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Abstract 

A renewed and growing interest in phenotypic drug screening approaches in the field of 

drug discovery is observed, as it has become apparent that target-oriented drug discovery 

assays have inherent limitations and cannot fulfil the urgent unmet medical need for novel 

drugs. The shortcomings of target-oriented drug screening assays are especially apparent in 

the field of antibiotic drug discovery, where target-based approaches largely failed to 

translate screening hits to clinically relevant drugs.  

In this thesis, a proteomics-based phenotypic drug screening approach using MALDI-TOF 

mass spectrometry was developed, which is able to detect sub-lethal stress in bacterial cells 

provoked by antibiotics. To achieve this, mass spectra of whole-cells exposed to known 

antibiotics at concentrations below the minimal inhibitory concentration (MIC) were used to 

extract relevant mass spectral peaks with a data-dependent and automated computational 

pipeline created in the MATLAB environment. Using the selected subset of mass spectral 

peaks, classification models were trained to recognize general mass spectral responses 

provoked by unknown drugs in the cellular proteome. Additionally, the classification models 

proved capable of identifying the mechanisms of action of unknown drugs. 

To establish and validate the best performing classification modeling procedure, four 

different feature selection algorithms and nine classification models were analyzed in detail 

using an Escherichia coli data set composed of over 900 spectra, involving 17 antibiotics with 

four different mechanisms of action, at concentrations ranging 1×MIC down to 1/32×MIC in a 

two-fold dilution series. Four different feature selection approaches were investigated to 

ensure the extraction of relevant mass spectral data in response to the different antibiotics 

for classification modeling. The selection approaches included (1) a random forest of 

decision trees, (2) sequential forward feature selection, and (3) sequential backward feature 

selection. Mass spectral peaks selected by two or all three of these feature selection 

approaches were combined into (4) an aggregated feature set. Classification models were 

trained for all combinations of nine model types and the four feature sets. In this thesis two 

classification problems were investigated. First, a binary classification problem, to 

differentiate between affected cells, and non-affected cells based on selected mass spectral 

peaks. Second, a multi-class model was trained to detect and distinguish between the 

different antibiotic mechanisms of action, a highly desired drug screening assay 

characteristic. The combination of these elements yielded 72 models, which were evaluated 

based on their overall classification accuracy. The overall classification accuracy was 

determined using internal 10-fold cross-validation and external validation, which was 

performed with a blind set of 20 drugs. The internal and external validation studies showed 

that the aggregated feature set in combination with a quadratic support vector machine-

based model (Q-SVM) resulted in the best classification performance. For the E. coli data 

set, this was represented by an overall accuracy of 0.92 for internal validation and an 
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accuracy of 0.95 for the external validation of the Q-SVM model. Classifying based on the 

mechanism of action of the antibiotics resulted in a classification accuracy of 0.67 for 

internal validation and 0.80 for external validation. Furthermore, it was shown that the peak 

selection method was able to identify relevant, known stress associated proteins within the 

aggregated feature sets of both the binary and the mechanism of action model.  

After the experimental workflow and the computational pipeline were established based on 

E. coli data, the method was applied to four different organisms (the Gram-positive 

bacterium Staphylococcus aureus, the fungi Saccharomyces cerevisiae and Candida albicans, 

and human HeLa cancer cell line) and different proteomic responses, to explore the 

versatility and transferability of the developed screening assay. The applicability of the 

method was demonstrated by the consistent performance of the classification models 

generated with the experimental and computational pipeline. This resulted in binary model 

accuracies between 0.92 and 0.97 for internal and 0.77 and 0.95 for external validation, 

depending on the assayed organism and data set complexity. For mechanism of action 

models, model accuracies ranged between 0.73 and 0.96 for internal and 0.66 and 0.93 for 

external validation. 

The application of the developed assay on different organisms with different drug stressors 

highlighted several advantageous characteristics of the developed MALDI-TOF MS screening 

approach. Both the binary and mechanism of action classification models of S. aureus 

correctly identified an antibiotic drug (fusidic acid) in the blind test set, which had a target 

binding activity that was not present in the training data set. This implicates the ability of 

the method to detect novel drugs within known global mechanism of action for which the 

model was trained. Moreover, external validation of S. cerevisiae showed that the binary 

classification model is able to detect antifungal drugs (tavaborole, an antifungal protein 

synthesis inhibitor) with a mechanism of action which was not present in the training data 

set. This is a highly desirable property of any phenotypic screening assay, as it shows that 

the assay allows for the identification of drugs with novel mechanisms of action. Lastly, the 

proteomic effect of different types of drugs on mammalian cells was explored by using the 

HeLa cancer cell line. It was shown that the presented proteomic profiling approach can 

easily detect several types of drug-induced stresses in HeLa cells, in particular 

corticosteroids and tubulin (de)polymerization inhibitors, but is less suitable for 

distinguishing other types of drug classes (neurotransmitter antagonists, statins, opioids). 

Additionally, the application of the assay on HeLa cells demonstrated the ability to detect 

different types of stresses, such as the cells’ proteomic response to UV exposure or heat 

shocks. These results pave the way for possible distinction between apoptosis and necrosis 

pathways in HeLa cells using the presented MALDI-TOF MS based method.  

To conclude, a high-throughput compatible, label free, MALDI-TOF mass spectrometry-

based screening assay is described in this thesis, which measures sub-lethal drug effects on 
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the cellular proteome in a phenotypic and pharmacological relevant setting. The method 

was found suitable for whole-cell screening of small libraries of drugs, and showed the 

ability to distinguish different types of stresses elicited on multiple types of cell cultures. The 

potential to find new, weakly active drugs within a known mechanism of action, as well as 

the ability to detect sub-lethal drug responses with new mechanisms of action for which the 

model was not trained, was demonstrated. The characteristic to identify novel mechanisms 

of action in a cell-based screen can be exploited to solve the most pressing issues in drug 

discovery today. In addition, mechanistic information of the drugs activity can be used as a 

starting point for further target elucidation or to prioritize drug screening hits. The studies 

performed in this thesis have resulted in a solid foundation for further research that expand 

the capabilities of the MALDI-TOF MS-based assay in a broad range of phenotypic profiling 

applications in the drug discovery field. 
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Zusammenfassung 

Aktuell ist ein erneutes und wachsendes Interesse an phänotypischen Screening-Ansätzen in 

der Medikamenten-Entdeckung zu beobachten, da deutlich wurde, dass Target-orientierte 

Wirkstoff-Entdeckungsassays inhärente Limitierungen haben und den dringenden 

medizinischen Bedarf an neuartigen Medikamenten nicht decken können. Die 

Einschränkungen von Target-orientierten Ansätzen treten vor allem im Bereich der 

Antibiotika-Entdeckung auf, in welchem Target-orientierte Screening-Treffer größtenteils 

nicht in klinisch relevante Wirkstoffe umgesetzt werden können. 

In dieser Arbeit wurde ein Proteomik-basierter phänotypischer Wirkstoff-Assay unter 

Verwendung von MALDI-TOF-Massenspektrometrie entwickelt, mit welchem Antibiotika-

induzierter subletaler Stress in Bakterienzellen spezifisch nachgewiesen werden kann. Dafür 

wurden Massenspektren von ganzen Zellen verwendet, die bekannten Antibiotika in 

Konzentrationen unterhalb der minimalen Hemmkonzentration (MHK) ausgesetzt waren. 

Relevante Massenspektralpeaks wurden mit einer datenabhängigen und automatisierten 

rechnergestützte Pipeline extrahiert, welche in der MATLAB-Umgebung erstellt wurde. Um 

allgemeine Änderungen in den Massenspektren, die durch unbekannte Arzneimittel im 

zellulären Proteom hervorgerufen wurden, zu erkennen, wurden unter Verwendung 

ausgewählter Untergruppen von Massenspektralpeaks Klassifizierungsmodelle trainiert. 

Zudem erwiesen sich die Klassifizierungsmodelle als geeignet, die Wirkmechanismen der 

unbekannten Arzneimittel zu identifizieren. 

Um das leistungsstärkste Klassifizierungsmodellierungsverfahren zu etablieren und zu 

validieren, wurden vier verschiedene Merkmalsauswahlalgorithmen und neun 

Klassifizierungsmodelle unter Verwendung eines Escherichia coli-Datensatzes aus über 900 

Spektren analysiert. Für die Behandlung der Bakterien wurden 17 Antibiotika mit vier 

verschiedenen Wirkmechanismen in Konzentrationen zwischen 1×MHK bis 1/32×MHK 

verwendet. Vier verschiedene Merkmalsselektionsverfahren wurden eruiert, um die 

Extraktion der relevanten Massenspektral-Daten in Anhängigkeit zu den verschiedenen 

Antibiotika für das Klassifizierungsmodell sicherzustellen. Die Auswahlansätze umfassten (1) 

eine randomisierte Struktur von Entscheidungsbäumen, (2) eine sequentielle Auswahl von 

Vorwärtsmerkmalen und (3) eine sequentielle Auswahl von Rückwärtsmerkmalen. 

Massenspektralpeaks, die durch zwei oder alle drei dieser Merkmalsauswahlansätze 

ausgewählt wurden, wurden zu einem aggregierten Merkmalssatz kombiniert (4). Für alle 

Kombinationen von neun Modelltypen und den vier Merkmalssätzen wurden 

Klassifizierungsmodelle trainiert. Zwei Klassifizierungsprobleme wurden in dieser Arbeit 

untersucht. Erstens wird ein binäres Klassifizierungsproblem beschrieben, um basierend auf 

ausgewählten Massenspektralpeaks zwischen behandelten Zellen und nicht behandelten 

Zellen zu unterscheiden. Zweitens wurde ein Mehrklassenmodell trainiert, um die 

verschiedenen antibiotischen Wirkmechanismen zu erkennen und zu unterscheiden. Hierbei 
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handelt es sich um eine besonders wichtige Eigenschaft von Wirkstoff-Assays. Die 

Kombination dieser Elemente ergab 72 Modelle, die anhand ihrer 

Gesamtklassifizierungsgenauigkeit bewertet wurden. Die Gesamtklassifizierungsgenauigkeit 

wurde unter Verwendung einer internen 10-fachen Kreuzvalidierung und einer externen 

Validierung, für die ein Blindsatz von 20 Arzneimitteln vermessen wurde, bestimmt. Die 

internen und externen Validierungsstudien zeigten, dass der aggregierte Merkmalssatz in 

Kombination mit einem maschinenbasierten quadratischen Support-Vektor-Modell (Q-SVM) 

die beste Klassifizierungsleistung erbrachte. Für den E. coli-Datensatz wurde dies durch eine 

Gesamtgenauigkeit von 0,92 für die interne Validierung und eine Genauigkeit von 0,95 für 

die externe Validierung des Q-SVM-Modells verdeutlicht. Die Klassifizierung durch den 

Wirkmechanismus der Antibiotika ergab eine Klassifizierungsgenauigkeit von 0,67 für die 

interne Validierung und 0,80 für die externe Validierung. Weiterhin konnte gezeigt werden, 

dass die Peakauswahlmethode relevante, bekannte stressassoziierte Proteinpeaks in den 

aggregierten Merkmalssätzen sowohl des binären Modells als auch des 

Wirkmechanismusmodells identifizieren konnte. 

Im Anschluss an die Erstellung des experimentellen Arbeitsablaufs und der Rechenpipeline 

basierend auf E. coli-Daten, wurde die Methode auf vier verschiedene Organismen 

(Staphylococcus aureus, Saccharomyces cerevisiae, Candida albicans und humane HeLa-

Krebszelllinie) und verschiedene proteomische Reaktionen angewendet, um die 

Vielseitigkeit und Übertragbarkeit des entwickelten Assays zu untersuchen. Die 

Anwendbarkeit der Methode wurde durch die konsistente Leistung der mit den 

experimentellen und Rechenpipeline-generierten Klassifizierungsmodellen demonstriert. 

Dies führte im binären Modell zu Genauigkeiten zwischen 0,92 und 0,97 für die interne und 

0,77 und 0,95 für die externe Validierung, abhängig vom untersuchten Organismus und der 

Komplexität des Datensatzes. Für das Wirkmechanismus-Modell lagen die 

Modellgenauigkeiten zwischen 0,73 und 0,96 für die interne und zwischen 0,66 und 0,93 für 

die externe Validierung. 

 Die Anwendung des entwickelten Assays im Bezug auf verschiedene Organismen mit 

verschiedenen Arzneimittelstressoren hob mehrere vorteilhafte Eigenschaften des 

entwickelten MALDI-TOF-MS-Assays hervor. Sowohl das binäre als auch das 

Wirkmechanismus-Klassifizierungsmodell von S. aureus identifizierten ein Antibiotikum 

(Fusidinsäure) im Blindtest-Set korrekt, dessen Targetwirkung nicht im Trainingsdatensatz 

vorhanden war. Dies impliziert, dass es mithilfe dieser Methode möglich ist, neuartige 

Medikamente innerhalb eines bekannten globalen Wirkmechanismus nachzuweisen, für den 

die Modelle trainiert wurden. Darüber hinaus zeigte die externe Validierung von S. 

cerevisiae, dass das binäre Klassifizierungsmodell Antimykotika mit einem 

Wirkmechanismus nachweisen kann, der im Trainingsdatensatz nicht vorhanden war 

(Tavaborol, ein antimykotischer Inhibitor der Proteinbiosynthese). Diese Eigenschaft ist für 

phänotypische Assays sehr wichtig, da sie zeigt, dass der Assay die Identifizierung von 
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Wirkstoffen mit neuartigen Wirkmechanismen ermöglicht. Zuletzt wurde unter Verwendung 

von HeLa-Krebszellen die Wirkung verschiedener Arzneimittel auf das Proteom von 

Säugetierzellen untersucht. Es konnte gezeigt werden, dass der proteomische Ansatz 

verschiedene Arten von arzneimittelinduzierten Belastungen in HeLa-Zellen nachweisen 

kann. Insbesondere eignet sich der Assay zur Unterscheidung von Corticosteroiden und 

Tubulin-(De)polymerisationshemmstoffen, jedoch weniger zur Unterscheidung anderer 

Wirkstoffklassen (Neurotransmitter-Antagonisten, Statine, Opioide). Weiterhin zeigte der 

Assay mit HeLa-Zellen die Fähigkeit, verschiedene Arten von Belastungen für die Zellen zu 

erkennen wie z. B. die proteomische Reaktion der Zellen auf UV-Exposition oder 

Hitzeschocks. Diese Ergebnisse ebnen den Weg für eine mögliche Unterscheidung von 

Apoptose- und Nekrose-Reaktionen der HeLa-Zellen mittels der vorgestellten MALDI-TOF-

MS-Methode.  

Zusammenfassend wird in dieser Arbeit ein Hochdurchsatz-kompatibler, markierungsfreier 

MALDI-TOF-Massenspektrometrie-basierter Assay beschrieben, der subletale Wirkungen 

von Verbindungen auf das zelluläre Proteom in einem phänotypischen und pharmakologisch 

relevanten Umfeld misst. Das Verfahren erwies sich als geeignet für die Ganzzell-Testung 

kleiner Arzneimittelbibliotheken und zeigte die Fähigkeit, verschiedene Arten von Zellstress 

zu unterscheiden, die bei mehreren Zellkulturarten hervorgerufen wurde. Desweiteren 

wurde das Potenzial, neue und schwach aktive Wirkstoffe mit einem bekannten 

Wirkmechanismus zu finden, demonstriert. Zudem wurde gezeigt, dass der Assay in der 

Lage ist, subletale Wirkstoffreaktionen mit neuen Wirkmechanismen zu erkennen, für die 

das Modell nicht trainiert wurde. Die Eigenschaft, neuartige Wirkmechanismen in einem 

zellbasierten Screening zu identifizieren, kann genutzt werden, um die dringlichsten 

Probleme der aktuellen Wirkstoffforschung zu lösen. Darüber hinaus können 

mechanistische Informationen über die Wirkstoffwirkung als Ausgangspunkt für die weitere 

Targetaufklärung oder zur Priorisierung von Arzneimittelscreening-Hits verwendet werden. 

Die Ergebnisse, die in dieser Arbeit präsentiert werden, bilden ein solides Fundament für 

weitere Forschung, um die Anwendbarkeit des MALDI-MS basierten Assays auf ein breites 

Spektrum phänotypischer Anwendungen im Bereich der Wirkstoffentdeckung zu erweitern.  
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1 Introduction 

The current rise in antimicrobial resistance among bacteria and fungi endangers effective 

healthcare practice, and has severe, worldwide economic consequences [1]. The increase in 

antibiotics resistance is a complex problem, resulting from misuse of antibiotic drugs, [2] in 

combination with the absence of significant investment and progress in drug development 

pipelines  [1, 3]. As resistance has evolved against almost every antibiotic placed on the 

market, irrespective of antibiotic class or target [4], there is a growing need for new 

antibiotics and novel classes of antibiotics to treat resistant bacteria. The increase of (multi-) 

drug resistant organisms is associated with an increase in medical costs and mortality rates 

[5]. In Europe and the US alone, resistant bacterial infections are estimated to cause 50.000 

deaths annually [6]. According to conservative estimates, antimicrobial resistant infections 

(including fungal and viral infections) cause over 700.000 deaths annually worldwide. At the 

current rate, it is projected that this number will rise to over 10 million deaths annually by 

2050, as indicated in Figure 1. By then, the number of antimicrobial resistant deaths will 

surpass the combined current incidences of cancer and diabetes related deaths [5]. The rise 

in antimicrobial resistance is also pressing on modern health care systems. Without the 

availability of effective antibiotics, common surgical procedures, but also childbirth, could 

once again become life-threatening. Similarly, most clinical invasive fungal infections are 

caused by complications of surgery, or occur in people undergoing chemotherapy or 

otherwise immunocompromised people, such as those with HIV infection [7]. Moreover, the 

increase in antimicrobial resistance will account for 2.0-3.5% decrease in global gross 

domestic product by 2050 [5], equally damaging as the global financial crisis of 2008-2009 

[8]. 

 

 

Figure 1. Projected annual deaths attributed to antimicrobial resistance by the year 2050. 
Depicted are overall mortality numbers per continent, excluding Antarctica. Image adapted 
from [5].  
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To offer solutions for the pressing needs in the field of antibiotic and antifungal drug 

discovery, this thesis focusses on a new mass spectrometry-based screening technique that 

supports the identification of novel, weakly active drug compounds, while simultaneously 

providing information of the mechanism of action involved. For the establishment of such a 

screening technique, the mechanisms of action of existing antibiotics and antifungal drugs 

must be understood. In the first two sections of this introduction, the currently used 

antimicrobial pathways involved in bacterial and fungal infections will be presented, as drug 

resistant bacterial and fungal infections are among the most urgent issues threatening 

health care systems [5]. As the current drug discovery pipelines are failing to provide new 

antibiotics, it is paramount to lay out the information content and the limitations of existing 

screening techniques, in order to (partially) solve drug screening issues with a new 

approach. Therefore, a brief overview of past and current antibiotic drug screening 

approaches will be discussed. Subsequently, the analytical technique employed in this work, 

matrix assisted laser desorption ionization – time of flight (MALDI-TOF) mass spectrometry, 

will be described in more detail. The final section of the introduction will cover machine 

learning approaches, as the data complexity in combination with the throughput of the 

developed assay requires advanced computational analysis to establish a comprehensive 

and robust assay to detect weakly active drug hits and their respective mechanism of action.  

 

1.1 Antibacterial drugs 

The most important classes of antibiotics to treat bacterial infections include the β-lactams, 

aminoglycosides, tetracyclines, macrolides, fluoroquinolones, folate pathway synthesis 

inhibitors, and rifamycins [3]. Figure 2 depicts a schematic overview of the most important 

antibiotic targets engaged by these mentioned antibiotic drug classes.  

A well-known group of antibiotics, the β-lactams, disrupt the cell wall synthesis, shown in 

red in Figure 2. Among the β-lactams is probably the most famous antibiotic of all, penicillin, 

originally derived in 1928 from a Penicillium mold by Alexander Flemming [10]. The β-lactam 

drugs inhibit the assembly of bacterial peptidoglycan layer by binding to penicillin-binding 

proteins (PBPs) [11]. By inhibiting PBPs, peptidoglycan cross linkages required for proper cell 

wall synthesis cannot be created, which causes cell death. Another long-existing group of 

drugs are the sulfonamide drugs, originally developed in the early 1930s [12]. Sulfonamide 

drugs, together with the later developed trimethoprim-like drugs [13], are antimetabolite 

drugs, inhibiting crucial steps in the bacterial folate synthesis pathway (shown in yellow in 

Figure 2), thereby depleting the cell of essential building blocks for proper nucleic acid 

synthesis [14].   
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Figure 2. Simplified schematic of main antibiotic drug targets in bacterial cells and their 
corresponding classes of drugs. In green, the inhibition of DNA gyrase and topoisomerase II, 
disrupting DNA stability. Depicted in magenta is the inhibition of DNA-dependent RNA 
polymerase, inhibiting the production of RNA. In blue the ribosomal inhibitors, of which the 
most prominent classes of antibiotics bind to either the 50S or the 30S ribosomal subunit, 
thereby disrupting protein synthesis. In red are depicted cell wall synthesis inhibitors, 
inhibiting the cross-linking of the peptidoglycan layer. In yellow, antimetabolite drugs 
inhibiting crucial steps in the folate synthesis pathway. The sulfonamide drugs inhibit the 
dihydropteroate synthase enzyme, which converts para-aminobenzoic acid (PABA) to 
dihydropteroate, which in its turn is further converted to dihydrofolic acid. (DHFA) The 
trimethoprim-like drugs inhibit dihydrofolate reductase, an enzyme that reduces dihydrofolic 
acid (DHFA) to tetrahydrofolic acid (THFA). Image inspired by [9]. 

 

Another more direct way of disrupting the bacterial genomic material is by direct 

interference with DNA replication, as performed by the fluoroquinolone class of drugs 

(shown in green in Figure 2). Fluoroquinolones prevent mainly DNA replication and 

transcription by inhibiting gyrase and topoisomerase IV [15]. By specifically inhibiting the 

ligase activity of those enzymes, supercoiling is disrupted and single and double strand 

breaks in the DNA are introduced, leading to cell death [16]. Another way of disrupting 

nucleic acids is by targeting the RNA production directly, shown in purple in Figure 2. 

Rifamycins inhibit bacterial nucleic acid synthesis by inhibiting the bacterial DNA-dependent 

RNA polymerase [17]. As the production of mRNA is thereby inhibited, protein synthesis 

comes to a halt, resulting finally in cell death. 

The last major groups of antibiotics, the macrolides, tetracyclines, and aminoglycosides, 

target protein synthesis by interfering with the ribosomal function [18], shown in blue in 

Figure 2. The macrolide antibiotics inhibit protein synthesis by binding near the P-site and 

the exit tunnel on the large 50S ribosomal subunit, which either prevents peptidyl 

transferase from adding an amino acid or prevents peptide elongation, thereby inhibiting 

translation [19, 20]. Contrarily to the macrolide antibiotics, antibiotics of the class 

aminoglycosides and tetracyclines mainly interfere with the small 30S ribosomal subunit. 

Aminoglycosides disrupt peptide elongation, causing inaccurate translation which leads to 
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truncated or altered protein sequences [21]. Tetracyclines, first discovered in the 1940s 

[22], inhibit protein synthesis by blocking the A-site on the 30S ribosomal subunit, thereby 

preventing the attachment of aminoacyl-tRNA and further growth of the peptide chain [23].  

Most of the antibacterial drugs inhibiting the major macromolecular synthesis pathways 

shown in Figure 2 are known since the so-called Golden Age of antibacterial drug discovery 

(1940-1970) [24, 25]. Even though several new antibiotics have entered the market since 

then, these new drugs, such as additional generations of cephalosporins (a β-lactam) and 

fluoroquinolones, were all members of known, existing classes antibiotics [3, 26]. As most of 

these new drugs were more of the same, the underlying resistance mechanisms were not 

addressed. Therefore these new drugs did not significantly contribute to the fight against 

the rise in antibiotic resistance.  

Bacteria gain resistance to antibiotics mainly by three different mechanisms [27-29]. The 

most prominent mechanisms by which bacteria gain resistance are by horizontal and lateral 

gene transfer (plasmid exchange) and by mutations in resistance-associated genes. The gene 

transfer and mutations can cause alterations in the abundance and structure of porins and 

efflux pumps. These alterations make it impossible for the drug to reach its intracellular 

target protein by reducing the cell permeability, or by increasing drug-efflux, respectively 

[30]. Other contributors to antimicrobial resistance are changes in antibiotic targets 

themselves, caused by mutations in target proteins or by introducing post-translational 

modifications (PTMs), rendering the drug ineffective. The third major contributor to 

resistance development is enzyme-catalyzed modifications, which inactivate the antibiotics. 

