825 14 1,783 15 42 4 

Hispanic 444 3 433 4 11 1 

Asian 482 4 458 4 24 2 

Other/unknown 46 0.4 44 0.4 2 0.2 

Intravenous drug use prior to HIV diagnosis  Yes 2,287 18 2,047 18 240 20 

No 10,408 82 9,465 82 943 79 
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Unknown  66 0.005 57 0.005 9 0.008 

Ever smoked  Yes 7,906 62 7,158 62 748 63 

No 4,815 38 4,372 38 443 37 

Unknown 40 0.3 39 0.3 1 0.1 

Hypertension Yes 729 5.7 575 5.7 154 12.9 

No 11,963 94 10,928 94 1,035 86.8 

Unknown  69 0.5 66 0.5 3 0.3 

eGFRb 

(ml/min/1.73m2) 

Baseline 

End of study 

103 90 to 114 105 92 to 115 84 73 to 96 

90 75 to 104 93 80 to 106 55 50 to 58 

CD4 count (cells/µl) Baseline 407 252 to 597 410 255 to 600 366 228 to 561 

End of study 615 426 to 830 621 437 to 839 536 362 to 759 

Viral load  

(copies/ml) 

Baseline 883 0 to 35,173 1,040 0 to 36,000 174 0 to 23,459 

End of study 0 0 to 0 0 0 to 0 0 0 to 0 

Hepatitis B Positive 510 4 464 4 46 4 

 

Negative 8,208 64 7,563 65 645 54 

 

Unknown 4,043 32 3,542 30 501 42 
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Hepatitis C Positive 1,407 11 1,272 11 135 11 

 

Negative 10,022 79 9,142 79 880 74 

 

Unknown 1,332 10 1,155 10 177 15 

Ever exposed to TDF 

Baseline 

End of study 

2,259 

9,800 

18 

77 

2,100 

8,814 

18 

76 

159 

986 

13 

83 

Ever exposed to ATV/r 

Baseline 

End of study 

481 

3,629 

4 

28 

441 

3,135 

4 

27 

40 

494 

3 

41 

Ever exposed to LPV/r 

Baseline 

End of study 

1,783 

4,043 

14 

32 

1,577 

3,604 

14 

31 

206 

439 

17 

37 

Abbreviations: ATV/r, atazanavir/ritonavir; CD4, cluster of differentiation 4; CKD, chronic kidney disease; eGFR, estimated glomerular filtration rate; 

HIV, human immunodeficiency virus, IQR, interquartile range; LPV/r, lopinavir/ritonavir; TDF, tenofovir disoproxil fumarate.  

 

Note: All values are presented at baseline if not stated otherwise. We defined the baseline as the first creatinine measurement after January 1, 2002. Some 

potential risk factors are not presented, as these variables were not recorded during the entire study period.  

 

a Within the observation period.  

b Calculated using the ‘Chronic Kidney Disease Epidemiology Collaboration’ equation.   
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Table 2: Performance of models to predict chronic kidney disease across different prediction horizons (N = 1,276 individuals; test set)  

Algorithm  Visits used  Imputation 

method  

F1-

score  

Precisio

n 

Reca

ll 

ROC-

AUC 

PR-

AUC 

Prediction 90 days in advance 

Data-driven machine learning models (full 

models) 

 

─ Multilayer perceptron  Last 2 visitsa  Zero imputation 0.782 0.703 0.879 0.979 0.829 

Median forward  0.847 0.858 0.836 0.990 0.890 

─ Gradient boosting Last 2 visitsa Zero imputation 0.874 0.852 0.897 0.994 0.933 

Median forward  0.890 0.875 0.905 0.996 0.956 

─ Random forest Last 2 visitsa Zero imputation 0.583 0.942 0.422 0.995 0.943 

Median forward  0.836 0.918 0.767 0.994 0.931 

─ Elastic net  Last 2 visitsa Zero imputation 0.774 0.649 0.957 0.984 0.861 

Median forward  0.846 0.800 0.897 0.992 0.904 

─ Bidirectional recurrent neural network Full sequence; all previous 

visits  

Zero imputation 0.818 0.786 0.853 0.984 0.874 

Median forward  0.856 0.819 0.897 0.989 0.916 
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─ Bidirectional attention recurrent neural 

network 

Full sequence; all previous 

visits  

Zero imputation 

Median forward  

0.803 

0.852 

0.797 

0.812 

0.810 

0.897 

0.981 

0.986 

0.867 

0.901 

Manually built logistic regression model (short 

model)  

Last 2 visitsa None 0.807 0.689 0.974 0.990 0.881 

      

Prediction 180 days in advance 

Data-driven machine learning models (full 

models) 

 

─ Multilayer perceptron Last 2 visitsa Zero imputation 0.719 0.716 0.722 0.960 0.777 

Median forward  0.718 0.798 0.652 0.963 0.803 

─ Gradient boosting Last 2 visitsa Zero imputation 0.656 0.859 0.530 0.969 0.833 

Median forward  0.789 0.815 0.765 0.970 0.860 

─ Random forest Last 2 visitsa Zero imputation 0.115 >0.999 0.061 0.955 0.803 

Median forward  0.677 0.844 0.565 0.968 0.814 

─ Elastic net  Last 2 visitsa Zero imputation 0.698 0.629 0.783 0.952 0.768 

Median forward  0.767 0.777 0.757 0.959 0.787 

─ Bidirectional recurrent neural network Full sequence; all previous Zero imputation 0.722 0.732 0.713 0.965 0.759 
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visits  Median forward  0.718 0.706 0.730 0.956 0.730 