The most well-known example is the increased presence of β-lactamase enzymes that 

hydrolyze the β-lactam ring of penicillin- and cephalosporin-like structures. These processes 

usually happen relatively fast, as resistance to novel antibiotics is usually observed within 

months to years after entering the market. This is problematic, as drug development 

typically takes much longer [6, 31].  

Although there are supposedly over 160 essential proteins shared among a wide array of 

bacteria which could serve as potential antibiotic targets, only 40 targets are represented by 

currently marketed drugs [32]. The genomics era was thought to boost the number of 

molecular targets in bacteria, however the target-directed approach failed to deliver new 

drugs [33, 34]. Only two new classes of antibacterial compounds have been introduced since 

the dawn of the genomic era, namely linezolid and daptomycin [3]. Meanwhile, the main 

targets remain cell wall synthesis proteins, DNA gyrases, and the bacterial ribosome [35]. 

Recently, antibiotic drug development mainly focused on combinational therapy, as it is 

seldom enough to just inhibit one specific target [36]. For example, to overcome β-lactam 

resistant bacteria, combinational therapy of a β-lactamases inhibitor and a β-lactam is 

typically given. Most commonly, a mixture of clavulanic acid (itself a β-lactam, a β-lactamase 

inhibitor) amoxicillin and is given as therapy [37]. The clavulanic acid inhibits the bacterial β-
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lactamase enzymes, which allows the accompanying amoxicillin to bind to its target PBPs. 

Similarly, trimethoprim and sulfamethoxazole are almost exclusively given as combination 

therapy to avoid resistance development [36].  

As antibiotic resistance is on the rise, novel antibiotics with new mechanisms of action are 

urgently needed, but currently only few of such truly novel compounds are under 

investigation [38, 39]. One recent example is the drug halicin, which was previously under 

investigation for treatment of diabetes type 2. Halicin was identified as potential novel 

antibiotic using artificial intelligence in a drug repurposing project [40]. It was shown that 

halicin has a unique antibacterial mechanism of action which sequestered iron inside 

bacterial cells, thereby disrupting pH regulation across the cell membrane, causing the 

proton motive force to dissipate and consequently cell death.  

Although drugs with new mechanisms of action are desperately needed, the search for 

novel mono-therapeutic drug targets and novel mechanisms of action has had very low 

output. Therefore, it is postulated by some that antibiotics research should not only focus 

on new finding novel chemical scaffolds with new molecular targets, but should be 

complemented by innovative screening of the main classical targets involved in 

macromolecular synthesis pathways [34, 41], as depicted in Figure 2.  

 

1.2 Antifungal drugs 

Most clinical invasive fungal infections are caused by complications of surgery, 

chemotherapy, organ transplantation, or as a side-effect of immunomodulatory therapies 

[7]. For these systemic fungal infections, the most important antifungal drug classes 

available are relatively limited to the polyene drugs (among which amphotericin-B), azole 

drugs (among which fluconazole, voriconazole), and the echinocandin drugs (among which 

caspofungin) [42-44]. A schematic overview of the main fungal drug targets is provided in 

Figure 3.  

Shown in yellow in Figure 3 are the antifungal drugs which interfere with crucial steps in 

ergosterol synthesis (the azoles and allylamines) [46] or bind directly to ergosterol in the 

cellular membrane (polyenes) [47]. Ergosterol is a sterol found almost uniquely in fungal cell 

membranes, fulfilling the same function as cholesterol in higher eukaryotic animal cells [46]. 

As sterol is an essential component of the fungal cell membrane, it is an excellent target for 

antifungal drugs. By binding directly to ergosterol, the polyene antifungals weaken the 

membrane, causing leakage of ions and eventually cause cell death. One of the most 

commonly used antifungal drugs of this class is amphotericin-B [48].   
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Figure 3. Simplified schematic of main antifungal drug targets and corresponding classes of 
drugs. In yellow are drugs interfering with crucial enzymes in ergosterol synthesis (the azoles 
and allylamines) and the polyenes (binding directly to the ergosterol in the fungal membrane). 
In blue tavaborole, which inhibits aminoacyl tRNA synthetase, thereby effectively inhibiting 
protein synthesis. In green, 5-flucytosine, a pyrimidine analog, inhibiting proper nucleic acid 
synthesis. In magenta, griseofulvin, a mitotic inhibitor. In red, the echinocandins inhibiting β-
glucan synthase enzyme, an enzyme for fungal cell wall synthesis. Image inspired by [45]. 

 

The other two major classes shown in yellow in Figure 3, the azole and allylamine drugs 

inhibit crucial steps in the biosynthesis pathway of ergosterol, thereby depleting the cell of a 

sufficient amount of ergosterol causing membrane disruption, and, consequently, cell death 

[49]. The class of azole drugs specifically inhibits lanosterol 14-alpha-demethylase, a protein 

essential in sterol biosynthesis which converts lanosterol to ergosterol [50, 51]. The 

allylamines inhibit another essential enzyme in the sterol synthesis pathway, squalene 

monooxygenase, which oxidizes squalene to squalene epoxide [52].  

Depicted schematically in red in Figure 3 are the fungal cell wall synthesis inhibitors, the 

echinocandin class of drugs. Although the first echinocandins were discovered in the early 

1970s [53], the first echinocandin to be put on the market was caspofungin in the early 

2000s [54]. The echinocandin drugs inhibit the 1,3-β-glucan synthase, an essential enzyme in 

fungal cell wall synthesis. By disrupting the assembly of the fungal cell wall, echinocandins 

cause osmotic stress and lysis, leading to cell death [54].  

Among the antifungal drugs that work specifically intracellularly are the aminoacyl tRNA 

synthetase inhibitors (depicted in blue in Figure 3), the pyrimidine analogue drugs (depicted 

in green in Figure 3), and the mitotic inhibitors (depicted in magenta Figure 3). The tRNA 

synthetase inhibiting drug tavaborole is one of the most recently approved drugs, being FDA 

approved for topical applications in 2014 [55]. By inhibiting the fungal aminoacyl tRNA 

synthetase, the fungal protein synthesis is disrupted [56]. Among the antifungals interfering 

with nucleic acid synthesis is 5-fluorocytosine, a pyrimidine analogue drug [57], shown in 

green in Figure 3. Once inside the cell, it is converted to several different intermediates, 
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which in turn inhibit DNA and RNA biosynthesis. The disturbance of RNA synthesis 

consequently disrupts protein synthesis. Lastly, depicted in magenta in Figure 3, are the 

drugs inhibiting microtubule assembly, of which the most well-known antifungal member is 

griseofulvin [58]. By interfering with microtubule assembly, the process of mitosis is 

inhibited.  

Compared to bacteria, systemic antifungal drugs are relatively difficult to develop due to the 

eukaryotic nature of both the fungal and human cells. Their relatively close genetic 

composition limits the number of fungal-specific drug target proteins [7]. This causes many 

antifungal drugs, and antifungal screening candidates, to have severely toxic side-effects. 

Similar to drugs against bacterial infections, most of these classes of antifungal drugs were 

discovered over 50 years ago, and since then, only the polyenes, azoles and echinocandin 

drugs remain the viable and effective options for most life-threatening systemic fungal 

infections [7]. However, resistant fungal strains are becoming more frequent, especially 

among common Candida species [59, 60]. 

Fungi gain resistance through similar mechanisms as bacteria, either by target modification, 

target upregulation, the use of efflux pumps (or upregulation of efflux pump expression), or 

the drugs are inactivated in a similar way that β-lactamases hydrolyze β-lactam antibiotics in 

bacteria [51, 61]. Additionally, yeasts are able to form biofilms, which in some cases are 

extremely resistant to drug treatment due to the high cell density and protective properties 

of the extracellular matrix [62].  

The limited classes of antifungal drugs available for systemic infections, and the rise in 

resistant antifungal strains has resulted in the current unmet medical need for novel, safe, 

antifungal drugs [7, 63]. Like antibacterial drug discovery, current antifungal drug research is 

focusing on the identification of new pathways that could be targeted, as well as 

combinational therapy approaches [64]. Additionally, novel drugs are under investigation, 

such as drugs targeting membrane-associated fungal-specific lipids, drugs targeting the 

fungal mitochondria, and drugs targeting fungal virulence factors, but also repurposing of 

clinically approved drugs as antifungals is under investigation [65].  

 

1.3 Antimicrobial drug screening 

In the ‘Golden Age’ of antibacterial drug discovery (1940-1970), numerous substances and 

crude extracts were screened in whole cell-assays [3], such as the Waksman screening 

platform [66], which have yielded most of the antibacterial drug classes still used today. The 

advent of rapid sequencing of genomic data, progress in recombinant expression, and 

biochemical characterization of proteins shifted the field of antibiotic drug discovery from 

phenotypic cell-based assays towards high-throughput target-based screening [33, 67, 68]. 

The major problem with target-based discoveries in the context of antibiotic drug discovery, 
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is that in vitro, activities of single targets are usually poorly correlated to cellular efficacy [3, 

33, 69]. This is mainly due to the fact that compounds discovered in a target-based 

screening simply could not cross the bacterial cell membrane to reach their target [41]. 

Other disadvantages of target-based screens are that they inherently do not yield 

information about off-target effects and do not yield insight or information on novel drug 

targets or pathways.  

The poor yield of target-based approaches is not only problematic in the field of antibiotic 

drug discovery, but is a more widely realized shortcoming of target-based drug screening 

approaches, such as in the field of antiviral and cancer drug discovery [70-72]. Out of all the 

259 drugs (not solely antimicrobials) approved between 1999 and 2008, 75 were drugs with 

novel molecular mechanisms of action (first-in-class), of which 50 were small molecules and 

25 biologics. Of these 75 first-in-class drugs, 28 small molecule drugs were found using a 

phenotypic screen, compared to only 17 being found by target-based approaches [71] (the 

remaining 30 drugs concerned were biologics or modified natural substrates, outside the 

scope of this thesis). From the new molecular entities, nine of them had unknown 

mechanism of action [72]. Notably, a detailed knowledge of the mechanism of action of new 

drugs is not required for FDA approval.  

However, target-based studies are very suitable in identifying and improving follower drugs 

(also known as ‘me-too’ drugs) containing the same chemical scaffolds as previously 

approved drugs, with just minor modifications [73]. In total, 83 of such drugs were found 

between 1999 and 2008 using target-based screenings. In the same timeframe 30 follower 

drugs were identified using a phenotypic screen, which is still a considerable amount, 

underlining the power of phenotypic screening [71, 72]. 

Nowadays, whole-cell based phenotypic assays are thought to be favored over target-based 

assays for finding lead compounds [74], mainly because it is considered easier to identify 

the cellular target, then to engineer permeability of a compound [33]. In addition, the use of 

cell-based assays in drug discovery can be favorable, as it reflects the complexity and 

interplay of multiple target proteins and associated pathways in an in vivo setting [71].  

Based on renewed appreciation and the corresponding benefits of cell-based phenotypic 

screening assays, this thesis describes a newly devised phenotypic profiling approach for 

drug screening using a proteomics approach. Multiple different phenotypic profiling 

approaches already exist, yet have some drawbacks and limitations. Therefore, the next 

section will present available techniques to highlight which characteristics are desired to 

implement in a novel phenotypic screening approach.  
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1.4 Phenotypic screening assays 

Phenotypic antimicrobial susceptibility testing, in one of its most simplistic forms, measures 

growth inhibition of a microorganism. This is either done in agar plates using disk-diffusion 

tests [75, 76] or in a more high-throughput turbidity assay [77]. The disadvantage of these 

methods is that the readout provides very limited information: growth or no growth. When 

screening at a fixed concentration, potential hits can be missed, as the growth-inhibitory 

effect is not visible at the (usually fixed) screening concentration. For example, the minimal 

inhibitory concentration (MIC) of the antibiotics vancomycin (256 mg/L) and ciprofloxacin 

(0.03 mg/L) for E. coli vary by approximately a factor 8000 [78]. The identification of weakly 

active drugs is an important desired screening characteristic, as these weakly active hits can 

be further optimized in fragment-based drug discovery pipelines [79]. In fragment-based 

drug discovery, small (typically <300 Da) weakly active compounds are sought, which are 

subsequently grown into larger compounds, or are combined to produce leads with a higher 

activity [80].  

In the field of drug screening, it has been remarked that it is sensible to employ screening 

methods that yield more information on the phenotype than just binary growth/no-growth 

readout, such as mechanistic information [81]. Feng and co-workers propose to use assays 

which yield multiplexed read-out parameters such as protein arrays, mRNA profiling, and 

cytological profiling to monitor phenotypic responses (for an extensive review see [81]), but 

have also remarked that each of these popular techniques has some disadvantages and 

limitations. For example, protein microarrays have the disadvantage of limited coverage 

depending on availability of specific antibodies and mRNA profiling has high associated cost 

and a relatively low throughput.  

Currently, cytological profiling is one of the most applied methods to investigate the state of 

the cell, as it can be coupled to image recognition software to extract features from imaging 

data. Cytological profiling, as described by the Pogliano group, is used to identify bacterial 

cellular pathways in response to antibiotics by means of fluorescence microscopy in 

combination with linear discriminant analysis clustering [82, 83]. Although this method 

allows for distinguishing between cells treated with different types of antibiotics, as a drug 

screening assay it is less suitable because of the relatively high concentrations of antibiotics 

required (5 times the MIC) to see a noticeable effect. Moreover, due to the nature of 

fluorescence microscopy, this method is less prone towards miniaturization and high-

throughput screening, as it requires multiple stains and antibodies. These limitations 

prevent large library screenings and the detection of weakly active drug compounds with 

optimization potential.  

An example of a large library phenotypic drug screening approach to evaluate eukaryotic 

cells is described by Young and co-workers [84]. In this study, HeLa cells were stained with 

multiple dyes and antibodies after treatment with a drug library of over 6000 compounds. 
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After drug treatment, cytological features were measured to determine the phenotypic 

profile of the HeLa cells using factor analysis. Overall, they were able to predict the correct 

drug target in 70% of the cases in a validation study, but remarked that the ability to detect 

new drug types was limited.  

Besides fluorescence microscopy used for cytological profiling, other spectral profiling-

based methods have been investigated. Athamneh and co-workers have the described the 

use of Raman spectroscopy to profile the phenotypic response signatures in E. coli upon 

treatment with different classes of antibiotics [85]. By employing Raman spectroscopy, they 

were able to distinguish the bacteria’s response towards multiple antibiotic classes and 

individual antibiotic species. They were able to train classification models based on the 

Raman spectra that could predict the mechanism of action of antibiotics involved in the 

treatment of E. coli. Their classification model’s highest accuracy was reached by using a 

combination of principle component analysis (PCA) and discriminant analysis, which 

correctly classified the antibiotic mechanism of action in 84% of the cases and in 71% of the 

cases the correct antibiotic drug. The major drawback of their method is the use of relatively 

high concentrations of antibiotics (3 times the MIC) to observe an effect. The low sensitivity 

makes Raman spectroscopy-based assay unable to screen for weakly active antibiotics. 

Similar to Athamneh and co-workers, surface enhanced Raman spectra (SERS) has been 

used to determine the phenotype of bacteria [86] by Liu and co-workers. They found that 

spectra of bacteria changed upon exposure to cell wall synthesis inhibitors. The main 

disadvantage of their method is, again, the use of a high concentration of antibiotics (5 

times the MIC), which makes the identification of weakly active drugs impossible.  

Although there is a wide variety of phenotypic screening assay available, which are based on 

different analytical techniques, none of them are able to combine all desired characteristics 

required for screening weakly active antibiotics. The desired characteristics are the 

capability to screen large libraries without expensive (radio)labels or complicated sample 

workup limiting throughput (such as liquid chromatography), as well as the ability to detect 

sub-lethal compounds and provide information on mechanism of action. Therefore, a 

whole-cell based phenotypic screening assay in this thesis was designed to differentiate 

between effects of existing (and potentially new) mechanisms of action and to identify 

weakly active compounds in a (relatively) high-throughput and label-free manner. This assay 

is based on a proteomics approach using MALD-TOF mass spectrometry. In the following 

two sections, a brief theoretical background of MALDI-TOF mass spectrometry and an 

overview of its general applications are provided.  
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1.5 MALDI-TOF principles  

Mass spectrometry is an analytical technique to determine the mass-to-charge ratio of ions 

[87]. This results in a mass spectrum, a graph that depicts the ion intensity as a function of 

the mass-to-charge ratio (m/z). A mass spectrometer generally consists of three 

components: an ion source, a mass analyzer, and a detector. To analyze sample molecules 

according to their m/z ratio, the molecules have to be ionized into the gas phase. This is 

typically performed in vacuum to prevent collision with air molecules leading to 

fragmentation of the molecule [87]. There are many ionization approaches available, but 

the analysis of peptides and proteins from biological samples typically involves so-called soft 

ionization techniques. Soft ionization methods are relatively non-destructive for the non-

volatile proteins in the sample, which is important to prevent fragmentation of the protein 

molecules upon ionization. The two most commonly employed soft ionization techniques 

for biological samples, including protein ionization, are electrospray ionization (ESI) [88] and 

matrix assisted laser desorption ionization (MALDI) [89, 90]. This thesis will only focus on 

ionization of peptides and proteins using MALDI, of which a schematic overview is provided 

in Figure 4.  

 

Figure 4. Schematic representation of a typical matrix assisted laser desorption ionization time 
of flight (MALDI-TOF) mass spectrometer and its main components. Sample (back) and an 
excess of matrix (white) are co-crystallized on a metal target plate and placed in the ion 
source, under vacuum. A pulsed laser (blue arrow) irradiates the sample and causes a cloud of 
sample and matrix to ablate from the target plate. An electric field is applied, providing the 
ionized molecules with kinetic energy. The ionized molecules are directed by ion lenses (black 
bars) into the drift tube, which separates the ions based on their TOF, after which they hit the 
detector. As the molecules’ TOF is proportional to their relative mass and charge (m and z), 
the signal can be deconvoluted by a computer to provide a mass spectrum. In a mass 
spectrum the mass over charge value, m/z, is typically on the x-axis and the corresponding ion 
intensity (I) on the y-axis. Image inspired by [91].  
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For MALDI, protein samples are mixed with an excess of suitable photon energy absorbing, 

weakly acidic, organic matrix compound. Commonly used matrices for protein analysis are  

sinapinic acid (SA), dihydroxybenzoic (DHB) acid, and α-cyano-4-hydroxycinnamic acid 

(CHCA) (reviewed in [92]). Typically, the matrix is dissolved in a volatile liquid, such as 

acetonitrile or methanol, to speed up the crystallization process. The matrix is dissolved in 

combination with an acid, such as trifluoroacetic acid, to act as proton donor and contribute 

to the ionization process. For peptide analysis, and bacterial peptide profiling in particular, 

CHCA is the most commonly used matrix due to its excellent ability to ionize proteins in the 

2–15 kDa mass range [93]. After mixing of the sample with the matrix, a droplet of this 

solution is deposited on a metal target plate and allowed to dry whilst forming crystals (see 

Figure 4). The metal target plate with the sample-matrix crystals is positioned into a vacuum 

chamber of the machine, and subsequently irradiated with a pulsed laser (blue arrow, Figure 

4). Upon absorption of the laser energy by the matrix molecules, the energy is partially 

transferred to the proteins in the sample, causing ablation and desorption of the sample 

and matrix. The sample molecules, still under vacuum, are then ionized by transfer of 

protons, which produces predominantly singly charged ions [94, 95]. The cloud of ionized 

molecules is subsequently exposed to a constant electric field, and the ions are accelerated 

towards the mass analyzer, as depicted in Figure 4. Typically, a MALDI ion source is coupled 

to a time-of-flight mass analyzer (TOF system), also known as a drift tube. An electrical field 

of several kV accelerates the ions into the drift tube, after which they hit the detector. The 

kinetic energy (EK) provided to each of the ions by the electric field is described by classical 

mechanics law, as expressed in Equation 1. 

𝐸𝐾 = 𝑧𝑈 =  
1

2
𝑚𝑣2  Equation 1 

In Equation 1, z is the charge (a dimensionless integer), U the applied electric potential (in 

Volt), and m being the mass (in Dalton) and v being the velocity of the ion (in 

meter/second). The energy provided to each ion is equal, and therefore their traveling 

velocity (in meter/second) through the drift tube of fixed length (in meter) is dependent on 

their respective mass (m) and charge (z). As the traveling time of the ions is proportional to 

their mass and charge (m/z value), the traveling time through the drift tube of fixed length 

provides information about their relative m/z.  

The amount of times the ions strike the detector gives the arbitrary ion intensity of each ion 

in the mass spectrum. This signal is then processed and further analyzed by computer 

software to yield an interpretable mass spectrum. As the ions are predominantly singly 

charged due to inherent properties of MALDI ionization, the m/z value provides information 

about the mass of the analyte. The mass of the analyte can be calculated as described in 

Equation 2. 
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𝑚

𝑧
=

(MW + z𝐻+)

𝑧
 Equation 2 

In Equation 2, the m is the mass of the ion and z its charge (the m/z value in the mass 

spectrum), MW is the molecular weight of the analyte (in Da), z the number of protons (or 

charges) and H+
 the mass of a proton (in Da). General mass spectrum processing steps will 

be further discussed in the following section.  

 

1.6 Mass spectral data processing 

A typical MALDI-TOF mass spectrometry data set easily contains hundreds to thousands of 

spectra, with each spectrum in its turn containing hundreds to thousands of peaks with 

potentially relevant biological information [96]. Before one attempts to analyze, investigate, 

or compare these mass spectra, pre-processing of the mass spectra must be performed [97]. 

The processing of raw MALDI-TOF MS spectra typically involves, but is by no means limited 

to, the following general preprocessing steps: baseline correction, smoothing, 

normalization, peak alignment, and peak detection [96, 98]. A schematic representation of 

these pre-processing steps and their effect on a mass spectrum is depicted in Figure 5.  

 

 

Figure 5. Typical steps performed in a mass spectral processing pipeline. In raw mass spectral 
data the baseline needs to be estimated and corrected to reduce noise. Additionally, a 
smoothing filter needs to be applied to remove high-frequency noise. Spectral intensity needs 
to be normalized across samples to allow a more direct comparison. Peak drift needs to be 
corrected by a peak alignment step. Lastly, peaks need to be detected using a peak detection 
algorithm. Image inspired by [99] 
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There have been numerous approaches published that perform the steps listed in Figure 5 

using a variety mathematical approaches and techniques [96]. Several pre-processing 

pipelines are incorporated in proprietary software from the instrument manufacturers (such 

as FlexAnalysis and ClinProTools software by Bruker Daltonics), but there also exist freely 

available software packages that perform pre-processing steps on MALDI data, such as the 

MALDIquant [100] and MALDIrppa [101] packages developed in the R programming 

language, and other pipelines such as PROcess [102], Cromwell [103], and many others 

[104]. The first, and one of the most important steps in pre-processing, is baseline 

correction. Here, systematic artifacts and low-frequency noise are removed, which is 

typically observed in the lower m/z region (see Figure 5, top row). Baseline correction is 

usually performed by a so-called Top-Hat filter [105] or wavelet transform filter [106]. This 

involves a baseline estimation from the signal, and a subsequent baseline subtraction from 

the original signal [104]. The second pre-processing step is typically a smoothing procedure, 

which allows for the removal of high-frequency noise in the spectrum (see Figure 5). In 

general, this involves smoothing algorithms, such a Savitzky-Golay filter or moving average 

(or mean) filter [104]. The third step in the pre-processing sequence of mass spectra is 

normalization (sometimes referred to as standardization) of the signal. This step is 

performed to allow for comparison of the relative intensities of the peaks in mass spectra 

(see Figure 5) [107-109]. For MALDI-TOF data this is of particular importance as it is, at best, 

a semi-quantitative technique [110]. Normalizing of the signal resizes the ion count intensity 

(the y-axis) to range between 0 and 100% relative intensity. After normalization, it is 

common to rescale the largest peak in the mass spectrum to 100% relative intensity. For 

this, the total mass spectral intensity is divided by the total ion current (TIC, sometimes also 

referred to as total ion count), where the TIC can be calculated by integrating the area 

under the mass spectral curve [107, 108]. Alternatively, one can standardize the relative 

intensity to a (known) abundant reference peak, or only use a specific portion of the mass 

spectrum for normalization.  

In general, the last steps of pre-processing pipeline involves peak alignment and peak 

detection (also referred to as peak picking), as shown in Figure 5. Peak alignment across 

different samples is required, as peak drifts are always present due to inherent calibration 

and peak detection issues, especially in low-resolution MALDI-TOF experimentation [96]. 

The peak drift has mainly a mechanical origin, where it can be influenced by sample 

spotting, instrument temperature, and laser attenuation and calibration parameters [111, 

112]. With peak alignment, peaks are aligned to known peak locations on the m/z axis, 

thereby minimizing the absolute mass error. Alternatively, an internal calibration mixture 

can be added to the sample, consisting of molecules with a known mass. Typically the last 

pre-processing step, a peak picking algorithm is applied to detect local maxima, which 

correspond to ionized proteins [104]. Popular approaches for peak picking are signal-to-
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noise ratio (SNR) [113], continues wavelet transform (CWT) [103], and Gaussian-based 

methods, among others [96, 114, 115]. 

 

1.7 Current applications of MALDI-TOF  

MALDI-TOF mass spectrometry is widely used in the clinical environment to identify 

bacterial species based on their spectral differences, often referred to a biotyping [116, 

117], where the basics of bacterial biotyping dates back several decades, to 1975 [118]. The 

comparison of MALDI-TOF spectra is mainly used to identify bacterial species, but 

subspecies differentiation, identification of resistance markers, and degradation products of 

antibiotics belongs to its capabilities as well [119-125]. Some of these methods, such as the 

one described by Sparbier and co-workers, require stable-isotope labeled reagents [126]. 

This requirement makes the application less straightforward and only detects general 

resistance to antibiotics. Sparbier and co-workers also developed an assay to replace 

conventional MIC determination assays [127]. Here, bacteria were grown in the presence of 

antibiotics and compared to a culture grown in the absence of antibiotics. After incubation 

with antibiotics, samples were spiked with an internal standard and growth inhibition was 

quantified based on relative signal intensity (the TIC in the mass spectrum). The MIC 

determination was found to be accurate, with >95% in agreement with reference values, 

but it must be noted that this study was only applied to one organism and one drug, 

Klebsiella sp. treated with meropenem. Although this is an innovative way of determining 

MIC values, the method does require (expensive) radiolabels. Similar applications using 

MALDI-TOF and stable isotope labeling are reviewed in [128]. Furthermore, this application 

of MALDI-TOF cannot be extended beyond the MIC determination application as it yields 

limit information: either growth is inhibited or not, based on observed isotope labeled 

peaks. Thus, that MALDI-TOF MS-based assay is not able to provide more detailed 

information about the antibiotic applied or its mechanism of action.  

Besides the extensive applications of MALDI-TOF MS to investigate bacteria, fungal yeasts 

have also been investigated. Marinach and co-workers have applied MALDI-TOF MS to 

assess drug susceptibility of a yeast strain towards fluconazole, an antifungal agent [129]. 

Here, a dose-dependent change in the yeast’s mass spectrum upon introduction of 

fluconazole was described. It was demonstrated that this method was reliable, accurate, 

and it was performed according to the Clinical Laboratory Standards Institute’s (CLSI) 

laboratory practices [130]. Marinach and co-workers coined the term minimal profile 

change concentration (MPCC), defined as the lowest concentration value at which the mass 

spectrum profile changes. This work is similar to the work performed by Kostrzewa 

(associated with Bruker Daltonics) and co-workers, that linked the classical standardized 

CLSI method of MIC determination to MALDI-TOF MS data using a semi-quantitative method 

[127, 131-133], where the relative peak intensities are subsequently used as an indicator for 
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bacterial growth after isotope labeling. The applicability of this method for detection of drug 

susceptibility of mycobacteria was also shown [134]. All these mentioned MIC 

determination methods using MALDI have in common that they do not require an overnight 

culture in the presence of antibiotics, as an effect in the mass spectra was already 

detectable after 1-3 hours of incubation. This makes MALDI-TOF MS-based methods 

favorable over the classical MIC determination methods, which usually require incubation 

times overnight. However, as mentioned before, the MIC determination assays yield only 

limited information, as only the total area under the curve is taken as a measurement for 

relative growth. This means that the multiplex nature of MALDI-TOF MS is not used to its full 

potential.  

MALDI-TOF’s multiplex output has been used by Schott and co-workers, who have 

investigated the stress response of Lactobacillus paracasei subsp. paracasei F19 after 

incubation with different stresses (such as osmotic stress, oxidative stress, starvation stress, 

pH induced stress) [135]. However, they concluded that principal component analysis (PCA) 

coupled with discriminant analysis did not allow for a distinction between several of the 

assayed stress conditions and the identification of biomarkers related to fitness and stress 

with MALDI-TOF MS is limited. Božik and co-workers found mass spectral responses of E. 

coli cells after exposure to essential oils to be similar to certain antibiotics, but data analysis 

was not pursued beyond unsupervised learning techniques such as clustering and PCA 

approaches [136]. MALDI-TOF MS also been applied for assay development using 

mammalian cells. Dong and co-workers [137] have shown the applicability of MALDI-TOF MS 

profiling to discriminate between healthy, apoptotic, and necrotic HeLa cells. In a similar 

manner, Kober and co-workers showed that mass spectra could assist in differentiating 

between toxic effects of three different environmental toxins (copper sulphate, acridine, 

and β-naphthoflavone) on a eukaryotic fish cell line [138]. Chiu and co-workers explored the 

use of MALDI-TOF MS to distinguish in vitro cellular responses resulting from the exposure 

of mammalian HepG2 cells to toxic chemicals [139]. Mass spectral changes were found upon 

treatment of cells with aflatoxin and hydrogen peroxide using descriptive PCA, but no peak 

evaluation or modeling was performed. Vanhara and co-workers showed the applicability of 

intact cell MALDI-TOF MS as a tool for quality control to reveal minute phenotypic changes 

of human embryonic stem cells [140].  

The abovementioned studies for bacterial, fungal, and mammalian cell-based assays all 

describe phenotype changes in the respective cells, as determined by MALDI-TOF MS, but 

the corresponding data analytical approaches do not use the information density of the 

mass spectra to its full extent. In all cases, the analysis is dependent mostly on unsupervised 

machine learning techniques, such as descriptive PCA and clustering, and subsequent data 

evaluation is generally subjective, as it is mainly controlled by the experimenter. This means 

that data is not used to reach beyond the performed experiment, where it could be utilized 

to develop predictive approaches. Thus, previous research has reported on signals of the 
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potential application of MALDI-TOF MS to distinguish between (drug) stressed cells, but a 

holistic and objective evaluation and targeted utilization, beyond exploratory data analysis 

techniques of MALDI-TOF mass spectral data, is largely missing. To fill this gap, this thesis 

aims to evaluate and exploit drug response mass spectrometry profiles of whole-cells with 

the purpose of phenotypic drug screening by means of supervised machine learning 

techniques. The following section will give a brief overview of the difference between 

unsupervised and supervised machine learning approaches, and the required machine 

learning steps to reach the projected aim in more detail.  

 

1.8 Machine learning approaches 

A typical MALDI-TOF MS experiment yields a highly dimensional data set, composed of 

hundreds to thousands of mass spectra with hundreds of peaks per mass spectra. Visual 

interpretation of such vast numbers of spectra and corresponding peaks becomes infeasible, 

and objective multidimensional data analysis and machine learning tools are required [141]. 

In the field of machine learning, one can generally distinguish two different machine 

learning approaches: unsupervised and supervised machine learning [142, 143], as 

schematically depicted in Figure 6.  

 

 

Figure 6 Schematic workflow of (a) unsupervised and (b) supervised machine learning. 
Unsupervised learning is mainly used for finding patterns in data using clustering approaches, 
without prior knowledge of underlying relations of the data set. Supervised machine learning 
uses labelled observations in a data set to train and validated a model. These models can be 
divided in classification and regression models, depending on whether the model concerns 
discrete or continuous data, respectively.  
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Unsupervised learning (top panels in Figure 6) focusses on exploratory data analysis and 

aims to find patterns or groups in the underlying data (the shapes in Figure 6), without the 

use of existing data labels. Techniques typically employed in unsupervised learning are 

principal component analysis (PCA) and cluster analysis [142]. This type of data analysis, 

sometimes also referred to as pattern recognition, aims to reveal the degree of similarity 

between data points [142].  

Supervised learning algorithms (bottom panels in Figure 6) aim to train models which 

require input data (observations) and their corresponding output label or value (the name 

of the shape, in the example in Figure 6). Supervised machine learning aims to predict 

discrete (classification) or continues label values (regression) based on a training data set of 

observations and has the goal of generalizing observations in the training data set to unseen 

situations with reasonable accuracy [143]. Thus, the main difference between unsupervised 

and supervised learning is the labelling of the data, which in the case of supervised learning 

is used for training models. This training set has to consist of representative data, in order to 

prevent overfitting, bias, or overoptimistic performance results of the classification or 

regression model. Therefore, the data set size, composition, class labeling, and distribution 

has to be considered for practical implementations of the models [144]. As this thesis aims 

to train classification models to predict the activity or mechanism of action of drugs based 

on the mass spectral response of cells, the introduction to machine learning will focus on 

supervised learning and classification models only. Although supervised machine learning 

has a rich history in the context of (bacterial) identification and strain typing (listed in [145]), 

the application of supervised machine learning in the context of MALDI-TOF MS analysis to 

detect phenotypic changes is still largely unexploited.  

There is a wide range of supervised learning algorithms available for classification purposes, 

and it is near to impossible to tell which model type works best for a particular problem 

beforehand [146]. Typical classification algorithms used in the field of bioinformatics, and 

particularly for MALDI-TOF MS data, are linear and quadratic discriminant classifiers, Naive 

Bayes classifiers, and k-Nearest Neighbor (kNN) [147]. More recently, the support vector 

machines (SVM), decision tree, and random forest based classification algorithms have 

gained popularity [143]. The choice for the most suitable classification algorithm is 

dependent on the inherent bias of certain algorithms and variance in the data it has to 

capture. An elaborate overview of classification algorithms can be found here [142].  

A data set that is used for analysis consists of points that are measurable for each 

observation. These are commonly called features (also referred to as variables or attributes) 

[142]. For MALDI-TOF mass spectra, the peaks in the mass spectrum are considered features 

for investigation, but can also be (although less common) the complete continuous signal 

[148]. Features can be obtained from MALDI-TOF MS data by means of peak detection, one 

of the pre-processing steps discussed in section 1.6. In the context of machine learning, the 
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step of peak detection during pre-processing is referred to as feature extraction [96]. The 

selected features can subsequently be used to classify mass spectra, as was shown for the 

non-phenotypic applications strain typing and cancer detection [125, 149]. However, most 

peaks (features) in the mass spectrum do not contain discriminatory information to 

separate between classes and are considered redundant [96, 114]. To minimize the 

inclusion of noise and ensure inclusion of most of the discriminatory information, feature 

selection methods can be applied, where features are selected based on a certain selection 

criterion or threshold [147]. This step is also referred to as dimensionality reduction. Thus, 

reducing the number of features reduces the chances of fitting the model to noisy or non-

informative variables in the data set. In addition to a reduction in noise, reducing feature set 

size using feature selection has shown to decrease the computational expense and model 

complexity [144]. These three effects result in an improved model performance for unseen 

data (generalization), faster model training, and a simplified model interpretation. 

Feature selection algorithms can be divided into three different categories: filter, wrapper, 

and embedded type feature selection [143, 150]. Filter type feature selection algorithms 

evaluate feature importance based on characteristics of the feature itself, such as variance 

or relevance to the observed response [150]. Therefore, filtering methods have the inherent 

disadvantage that they are incapable of detecting synergistic feature-feature interactions, 

and do not incorporate information about the contribution of features to a specific 

classification problem. This may be disadvantageous for datasets with highly correlated 

features, as it can incorporate redundant information and may cause overfitting [151]. 

Wrapper methods partially overcome the weaknesses that filter methods possess, as it 

assesses features in the context of a specific classification algorithm. These methods are 

called wrapper methods, as the classification algorithm is said to be ‘wrapped around’ the 

features that are selected. In the context of MALDI-TOF MS, one of the most well-known 

wrapper methods is SVM-RFE (support vector machine recursive feature elimination), which 

is a form of sequential backward feature selection wrapped around a support vector 

machine classifier [152]. Although wrapper methods can provide feature sets with the 

desired classification characteristics, a main disadvantage of wrapper methods is that they 

are computationally expensive. Embedded feature selection methods are different than 

filter and wrapper methods, as the feature selection and learning algorithm interact with 

each other [153]. One of the most popular embedded methods is the random forest 

algorithm [154]. This algorithm combines the power of multiple decision trees to evaluate 

and select features to be incorporated.  

After a model has been trained with the selected features, it needs to be evaluated to 

determine its overall performance. Typically, models are evaluated based on internal 

validation and external validation [155]. Internal validation is often performed by means of 

k-fold cross-validation. During a k-fold cross-validation step, the training data set is split into 

k partitions (folds), where k is often equal to ten. This is referred to as 10-fold cross-
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validation. Stratified division of the training set data into k partitions is of importance to 

ensure equal representation of each class per fold. For 10-fold cross-validation, 90% of the 

training set data observations are used to train a model, and 10% of the observations are 

used to evaluate the resulting model’s performance. This process is repeated until every 

partition of the 10-fold division is used as validation set once. The average outcome of 

cross-validation provides an estimate of the overall model performance. However, for 

proper model assessment, a model must also be evaluated using external data which was 

not used for model training, to determine how well the model generalized to unseen data 

[156]. This data set evaluation is referred to as external validation.  

The performance of internal and external validation is typically evaluated based on 

precision, recall, and accuracy, and can visually presented by means of a confusion matrix 

[146]. A confusion matrix (sometimes referred to as an error matrix) is a table that lists the 

performance of a trained algorithm. An example confusion matrix is provided in Table 1. In 

this exemplary confusion matrix, a simple classification problem is described where one 

tries to identify apple objects from non-apple objects.  

 

Table 1. A confusion matrix for the binary problem where one wants to classify apple objects 
from objects that are non-apples. Columns indicate model predictions, rows indicate true 
class of the objects.  
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In the confusion matrix for the exemplary binary problem in Table 1, the columns represent 

classification instances by the model and each row represents the corresponding true class 

of that observation. This means that all correct predictions end up on the diagonal (green in 

Table 1) and incorrect predictions end up outside the diagonal (red in Table 1), allowing for 

straightforward interpretation of prediction errors made by the classification algorithm. 

Usually, model performance is reflected by the overall accuracy, which is a number between 

0 and 1. The overall accuracy is the amount of the true positives (the amount of apples that 

were correctly identified as apples) and true negatives (non-apple objects that were 

identified as such) divided by the total amount of observations (the total amount of objects 

classified by the model). An additional level of understanding of the model can be gained by 

also using the number of false positive (non-apple objects identified as apples) and false 

negative observations (apples that were classified as non-apple objects), shown in red in 
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Table 1. The true positive value and the false negative value can be used to calculate the 

recall of the model (also known as sensitivity or true positive rate). The recall reflects how 

well a model can detect the amount of positive cases out of all cases. The precision of the 

model (also known as the positive prediction value) reflects how well the model can 

correctly identify positive cases out of all positively identified cases. A more detailed 

description on how to obtain these values for binary and multiclass models is provided in 

the Experimental section, in subchapter 3.14. In summary, to construct a classification 

model for predictive whole cell phenotypic drug identification based on MALDI-TOF MS 

data, one must carefully select a classification model, the method of feature selection, and 

establish a systematic approach to evaluate model performance. 
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2 Research aim 

Antibiotic drug discovery has long relied on natural product screening using simple growth 

inhibition assays. After the Golden Age of antibiotic drug discovery, most of nature’s 

bioactive antibiotics had been found, namely the sulfonamides, β-lactams, macrolides, and 

tetracyclines. At the dawn genomics era, studies on isolated target proteins became widely 

available, but the target-based approaches failed to satisfy the ever-increasing demand for 

novel antibiotic drugs. One of the main reasons for this was that drug leads which showed 

promising target binding, proved incapable of significant activity on a cellular level due to 

the inability of crossing the bacterial cell wall and membrane. In addition, the focus on 

target-oriented approaches largely failed to deliver drugs that bind to new targets or have 

novel chemical scaffolds. These shortcomings of target-based assays are not only present in 

antibiotic drug discovery, but have been problematic in other drug screening fields as well, 

such as antifungal and anti-cancer drug research. 

Recently, there has been a renewed appreciation for phenotypic cell-based screening assays 

in the area of drug discovery. Contrary to target-oriented approaches, cell-based assays 

have the advantage of inherently providing information about a drugs’ cell permeability, 

which overcomes one of the most limiting factors and major hurdles for antibacterial drug 

development. By studying a drug’s effect in a more pharmacological relevant environment, 

phenotypic assays have the potential to also provide essential information of the 

mechanism of action involved. This is a screening characteristic that target-oriented assays 

on isolated proteins are not able to provide.  

Available phenotypic screenings in the context of antibiotic drug research, such as 

macromolecular synthesis assays, microarray profiling, cytological profiling, and Raman 

profiling, each have limitations of their own. Among the disadvantages of these assays are 

the use of (radio)labels, expensive reagents and specialized equipment, relatively low 

throughput, and use of genetically modified organisms. Moreover, most of these assays are 

unable to detect weakly active drugs, which could serve as potential drug leads, or lack the 

ability to provide molecular mechanism of action information.  

To bridge the gap between current screening limitations and needs present in the drug 

discovery field, the main aim of this thesis was to develop a high-throughput, label-free, 

phenotypic cell-based assay with a sensitive analytical method which is able to detect a 

variety of sub-lethal stresses induced by antibiotic drugs in wild-type bacterial cell cultures. 

Furthermore, it was aimed to provide information about the mechanism of action of the 

applied stressor with the developed assay. As limitations of drug screening assays are 

shared between different drug development fields, an additional sub-aim of this work was 

to explore this concept beyond antibiotic drug screening for Gram-positive and Gram-

negative bacteria. This was done by applying the developed workflow to eukaryote yeasts, 
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to investigate the effect of antifungal drugs, and human HeLa cells subjected to a variety of 

stressors.  

To achieve the described aims, MALDI-TOF mass spectrometry was selected as analytical 

method, as it is relatively easy to use, high-throughput compatible, and requires minimal 

sample workup or fractionation to provide a detailed proteomic fingerprint of cells. 

Moreover, MALDI-TOF MS has already shown to be an excellent tool for identification of 

bacterial strains and other microorganisms. In this thesis, the applicability of MALDI-TOF MS 

was expanded towards phenotyping cells in response to drug treatment.  

As MALDI-TOF MS is sensitive to fluctuations in experimental conditions, one of the 

experimental objectives was to standardize sample treatment and liquid handling 

procedures prior to mass spectral acquisition. Additionally, one of the objectives was to 

establish a mass spectral data pre-processing workflow to standardize processing of raw 

spectral data for the various assayed organisms. However, not all mass spectral variations 

can be controlled by experimental and spectral processing standardization, as there is 

inherently some degree of inter-day variability in obtained mass spectra. To circumvent the 

effects of inter-day spectral variation, a computational objective was to establish a data-

dependent spectral analysis workflow.  

To facilitate the identification of weakly active drugs in a screening setting, and provide 

information of the respective mechanism of action based on the proteomic response 

measured by MALDI-TOF MS, utilization and interpretation of the pre-processed data should 

be performed by a computational pipeline using machine learning approaches. This is 

required, as machine learning methods allow for pattern recognition in large, highly 

dimensional data sets. Therefore, one of the objectives was to design a computational 

pipeline which uses objective and data-dependent processing and analysis steps, which 

negates user interference and subjective interpretation of data. This versatile adaptability of 

the data analysis also prevents the use of a defined, static set of mass spectral peaks, 

making the computational pipeline transferable not only to different types of phenotypic 

stress responses, but also to different organisms and applications. Furthermore, to gain a 

flexible workflow and have control and understanding over all algorithms and variables 

within the complex data analysis, an objective was to implement all machine learning 

approaches in in-house developed programming scripts, which were established in the 

MATLAB programming environment. MATLAB has the advantage of being widely used in the 

academic environment. MATLAB also contains a wide array of multidimensional data 

analysis techniques in its Statistics and Machine Learning Toolbox and already contains 

specialized functions for handling mass spectrometry data in its BioInformatics Toolbox.  
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3 Experimental 

3.1 Bacterial medium and antibiotics 

All experiments using bacteria were performed using cation-adjusted Mueller-Hinton 

medium (MH medium; Sigma-Aldrich, Munich, Germany) prepared according to the 

manufacturers’ guidelines. Antibiotics were selected to cover a diverse range of 

mechanisms of action, listed in Table 2 in chapter 4.1.1. The following antibiotics were 

dissolved in water: benzylpenicillin, cefotaxime, cefuroxime, moxifloxacin, and vancomycin. 

The following antibiotics were dissolved in dimethyl sulfoxide (DMSO) and water (50 v/v%): 

amoxicillin, ciprofloxacin, erythromycin, gentamicin, neomycin, tetracycline, trimethoprim, 

nitrofurantoin, and rifampicin. The following antibiotics were dissolved in DMSO: 

chloramphenicol, clarithromycin, and doxycycline. Antibiotics were dissolved to a final 

concentration of 1280 mg/L and filtered using a cellulose acetate membrane (0.2 µm pore 

size, GE Healthcare Life Science, Freiburg, Germany) to ensure sterility. Stock solutions were 

stored at -20 °C. Prior to use, antibiotic stock solutions were diluted in sterile cation-

adjusted MH medium.  

 

3.2 Bacterial MIC determination 

The MICs of selected antibiotics were determined in accordance with the European 

Committee on Antimicrobial Susceptibility Testing (EUCAST) guidelines for antimicrobial 

susceptibility testing [157], as described in detail by Wiegand and coworkers [158]. The MIC 

was determined for the Gram-negative Escherichia coli strain (DSMZ 1103, equivalent to 

ATCC 25922) and the Gram-positive Staphylococcus aureus (DSMZ 2569, equivalent to ATCC 

29213), obtained from the DSMZ (Deutsche Sammlung von Mikroorganismen und 

Zellkulturen; German collection of microorganisms and cell cultures).  

 

3.3 Fungal MIC determination  

All experiments on yeasts were performed using RPMI 1640 medium supplemented with L-

glutamate, 2% glucose, phenol red, and buffered with sodium bicarbonate (Sigma-Aldrich, 

Munich, Germany). 

Antifungal drugs used in this study were amphotericin-B, amorolfin, caspofungin, 

fluconazole, 5-fluocytosine, and miconazole, obtained from commercial suppliers. The MIC 

determination of antifungal drugs was performed as described by the European Committee 

on Antimicrobial Susceptibility Testing-Subcommittee on Antifungal Susceptibility Testing 

(EUCAST-AFST) guidelines [159] with minor alterations. In brief, Candida albicans (ATCC 

90028) and Saccharomyces cerevisiae (wild-type, strain BY4742, a derivative of strain S288C, 
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a gift of Yaqing Zhang, Institute of Pharmacy and Molecular Biotechnology, Heidelberg 

University) was grown on yeast-peptone-dextrose (YPD) agar plates overnight. Five 

representative colonies were suspended in DPBS (Dulbecco’s phosphate buffered saline, 

Sigma-Aldrich, Munich, Germany) and diluted to yield a cell density of McFarland 0.50, 

corresponding to approximately 3×106 colony forming units/mL (CFU/mL), as determined by 

colony plate count. The solution was subsequently diluted in RPMI 1640 medium to yield a 

cell density of approximately 3×105 CFU/mL. Drug stock solutions (in DMSO, sterile filtered) 

were diluted in RPMI 1640 medium and mixed 1:1 with 100 μL of yeast cells in a 96-well 

plate (polystyrene U-bottom; Greiner Bio-One GmbH, Frickenhausen, Germany) to yield a 

final inoculum of 1.5×105 CFU/mL. Plates were incubated overnight at 35 °C at 100% 

humidity, after which growth was assessed visually.  

 

3.4 Toxicity assay HeLa 

HeLa cells (HeLa-ACC57; obtained from DMSZ; Braunschweig, Germany) were grown in 

DMEM medium (Dulbecco’s Modified Eagle’s Medium, Sigma-Aldrich, Munich, Germany) 

supplemented with 10% fetal bovine serum (Gibco FBS, ThermoFisher Scientific, Waltham, 

MA, USA), penicillin and streptomycin (100 units/mL and 100 mg/L, respectively; Gibco, 

ThermoFisher Scientific, Waltham, MA, USA) to approximately 90% confluence at 37 °C in 

the presence of 5% CO2 under humidified atmosphere in a tissue culture flask (T75, 

Saerstedt AG & Co. KG, Nuembrecht, Germany). Cells were washed with DPBS and 

harvested using the commercial available Accutase® cell detachment solution (Innovative 

cell technologies, Inc., San Diego, USA) according to the manufacturer’s protocol. Cell 

seeding density was determined using a hemocytometer (Neubauer improved, Marienfeld 

Superior, Lauda-Koenigshofen, Germany) and adjusted to 20.000 cells/90 μL/well (96 well 

plate; Cellstar® polystyrene flat-bottom plates, Greiner Bio-One, Frickenhausen, Germany). 