─ Bidirectional attention recurrent neural 

network 

Full sequence; all previous 

visits  

Zero imputation 

Median forward  

0.694 

0.721 

0.720 

0.712 

0.670 

0.730 

0.963 

0.945 

0.755 

0.792 

Manually built logistic regression model (short 

model)  

Last 2 visitsa None  

 

0.559 

 

0.405 

 

0.904 

 

0.934 

 

0.646 

 

Prediction 270 days in advance 

Data-driven machine learning models (full 

models) 

 

─ Multilayer perceptron Last 2 visitsa Zero imputation 0.678 0.634 0.728 0.948 0.666 

Median forward  0.660 0.753 0.588 0.952 0.735 

─ Gradient boosting Last 2 visitsa Zero imputation 0.290 0.833 0.175 0.944 0.702 

Median forward  0.689 0.745 0.640 0.957 0.728 

─ Random forest Last 2 visitsa Zero imputation 0.068 >0.999 0.035 0.928 0.661 

Median forward  0.578 0.788 0.456 0.955 0.739 

─ Elastic net  Last 2 visitsa Zero imputation 0.647 0.566 0.754 0.942 0.702 

Median forward 0.650 0.756 0.570 0.943 0.716 
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─ Bidirectional recurrent neural network Full sequence; all previous 

visits  

Zero imputation 0.605 0.581 0.632 0.938 0.649 

Median forward 0.661 0.632 0.693 0.940 0.737 

─ Bidirectional attention recurrent neural 

network 

Full sequence; all previous 

visits  

Zero imputation 0.664 0.630 0.702 0.931 0.678 

Median forward  0.664 0.699 0.632 0.934 0.693 

Manually built logistic regression model (short 

model)  

Last 2 visitsa None  

 

0.453 

 

0.310 

 

0.842 

 

0.893 

 

0.504 

 

Prediction 365 days in advance 

Data-driven machine learning models (full 

models) 

 

─ Multilayer perceptron Last 2 visitsa Zero imputation 0.641 0.691 0.598 0.950 0.699 

Median forward 0.628 0.776 0.527 0.950 0.722 

─ Gradient boosting Last 2 visitsa Zero imputation 0.220 0.933 0.125 0.945 0.700 

Median forward 0.619 0.663 0.580 0.941 0.710 

─ Random forest Last 2 visitsa Zero imputation 0.018 >0.999 0.009 0.941 0.705 

Median forward  0.527 0.800 0.393 0.952 0.725 

─ Elastic net  Last 2 visitsa Zero imputation 0.588 0.626 0.554 0.938 0.673 
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Median forward 0.512 0.808 0.375 0.935 0.681 

─ Bidirectional recurrent neural network  Full sequence; all previous 

visits  

Zero imputation 0.606 0.656 0.562 0.945 0.631 

Median forward  0.678 0.661 0.696 0.935 0.694 

─ Bidirectional attention recurrent neural 

network 

Full sequence; all previous 

visits  

Zero imputation 0.600 0.643 0.562 0.928 0.632 

Median forward  0.633 0.554 0.738 0.926 0.692 

Manually built logistic regression model (short 

model)  

Last 2 visitsa None  

 

0.423 

 

0.286 

 

0.812 

 

0.883 

 

0.468 

 

Abbreviations: ROC-AUC, area under the receiver operating characteristic curve; PR-AUC; area under the precision-recall curve.  

 

a And summary statistics from earlier visits during the target observation period, as detailed in the methods section.   
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Table 3: How would you decide? Predicted and observed chronic kidney disease outcomes among three complex cases across prediction horizons 

(gradient boosting model estimates for illustration purposes)  

Individual Predicted outcome (CKD probability) Observed outcome  Brief interpretation and key 

predictor for single individuals Prediction horizon Prediction horizon 

90 days 180 days 270 days 365 days 90 days 180 days 270 days 365 days 

1 No CKD  

(0.34) 

CKD  

(0.99) 

CKD  

(0.51) 

No CKD  

(0.01) 

CKD  

 

CKD  

 

CKD  

 

CKD  

 

Platelet counts and various 

hematological parameters were 

strong predictors for CKD in this 

individual; however, this did not 

prevent false negative predictions at 

90 and 365 days. There were dozens 

of moderate predictors of unclear 

clinical relevance: These factors have 

cancelled out at 365 days, as some 

were preventive and others suggested 

an incremental CKD risk. This 
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example highlights that a clinician 

should review every machine 

learning prediction.   

2 No CKD  

(0.18) 

No CKD  

(0.00) 

No CKD  

(0.00) 

No CKD  

(0.00) 

No CKD  

 

No CKD  

 

No CKD  

 

No CKD  

 

Absent cardiovascular risk factors 

(e.g. smoking) were strong predictors 

against CKD development. However, 

there were dozens of moderate 

predictors (potential preventive 

factors and risk factors) of unclear 

clinical relevance. The low CKD 

probability score across prediction 

horizons, together with a careful 

review of medical records, may be an 

indication for clinicians that CKD 

development is unlikely.  

3 No CKD  CKD  No CKD  No CKD  No CKD  No CKD  No CKD  No CKD  Cardiovascular risk factors (e.g. high 
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(0.28) (0.71) (0.00) (0.02)     systolic blood pressure) and alcohol 

binge drinking increased the 

predicted CKD probability 

substantially ─ resulting in a false 

positive prediction at 180 days; 

however, high preceding eGFR 

values were strong predictors against 

CKD across prediction horizons.  

Abbreviations: CKD, chronic kidney disease; eGFR, estimated glomerular filtration rate.   
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Figure 1 
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Figure 2 
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Figure 3 
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