Drug solutions (10 μL/well) were mixed in the plate upon seeding cells and incubated for 24 

hours at 37 °C under a humidified atmosphere in the presence of 5% CO2 to determine CC50 

values. Cell viability was assessed using the resazurin-based CellTiter-Blue® reagent 

(Promega Corporation, Madison, USA) by adding 20 μL of CellTiter-Blue® assay solution to 

each well. After incubation for 1-2 hours at 37 °C, fluorescence was measured at 570 nm 

and 600 nm using a FLUOstar Omega plate reader (BMG Labtech GmbH, Ortenberg, 

Germany). Data was exported in Microsoft Excel format. Using OriginPro software (version 

2015; OriginLab Corporation, Northampton, USA) the data was fitted to a sigmoidal dose-

response curve and the CC50 was determined. 
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3.5 Bacterial cell culture synchronization 

The replication and division cycles of the bacteria cells were synchronized. For this, cells 

were grown in 50 mL tubes for approximately eight hours in MH medium in a Minitron 

incubator (Infors AG, Bottmingen, Switzerland) at 120 rotations per minute (rpm, 25 mm 

shaking throw) at 37 °C, after which cells were centrifuged at 2000×g for 10 minutes (Rotina 

420R, Hettich Lab Technology, Tuttlingen, Germany). Residual medium was decanted to 

waste and the cell pellet was resuspended in sterile DPBS. Cell cultures were starved in this 

nutrient limited environment (120 rpm; at 37 °C) overnight for approximately 16 hours. 

After starvation, cells were centrifuged for 10 minutes at 2000×g. Supernatant was 

decanted to waste and cells were resupplied with fresh MH medium and diluted to a 

McFarland standard of 1.0. Cells were allowed to adapt to the nutrient rich medium for at 

least one division cycle (approximately 70 minutes in the case of E. coli; approximately 90 

minutes in the case of S. aureus) to a McFarland of >2.0. Afterwards, the cells were added to 

the antibiotics in the 384-well plate  at a final cell density with McFarland 1.0, corresponding 

to approximately 1×108 (CFU/mL). 

 

3.6 Antibiotic treatment of bacteria 

The concentrations at which experiments were performed are denoted as a fraction of the 

MIC in the following manner throughout the remainder of this work. For example, ⅛×MIC 

for an experiment performed at ⅛th of the MIC value. Cells were exposed to 1×, ½×, ¼×, ⅛×, 
1/16×, and 1/32×MIC, unless indicated otherwise. Eight biological replicate cell cultures per 

concentration were prepared, to yield eight replicate mass spectra per assayed condition. 

Exposure of cells to antibiotics was performed in clear polystyrene 384-well plates (flat-

bottom; Greiner Bio-One GmbH, Frickenhausen, Germany). Concentrations of each 

antibiotic (2-fold dilution series in cation-adjusted MH medium) were made to ensure that 

the highest final assay concentration was 1×MIC the respective antibiotic. First, 50 µL of 

antibiotic stock (2×MIC) solution was added to each well. Subsequently an inoculum of 50 

µL with 2×108 CFU/mL was added to the plates using a semi-automatic liquid handling 

station (VIAFLO 384, INTEGRA Biosciences GmbH, Biebertal, Germany; equipped with 384-

channel head) to ensure final cell density of 1×108 CFU/mL. Plates were sealed using sealing 

film (SealPlate® film, Excel Scientific Inc., Victorville, CA, USA) and placed in a preheated 

microplate incubator (Thermo Scientific iEMS Incubator/Shaker, ThermoFisher Scientific, 

Waltham, MA, USA) at 37 °C and shaken at 1150 rpm for 2 hours. 
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3.7 Antifungal treatment of yeasts 

Exposure of yeast cells to antifungals was performed in clear polystyrene 384-well plates 

(Flat-bottom; Greiner Bio-One GmbH, Frickenhausen, Germany). Concentrations of each 

antifungal (2-fold dilution series in RPMI 1640) were made to ensure that the highest final 

assay concentration was 1×MIC. To each well, 10 µL of antifungal stock solution was added 

using the VIAFLO 384 semi-automatic liquid handling. Subsequently an inoculum of 90 μL 

with a McFarland standard of 4.4 was added to the plates using the VIAFLO 384 semi-

automatic liquid handling station. This ensured a final cell concentration which corresponds 

to an approximate cell density of 2.5×107 (CFU/mL). Plates were sealed using sealing film 

(SealPlate® film, Excel Scientific Inc, Victorville, CA, USA) and placed in a preheated 

microplate incubator (Thermo Scientific iEMS Incubator/Shaker, ThermoFisher Scientific, 

Waltham, MA, USA) at 35 °C and shaken at 1150 rotations per minute for 2 hours. In the 

case of S. cerevisiae (strain BY4742), cells were treated with amphotericin-B, amorolfin, 

caspofungin, and fluconazole at concentrations ranging 1×, ½×, and ¼×MIC. In the case of C. 

albicans (ATCC 90028), assay was performed using 5-fluocytosine, amphotericin-B, 

caspofungin, fluconazole, and miconazole at concentrations ranging 1×, ½×, and ¼×MIC.  

 

3.8 Treatment of HeLa cells  

HeLa cells were seeded with a density of 20.000 cells/well in absence or presence of drugs 

at previously determined CC50 in a total volume of 100 μL DMEM supplemented with 

penicillin, streptomycin, and 10% FCS in a 96-well plate (Cellstar® polystyrene flat-bottom 

plates, Greiner Bio-One, Frickenhausen, Germany). Cell cultures were grown overnight for 

approximately 16 hours at 37 °C in the presence of 5% CO2 and saturated humidity, after 

which they were harvested. 

In experiments where cells were subjected to ultraviolet (UV) light and elevated 

temperatures, overnight cell cultures were treated as follows: in the case of incubation at 

elevated temperature, the plate was placed in an incubator for 3 hours at 43 °C with 

atmospheric CO2 levels (approximately 410 ppm, as of 2019) and saturated humidity. After 

subjection to the thermal stress, cells were placed back in the incubator at 37 °C, 5% CO2, 

and saturated humidity for an additional hour to recover. For to the exposure to UV light, 

cells were exposed to 5, 10, and 15 minutes UV radiation, by placing the 96-well plate on a 

piece of non-reflective paper in a Captair workstation (Captair Biocap RNA/DNA, Erlab DFS 

SAS, Val-de-Reuil, France), right below (0.5 m) the germicidal lamp (Sylvania G15W lamp, 

peak wavelength 255 nm, Feilo Sylvania Germany GmbH, Germany). Cells were incubated 

for another hour at 37 °C and 5% CO2 before harvesting.  
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3.9 Sample preparation 

For bacteria and yeasts, after incubation the 384-well plates were centrifuged (Rotina 420R, 

Hettich Lab Technology, Tuttlingen, Germany, equipped with a swinging bucket rotor) at 

2000×g for 10 minutes. Supernatant was discarded and cell pellets were washed with 100 µL 

35% ethanol (v/v%) and incubated in the microplate incubator for 5 minutes at 1150 rpm. 

Cell debris was centrifuged again and washed a second time with 100 μL of 35% ethanol. 

After removal of 90 μL the supernatant, cells were resuspended in the remaining 10 µL 35% 

ethanol, sealed, and stored at 4 °C. Prior to MALDI-TOF MS analysis, cell pellets were 

resuspended in the plate by shaking in the microplate incubator for 5 minutes at 1150 rpm. 

Cell suspension (3 µL) was mixed in 1:1 ratio with freshly prepared α-cyano-4-

hydroxycinnamic acid (CHCA; 10 mg/mL in 50.0% acetonitrile, 47.5% H2O, and 2.5% 

trifluoroacetic acid) by aspirating the matrix and sample sequentially using the VIAFLO 384 

automatic pipettor, followed an air gap of 3 µL. Then, 1.5 µL was spotted on a MALDI target 

plate (MSP 96 polished steel BC microScout target, Bruker Daltonics, Bremen, Germany). 

Samples were air-dried at room temperature before being placed in the mass spectrometer.  

In the case of experiments with HeLa cells, cells were washed in the 96-well plate with 100 

μL DPBS and resuspended in ice-cold 50 μL 35% ethanol. Using a disposable micropipette tip 

the well surface was scratched manually to promote cells detachment. The cell suspension 

was mixed with CHCA matrix and spotted as described above using a VOYAGER adjustable 

spacing multichannel pipette (12.5 µL capacity, INTEGRA Biosciences GmbH, Biebertal, 

Germany).  

 

3.10  MALDI-TOF settings 

Target plates were positioned in the mass spectrometer (MALDI-TOF microflex LT, Bruker 

Daltonics, Bremen, Germany) fitted with a nitrogen laser (337 nm, set to 60 Hz). Spectra 

were acquired in linear mode with a mass range of m/z 2,000-15,000 using AutoXecute runs 

of the FlexControl software (Version 3.3, Build 108.2, Bruker Daltonics). The laser was set to 

fire 100 shots at 80% power (approximately 52 μJ) per location, with the attenuator set to 

range 22-30%, while moving in a small spiral raster over 7 locations per sample spot to 

assure appropriate signal intensity. The sum of 700 shots yielded spectra with ion intensities 

in the order of 104-105 ion counts for the most abundant ions. Sample rate was set to 1.00 

GS/s; detector gain was set to 3.7×; electronic gain was set to 200 mV and the Realtime 

Smooth function was disabled. Default delayed ion extraction was fixed at 140 ns. 

Calibration of the instrument was regularly evaluated using Bruker Daltonics Protein 

Calibration Mix I and, if necessary, adjusted according to manufacturer’s guidelines to be 

within 300 ppm.  
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3.11 Spectral pre-processing 

Using Bruker’s FlexAnalysis software, the collected raw spectra were exported to a *.txt-file 

in ASCII format using a custom script. Subsequently, the spectra were imported in MATLAB 

(R2018a; The MathWorks Inc., Natick, USA) installed on a desktop PC (i5-4690 CPU 

@3.50GHz equipped with 16 GB RAM and a 64-bit Windows 7 Professional operating 

system) and pre-processed using an in-house developed MATLAB script. First, spectra were 

resampled (MATLAB function resample(MZ, Y, MZ, 'showplot', 'off');) to 30000 data points in 

order to obtain a homogenous mass/charge (m/z) vector for each sample in the range of 

m/z 3850-15000. The baseline of each individual spectrum was estimated and subtracted 

using a sliding window filter (MATLAB function msbackadj(MZ, Y, 'STEP', 25, 

'WINDOW',50);). Noise was reduced using locally weighted scatter plot smoothing 

regression method (commonly referred to as LOWESS filter; MATLAB function mslowess(MZ, 

Y, 'span', 50, 'RobustIterations', 1);). Spectra were normalized to their total ion current (TIC; 

MATLAB function msnorm(MZ, Y, 'LIMITS', [3850 15000], 'method', 'mean', 'MAX', 100);) and 

rescaled such that the highest peak in each mass spectrum had a relative intensity of 100%. 

For S. cerevisiae, the mass limits were set to range m/z 2520 -10000.  

Each mass spectrum was aligned towards known, conserved, high intensity peaks (MATLAB 

function msalign). By aligning spectra during the initial processing step towards several of 

these highly intense and consistently observed peaks, errors in peak location are reduced 

before peak detection is performed. The majority of the proteins that can be observed in a 

typical bacterial mass spectrum are large (50S) and small (30S) ribosome-associated proteins 

(RL and RS) [160]. Peaks in the observed mass spectra were tentatively identified using the 

TagIdent tool [161]. The following reference proteome sets in the UniProt database [162]  

have been used: up000000625 (E. coli), UP000008816 (S. aureus), UP000000559 (C. 

albicans), UP000002311 (S. cerevisiae), and UP000005640 (Human reference proteome). For 

E. coli and S. aureus, only reviewed proteins in the UniProt database (release 2019_11) were 

considered. Subsequently, average m/z and theoretical isoelectric points (pI’s) of proteins 

were calculated using the primary sequence data and the Fragment Ion Calculator [163]. 

Details of the alignment peaks of the respective organisms are provided in the 

corresponding chapters (E. coli: Table 4; S. aureus: Table 12; S. cerevisiae: Table 22; C. 

albicans: Table 28; HeLa: Table 32).  

A peak detection algorithm based on the undecimated discrete wavelet transform was 

applied on the average spectrum of replicate experiments to identify centroid peak 

locations [103, 141] (MATLAB function mspeaks). Subsequently, peak binning was 

performed to obtain a common m/z vector to describe the peaks observed in the spectra. 

This yielded a common m/z vector containing 175 peaks in the m/z 3850-15000 Da region in 

the case of E. coli. Comparable numbers of peaks were observed for mass spectra of S. 

aureus (135 peaks, in the range of m/z 2520-10000), S. cerevisiae (139-155 peaks, 
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depending on experiment), C. albicans (88 peaks) and HeLa cells (127-158 peaks, depending 

on experiment).  

 

3.12 Spectral quality control 

Spectral quality control procedures as described in this section were applied to all mass 

spectra, regardless of the organism, unless indicated otherwise. The TIC value was used as a 

unit of measure for spectral quality. This eliminates the requirement to visually inspect each 

spectrum, which is a laborious and subjective task. Instead, the TIC allows for an objective 

evaluation of the mass spectrum signal quality. Based on the TIC values of the whole 

dataset, the data was grouped into quartiles (Q). Subsequently, the interquartile range (IQR) 

of the TIC was calculated. To determine outliers spectra from the bulk TIC data, the upper 

fence (UF) and the lower fence (LF) were computed using Equation 3 and Equation 4, as 

described previously by Tukey and coworkers [164, 165]. 

𝑈𝐹 = 𝑄3 + 1.5 × 𝐼𝑄𝑅 Equation 3 

𝐿𝐹 = 𝑄1 + 1.5 × 𝐼𝑄𝑅 Equation 4 

In Equation 3 and Equation 4, Q3 represents the third quartile (75th percentile) and Q1 the 

first quartile (25th percentile) of the TIC values. Spectra with TIC values above the upper 

fence or below the lower fence were considered outliers and removed from the data set.  

In addition, an outlier filter was added that removes any spectrum of which the intensity 

was higher than the upper fence based on the intensity of the mass spectrum at m/z 12500, 

where for all organisms (unless indicated otherwise) no peak was observed. At that position 

in the mass spectrum, the relative intensity should be equal to the background signal and is 

expected to be low (generally <1.5% relative intensity). Thus, the relative intensity at this 

m/z provides an easy way of removing spectra with poor (noisy) signal quality. The relative 

intensity at m/z 12500 was determined for each spectrum. Subsequently, the UF and the LF 

of the relative intensity at m/z 12500 was computed in a similar fashion as for the TIC values 

(see Equation 3). As a threshold, spectra with relative intensity above Q3+2×IQR were 

removed. In practice, this threshold meant that all spectra with intensity roughly above 1-

1.5% at m/z 12500 were removed. For experiments with S. cerevisiae, this threshold was 

determined at m/z 9000.  

 

3.13 Feature selection  

Not all peaks in the mass spectra contain sufficient discriminatory information for model 

construction. Peaks need to be removed from the data set, as some peaks might cause 
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overcomplicating and overfitting (poor generalization) of the models. Therefore, two types 

of feature selection algorithms have been applied in order to remove noisy and redundant 

peaks: (1) a random forest (RF) of decision trees and (2) sequential (forward; SFS and 

backward; SBS) feature selection. Using these three subsets of features, an additional 

feature subset was created, which contained the aggregated features which were selected 

by two or all three of the applied feature selection methods (RF, SFS, and SBS).  

Firstly, the relative feature importance was determined by evaluating the out-of-bag error 

(OOB error) using a random forest of decision trees, a so-called embedded feature selection 

method [154]. The evaluation of feature importance was performed for two different 

scenarios with different class labelling: (1) by using binary labelling of the data: spectra were 

labelled either as ‘treated’ or ‘untreated’ with a drug or stressor, regardless of the drugs’ 

mechanism of action or concentration. The second labelling (2) was done according to drug 

mechanism of action, regardless of drug concentration.  

Peak selection was based on the relative contribution to the correct classification of binary 

and multiclass mechanism of action problems. For this, a bootstrap aggregated (bagged) 

random forest of 200 (in case of binary classification), or 250 (in case of multiclass MoA 

classification) of decision trees was grown (MATLAB function TreeBagger). Subsequently, 

the OOB error was evaluated. By evaluating the OOB error, the relative importance of each 

peak regarding its impact on classification performance was given a score. As a threshold, 

features with a relative feature importance higher than the mean importance plus 1.5× 

standard deviation of the relative feature importance were considered for incorporation in 

the models.  

Next, sequential forward and backward feature selection (wrapper methods) were used to 

select a subset of peaks that best classifies the data. Features considered for sequential 

feature selection were only the features that had a relative feature importance higher than 

the mean feature importance minus 1× standard deviation as determined by the RF. This 

was done in order to reduce calculation time, as sequential feature selection is a 

computationally expensive method.  

For sequential forward feature selection (SFS), a subset of features was selected that best 

classified the data until there was no improvement in classification accuracy. This was done 

by creating an initial empty feature subset and subsequently adding more features (MATLAB 

function sequentialfs). After the addition of each feature, the classification performance of a 

linear discriminant classifier was evaluated using 10-fold cross-validation. For each fold, the 

number of misclassified samples (misclassification rate) for was determined. As a stopping 

criterion for sequential feature selection, the minimum misclassification rate was taken. This 

was defined as the point where the misclassification rate did not decrease anymore upon 

adding more features, and sequential feature selection stopped. The process of SFS was 

performed 100 times. Based on the 100 iterations of sequential feature selection, a final 
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feature set selected by SFS was created based on the average amount of times they were 

selected out of the 100 iterations. As selection threshold, features were considered for 

modeling if they were selected more than the mean amount of times they were selected 

plus 1.5× standard deviations the total amount they were selected. If selection threshold 

happened to be >100, which would result in no features being selected, a threshold of >99 

was taken. In the case of C. albicans the selection threshold of SFS was set to the mean 

amount of times features were selected for data set complexity reasons. 

Additionally, sequential backward selection (SBS) was performed, where initially all features 

(that is: only the features with a relative feature importance higher than the mean feature 

importance minus one standard deviation as determined by the RF) were considered. For 

SBS, features were removed from the initial subset until accuracy no longer improved 

(according to the same criterion stated for SFS). The process of SBS was performed 100 

times. Out of the 100 iterations of SBS, only those features were considered for modeling 

according to the same selection criteria stated for SFS.  

Using the three sets of features selected by the RF, and the SFS and SBS procedures, a 

fourth set was created by aggregating the selected features into one set. As a threshold, 

only features selected by two or all three of the feature selection methods were included in 

this aggregated feature set. 

 

3.14 Modelling and model evaluation 

For E. coli, several classification models were constructed employing MATLAB’s default 

settings. The models that were built are as follows: linear and quadratic discriminant 

classifier, Naïve Bayes classifier, Support vector machine (SVM) classifiers using linear, 

quadratic, cubic, and Gaussian kernel functions, k-nearest neighbor (KNN) with a cosine 

kernel and a decision tree. Each of the models was constructed using the feature sets 

selected by the RF, SFS, SBS, and the aggregated feature set.  

For E. coli, two classification types for all models were extensively evaluated for each 

feature set: firstly a binary model, which should identify only whether a mass spectrum 

originated form a cell culture treated with an antibiotic or not, and secondly, a model that 

would identify the mechanism of action with which the cells were treated.  

Evaluation of the models was done using stratified 10-fold cross validation. This means that 

the data was partitioned into ten subpopulations (folds) using proportional inclusion of data 

from each class. The model is then trained using data out of nine folds, and is evaluated 

based on the remaining 10th fold. This process is repeated and the overall model accuracy is 

averaged over the ten folds.  
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Model performance was evaluated with the overall accuracy, a number between 0 and 1, 

indicating the fraction of spectra classified correctly (see Equation 5). In addition, for each 

class in the models, the recall and precision for each class are given, calculated according to 

Equation 6 and Equation 7, respectively.  

𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑠𝑎𝑚𝑝𝑙𝑒𝑠)

(𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠)
 Equation 5 

𝑅𝑒𝑐𝑎𝑙𝑙 =
(𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠)

(𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠)
 Equation 6 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
(𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠)

(𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠)
 Equation 7 

The recall value (also known as sensitivity) is the fraction of correct predictions (true 

positives) divided by the sum of the correct (true positives) and incorrect (false negatives) 

classified samples. The precision (also known as positive prediction value) is defined as the 

amount of correctly classified samples (true positives) divided by the sum of the true 

positives and the false positives. Both precision and recall also yield a number between 0 

and 1, the higher the number, the better the model performs.  

Based on the results from E. coli, it was found that SVMs with a quadratic kernel (Q-SVM) 

built with the aggregated feature sets performed best. Therefore, for the other organisms 

and drugs mentioned, only the aggregated feature sets and Q-SVM classification models are 

discussed.  

 

3.15  External validation  

For E. coli, S. aureus, and S. cerevisiae, trained classification models were externally 

validated by classifying drugs’ activity and drugs’ mechanism of action on novel data, which 

was not included in the model training phase. External validation was performed with a 

blind set of 20 drug compounds for E. coli and S. aureus and with a set of eight drugs for S. 

cerevisiae. These compounds were subjected to the screening method using a fixed and 

typical concentration in high-throughput screening campaigns of 10 μM. For the external 

validation, two models were built for each organism: one model was built as a binary 

classifier, returning only whether spectra belonged to cells treated with an antibiotic or 

antifungal drug (outcome ‘treated’) or is untreated (outcome ‘untreated’). The second 

model used the mechanism of action of the antibiotics or antifungal drugs as class labels 

(see Table 2, Table 11, Table 21, Table 27, and Table 31 for E. coli, S. aureus, S. cerevisiae, C. 

albicans, and HeLa cells, respectively). 
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In the case of S. aureus, treatment of cells with some of the drug compounds yielded 

spectra that did not pass the spectra quality control thresholds and, therefore, no 

classification could be performed. For these compounds, it was assumed that the spectra 

were of insufficient quality due to the fact that the cells were treated with such relative 

large amounts of antibiotic (>>MIC) that not enough cells had grown to generate a mass 

spectral signal. These compounds were screened again at a 1 μM screening concentration 

instead of 10 μM. In that case, the training set for internal validation was reduced to include 

13 antibiotics. The antibiotics amoxicillin, cefotaxime, cefuroxime, chloramphenicol, 

clarithromycin, doxycycline, erythromycin, gentamycin, moxifloxacin, neomycin, penicillin, 

rifampicin and trimethoprim) at concentrations ranging only from 1×MIC to 1/8xMIC (instead 

of down to 1/32×MIC) were included, thereby reducing the data set.  
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4 Results & Discussion 

In the following subchapter, the development of the drug screening assay will be extensively 

presented and discussed with reference to E. coli and the treatment with antibiotics 

(subchapter 4.1). In the subsequent subchapters, the application of the method is 

demonstrated on the Gram-positive bacterium S. aureus (subchapter 4.2), the eukaryote 

fungi S. cerevisiae (subchapter 4.3.1) and C. albicans (subchapter 4.3.2), and lastly on the 

mammalian human HeLa cell line (subchapter 4.4). In the first sections of the E. coli 

subchapter (4.1), the determination of the MIC, cell synchronization, and detailed insights 

on peak pre-processing of the mass spectra for E. coli will be discussed in more depth, which 

is largely omitted for the other organisms.  

 

4.1 Escherichia coli 

4.1.1 Minimal inhibitory concentration determination  

The minimal inhibitory concentration (MIC) values were determined using the broth 

microdilution method [157, 158]. MIC values found for E. coli are listed in Table 2. The MIC 

values were within the acceptable range (± two dilution steps) of the reference values, as 

determined by the EUCAST guidelines, and were used as benchmark values for treatment of 

E. coli for the MALDI-TOF MS-based assay. It must be noted that the proposed MALDI-TOF 

based assay uses relatively high cell densities (108 CFU/mL) and short incubation times (2 

hours) compared to the MIC determination protocol (104 CFU/mL and overnight incubation), 

two factors known to cause deviations of the actual MIC [158]. However, it has been shown 

that the combination of such high cell densities with short incubation times can be used to 

accurately determine the MIC using MALDI-TOF MS [127, 166], and therefore it is assumed 

that the determined MIC values with the broth microdilution method are proper bench-

marks for the proposed MALDI-TOF MS assay.  
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Table 2. List of antibiotics used for E. coli (reference strain ATCC 25922) experiments. Indicated is the antibiotic 
chemical class and main target, next to the mechanism of action (MoA) abbreviation used for classification 
model training (CWL: cell wall synthesis, NUC: nucleic acid synthesis/repair, PRT: protein synthesis, and OTH: 
other mechanism of action), and the antibiotics’ respective minimal inhibitory concentration (MIC) values 
(mg/L) according to reference values by European Committee on Antimicrobial Susceptibility Testing (EUCAST) 
and as determined in this thesis. NA = not available. 

   
EUCAST 

[157] 
This 

thesis 

Antibiotic Chemical class, main target 
MoA 
class 

MIC 
(mg/L) 

MIC 
(mg/L) 

Amoxicillin β-lactam, DD-transpeptidase inhibitor CWL 4 8 

Benzylpenicillin β-lactam, DD-transpeptidase inhibitor CWL NA 32 

Cefotaxime β-lactam, DD-transpeptidase inhibitor CWL 0.06 0.031 

Cefuroxime β-lactam, DD-transpeptidase inhibitor CWL 4 8 

Chloramphenicol Inhibits peptidyl transferase PRT 8 8 

Ciprofloxacin Fluoroquinolones inhibiting DNA gyrase and topoisomerase IV NUC 0.02 0.004 

Clarithromycin Macrolide, binds to the 50s ribosomal subunits, inhibiting peptidyl transfer PRT NA 16 

Doxycycline Tetracycline, steric hindrance of A-site by binding 30S ribosomal subunit PRT 2 2 

Erythromycin Macrolide, binds to the 50s ribosomal subunits, inhibiting peptidyl transfer PRT NA 32 

Gentamicin Macrolide, binds to the 50s ribosomal subunits, inhibiting peptidyl transfer PRT 0.5 1 

Moxifloxacin Fluoroquinolone, inhibiting DNA gyrase and topoisomerase IV NUC 0.06 0.063 

Neomycin Macrolide, binds to the 50s ribosomal subunits, inhibiting peptidyl transfer PRT 1 2 

Nitrofurantoin Nitrofuran, reactive metabolites damage macromolecules OTH NA 16 

Rifampicin Rifamycin, inhibits DNA-dependent RNA polymerase OTH NA 16 

Tetracycline Tetracycline, steric hindrance of A-site by binding 30S ribosomal subunit PRT 2 1 

Trimethoprim Dihydrofolate reductase inhibitor NUC 0.5 2 

Vancomycin Glycopeptide, steric hindrance of terminal D-alanyl-D-alanine moieties CWL NA 128 

 

To construct a model that is able to identify weakly active antibiotic compounds, the 

determined MIC values were used as an upper boundary of drug screening concentration. 

Starting from 1×MIC, a 2-fold serial dilution series was prepared and bacterial cultures were 

treated with a fraction of the MIC (i.e., ½ times the MIC, ¼ times the MIC, and ⅛ times the 

MIC). For example, amoxicillin was used at 8 mg/L, 4 mg/L, 2 mg/L, 1 mg/L, and 0.5 mg/L. 

Implementing these concentrations allows one to train a model for sub-lethal variations in 

the mass spectra. This may lead to the detection of antibiotics that would be missed by 

conventional growth inhibition assays, which will only pick up strongly active compounds 

inhibiting growth.  

 

4.1.2 Cell synchronization  

In initial experiments it was observed that despite constant inoculum density (measured in 

McFarland units) and viable cell count (colony forming units/mL, measured by means of 

agar plating), E. coli cell cultures showed considerable differences in their mass spectra at 



 

 

43 

 

different days of experimentation. It is known that a culture of E. coli cells within a constant 

environment (i.e., exponential growth phase) shows a variability in growth rate, generation 

time, and cell size [167]. To circumvent dealing with such a heterogeneous cell culture, and 

thereby avoiding considerable differences between mass spectra of cell cultures beyond the 

inter-day differences that are present, the E. coli cells’ replication and division cycles of each 

culture batch were synchronized. For this, E. coli cell cultures are grown in a nutrient-

limiting environment, which exhibits synchronous division after supplementation with a 

complete medium [168, 169]. For the proposed MALDI-TOF screening assay, cells were 

starved of essential nutrients in DPBS, after which they were supplemented with fresh MH 

medium. The starvation period arrests all cells at the same point in their cell division cycle 

and the subsequent fresh MH medium supply causes the cell culture to undergo 

synchronized division. After overnight starvation in DPBS, a McFarland value of 1.0 

corresponded to approximately 1×108 CFU/mL. Cells were allowed to adapt to the nutrient 

rich medium for at least one division cycle, which was approximately 70 minutes in the case 

of E. coli to a McFarland of 2.0 before addition of antibiotics. An exemplary figure of 

synchronization results of E. coli cells is provided in Appendix Figure 1.  

The average mass spectral intensities at the reference peaks from synchronized cells were 

compared with unsynchronized cells to show the effect of synchronization on the mass 

spectral intensity deviation. For this comparison study, the E. coli cell cultures were not 

treated with antibiotics. At the reference peaks (see Table 4 in section 4.1.3 for details), the 

average intensity and the mean absolute deviation (MAD) were determined. The results are 

listed in Table 3.  

 

Table 3. Average relative intensity (I; in %) and mean absolute deviation (MAD; in percent point) of alignment 
peaks before and after synchronization of the cells. RL = ribosomal large subunit, RS = ribosomal small subunit, 
UniProtKB accession number is indicated for each protein.  

 
unsynchronized synchronized  

m/z Name UniProtKB I (%) MAD (%.) I (%) MAD (%.) MAD reduction (%) 

4365.3 RL36 P0A7Q6 97.1 2.8 99.3 0.3 89 

5381.4 RL34 P0A7P5 85.6 8.4 64.7 8.2 3 

6255.4 RL33 P0A7N9 73.4 7.8 63.9 3.9 50 

6316.2 RL32 P0A7N4 52.8 5.2 46.5 2.8 47 

7158.7 RL35 P0A7Q1 38.4 9.6 18.3 5.5 42 

7274.5 RL29 P0A7M6 60.8 10.2 30.3 7.0 32 

10300.1 RS19 P0A7U3 13.6 2.5 5.2 1.6 37 

 

Table 2 shows a reduction in the MAD for each reference peak, with an average of 43% for 

each of the reference peaks. For the peak at m/z 4365.3 (RL36; P0A7Q6; the highest peak in 

the spectrum), the MAD is even reduced by 89% (from 2.8% to 0.3% relative intensity). For 
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the peak at m/z 5381.4 (RL34; P0A7P5), the average intensity change was smallest (from 

8.4% to 8.2%), represented by a 3% MAD reduction. Thus, the synchronization of the cells 

assists in eliminating unnecessary errors (noise) from the data, as the MAD of replicate 

spectra is decreased compared to unsynchronized cells.  

 

4.1.3 Peak alignment  

Mass spectra need to be preprocessed before they can be properly analyzed, as a typical 

raw mass spectrum contains several noise elements. This includes, but is not limited to, 

electrical signal noise, chemical noise, and noise introduced by temperature fluctuations of 

the flight tube [112]. Most of these noises can be removed with established pre-processing 

techniques such as smoothing, baseline correcting, and normalization of the mass spectral 

signal [96]. However, a degree of peak drift remains in the MALDI-TOF mass spectra, due to 

small fluctuations in the time-of-flight of the molecules [112]. This can be corrected for by 

aligning the mass spectra to known reference peaks of the mass spectrum. For this pre-

processing step, it is required to select highly abundant and consistently present reference 

peaks across the whole m/z range, as the mass drift can be non-linear [170]. In the case of E. 

coli, a set of reference peaks across the range of m/z 4000-10000 was selected, consisting of 

peaks from proteins which were either previously identified by Arnold and Reilly [160] or 

are part of Bruker’s calibration kit. By identifying several of these high abundant proteins 

and aligning the mass spectra accordingly, the errors in peak locations across the mass 

spectrum were reduced. Listed in Table 4 are the errors observed for the selected reference 

peaks after alignment in mass spectra from E. coli (inset in Table 4).  

 

Table 4. Reference peaks used for spectra alignment during spectral processing of E. coli data set. Listed is the 
respective protein name, where RL corresponds to Ribosomal Large subunit (50S) and RS to Ribosomal Small 
subunit (30S), followed by the respective protein unit number. Second column lists corresponding UniProtKB 
accession number, third column indicates whether the initiator methionine (M) is removed. Fourth column 
lists the theoretical m/z value, followed by the observed m/z value in the fifth column. Sixth column lists 
absolute mass error in ppm. Last column shows theoretically calculated isoelectric point (pI). Inset on the right 
shows average mass spectrum of E. coli with asterisk indicating reference peaks.  

Name UniProtKB 
M 

removed 
Theoretical 

m/z 
Observed 

m/z 
Error 
(ppm) 

pI 

 

RL36 P0A7Q6 No 4365.3 4366.0 148 10.7 

RL34 P0A7P5 No 5381.4 5382.2 145 13.0 

RL33 P0A7N9 Yes 6255.4 6256.2 127 10.2 

RL32 P0A7N4 Yes 6316.2 6316.6 59 11.0 

RL35 P0A7Q1 Yes 7158.7 7159.2 69 11.8 

RL29 P0A7M6 No 7274.5 7275.0 72 10.0 

RS19 P0A7U3 Yes 10300.1 10300.7 55 10.5 

 

* *
*

*

*
*

E. coli

Alignment peak*

*
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Multiple high-abundance proteins have been previously identified in mass spectra of E. coli 

[160, 171, 172], with the majority being ribosomal proteins. The mass spectra contain a 

large number of ribosomal associated proteins as these are relatively abundant (up to 21% 

of a cell’s protein content is ribosomal), and have a relatively high isoelectric point (pI 

>10.0), which makes them highly ionizable [160]. After alignment to the reference peaks, 

the errors remain well within the mass tolerance limit of ± 300 ppm, which is recommended 

by the manufacturer of the MS instrument (Bruker Daltonics) for biotyping purposes.  

 

4.1.4 Feature selection 

Processing of the mass spectra of E. coli resulted in the identification of 175 peaks. 

However, not all peaks are features with discriminatory information for a classification 

model. The redundant peaks in the mass spectra need to be removed from the data set, as 

they can cause overcomplicating and overfitting (poor generalization) of classification 

models, and complicate model interpretation. Three feature selection approaches have 

been investigated in depth to select the appropriate peaks, namely feature selection using 

random forest (RF) and sequential forward (SFS) and backward selection (SBS). These were 

selected in order to include a wrapper method (sequential feature selection) and an 

embedded method (RF). All these feature selection approaches have shown their worth in 

the field [143, 173], and are commonly applied in the context of MALDI-TOF MS data 

analysis for identification purposes [145, 174]. For feature selection, the data was analyzed 

for two different scenarios. Firstly, the features were evaluated based on how well the 

algorithms performed when distinguishing mass spectra obtained with treated and 

untreated E. coli cells. This is referred to as the binary classification problem. For these 

cases, the antibiotic mechanism of action (MoA) and relative concentration of the MIC were 

not considered, and all merged into one class of ‘treated’ mass spectra. Secondly, the 

algorithms were evaluated based on how well they could distinguish between the different 

MoA of the used antibiotics, regardless of their sub-MIC treatment. This is referred to as the 

MoA classification problem. 

The embedded method used to grow the RF employs aggregated bootstrapping of the trees, 

but this inherently results in oversampling classes with large prior probabilities [175]. As 

bootstrapping extracts data from the training set uniformly, any imbalance (non-uniformity) 

present in the training data set will consequently be present in the bootstrapped sample 

population. Therefore, the resulting classification trees in the forest will be biased towards 

the overrepresented class(es), due to the higher prior probability of those class(es). This bias 

influences the relative feature importance, and thus feature selection, as feature 

importance is based on the error of prediction of samples not included in the bootstrapped 

aggregated data set (the out-of-bag error, OOB) [176]. Thus, one has to evaluate and 

consider the data set balance when using the RF feature selection approach. For a binary 
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classification of the employed E. coli data set consisting of 920 mass spectra, 162 (17.6%) 

spectra were obtained with untreated cells while the majority (82.4%) of the data belongs 

to spectra from cells treated with antibiotics. A class imbalance is also seen for the MoA 

classification forest, as out of the five classes (CWL, NUC, PRT, OTH, and untreated) only 

8.9% (82 spectra) of the data observations are obtained with antibiotics from the class OTH 

(other antibiotic MoAs), while the protein synthesis inhibiting (PRT) antibiotics make up 

one-third of the data (36%, 328 spectra). The classes untreated (UNT), CWL, and NUC are 

relatively balanced, comprising 17.6%, 23.0%, and 14.8% of the data, respectively.  

The stratified cross-fold validation sequential feature selection approach does not suffer 

from selection biases as a result of class imbalance [177]. However, sequential feature 

selection is a computationally intensive step, resulting in a computational time of 

approximately 2 hours for the binary problem and 6 hours for the MoA problem for the E. 

coli data set. To reduce computational time, the number of features was preliminary 

reduced by excluding features with insignificant relative feature importance, which was 

determined by means of the RF algorithm. As a threshold, features with a relative feature 

importance lower than the mean feature importance of all peaks were excluded for 

sequential feature selection. It is assumed that the selection bias does not influence peaks 

with such relatively low feature importance. 

Feature selection was first evaluated employing the RF approach. Depending on the class 

labels, binary or MoA, a forest of defined size was grown (200 and 250 trees for the binary 

and MoA problem, respectively) and the relative feature importance for each peak was 

determined. Details of the feature selection approach using RFs are provided in Figure 7.  
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Figure 7. Feature selection details using Random Forest (RF) on E. coli data set. Exemplary 
data showing (a) the elbow plot of the out-of-bag error for 200 decision trees for the binary 
classifying trees. Depicted in (b) is the relative feature importance of each of the 175 peaks in 
the mass spectrum of E. coli for the binary classification problem using 200 decision trees. 
Horizontal dotted line shows the feature selection threshold (mean feature importance + 1.5 
× feature importance standard deviation). Depicted in (c) is the elbow plot of the out-of-bag 
error for 250 decision trees for the mechanism of action (MoA) classifying trees. Shown in (d) 
is the relative feature importance of each of the 175 peaks in the mass spectrum of E. coli for 
the MoA classifying trees using 250 decision trees.  

 

Figure 7a and Figure 7c show the OOB error over the number of grown trees for the binary 

and MoA model, respectively. As mentioned before, the OOB gives an estimate of the 

misclassification probability of the RF based on the samples that are not included in the 

training set. Thus, increasing the number of trees reduces the OOB, resulting in a so-called 

elbow plot. The elbow plot in Figure 7a shows that growing a RF with 200 trees was 

sufficient for stabilization of the OOB error for the binary classification problem, and 

growing additional trees would not benefit the OOB error. As a result of a more complex 

classification problem for the MoA classification forest (with a total of 5 classes), a larger 

forest of 250 trees was grown to assure stabilization of the OOB error (see Figure 7c). Thus, 

feature importance per peak was determined based on 200 and 250 trees for the binary and 

MoA classification model, of which the results are shown in Figure 7b and Figure 7d, 

respectively. These results show that peaks have different importance values for each 

classification problem. This difference leads to different selection thresholds, as the 

thresholds are data-dependent, and consequently different feature sets are obtained for 
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each classification problem. This observation is explained by the variability that needs to be 

described per classification problem, where peaks which contain information on a more 

antibiotic specific response might be required in the MoA classification problem, compared 

to peaks that are selected for a more general response to stress for the binary classification 

problem.  

Sequential feature selection results are shown in Figure 8, where details of SBS and SFS on E. 

coli data for the binary classification problem are provided in Figure 8a and Figure 8b. 

Details of SBS and SFS on E. coli data for the MoA classification problem are provided in 

Figure 8c and Figure 8d.  

 

 

Figure 8. Feature selection details using sequential feature selection. Evaluation results using 
sequential forward feature selection (SFS) is depicted in (a) and (c), and sequential backward 
selection (SBS) is depicted in (b) and (d). Feature selection frequency by each algorithm is 
shown for the binary classification (a) and (b), and the mechanism of action (MoA) 
classification in (c) and (d). The horizontal line indicates the feature selection threshold (mean 
times selected + 1.5 × standard deviation times selected). For SBS on the MoA classification 
problem in (d), the threshold was set to 99, as the data-dependent threshold was > 100.  

 

The selected feature sets vary widely depending on whether SFS or SBS is performed 

(compare Figure 8a-b, the binary classification model or Figure 8c-d, the Moa classification 

problem). This is because SFS and SBS have different starting points for feature selection. 

SFS starts out with an empty feature set, and keeps adding features until the classification 
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accuracy does not increase anymore. On the contrary, SBS initially considers all features for 

the classification problem, and eliminates features one by one until the accuracy does not 

increase anymore. Due to the nature of feature elimination in SBS, one often ends up with 

subsets of weak features that by themselves do not explain variance in the data very well, 

but combined they show a synergistic effect on the classification accuracy [178].  

Upon comparison of the SFS binary classification (Figure 8a) and SFS MoA classification 

(Figure 8c), it was observed that for the binary classification problem that the SFS algorithm 

selects peak number 151 (m/z 9721.5) in 0% of the cases and peak number 152 (m/z 9906.7) 

in 75% cases. Yet, for the MoA classification problem, peak 151 (m/z 9721.5) is selected in 

almost all (93%) of the cases, while peak 152 (m/z 9906.7) is selected approximately to the 

same degree (83%). The influence of the classification problem (binary or MoA) on 

sequential feature selection is also visible for SBS (see Figure 8b and Figure 8d). For the 

binary problem only a few peaks are assigned frequently above the selection threshold (83 

times selected), whereas for the MoA model, which needs to capture small differences, a 

multitude of features are selected multiple times. Consequently, the selection threshold of 

the MoA is higher (> 99) compared to the selection threshold for the binary problem (> 83 

times selected). 

These observed differences in selected peaks highlights the importance of selecting features 

while considering the classification problem, as different data patterns determine the 

desired distinction between classes. It also shows that the data-dependent feature selection 

approach can direct specific attention to certain peaks, which may otherwise be ignored, as 

the overall outcome of selected peaks can vary so widely between the algorithm and class 

labeling used.  

To combine the strengths of the three selection algorithms, a fourth feature set was created 

as well. Here, features which were consistently selected by two or all three of these 

methods (RF, SFS, SBS) were combined into the so-called aggregated feature set. In total 

four different feature sets were evaluated for modeling and validation: (1) the feature set as 

determined by the RF, (2) the feature set selected by SFS, (3) the feature set selected by 

SBS, and (4) the feature set selected with the aggregated approach.  

 

4.1.5 Model selection 

After feature selection, the applicability to distinguish mass spectra obtained from 

untreated cells and cells treated with antibiotics (binary and MoA specific) was evaluated for 

each of the four different feature selection approaches. As classification model performance 

is not only influenced by the selected features that represent data variation, but also by the 

classifier type, the suitability of various classifiers for the E. coli data set was evaluated. Nine 

classifier types were investigated: linear discriminant analysis and quadratic discriminant 
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analysis classifiers, but also more complex and modern classifiers, such as Naïve Bayes, 

several support vector machines (SVM) with different kernel functions (linear, quadratic, 

cubic and medium Gaussian kernels were invesigated), k-nearest neighbor (KNN), and a 

decision tree classifier. Support vector machines are of particular interest, as it has been 

shown that this classifier type works exceptionally well on MALDI-TOF MS data for bacterial 

identification purposes [145, 147].  

For the binary and MoA classification problems, the nine models were trained using E. coli 

data for each of the four feature sets (RF, SFS, SBS, and the aggregated feature set), which 

resulted in training and evaluating 72 models in total. All obtained classification models 

were internally validated using stratified 10-fold cross-validation and externally validated 

with a blind data set of 20 drugs. Internal validation estimates the classification 

performance of a model, and external validation confirms whether the models generalize 

well towards unknown data. Evaluation results of all 72 models are combined in Figure 9.  

 

 

Figure 9. Overall classification accuracies of 72 classification models on E. coli data. Shown are 
internal (a, c) and external (b, d) validation accuracy of binary (a, b) and mechanism of action 
(c, d) classification models using four different feature subsets of E. coli data set. Feature sets 
were selected by Random Forest (RF), sequential forward and backward selection (SFS and 
SBS, respectively) and an aggregated feature set (Aggregate). Listed are the model accuracies 
and the bars show the mean accuracy of the model across all feature sets (indicated on the 
right of each panel in bar graph) and the mean accuracy across all models per feature set 
(indicated in bar graph at the bottom of each panel). SVM: support vector machine; KNN: k-
nearest neighbor.  

Internal validation, binary
Feature selection RF SFS SBS Aggregate Mean  

accuracyNo. of features 17 14 33 9

Linear discriminant 0.92 0.94 0.96 0.91

Quadratic discriminant 0.93 0.92 0.95 0.91

Naive Bayes 0.89 0.88 0.76 0.87

Linear SVM 0.94 0.95 0.97 0.92

Quadratic SVM 0.95 0.94 0.96 0.93

Cubic SVM 0.95 0.94 0.96 0.93

Medium Gaussian SVM 0.95 0.95 0.95 0.94

Cosine KNN 0.94 0.94 0.94 0.93

Decision tree 0.95 0.94 0.93 0.93

Mean accuracy

External validation, binary
Feature selection RF SFS SBS Aggregate Mean  

accuracyNo. of features 17 14 33 9

Linear discriminant 0.85 0.85 0.80 0.85

Quadratic discriminant 0.95 0.90 0.95 0.95

Naive Bayes 0.80 0.85 0.70 0.85

Linear SVM 0.95 0.95 0.80 0.90

Quadratic SVM 0.90 0.90 0.90 0.95

Cubic SVM 0.95 0.90 0.85 0.95

Medium Gaussian SVM 0.95 0.95 0.80 0.95

Cosine KNN 0.90 0.95 0.75 0.90

Decision tree 0.85 0.85 0.80 0.90

Mean accuracy

Internal validation, mechanism of action
Feature selection RF SFS SBS Aggregate Mean  

accuracyNo. of features 11 17 9 6

Linear discriminant 0.64 0.73 0.63 0.63

Quadratic discriminant 0.71 0.69 0.65 0.62

Naive Bayes 0.59 0.57 0.50 0.56

Linear SVM 0.69 0.75 0.64 0.65

Quadratic SVM 0.77 0.77 0.70 0.66

Cubic SVM 0.76 0.79 0.68 0.67

Medium Gaussian SVM 0.77 0.74 0.69 0.69

Cosine KNN 0.75 0.72 0.63 0.66

Decision tree 0.74 0.73 0.67 0.66

Mean accuracy

External validation, mechanism of action
Feature selection RF SFS SBS Aggregate Mean  

accuracyNo. of features 11 17 9 6

Linear discriminant 0.75 0.80 0.75 0.70

Quadratic discriminant 0.85 0.75 0.65 0.85

Naive Bayes 0.80 0.75 0.65 0.80

Linear SVM 0.80 0.90 0.75 0.75

Quadratic SVM 0.75 0.95 0.80 0.80

Cubic SVM 0.75 0.75 0.85 0.85

Medium Gaussian SVM 0.80 0.80 0.75 0.80

Cosine KNN 0.80 0.80 0.80 0.80

Decision tree 0.75 0.75 0.80 0.75

Mean accuracy

a b

c d

1.00

1.001.00

1.00

1.001.00

1.00

1.001.00

1.00

1.001.00
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Validation of the binary models is shown in Figure 9a (internal validation) and Figure 9b 

(external validation). Validation of the MoA models is shown in Figure 9c (internal 

validation) and Figure 9d (external validation). All accuracies are listed in the table of each 

panel and the mean accuracy per model type and feature subset is shown as a bar graph 

inset. Evaluation results of the 36 binary and the 36 MoA models will be discussed 

separately in the following subsections.  

 

4.1.5.1 Binary classification models  

Internal validation of binary classifiers showed a relatively good performance for all classifier 

types (see Figure 9a). This is reflected by a mean accuracy above 0.93 for all classifier types 

in combination with each feature set, with the exception of the Naïve Bayes classifier 

(accuracy ranging 0.76-0.89, depending on feature set). Comparing the average internal 

validation accuracies for each feature set shows there are no major differences between the 

feature sets, as each feature set has a mean validation accuracy of 0.92-0.93.  

Subsequent external validation of the binary models (see Figure 9b) shows a starker 

contrast between the different model types and feature sets. Similar to the internal 

validation, external accuracies of the Naïve Bayes classifiers are relatively low (average 

accuracy for all feature sets 0.80). In contrast to the internal validation, the linear 

discriminant model has relatively poor performance, with an accuracy of only 0.84. The 

KNN- and decision tree-based classifiers also perform relatively poor, having an average 

accuracy of 0.88 and 0.85 respectively. All SVM-based classifiers perform among the best, 

having an average classification accuracy of 0.90-0.91. The quadratic discriminant models 

showed the best performance with an average accuracy of 0.94.  

When comparing the different feature sets, the aggregated feature subset showed the best 

performance during external validation, reflected by highest number of classifiers with an 

accuracy of 0.95 (quadratic discriminant, linear SVM, quadratic SVM, and cubic SVM), and 

an overall mean accuracy of 0.91. Notably, the SBS feature set (composed of 33 peaks) 

performs overall worst, with an accuracy of 0.82 on average. The feature sets selected by RF 

(composed of 17 peaks), SFS (composed of 14 peaks), and the aggregated feature set 

(composed of only 9 peaks) show higher, and more comparable model accuracies, with 

average accuracies of 0.90, 0.90, and 0.91, respectively. This can be explained by the fact 

that the SBS feature set is the largest feature set (33 peaks). Presumably, the selection of 

multiple irrelevant peaks introduced noise and caused overfitting of the models, resulting in 

a poor generalization to the unseen (blind) data. The SBS feature set produced the 

seemingly best performing model when only internal validation was considered, but 

external validation showed that models trained with the SBS feature set have the worst 
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performance overall. This highlights the importance of both internal and external validation 

of the classification models. In addition, it also underlines that one should aim to reduce the 

number of features for modeling as much as possible. By including relatively few features, 

model overfitting is avoided, and also makes the model more transparent and thereby 

easier to interpret [179].  

Based on the internal and external validation of the 32 binary classification models to 

distinguish mass spectra of treated and untreated E. coli cells, it is observed that SVM-based 

as well as quadratic discriminant classifiers result in the best performance. Considering the 

predictive power and relative sizes of the feature sets, the aggregated feature set was found 

the preferred feature set to use for binary classification modeling.  

 

4.1.5.2 Mechanism of action classification models  

Compared to the internal validation of binary classifiers (overall mean accuracy 0.76 – 0.97), 

classifiers trained with MoA class labels generally show a lower accuracy (overall mean 

accuracy 0.50 – 0.79, see Figure 9c). This is a result of the variation in the data that has to be 

captured by the mass spectral peaks upon increasing the number of classes. As seen for the 

binary classifiers, the Naïve Bayes classifiers performed relatively poor compared to the 

other MoA classifiers for each feature set, reflected by a mean accuracy of 0.56. The low 

accuracy of Naïve Bayes classifiers seen for both classification problems, regardless of 

feature set, is presumably due to the fact that Naïve Bayes assumes each feature as an 

independent variable which has no interaction with any of the other features [180]. The 

validation results indicate that this is not the case for this data set. This can be explained by 

the origin of the mass spectral peaks, which are all part of a complex protein expression 

network originating from one cell. Therefore, all features are inherently depending on each 

other to some degree. In addition, performance of Naïve Bayes is sensitive to imbalanced 

data [181], contributing to its relatively poor performance. 

Contrary to the binary models, the linear and quadratic discriminant MoA classifier do not 

perform among the best models (only 0.66 and 0.67 overall accuracy). This is possibly due to 

the higher complexity required for the classifier with more classes, which are better handled 

by the more advanced SVM models. This statement is supported by the highest model 

accuracies (0.72-0.73) for all feature sets for the quadratic, cubic, and medium Gaussian 

kernel SVM classification models.  

Where the internally validated binary models all had a roughly equal mean accuracy for the 

four feature sets (0.92-0.93, see Figure 9a), internal validation of the MoA classifiers shows 

a larger difference between different feature sets (see Figure 9c). Models using features 

selected by the RF and SFS show a better classification performance (mean model accuracy 

of 0.71 and 0.72, respectively) than models using peaks selected by SBS and the aggregated 
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feature set (both having a mean accuracy of 0.64). This may be a result of the relatively 

larger sized feature sets selected by the RF and SFS (11 and 17 peaks, respectively) 

compared to the somewhat smaller feature sets selected by SBS and the aggregated feature 

set (9 and 6 peaks, respectively), where the latter fail to capture all relevant variation in the 

data. It appears that in the case of the MoA models, internal validation accuracy benefits 

from a relatively larger feature set. This effect disappears in external validation results, 

where it was also found that the RF and SFS feature sets only have a slightly higher accuracy 

(0.78 and 0.81, respectively) than the SBS and aggregated feature set (0.76 and 0.79, 

respectively). The relatively poor performance of SBS was also observed during external 

validation of the binary classifiers, indicating that SBS is not the preferred method for 

feature selection for the evaluated data set. 

Differences in external validation performance between the model types were less distinct 

for the MoA models compared to the binary models. External validation of MoA-based 

classifiers showed good generalization of most models, with a mean accuracy of 0.78 

considering all trained MoA classifiers (see Figure 9d). The model accuracy of 0.78 is even 

higher than what was observed for the internal validation (overall average accuracy 0.68). 

Similar to binary models and the internal validation of MoA models, the poorest 

performance during external validation of the MoA classifiers was found for the Naïve Bayes 

classifier, reflected by a mean accuracy of 0.75. The linear and quadratic discriminant 

analysis (0.75 and 0.78, respectively) and the decision tree (overall accuracy 0.76) had 

roughly equal performance. Similar to the external validation of the binary models, the 

SVM-based models performed best using either of the four feature sets (overall mean 

accuracy 0.79-0.83). The quadratic SVM (Q-SVM) performs best on average in the external 

validation of MoA classifiers, regardless of feature set (mean accuracy of 0.83). 

As the external validation performance of MoA classifiers trained with RF (accuracy 0.78), 

SFS (accuracy 0.81), and aggregated feature (accuracy 0.79) sets are comparable, the 

preferred feature set for MoA classifiers would be the aggregated feature set due to having 

the smallest size of the three. This feature set consists of only 6 peaks, which is relatively 

small compared to the RF and SFS (11 and 17 peaks, respectively). Although the models 

trained with RF and SFS performed slightly better than the models trained with aggregated 

feature set, maintaining a low the number of features low is an acceptable trade-off for a 

marginally lower accuracy. By reducing the numbers of features, the model becomes more 

transparent, easier to interpret, and the chances of overfitting are minimized.  

It was found for both the binary and the MoA classification problem that the aggregated 

feature set in combination with the Q-SVM models give on average the best classification 

performance on the external validation set. Based on these results, this combination of 

feature selection algorithm and classifier type was selected and applied to distinguish mass 

spectra based on proteomic response as a result of sub-MIC antibiotic treatment.  
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4.1.6 Model evaluation 

In this subsection, the selected peaks in the aggregated feature sets of both the binary and 

the MoA models are evaluated in more detail. In addition, the internal and external 

validation results of the binary and MoA model are discussed to generate a more in-depth 

understanding of the models’ performance. 

 

4.1.6.1 Aggregated feature set of the binary model: peak identification 

Details of peaks in the aggregated feature set selected for the binary model are listed in 

Table 5. Mass spectral details of peaks indicated with asterisk (*) in Table 5 are provided in 

Figure 10 to illustrate peak differences that are detected during feature selection. These 

peaks and their relative intensity will be discussed in the following sections, were the 

relative intensity value will be mentioned in percentage, ± the mean absolute deviation 

(MAD) in percent point.  

Table 5. Aggregated feature set of peaks selected from E. coli spectra for the binary model. Listed are the 
observed m/z value and the theoretical m/z value of the protein, if identified. For identified proteins is 
indicated the relative mass error in ppm, UniProt accession number, theoretical isoelectric point (pI), and the 
corresponding name and notes of the protein, and post-translational modifications (PTMs) if applicable. 
Details of peaks marked with asterisk (*) are depicted in Figure 10. 

Observed 
m/z 

Theoretical 
m/z 

∆ Error 
(ppm) 

UniProtKB pI Name; notes; PTMs 

4531.7 - - - - - 

4859.5 4859.8 71 P64567 9.2 Uncharacterized protein YqgB; response to acidic pH  

5097.9 5096.8 203 P68191 11.0 Stationary-phase-induced ribosome-associated protein  

7661.0* - - - - - 

8898.2* 8898.3 1 P0A7T7 10.6 
30S ribosomal protein S18, stabilizes the platform of the 30S 
subunit; N-terminal acetylated;, initiator methionine removed  

9906.7 - - - - - 

10650.7 10652.2 135 P0A6Y1 9.3 
Integration host factor subunit beta; involved in transcriptional and 
translational control  

11405.4 - - - - - 

12654.0 12654.4 28 P0AD49 6.2 
Ribosome-associated inhibitor A; general stress response element; 
initiator methionine removed  

 

Table 5 shows that 5 out of 9 peaks in the aggregated feature set of the binary model have 

been tentatively identified. Notably, only for 30S ribosomal protein S18, observed at m/z 

8898.2, no specific regulatory or stress related role was previously reported in the UniProt 

database. The 30S ribosomal protein S18 is a protein reported to be involved in stabilizing 

the 30S ribosomal subunit [182]. The other four identified proteins selected for the binary 

model all have a regulatory or stress-associated function annotation in the UniProt 

database. One of these peaks, observed at m/z 4859.5, is uncharacterized protein YqgB, 

which is a protein that is known to respond to acidic pH [183]. The peak at m/z 5097.5 was 

tentatively identified as stationary-phase-induced ribosome-associated protein. Previously, 

Arnold and coworkers had found this specific peak to be altered in abundance dependent 
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on the growth stage of bacterial cultures [160] using MALDI-TOF MS. It is known that this 

protein associates with the 30S subunit of the ribosome and that its copy-number increases 

from 0.1 per ribosome particle in the exponential growth phase to 0.4 per ribosome particle 

once the culture reaches its stationary growth phase [184]. The peak at m/z 10650.7 was 

identified as integration host factor subunit beta, which is known to be involved in 

transcriptional and translational control [185]. Interestingly, the stationary-phase-induced 

ribosome-associated protein is long known to be under control by global regulators like 

integration host factor (composed of the alpha and beta subunit) [184]. Although the beta 

subunit was observed and selected for the binary model, the alpha subunit (expected at m/z 

11223.7) was not observed. Lastly, the selected peak at m/z 12654.0 was identified as 

ribosome-associated inhibitor A. This protein is known to be elevated during environmental 

stresses, such as cold shock and cell dense conditions in the stationary phase, where it 

regulates translation [186]. To further illustrate as to why the peaks listed in Table 5 were 

selected by the feature selection methods, exemplary details of the unidentified peak at m/z 

7661.0 and the peak at m/z 8891.2 (RS18) are depicted in Figure 10. 

 

Figure 10. Details from E. coli mass spectra. (a) Detail of the unidentified peak at m/z 7661.0. 
Average mass spectra of untreated cells (black) and treated cells (red), ± mean absolute 
deviation (MAD) indicated with shades. (b) Details of the peak at m/z 8898.2, identified as 30S 
ribosomal protein S18. Colors are described in (a).  

 

Figure 10a depicts two adjacent peaks, m/z 7661.0 (peak 111 in Figure 7 and Figure 8) and 

m/z 7705.4 (peak 112 in Figure 7 and Figure 8), of which the first peak is part of the 

aggregated feature set for the binary problem. The peak details in Figure 10a allow for an 

insight in why the peak at m/z 7661.0 has been selected by the feature selection algorithms, 

and the peak at m/z 7705.4 was not. The relative intensity at m/z 7661.0 is strongly reduced 

upon treatment with antibiotics (red; average 2.1% ± 1.3) compared to spectra from 

untreated cells (black; average 5.2% ± 1.9). Contrarily, the peak at m/z 7705.4, does not 

allow for a reliable distinction between the two classes (treated average 0.8 ± 0.4; untreated 

1.4% ± 0.7). Another example is given in Figure 10b. The peak shown at m/z 8898.2 was 

selected by all three feature selection algorithms, as the relative intensity for spectra 

obtained from untreated cells is 13.0% ± 2.2 and goes down to 7.6% ± 2.9 for spectra from 
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cells which were treated with antibiotics. In the same Figure 10b, the peak on the left at m/z 

8875.2 was selected neither by the RF nor the sequential feature selection methods. This 

peak is evidently incapable of making a distinction between the two classes, as its average 

relative intensity is 10.5% ± 1.5 for spectra obtained from untreated cells and an almost 

identical intensity of 10.8% ± 2.2 for spectra obtained from cells treated with antibiotics.  

 

4.1.6.2 Aggregated feature set of the MoA model: peak identification 

For the MoA model, six peaks were included in the aggregated feature set of which three 

were tentatively identified. Details of the peaks are provided in Table 6. 

 

Table 6. Aggregated feature set of peaks selected from E. coli spectra for the mechanism of action (MoA) 
model. Listed is the observed m/z value and the theoretical m/z value of the protein, if identified. For 
identified proteins is indicated the relative mass error in ppm, UniProt accession number, theoretical 
isoelectric point (pI), and the corresponding name and notes of the protein, next to post-translational 
modifications (PTMs) if applicable. Details of peaks marked with asterisk (*) are depicted in Figure 11. 

Observed 
m/z 

Theoretical 
m/z 

∆ Error 
(ppm) 

UniProtKB pI Name; notes; PTMs 

5097.9* 5096.8 203 P68191 11.0 Stationary-phase-induced ribosome-associated protein  

5340.5 5339.1 -251 C1P5Z7 7.6 
Putative inhibitor of glucose uptake transporter SgrT; involved in recovery 
from glucose-phosphate stress  

6504.2 - - - - - 

7929.2 - - - - - 

9065.5* 9066.2 75 P0AET2 4.9 Acid stress chaperone HdeB; maturated, maturated, position 30-108  

9721.5 - - - - - 

 

Regulatory and stress-associated proteins were also identified in the MoA feature set. 

Similar to the binary feature set, the peak at m/z 5097.7 (stationary-phase-induced 

ribosome-associated protein) was selected for the MoA classification model. Two other 

proteins involved in stress-response mechanisms were identified as well. The peak at m/z 

5340.5 was identified as putative inhibitor of glucose uptake transporter SgrT. This protein is 

known to be involved in the recovery process from glucose-phosphate stress by disruption 

of the glycolytic pathway [187]. The peak observed at m/z 9065.5 was identified as acid 

stress chaperone HdeB. This protein is known to prevent the aggregation of periplasmic 

proteins at acidic pH values using chaperone-like activity [188]. The other three peaks in the 

aggregated feature set, observed at m/z 6504.2, m/z 7929.2, and m/z 9721.5, were not 

identified. Exemplary details of the identified peaks at m/z 5097.9 (stationary-phase-

induced ribosome-associated protein) and m/z 9065.5 (acid stress chaperone HdeB) are 

provided in Figure 11a and Figure 11b, respectively.  
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Figure 11. Details from averaged E. coli mass spectra ± ½ mean absolute deviation (MAD; 
shades). (a) Detail of the peak at m/z 5097.9, identified as stationary-phase-induced 
ribosome-associated protein. Colors are as follows: average mass spectra from untreated cells 
(black); cells treated with cell wall synthesis inhibitors (CWL, red), the class nucleic acid 
synthesis and processing inhibitors (NUC, green), protein synthesis inhibitors (PRT, blue) and 
cells treated antibiotics with another mechanism of action (OTH, pink). Exemplary mass 
spectra shown in (a) and (b) were treated at ⅛×MIC of antibiotics (b) Details of the peak at 
m/z 9065.5, identified as acid stress chaperone HdeB. Colors are as described for (a). 

 

The relative intensity of the peak at m/z 5097.9, in relation to untreated cells (black; 5.4% ± 

0.8), increases marginally up to 5.9% ± 1.7 upon treatment with antibiotics of the class OTH, 

as well as for the class CWL (5.8% ± 1.6). For cells treated with class NUC, the relative 

intensity is slightly lower at 5.3% ± 1.8, but especially the antibiotics of the class PRT show a 

strong decrease to 3.7% ± 1.8. Considering that the proteins’ abundance is known to 

increase in upon growth progression into the exponential growth phase [160, 184], it seems 

counterintuitive that there is an increase observed upon treatment with antibiotics of any 

class (as is observed here for the classes CWL and OTH). Treatment with antibiotics would 

cause the cell culture not to progress into the exponential growth phase, and therefore the 

observed decrease in peak intensity upon treatment with antibiotics (especially visible for 

the class PRT) is in line with those previous reports. As this peak was also selected for the 

binary classification problem, it seems that the proteins’ response to growth stage is more 

complex than solely up- and downregulation upon treatment with the antibiotics.  

Details of the peak corresponding to the acid stress chaperone HdeB (m/z 9065.5) are 

shown in Figure 11b. Its relative intensity increases from 2.6% ± 0.2 for untreated cells, upon 

treatment with antibiotics of all classes (CWL: 3.6% ± 0.3; NUC: 4.4% ± 0.3; OTH: 3.1% ±0.2) 

except protein synthesis inhibitors (PRT: 2.4% ±0.3). This illustrates the responsiveness of 

this peak to the antibiotic treatments. 

Although none of the proteins in the aggregated feature sets of both binary and MoA 

models are annotated in the UniProtKB database or known from literature as being involved 

in specifically antibiotic responses, their reported involvement in different regulatory 
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processes and general stress response mechanisms, indicate that the feature selection 

algorithms are able to extract relevant peaks from the mass spectra for modeling.  

 

4.1.6.3 Internal validation of the binary model 

In the following subsections, more detailed results of the internal and external validation of 

the binary and MoA models trained with the previously discussed peaks are shown. These 

results allow for a more in-depth discussion of the performance of the Q-SVM modeling 

approach. Details of the models performance will be provided in the form of confusion 

matrices. This is a table where each column represents the instances of the prediction by 

the model and each row represents the true class.  

Details of the classification results for internal validation of the binary Q-SVM model are 

provided in Table 7. The binary Q-SVM model was trained with 920 mass spectra, of which 

162 originated from cells that were not treated with any antibiotics (the class untreated). 

The other 726 mass spectra originated from cells treated with 17 antibiotics (see Table 2), at 

(sub-)lethal concentrations ranging from 1/32× to 1×MIC.  

 

Table 7. Confusion matrix of the 10-fold cross-validation of binary quadratic support vector 
machine model with the aggregated feature set of E. coli, encompassing 920 mass spectra (all 
antibiotics at all concentrations). Indicated is the total number of spectra per class (either 
spectra from cells that are ‘treated’ or ‘untreated’) and the corresponding recall and precision 
value per class, and the overall accuracy in the bottom right in bold.  

Tr
u

e 
cl

as
s 

 
Model classification 

  
Class labels Treated Untreated Total Recall 

Treated 726 32 758 0.96 

Untreated 39 123 162 0.76 

Total 765 155 920  

Precision 0.95 0.79  0.92 

 

The confusion matrix of the binary model shows an overall accuracy of 0.92, classifying 726 

out of the 920 mass spectra to the correct class (green, on the diagonal). However, both the 

recall (true positive rate) and precision (positive predictive value, indicating the fraction of 

true positive) values for both classes deviate significantly from the overall accuracy. The 

overall precision for the class treated with antibiotics is 0.95, relatively close to the overall 

accuracy of 0.92. However, the precision for the class untreated is only 0.79. The same holds 

true for the recall values of both classes, which is high for the class of treated spectra (0.96), 

but is lower (0.76) for the untreated class. This is due to the relatively large class imbalance, 

as only 18% of the data (162 spectra) originate from untreated cells, while the vast majority 

of the spectra (758 spectra, 82% of the data) originate from antibiotic treated cells. 
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Therefore, although the number of spectra misclassified is comparable (32 and 39 spectra, 

indicated in Table 7 in red), their impact on the recall and precision value for the class 

untreated is relatively large. In future experiments it would be advised to reduce the class 

imbalance that is currently present, to avoid such effects. Nevertheless, considering that the 

class treated consists of 758 mass spectra, all dosed at relatively low, sub-lethal 

concentrations (between 1/32× and 1×MIC) the model is very capable at distinguishing those 

from untreated cells’ spectra, as only 39 of the treated cells’ spectra were misclassified to 

the class untreated. This indicates that the combination of the aggregated feature selection 

algorithm and Q-SVM classifier type is able of identifying antibiotic effects at sub-MIC 

concentrations in mass spectra obtained from E. coli cell cultures.  

 

4.1.6.4 External validation of the binary model  

After internal validation of the binary Q-SVM model, the binary model was also validated 

with an external data set. This entailed screening 20 blind drugs with the developed assay at 

a single fixed concentration of 10 µM, among which antibiotic drugs and drugs with no 

antibiotic activity. This concentration was selected, as it represents a typical high-

throughput screening dose [189]. After recording the mass spectra from the corresponding 

cell cultures exposed to this set of drugs, mass spectra were imported and processed as 

shown for the training data. Mass spectral details of the selected features in the aggregated 

feature set were extracted from this external data set and fed into the previously trained 

binary Q-SVM model. The binary model then returned whether the mass spectrum belonged 

to a E. coli cell culture treated with an active antibiotic (‘treated), or an inactive drug 

(‘untreated). Details of the external validation are listed in Table 8.  
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Table 8. Classification details of the binary quadratic support vector machine classification 
model using the aggregated feature set (9 peaks) for E. coli for external validation on the blind 
data set. Drugs, listed in the first column, were screened at fixed concentration of 10 μM. The 
second column (True class) indicates the actual class of the drug, therefore the expected 
result of the classifier. The third column, labeled Literature MIC (μM), lists the literature 
minimal inhibitory concentrations of the antibiotic in question as reference. Model 
classification details are given in the fourth column, incorrect classifications are stated in 
brackets. Overall performance of the model was evaluated using the overall accuracy, 
indicated at the bottom in bold. 

Drug True class 
Literature MIC  
(µM) 

Model  
classification 

Brucine Untreated - Untreated 

Ephedrine Untreated - Untreated 

Ergotamine Untreated - Untreated 

Fenbendazole Untreated - Untreated 

Loperamide Untreated - Untreated 

Metoprolol Untreated - Untreated 

Paroxetine Untreated - Untreated 

Sumatriptan Untreated - Untreated 

Thalidomide Untreated - Untreated 

Umifenovir Untreated - Untreated 

Ampicillin Treated 23 [157] Treated 

Azithromycin Treated 11 [157] Treated 

Cefuroxime Treated 19 (this thesis) Treated 

Chlortetracycline Treated 17 [190] Treated 

Fusidic acida Untreated - Untreated 

Nalidixic acid Treated 34 [157] Treated 

Novobiocin Treated 104 [191] Treated 

Paromomycin Treated 6 [192] Treated 

Tiamulin Treated 16 [193] (Untreated) 

Trimethoprim Treated 7 [157], (this thesis) Treated 

 Overall accuracy 0.95 

a) Inactive on Gram-negative bacteria, such as E. coli. 

 

The external validation of the binary model shows an overall accuracy of 0.95, with 19 out of 

20 correct classifications. This is in agreement with values obtained for internal validation 

(overall accuracy 0.92), indicating that the binary model trained with the aggregated feature 

set generalizes well to unseen data.  

All drugs in the blind set which have no antibiotic activity were correctly classified as being 

inactive. This performance is better than during internal validation, where a relatively large 

fraction (21%) of the untreated samples was misclassified as being treated with an 

antibiotic. It should also be noted that spectra from E. coli cells treated with fusidic acid 

were correctly identified as ‘inactive’, as fusidic acid has no activity on Gram-negative 

bacteria.  
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The single misclassification occurred for spectra from cells treated with tiamulin. This 

misclassification of tiamulin was not only confined to the Q-SVM binary model, but was 

interestingly observed for all other binary classification model types that were assessed for 

classification modeling with the aggregated feature set (for details see Appendix Table 1). 

Tiamulin is a diterpene pleuromutilin antibiotic, which inhibits protein synthesis by binding 

to the peptidyl transferase unit of the large 50S ribosomal subunit [194]. It seems unlikely 

that the selected features could not capture the effect of this specific inhibitor, as there are 

ample antibiotics in the training data set that are known to bind to the peptidyl transferase 

subunit in the training data set (chloramphenicol and the macrolides erythromycin and 

clarithromycin). Additionally, the Q-SVM model, as well as the other classifier types, 

correctly classified the other macrolide (azithromycin) in the blind test set. As the model 

was trained with antibiotics at the sub-lethal concentrations ranging from 1×MIC down to 
1/32×MIC, it is surprising that none of the binary models could identify tiamulin at the 

employed screening concentration. At the screening concentration of 10 μM an effect was 

expected, as it is approximately 5/8×MIC tiamulin (literature MIC: 8 mg/L; 16 µM [193]). 

Currently, there is no clear explanation for this misclassification, and it is speculated that the 

consistent misclassification of tiamulin by the Q-SVM, and other models, is due to a lower 

susceptibility of E. coli than was expected based on the literature MIC. 

The correct classification of the antibiotics in the blind test set (with the exception of 

tiamulin) exceeds initial expectations, as the literature MIC values of most of these drugs is 

significantly higher than the screening concentration of 10 µM. For example, for ampicillin 

the MIC was reported to be 23 μM, over a factor two higher than the screening 

concentration. Even more remarkable is the correct classification of nalidixic acid and 

novobiocin, having a reference MIC of 34 μM and 105 μM, respectively, over a factor 3 and 

10 higher than the screening concentration of 10 μM. A slightly lower MIC compared to the 

screening concentration of 10 μM was present in the blind data set for two antibiotics 

(trimethoprim, MIC of 7 μM, and paromomycin, MIC 6 of μM), which were nonetheless 

classified correctly. The results of the binary model show the powerful capabilities of the 

aggregated feature set in combination with the Q-SVM modeling approach, which is able to 

detect relatively weak antibiotic activity from the cells’ mass spectra at concentrations 

around and far below their MIC values.  

 

4.1.6.5 Internal validation of the MoA model 

The MoA model was trained with the same 920 mass spectra as the binary model, but with 

the aggregated feature set specifically selected for the MoA classification problem. Now, the 

726 mass spectra that originated from cells treated with antibiotics were further divided 

according to their respective MoA. Results of the internal validation of the Q-SVM model are 

listed in the corresponding confusion matrix in Table 9.  
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Table 9. Confusion matrix of the 10-fold cross-validation of mechanism of action (MoA) quadratic support 
vector machine model with the aggregated feature set of E. coli, encompassing 920 mass spectra (all 
antibiotics at all concentrations). Antibiotics were grouped according to their MoA: cell wall synthesis 
inhibitors (CWL), protein synthesis inhibitors (PRT), nucleic acid synthesis and repair inhibitors (NUC), inhibitors 
of other type (OTH), and untreated (UNT). Indicated is the total number of spectra per class, the corresponding 
recall and precision value per class, and the overall accuracy in the bottom right in bold. 

  Model classification   
 Class labels CWL NUC OTH PRT UNT Total Recall 

Tr
u

e 
cl

as
s 

CWL 130 14 8 32 28 212 0.61 

NUC 27 84 4 17 4 136 0.62 

OTH 18 8 9 37 10 82 0.11 

PRT 25 6 4 261 32 328 0.80 

UNT 22 1 0 10 129 162 0.80 

 Total 222 113 25 357 203 920  

 Precision 0.59 0.74 0.36 0.73 0.64  0.67 

 

The MoA model classified 613 out of the 920 mass spectra to the correct class (overall 

accuracy 0.67), which reflects a mediocre performance. Notably, the recall value for the 

class containing other types of antibiotics (OTH) is exceptionally low, with only 9 out of the 

82 spectra being classified correctly. The observed classification difficulty for the class OTH 

is presumably due to several factors. The first factor contributing to this specific 

classification error is that the class OTH is relatively small compared to the other classes. 

This class imbalance causes an underrepresentation during both feature selection and 

model training. A second factor contributing to the models’ poor performance with the class 

OTH is considering the nature of the included antibiotics. The OHT class consists of only two 

antibiotics (nitrofurantoin and rifampicin) that do not fit to any of the other specific 

antibiotic classes (CWL, PRT, or NUC). Nitrofurantoin has a very distinct and unique MoA. 

Nitrofurantoin is intracellularly converted to reactive intermediates that attack 

macromolecules within the bacterial cell, among which ribosomal proteins and DNA, and 

disrupt the respiratory chain and pyruvate metabolism [195]. Rifampicin also has a relatively 

unique MoA among the employed set of antibiotics. It does not interfere directly with 

ribosomal subunits, but inhibits bacterial DNA-dependent RNA polymerase, thereby 

inhibiting RNA synthesis and, consequently, inhibiting protein synthesis. Therefore, 

rifampicin was not incorporated to the class NUC nor to the class PRT, but to the class OTH. 

Thus, the class OTH consists of only two widely different antibiotics, which makes it hard to 

find specific features that are unique for this specific class, but still distinct from the other 

classes. In short, the classification model struggles with the OTH class due to its intra-class 

variability and low number of training samples, and assigns the majority of its spectra to the 

protein synthesis inhibiting class (PRT, 37 spectra) and cell wall synthesis inhibitors (CWL, 18 

spectra). 
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Contrary to the class OTH, the protein synthesis inhibitors (PRT) shows a high recall value, 

with 80% of the spectra assigned correctly (261 out of 328 correctly classified). The model 

seems to handle the class of untreated spectra (UNT) equally well, with a recall value of 

0.80. However, the UNT class has a considerably lower precision of only 0.64. This low 

precision of the class untreated is mainly caused by misclassification of all other classes of 

antibiotics (CWL, OTH and PRT), except class NUC. Upon closer inspection, it was observed 

this was mainly due to the misclassification of spectra from cells that were treated with the 

lowest fractions of the MIC (1/16× and 1/32×MIC), which are hardest for the model to 

accurately distinguish from untreated cells’ spectra by the model (data not shown).  

The class of CWL synthesis inhibitors, comprising 23% of the spectral data, suffers like the 

class PRT and UNT from relatively low precision (0.59). This is mainly due to a roughly equal 

confusion by the model with all the other classes (27 spectra misclassified to NUC, 18 

misclassified to OTH, 25 misclassified to PRT, and 22 misclassified to UNT). Overall, the 

model is able to make the distinction between the other three largest classes (PRT, NUC and 

UNT), reflected in their relatively high recall (0.62, 0.80, and 0.80, respectively) and 

precision values (0.74, 0.73, and 0.64, respectively). As stated for the binary model, it is 

advised to balance the data set more into equally large classes to avoid bias towards one (or 

several) classes during the feature selection, which subsequently skews model performance. 

Based on the presented results, the MoA model accuracy could also be improved by 

substituting the loosely defined class OTH by a more defined class of antibiotics.  

 

4.1.6.6 External validation of the MoA model 

Similar to the binary model, the MoA model was externally validated with the same blind 

data set of drugs, screened at 10 μM. Spectra from E. coli cells treated with the blind drugs 

were processed and the data for the six features in the aggregated feature set was 

extracted and fed into the MoA model. The model classified the mass spectra and returned 

the corresponding MoA, (CWL, NUC, PRT, or OTH), or the model would indicate that the 

mass spectrum came from a E. coli cell culture which was treated with an inactive drug and 

therefore would return the outcome ‘untreated’ (UNT). Detailed classification results of the 

MoA Q-SVM model trained with the aggregated feature set are listed in Table 10.  
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Table 10. Classification details of the mechanism of action (MoA) quadratic support vector machine 
classification model using the aggregated feature set (6 peaks) for E. coli for external validation on the blind 
data set. Drugs, listed in the first column, were screened at fixed concentration of 10 μM. The second column 
(True class) indicates the actual class of the drug, therefore the expected result of the classifier. The third 
column, labeled Literature MIC (μM), lists the literature minimal inhibitory concentrations of the antibiotic in 
question as reference. Model classification details are given in the fourth column, incorrect classifications are 
stated in brackets. UNT: untreated; CWL: cell wall synthesis inhibitor; NUC: nucleic acid synthesis inhibitor; 
PRT: protein synthesis inhibitor; OTH: other MoA. Overall performance of the model was evaluated using the 
overall accuracy, indicated at the bottom in bold.  

Drug True class 
Literature MIC  
(µM) 

Model  
classification 

Brucine Untreated - UNT 

Ephedrine Untreated - UNT 

Ergotamine Untreated - UNT 

Fenbendazole Untreated - UNT 

Loperamide Untreated - UNT 

Metoprolol Untreated - UNT 

Paroxetine Untreated - UNT 

Sumatriptan Untreated - UNT 

Thalidomide Untreated - UNT 

Umifenovir Untreated - UNT 

Ampicillin CWL 23 [157] CWL 

Azithromycin PRT 11 [157] PRT 

Cefuroxime CWL 19 [157] CWL 

Chlortetracycline PRT 17 [190] PRT 

Fusidic acida Untreated - UNT 

Nalidixic acid NUC 34 [157] (PRT) 

Novobiocin NUC 104 [191] (PRT) 

Paromomycin PRT 6 [192] (UNT) 

Tiamulin PRT 16 [193] PRT 

Trimethoprim NUC 7 [157], (this work) (PRT) 

 Overall accuracy 0.80 

 
a) Inactive on Gram-negatives such as E. coli. 

 

The external validation of the MoA model shows that the model performs reasonably well, 

with an overall accuracy of 0.80. This performance is better than expected based on the 

internal validation (overall accuracy 0.67). This shows that the MoA model generalizes well 

to unseen data. Notably, all drugs without antibiotic activity (including fusidic acid) are 

correctly classified as untreated. This performance is also better than was expected based 

on the internal validation, where the class of untreated had a recall of only 0.80. Most 

striking is the classification result for spectra from cells treated with tiamulin. Contrary to 

the binary model, which misclassified tiamulin as an inactive drug, the MoA model is able to 

classify it correct as belonging to the class of protein synthesis inhibitors (PRT).  
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Overall, the MoA model makes four misclassifications. One of these misclassifications was 

for the antibiotic paromomycin, misclassified as untreated. Interestingly, the binary model 

had correctly classified this drug as antibiotic, while here the MoA model does indicate it as 

an inactive drug. The reference MIC of paromomycin is slightly lower (6 μM) than the 

screening concentration (10 μM). It is therefore unexpected that the supposedly strong 

antibiotic effect was not captured by the selected features. However, the misclassification is 

in line with the relatively low precision of the class UNT seen in the internal validation of the 

MoA model (0.64).  

The other three misclassifications are all from antibiotics of the class NUC: nalidixic acid, 

novobiocin, both interfering with gyrase proteins, and trimethoprim, which interferes with 

folate pathway. The misclassification of trimethoprim by the model is unexpected, as it was 

dosed slightly above its MIC (7 μM) in the screening (10 μM), and it was one of the 

antibiotics included in the training set of the model. The MoA consistently misclassifies 

antibiotics of the class NUC with the class of protein synthesis inhibitors (PRT). This is in line 

with the internal validation of the MoA model, which misclassified 17 spectra from the class 

NUC incorrectly to the class PRT. Even more of the class NUC (27 spectra) were misclassified 

to the class CWL during internal validation, but this confusion is not observed in the external 

validation set.  

The bias towards the class of PRT observed during external validation is based on the large 

class imbalance in the data set, which was also observed for internal validation of the 

model. However, for most of the other antibiotics in the test set, which were dosed at sub-

MIC concentrations (ampicillin, azithromycin, cefuroxime, chlortetracycline, and tiamulin), 

the model was able to classify them to the correct antibiotic class. As the aim is to devise a 

screening assay to identify unknown, weakly active drugs with the binary and MoA models, 

this misclassification between different MoA classes of antibiotics (as for nalidixic acid, 

novobiocin and trimethoprim) is not as disadvantageous as misclassifying an actual active 

drug as being untreated using the MoA model (as seen for paromomycin).  

Despite the observed incidental misclassifications of the model, both the binary and MoA 

model can identify the antibiotics and their respective MoA reasonably well. Compared to 

Raman- [85] and cytological profiling-based assays [83] described in literature, the MALDI-

TOF MS-based method described in this thesis outperforms them both. Overall, the Raman-

based method described by Athamneh had similar accuracies of 0.45-0.84 for their MoA 

models, depending on the employed algorithms. However, this was only for bacterial 

cultures treated with relatively high concentrations of antibiotics, at 3×MIC [85]. The 

cytological profiling method described by the Pogliano group does not mention specific 

accuracies of classifiers, as their work relies on unsupervised learning methods, but equally 

suffers from the drawback of the high concentrations of antibiotics required to see an 

effect, namely 5×MIC [83]. Contrarily, the MALDI-TOF MS-based method described in this 
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work is able to detect antibacterial effects at concentrations down to 1/32xMIC, making it a 

superior method to detect weakly active drugs. Moreover, the developed MALDI-TOF MS-

based assay is label-free and high-throughput compatible. 

 

4.1.7 Summary 

The aim of this thesis was to develop a high-throughput cell-based screening assay which is 

able to detect sub-lethal effects of antibiotics in bacterial cell cultures using MALDI-TOF 

mass spectrometry. The assay was developed using E. coli cell cultures to illustrate the 

proof-of-concept. The bacterial cell cultures were exposed to antibiotics with a known 

activity, and the subsequent proteomic response of the cells was measured with MALDI-TOF 

mass spectrometry. Based on the presented screening results of E. coli cell cultures, the 

applicability of MALDI-TOF mass spectra to measure sub-lethal effects induced by antibiotic 

treatment was shown.  

By using different feature selection algorithms, relevant peaks in the mass spectra were 

selected for modeling the proteomic response of the E. coli cells to the antibiotics. Feature 

selection for the binary and the MoA classification problem was performed using a random 

forest of decision trees, sequential forward and backward feature selection, and the 

aggregated selection which included mass spectral peaks that were selected by at least two 

out of these three selection methods. The peak selection criteria for each feature set were 

data-dependent, to avoid any subjective bias. This resulted in dissimilar feature sets for 

binary and MoA model training, even though the underlying data is identical.  

Nine different model types were evaluated based on their classification performance for 

both the binary and MoA problem using their respective feature sets. In total, this resulted 

in the evaluation of 36 binary classification models and 36 MoA classification models. For 

this, the models were internally validated using 10-fold cross-validation and externally 

validated using a blind data set. The external dataset was composed of antibiotic and non-

antibiotic drugs, screened at a fixed concentration of 10 μM.  

Regarding the four feature sets, the aggregated feature set was shown to lead to the best 

classification performance for both binary and MoA models. As the selection criterion for 

including features in the aggregated feature set is relatively stringent (peaks must be 

selected by two out of the three algorithms), the aggregated feature set is inherently 

smaller than the other feature sets that were evaluated (RF, SFS, SBS). This is advantageous 

as a smaller feature set reduces the chances of overfitting and increases model 

transparency and interpretability. In-depth analysis of the aggregated feature set revealed 

that the majority of the selected peaks correspond to ribosomal associated proteins, most 

of which have an annotated function indicating their role in general stress responses and 
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regulatory pathways. This confirms that the employed feature selection algorithms are 

capable of identifying relevant, stress associated proteins.  

Regarding the different model types investigated, it was determined that SVM-based 

classifiers performed best, showing high classification accuracies for both internal and 

external validation, for both the binary and MoA models. The binary and the MoA Q-SVM 

models, trained with their respective aggregated feature set, were further analyzed 

regarding their classification performance. The binary Q-SVM model showed a good 

classification performance, represented by an overall accuracy of 0.92 (internal validation) 

and 0.95 (external validation). The MoA Q-SVM model also showed good performance, 

having an overall accuracy of 0.67 (internal validation) and 0.80 (external validation), 

reflecting that the models generalize well towards unseen data.  

The results show that training the model with sub-lethal concentrations of known antibiotics 

allows for detection of weakly active drugs, as the concentration of most antibiotics in the 

blind drug set were screened below their MIC. However, both models suffered from a class 

imbalance in the underlying training data, mainly caused by the overrepresentation of 

spectra from cells treated with antibiotics (binary model) and of the class PRT (MoA model). 

In addition, the MoA model suffered from an underrepresentation of the poorly defined 

class OTH, which resulted in a low accuracy for that class in particular. In future experiments 

it would be advised to prevent class imbalance and define more specific classes. Especially 

for the MoA model, overrepresentation of the class of protein synthesis inhibitors (PRT) and 

the underrepresentation of the class nucleic acid processing inhibitors (NUC) resulted in 

predictive limitations.  

The established workflow, summarized in Figure 12, realized a high-throughput cell-based 

screening assay, able to detect sub-lethal effects of antibiotics in bacterial cell cultures using 

MALDI-TOF mass spectrometry. By analyzing the proteomic responses provoked by the 

antibiotics, classification models were generated to determine with which (type of) 

antibiotic the respective cell culture was treated. These classification models were 

subsequently used to classify the mass spectra of cells exposed to unknown drugs in a 

screening setting. Overall, the MALDI-TOF MS based assay, in combination with advanced 

machine learning approaches, allows for both detecting antibiotic activity, and the 

distinction between different mechanisms of action of the antibiotics. Having demonstrated 

the workflow on the E. coli, the applicability of the method was subsequently investigated 

using the Gram-positive bacterium S. aureus.  
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Figure 12. Schematic overview of the assay workflow. First, a batch of synchronized cells is 
cultured and exposed to known antibiotics at concentrations equal or lower than the minimal 
inhibitor concentration (MIC). From these cells, the MALDI-TOF mass spectra are recorded. 
Subsequently, feature selection is performed to extract the peak data which best describe the 
proteomic variation induced by the antibiotics. Using the aggregated feature selection 
approach, a subset of peaks is used to train a quadratic support vector machine (Q-SVM) 
classifier model. Then, data from cells treated with a blind screening set of drugs is extracted 
at the selected features and the data is fed into the model to classify with which (type of) 
antibiotic the cells were treated, to validate the model. The model then returns the 
mechanism of action, for example NUC (nucleic acid synthesis and repair inhibitor), CWL (for 
cell wall synthesis inhibitors) or returns spectra are untreated (UNT).   
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4.2 Staphylococcus aureus 

Drug discovery for Gram-positive bacteria is as important as it is for Gram-negative bacteria, 

as Gram-positive bacteria are among the most common human clinical infections [196]. As 

stated in the introduction, an antibiotic screening assay that is adaptable and flexible 

enough to handle multiple cell types is desirable in the field of drug discovery. Therefore, 

after the developed assay was thoroughly evaluated using the E. coli data set, the assay and 

data-dependent workflow were applied to S. aureus. Firstly, the MIC of the same set of 

antibiotics used on E. coli was determined for S. aureus reference strain ATCC 29213. 

Subsequently, S. aureus cells were treated with the set of antibiotics at sub-MIC 

concentrations (1× down to 1/32×MIC) and mass spectra were recorded. Next, feature 

selection using RF, SFS, and SBS was performed to yield the aggregated feature sets for both 

the binary and MoA classification problem. With the aggregated feature sets, Q-SVM 

classification models were constructed. As for E. coli, the resulting binary and MoA 

classification models were internally validated using 10-fold cross-validation, and externally 

validated with the blind set of 20 drugs.  

 

4.2.1 MIC determination, cell synchronization, and peak alignment 

For S. aureus (ATCC 29213), the same set of antibiotics as for E. coli was employed, and MIC 

values were determined using the broth microdilution method according to EUCAST 

guidelines. The MIC values are listed in Table 11. 

The obtained MIC values for S. aureus were all found to be within the acceptable range (± 2 

dilution series for most antibiotics) of EUCAST guidelines reference values. After 

synchronization of the cells’ division cycle, it was found that a McFarland standard of 1.0 

corresponded to roughly 1×107 CFU/mL for S. aureus. Cells were allowed to adapt to the 

nutrient rich medium for at least one division cycle of approximately 90 minutes to a 

McFarland of 2.0 - 2.6 before dilution to McFarland of 1.0 and addition to the 384 well 

plates of antibiotics, as described in the experimental section. 
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Table 11. Minimal inhibitory concentration (MIC) values of S. aureus experiments. Indicated is the antibiotic 
chemical class and main target, next to the mechanism of action (MoA) classification abbreviation used for 
model training (CWL: cell wall synthesis, NUC: nucleic acid synthesis/repair, PRT: protein synthesis, and OTH: 
other mechanism of action), and the antibiotics’ respective MIC values (mg/L) according to reference values by 
European Committee on Antimicrobial Susceptibility Testing (EUCAST) and as determined in this thesis. NA = 
not available. 

Antibiotic Chemical class, main target MoA 
MIC (mg/L) 
(EUCAST) 

MIC (mg/L)  
(this thesis) 

Amoxicillin β-lactam, DD-transpeptidase inhibitor CWL NA 2 

Benzylpenicillin β-lactam, DD-transpeptidase inhibitor CWL 0.125 4 

Cefotaxime β-lactam, DD-transpeptidase inhibitor CWL NA 1 

Cefuroxime β-lactam, DD-transpeptidase inhibitor CWL NA 1 

Chloramphenicol 
Amphenicol, binds to the 50s ribosomal subunits, 
inhibits peptidyl transferase 

PRT 8 8 

Ciprofloxacin 
Fluoroquinolones inhibiting DNA gyrase and 
topoisomerase IV 

NUC 1 0.25 

Clarithromycin 
Macrolide, binds to the 50s ribosomal subunits, 
inhibiting peptidyl transfer 

PRT 1 0.5 

Doxycycline 
Tetracycline class, steric hindrance of A-site by binding 
30S ribosomal subunit 

PRT 1 0.5 

Erythromycin 
Macrolide, binds to the 50s ribosomal subunits, 
inhibiting peptidyl transfer 

PRT 1 0.25 

Gentamicin 
Aminoglycoside, binds to the 50s ribosomal subunits, 
inhibiting peptidyl transfer 

PRT 1 4 

Moxifloxacin 
Fluoroquinolones inhibiting DNA gyrase and 
topoisomerase IV 

NUC 0.5 0.008 

Neomycin 
Macrolide, binds to the 50s ribosomal subunits, 
inhibiting peptidyl transfer 

PRT NA 8 

Nitrofurantoin 
Nitrofuran antibiotic, reactive metabolites damage 
macromolecules 

OTH 64 64 

Rifampicin Rifamycin, Inhibits DNA-dependent RNA polymerase OTH 0.0625 0.008 

Tetracycline 
Tetracyclin class, steric hindrance of A-site by binding 
30S ribosomal subunit 

PRT 1 1 

Trimethoprim Pyrimidine analog, dihydrofolate reductase inhibitor NUC 8 2 

Vancomycin 
Glycopeptide, steric hindrance of terminal D-alanyl-D-
alanine moieties 

CWL 2 2 

 

The raw mass spectra were imported in MATLAB for preprocessing and peak alignment to 

highly abundant reference peaks, which were identified by TagIdent [161]. Like the 

reference peaks of E. coli, the majority of the high intensity peaks in the S. aureus mass 

spectra are common ribosome associated proteins with relatively high pI, contributing to 

their high degree of ionization. The alignment peaks are listed in Table 12, next to an 

exemplary mass spectrum of S. aureus. 
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Table 12. Reference peaks used for spectra alignment during spectral processing of S. aureus data set. Listed is 
the respective protein name, where RL corresponds to Ribosomal Large subunit (50S) and RS to Ribosomal 
Small subunit (30S), followed by the respective protein unit number. Second column lists corresponding 
UniProtKB accession number; third column indicates whether the initiator methionine (M) is removed. Fourth 
column lists the theoretical m/z value, followed by the observed m/z value in the fifth column. Sixth column 
lists absolute mass error in ppm. Last column shows theoretically calculated isoelectric point (pI). Inset on the 
right shows average mass spectrum of S. aureus with asterisk indicating reference peaks. 

Name UniProtKB 
M 

removed 
Observed 

m/z 
Theoretical 

m/z 
Error 
(ppm) 

pI 

 

RL36 Q2FW29 No 4306.7 4306.4 68 10.3 

RL34 Q2FUQ0 Yes 5303.8 5303.4 83 12.6 

RL33.2 Q2FY22 No 5872.6 5873.7 188 9.7 

RL32 P66209 Yes 6353.7 6354.4 95 10 

RL30 P0A0G2 Yes 6424.5 6423.5 161 10.1 

UPF0337 protein 
SAOUHSC_00845 

Q2FZY9 Yes 6889.1 6888.5 88 5.2 

RL29 Q2FW14 No 8091.1 8091.3 18 9.6 

RS20 Q2FXY6 Yes 8891.9 8891.2 68 10.5 

DNA-binding 
protein HU 

Q5HFV0 No 9627.9 9627.0 92 9.5 

 

After spectral alignment, the relative mass error was within the recommended error range 

of 300 ppm. From the set of reference peaks, only the UPF0337 protein SAOUHSC_00845 

(Q2FZY9) has a significantly lower pI than the pI’s calculated for the ribosomal associated 

proteins (pI of 5.2 versus a pI > 9.4). The UPF0337 protein SAOUHSC_00845 is not a 

ribosome associated protein, but a member of the CsbD family [197]. This is a family of 

bacterial general stress response proteins. In addition to the CsbD protein, another non-

ribosome associated protein, the DNA-binding protein HU, was used as a reference peak. 

The HU-protein is a heat stable, bacterial histone-like protein, which also has a relatively 

high pI (9.5). This protein is known to be one of the most common and abundant nucleoid 

associated proteins bacteria [198]. 

 

4.2.2 Model evaluation and 10 μM validation screen 

4.2.2.1 Feature set evaluation  

In a similar fashion as for E. coli, peaks were evaluated for the binary and MoA classification 

problem using the RF (for details see Appendix Figure 2), SFS, and SBS (for details see 

Appendix Figure 3) to yield one aggregated subset of features with high predictive power. 

The aggregated feature set of S. aureus contained 9 peaks for the binary model and 6 peaks 

for the multiclass MoA model. Details of the binary and MoA aggregated feature sets are 

listed in Table 13.  

  

*

* *
*

* **

*

Untreated

Alignment peak*
*
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Table 13. Aggregated feature set of peaks selected from S. aureus spectra for the binary and the mechanism of 
action model (MoA). Listed are the observed m/z value and the theoretical m/z value of the protein, if 
identified. For identified proteins is indicated the relative absolute mass error in ppm, UniProt accession 
number, theoretical isoelectric point (pI), and the corresponding name and notes of the protein, next to post-
translational modifications (PTMs), if applicable. Details of peaks marked with asterisk (*) are depicted in 
Figure 13. 

Model 
Observed 

m/z 
Theoretical 

m/z 
Error 
(ppm) 

UniProt pI Name; notes, PTMs 

Binary 

4306.7 4306.4 68 Q2FW29 10.3 50S ribosomal protein L36 

4812.5 - - - - - 

5697.3 - - - -  

5932.0 5932.9 150 Q2FYU6 9.8 50S ribosomal protein L33 1 

6353.7* -  - - - 

6889.1 6888.5 88 Q2FZY9 5.2 
UPF0337 protein SAOUHSC_00845; belongs to 
the CsbD protein family, a bacterial stress 
response protein; initiator methionine removed 

8891.9 8891.2 68 Q2FXY6 10.5 
30S ribosomal protein S20; methionine 
removed 

9627.9* 9627.0 92 Q5HFV0 9.5 DNA-binding protein HU 

9724.7* 9723.9 85 Q2FWD8 8.0 50S ribosomal protein L31 type B  

MoA 
 

5697.3 - - - -  

5872.6 5873.7 188 Q2FY22 9.7 50S ribosomal protein L33 2  

5932.0 5932.9 150 Q2FYU6 9.8 50S ribosomal protein L33 1  

6171.8 - - - - - 

6614.8 - - - - - 

6978.3 6978.2 15 Q2FZ60 12.2 50S ribosomal protein L28  

 

As for the alignment peaks, most of the selected peaks that were tentatively identified 

correspond to abundant ribosomal associated proteins with a relatively high pI: all identified 

proteins except UPF0337 protein SAOUHSC_00845, are relatively basic, having a pI > 8.0. 

The peak at m/z 6889.1, which was tentatively identified as UPF0337 protein 

SAOUHSC_00845, was also used for spectral alignment during the pre-processing of the 

mass spectra. The selection of this peak for the binary model is not surprising, as the protein 

is a member of the CsbD family, a family of stress-associated proteins [197]. Another 

identified protein, 50S ribosomal protein L31 type B, observed at m/z 9724.7, was previously 

implicated to be involved in response to zinc-associated stress [199, 200]. The alignment 

peak at m/z 9627.9, belonging to DNA-binding protein HU, was also selected for the binary 

model. This highly conserved protein is known to be involved in stress response mechanism 

in other bacteria [201].  

For both the binary and the MoA model, the peak at m/z 5932.0 was selected. This peak was 

tentatively identified as 50S ribosomal protein L33 1, a member of the bL33 protein family. 

This protein is known to be involved in antibiotic response mechanisms in E. coli [202]. 

Another member of the bL33 family was observed at m/z 5872.6. This protein, 50S 

ribosomal protein L33 2, was also selected for the MoA model. The consistent selection of 

multiple bL33 family members for both the binary and the MoA model is in line with their 

annotated role in antibiotic stress response mechanisms. This demonstrates the capability 

of the feature selection methods to identify relevant, stress associated peaks in the mass 

https://www.uniprot.org/uniprot/Q2FXY6
https://www.uniprot.org/uniprot/Q2FWD8


 

 

73 

 

spectra. To illustrate their predictive power, exemplary details of two selected peaks for the 

binary model are shown in Figure 13.  

 

 

Figure 13. Depicted are mass spectral details from S. aureus. (a) Shows detail of unidentified 
peak at m/z 6353.7. Average mass spectra of untreated cells (black) and treated cells (red), 
mean absolute deviation (MAD) is indicated with shades. (b) Shows details of peaks at m/z 
9627.9 (identified as DNA-binding protein HU) and m/z 9724.7 (identified as 50S ribosomal 
protein L31 type B). Colors are as described for (a).  

 

In Figure 13a, details of one of the unidentified peaks at m/z 6352.7 are shown. This peak 

was selected for the binary model, as it allows for a distinct separation between the two 

classes. The average relative intensity of this peak increased from 35.7% ± 3.2 (black, mean 

intensity ± MAD) for untreated cells to 44.7% ± 7.9 upon treatment with antibiotics (red). 

Depicted in Figure 13b is another example of a selected peak, the alignment peak at m/z 

9627.6, which was identified as DNA binding protein HU. On its right is another selected 

peak (m/z 9724.7), which belongs to 50S ribosomal protein L31. Both peaks show over a 2-

fold decrease in relative intensity upon treatment with antibiotics. The average relative 

intensity of the peak at m/z 9627.6 decreases from 87.9% ± 11.7 to 37.7% ± 25.8 upon 

treatment with antibiotics. The peak at m/z 9724.7 decreases from 9.9% ± 1.5 when cells 

are untreated to 4.3% ± 2.7 upon treatment with antibiotics.  

 

4.2.2.2 Model internal validation  

For E. coli it was determined that the aggregated feature set in combination with Q-SVM 

models yielded the best performing models. Therefore, the same classifier algorithm was 

applied to the data sets obtained with S. aureus. In a similar fashion as described for E. coli, 

the binary and MoA Q-SVM models were evaluated by means of 10-fold cross-validation for 

internal validation, and by means of the set of blind drugs screened at 10 µM for external 

validation. The internal validation results for the binary model are summarized in a 

Untreated

Antibiotic
Untreated

Antibiotic

a b
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confusion matrix, shown in Table 14. The external validation is described in detail in the next 

subsection (chapter 4.2.2.3).  

 

Table 14. Confusion matrix of the 10-fold cross-validation of binary quadratic support vector 
machine model with the aggregated feature set of S. aureus, encompassing 886 mass spectra 
(all antibiotics at all concentrations). Indicated is the total number of spectra per class and the 
corresponding recall and precision value per class, and the overall accuracy in the bottom 
right in bold. 

Tr
u

e 
cl

as
s 

 
Model classification 

  
Class labels Treated Untreated Total Recall 

Treated 702 17 719 0.98 

Untreated 6 161 167 0.96 

Total 708 178 886 
 

Precision 0.99 0.90 
 

0.97 

 

Overall, the model accuracy (0.97) is considered high, with 863 out of the 886 mass spectra 

classified to the correct class. The overall accuracy obtained for the S. aureus dataset is 

similar to what was observed for E. coli, which had an accuracy of 0.92. Like the binary 

model of E. coli, the binary model of S. aureus is unbalanced, as only 19% of the data (167 

out of the 886 spectra) were generated with untreated cells. The imbalance has its main 

impact on the precision of the class ‘Untreated’, which is only 0.90, compared to 0.99 for 

the class ‘Treated’. A relatively high amount of false positive observations (17 spectra out of 

the 178) for the minority class ‘Untreated’ was observed. This effect of the class imbalance 

is in line with what was observed for the imbalanced E. coli data set. Here, a comparable 

recall value was found for both the class ‘untreated’ and ‘treated’ (0.96 and 0.98, 

respectively), indicating a relatively high amount of true positive observations for both 

classes. The results listed in Table 14 show that the Q-SVM classification model in 

combination with the aggregated feature selection is a robust approach, as it performs 

equally well on the S. aureus data, compared to the results in the previous chapter for E. 

coli. 

Next, the MoA model was trained with its corresponding aggregated feature set. Internal 

validation details of the S. aureus MoA model are shown in Table 15.  
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Table 15. Confusion matrix of the 10-fold cross-validation of mechanism of action quadratic support vector 
machine model of S. aureus using the aggregated feature set, encompassing 886 mass spectra. Spectra from 
cells were grouped according to the antibiotic mechanism of actions: cell wall synthesis inhibitors (CWL), 
protein synthesis inhibitors (PRT), nucleic acid synthesis and repair inhibitors (NUC), inhibitors of other type 
(OTH) and untreated (UNT). Indicated is the total number of spectra per class and the corresponding recall and 
precision value per class, and the overall accuracy in the bottom right in bold. 

  Model classification   
 Labels CWL NUC OTH PRT UNT Total Recall 

Tr
u

e 
cl

as
s 

CWL 155 22 5 31 5 218 0.71 

NUC 20 74 8 33 2 137 0.54 

OTH 4 9 31 30 14 88 0.35 

PRT 20 13 8 228 7 276 0.83 

UNT 0 2 7 3 155 167 0.93 

 Total 199 120 59 325 183 886 
 

 Precision 0.78 0.62 0.53 0.70 0.85 
 

0.73 

 

The MoA model yielded an overall accuracy of 0.73, lower than the binary model (0.97). This 

is in accordance with internal validation results obtained the MoA model of E. coli, which 

also had a lower model accuracy (0.67) compared to the binary model (0.92). The 

inadequately defined minority class OTH has relatively poor performance, with recall and 

precision values of 0.35 and 0.53, respectively. This is similar to what was seen in the 

internal validation results of the E. coli MoA model. Notably, 30 mass spectra from the class 

OTH are misclassified into the class PRT, the majority of which originate from spectra 

treated with rifampicin (details not shown). The 14 spectra of the class OTH which are 

misclassified in the class UNT are almost exclusively mass spectra from cells treated with 

nitrofurantoin at the lowest concentrations of 1/16 and 1/32×MIC (details not shown). This 

further suggests, as was recommended for E. coli data set, that the MoA model would 

benefit from redefining the class OTH.   

On average, the recall and precision values for the classes PRT, CWL, and UNT are also on 

par with what was observed for E. coli. The class NUC, which comprises a relatively small 

fraction of the data (137 out of 886 spectra; 15% of the data set) has relatively low precision 

(0.62) and recall (0.54). This was mainly due to the confusion of ciprofloxacin and 

vancomycin by the model (details not shown). Ciprofloxacin is part of the NUC class, but was 

misclassified as CWL, while vancomycin is part of the CWL class and often misclassified as 

NUC. The origin of this misclassification cannot be explained by their target sites in the 

bacterial cell, as their MoA is unrelated. Vancomycin binds to components of the bacterial 

cell wall to prevent their polymerization through steric hindrance of peptidoglycan 

glycosyltransferase, thereby disrupting proper cell wall synthesis [203]. Within the class of 

cell wall synthesis inhibitors assayed here, vancomycin is quite different from the other 

antibiotics, which are all β-lactams, inhibiting the DD-transpeptidase enzyme. On the other 

hand, ciprofloxacin inhibits DNA gyrase and topoisomerase, thereby preventing bacterial 
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DNA from unwinding and duplicating [16]. The confusion of only ciprofloxacin with the cell 

wall synthesis inhibitors is remarkable, as misclassification of moxifloxacin, another member 

of the quinolone antibiotics  [16], does not occur.  

The class NUC is less distinct from the class PRT (33 spectra from PRT misclassified as NUC, 

mainly spectra from cells treated with trimethoprim), but is also not distinct from class CWL 

(20 spectra from NUC misclassified as CWL). The strong class imbalance biased towards PRT, 

which comprises 31% of the data, has a negative impact on the precision of the class PRT. 

The precision of the class PRT is only 0.70. This relatively low precision is caused by the fact 

that 94 spectra are assigned to the class PRT, while they actually belong to a different class.  

Out of those 94 falsely identified spectra, 31 spectra belong to the class CWL, 33 belong to 

the class NUC, and 30 belong to the class OTH. Although the recall value of the class PRT is 

relatively high at 0.83, in absolute numbers the false negative misclassifications involving 

the class PRT is substantial, with 48 spectra misclassified, Out of these 48 spectra, 20 are 

falsely assigned to the class CWL, 13 to the class NUC, 8 to PRT, and 7 to the class UNT. As 

was recommended for the E. coli data set, the bias of the MoA model could be reduced by 

decreasing the relative size of the class PRT compared to the other classes. 
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4.2.2.3 Model external validation  

After internal validation of both the binary and the MoA model trained with the S. aureus 

data, the models were externally validated with the blind set of drugs. The classification 

results of the external validation are listed in Table 16.  

 

Table 16. Classification details of the binary and mechanism of action (MoA) quadratic support vector machine 
classification model using the respective aggregated feature sets for external validation on the blind data set. 
Drugs, listed in the first column, were screened at fixed concentration of 10 μM. The second column (True 
class binary/MoA) indicates the actual class of the drug, therefore the expected result of the classifier. The 
third column indicates minimal inhibitor concentration (MIC) values from literature as reference. Binary and 
MoA model classification details are given in the fourth column, incorrect classifications are stated in brackets. 
Abbreviations are as follows: CWL: cell wall synthesis inhibitor; NUC: nucleic acid synthesis inhibitor; PRT: 
protein synthesis inhibitor; OTH: other MoA. Where mass spectral quality was insufficient it states (inadequate 
signal). Model performance was evaluated using the overall accuracy, indicated at the bottom in bold. 

 Model classification 

Drug True class binary/MoA Literature MIC (μM) Binary MoA 

Brucine Untreated  Untreated Untreated 

Ephedrine Untreated  Untreated Untreated 

Ergotamine Untreated  Untreated Untreated 

Fenbendazole Untreated  Untreated Untreated 

Loperamide Untreated  Untreated Untreated 

Metoprolol Untreated  Untreated Untreated 

Paroxetine Untreated  Untreated Untreated 

Sumatriptan Untreated  Untreated Untreated 

Thalidomide Untreated  Untreated Untreated 

Umifenovir Untreated  Untreated Untreated 

Ampicillin Treated/CWL 92 [157] Treated CWL 

Azithromycin Treated/PRT 2.7 [157] (inadequate signal) 

Cefuroxime Treated/CWL 2.4 (this thesis) (inadequate signal) 

Chlortetracyclineb Treated/PRT 2.1 (inadequate signal) 

Fusidic acid Treated/PRT 1.0 [157] (inadequate signal) 

Nalidixic acida Untreated - Untreated Untreated 

Novobiocin Treated/NUC 0.2 [204] (inadequate signal) 

Paromomycin Treated/PRT 3.2 [205] (Untreated) (Untreated) 

Tiamulin Treated/PRT 4.1 [157] (inadequate signal) 

Trimethoprim Treated/NUC 27.6 (this thesis) Treated NUC 

Overall accuracy   0.93 0.93 

 
a) Inactive on Gram-positives such as S. aureus 
b) MIC assumed identical to tetracycline    

 

As can be seen in Table 16, of all antibiotic drugs that are expected to affect S. aureus, only 

ampicillin and trimethoprim were assigned to the correct class by both the binary and MoA 



 

 

78 

 

model. For six of the expected active drugs (azithromycin, cefuroxime, chlortetracycline, 

fusidic acid, novobiocin, and tiamulin), the mass spectral signal was of insufficient quality. 

This means the obtained mass spectra did not pass the outlier detection criteria, and 

therefore, no classification could be performed. Excluding these unclassified six drugs, the 

binary model has an overall accuracy of 0.93. This result is in agreement with the values 

obtained for internal validation (overall accuracy 0.97), confirming a good generalization of 

the model. The MoA model also has an overall accuracy of 0.93, which is better than was 

expected from the internal validation (accuracy of 0.76). This is thought to be a result of 

excluding the six antibiotics from the external data set. Only the drug paromomycin is 

misclassified by both models as an inactive drug. This is unexpected, as its literature MIC of 

3.2 µM is well below the screening concentration of 10 µM, and there are similar 

aminoglycoside antibiotics like paromomycin in the training data set (neomycin and 

gentamycin). The misclassification may be a result of the relative high concentration of 

paromomycin in the screening, approximately 3×MIC, which may have causes a significantly 

different proteomic response compared to the mass spectra in the training set, which only 

consisted of 1-1/32×MIC data. Therefore the supposedly strong proteomic changes at 3×MIC 

might not have been captured by the model.  

All spectra from S. aureus cells treated with non-antibiotic drugs present in the blind data 

set were correctly identified as inactive by both the binary and the MoA model. Importantly, 

spectra from cells treated with the antibiotic nalidixic acid were also correctly identified as 

inactive by both models, as this antibiotic is inactive on Gram-positive strains such as S. 

aureus. This shows a true positive rate for the class untreated of 1.00 for both models. This 

result is in agreement with the internal validation of the binary and MoA model, having a 

recall 0.96 and 0.93 for the class untreated, respectively, thereby also indicating that both 

models generalize well.  

Mass spectra of insufficient quality all originated from cells treated with antibiotic drugs for 

which the MIC was relatively low (<<10 µM) compared to the screening concentration (see 

Table 16). Due to the relatively low MIC of these antibiotics, the cells were subjected to such 

large amounts of antibiotics (up to 50×MIC for novobiocin) that there were simply not 

enough cells to yield a high quality mass spectrum. For these drugs, the process of model 

training and validation was repeated, except that these drugs were screened at a 

concentration of 1 μM instead of 10 µM. The results will be discussed in the next section.  
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4.2.3 Second model evaluation and 1 μM validation screen 

4.2.3.1 Feature set evaluation for 1 μM screen 

The new data set to train the model was reduced in size and complexity (only 13 antibiotics, 

with fewer sub-MIC concentration fractions, for details see Experimental chapter 3.14 and 

3.15). The data was subjected to feature selection and yielded an aggregated feature set for 

a new binary model and MoA model. Feature selection details are in Appendix Figure 4 and 

Appendix Figure 5 for the binary and MoA classification problem, respectively. The 

aggregated feature set of S. aureus contained 6 peaks for the binary model and 14 peaks for 

the multiclass MoA model. Details of the aggregated feature set for the binary and MoA 

classification problem are listed in Table 17. 

 

Table 17. Aggregated feature set of peaks selected from S. aureus spectra for the binary and the mechanism of 
action model (MoA). Listed is the observed m/z value and the theoretical m/z value of the protein, if 
tentatively identified. For identified proteins is indicated the relative absolute mass error in ppm, UniProt 
accession number, theoretical isoelectric point (pI), and the corresponding name and notes of the protein, 
next to post-translational modifications (PTMs), if applicable. Details of peaks marked with asterisk (*) are 
depicted in Figure 14.  

Model 
Observed 

m/z 
Theoretical 

m/z 
Error 
(ppm) 

UniProt pI Name; notes, PTMs 

Binary 

4476.1 - - - - - 

7008.3 - - - - - 

7018.8 7019.7 128 Q2FZY9 5.2 
UPF0337 protein SAOUHSC_00845; belongs to the 
CsbD protein family, a bacterial stress response 
protein. 

9627.6 9627.0 92 Q5HFV0 9.5 DNA-binding protein HU 

9653.6 - - - - - 

10104.1 10104.7 59 Q2FZ45 9.9 30S ribosomal protein S16; methionine removed 

MoA 

4476.1 - - - - - 

4779.0 - - - - - 

4999.4 - - - - - 

5872.6 5873.7 191 Q2FY22 9.7 50S ribosomal protein L33 2 

6014.7 - - - - - 

6352.7 - - - - - 

6616.4 - - - - - 

6888.3* 6888.5 33 Q2FZY9 5.2 
UPF0337 protein SAOUHSC_00845; belongs to the 
CsbD protein family, a bacterial stress response 
protein; initiator methionine removed 

7008.3* - - - -  

7018.8* 7019.7 128 Q2FZY9 5.2 
UPF0337 protein SAOUHSC_00845; CsbD stress 
response family, bacterial stress response protein 

7351.8 - - - - - 

9072.3 - - - - - 

9558.6 - - - - - 

9653.6 9653.3 31 Q2FZT0 4.0 FeS_assembly_P domain-containing protein 

 

The aggregated feature set selected for this smaller data set shows some overlap with the 

features selected for the previously screened S. aureus data set. Like the previous data set, 

as again both protein UPF0337 protein SAOUHSC_0084 and DNA binding protein HU are 
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selected for the binary model. In addition to these two identified proteins, third protein in 

this data set was tentatively identified as 30S ribosomal protein S16.  

For the MoA model, the peak identified as 50S ribosomal protein L33 2 was selected again. 

This protein was also selected for the MoA model of the larger S. aureus data set, 

accentuating its responsiveness to the stress elicited by the antibiotics. Another peak which 

was selected for this MoA model was the unidentified peak at m/z 6616.4. This peak was 

also observed in the previous screen at m/z 6614.8. This minor mass discrepancy of 242 

ppm is due to small mass alignment errors, but still within the recommended error margin 

of 300 ppm. For this MoA model, one additional peak in the aggregated feature could be 

identified. This peak, observed at m/z 9653.6, was identified as FeS_assembly_P domain-

containing protein. This protein is highly similar to Fe-S protein maturation auxiliary factor 

SufT. This is in agreement with the annotated function of iron-sulfur proteins, as they are 

reported to be involved in antibiotic stress responses in S. aureus [206]. Also selected for 

the MoA model was the UPF0337 protein SAOUHSC_00845. However, it appears two 

isoforms of this protein were selected. The full length protein, observed at m/z 7018.8, and 

the protein with its initiator methionine removed, observed at m/z 6888.3. Details of these 

peaks are provided in Figure 14. 

 

  

Figure 14. Detail of peaks observed at m/z 6888.3, m/z 7008.3, and m/z 7018.8. Depicted are 
exemplary mass spectra treated with the antibiotics grouped by their mechanism of action at 
¼×MIC. Spectra were colored as follows: untreated cells (black); cell wall synthesis inhibitors 
(CWL, red); class nucleic acid synthesis and processing inhibitors (NUC, green) and antibiotics 
with another mechanism of action (OTH). Shades indicate ±½× mean absolute deviation 
(MAD) from the average mass spectra.  

 

The three peaks shown in Figure 14 originate from UPF0337 protein SAOUHSC_00845 with 

its initiator methionine removed (m/z 6888.3) and with its initiator methionine still attached 

(m/z 7018.8), and an unidentified peak in between (observed at m/z, 7008.3). Each of the 

CWL

NUC

PRT

OTH

Untreated
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peaks shows a unique responsiveness upon cell treatment with antibiotics with a different 

mechanism of action. For example, the peak at m/z 6888.3 has a lower relative intensity 

(2.0% ± 0.4 percent point) upon treatment with cell wall synthesis inhibitors (CWL, red) 

compared to all other classes depicted (on average intensity 3.3% ± 0.7 percent point). Next 

to that, the striking presence of a peak at m/z 7008.3 (average relative intensity 3.4% ± 2.0 

percent point) upon treatment with protein synthesis inhibitors (PRT, blue), which is absent 

in all other classes depicted (on average 1.3% ± 0.3 percent point). The peak at m/z 7018.8 

shows mainly a response towards treatment with the class NUC and OTH, but not to PRT 

and the class CWL. Possibly, the perceived posttranslational removal of the initiator 

methionine observed on UPF0337 protein SAOUHSC_00845 has a regulatory effect, in this 

case involved with stress responses provoked by specific antibiotics. In general, removal of 

the initiator methionine residue has been shown to have regulatory effects on bacterial 

processes [207]. The repeated selection of UPF0337 protein SAOUHSC_00845 and 50S 

ribosomal protein L33 for multiple models of S. aureus, regardless of the underlying data set 

and classification problem, indicates that they may play a more general role in S. aureus 

stress response mechanisms.  

 

4.2.3.2 Binary and MoA model internal validation: 1 µM screen 

The binary and MoA models were trained with their respective aggregated feature sets and 

internally validated using 10-fold cross-validation. Table 18 shows the confusion matrix 

results of the internal validation of the binary model.  

 

Table 18. Confusion matrix of the 10-fold cross-validation of binary quadratic support vector 
machine model with the aggregated feature set of S. aureus, encompassing 684 mass spectra 
of the smaller, more balanced S. aureus data set. Indicated is the total number of spectra per 
class and the corresponding recall and precision value per class, and the overall accuracy in 
the bottom right in bold. 

  Model classification   

Tr
u

e 
cl

as
s Class labels Treated Untreated Total Recall 

Treated 335 19 354 0.95 

Untreated 17 313 330 0.95 

Total 352 332 684  

 Precision 0.95 0.94  0.95 

 

The accuracy of 0.95 is comparable to the model performance shown for the binary model 

of the previous S. aureus data set obtained for the 10 μM screening validation (overall 

accuracy of 0.97) and E. coli data set (overall accuracy of 0.92). However, in this new, 

smaller data set, the class imbalance of the binary model was largely removed, with now 

354 spectra obtained for treated S. aureus cells, and 330 spectra obtained from untreated S. 
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aureus cells. Consequently, the effects of a balanced dataset on the internal validation, in 

particular the precision and recall of each class, could be evaluated. For the imbalanced data 

sets of E. coli and S. aureus, there was a consistent low accuracy of the minority class 

‘untreated’ (<20% of the overall data set), as the model was unable to identify correct 

observations from that class. In the case of E. coli, the recall was 0.76 and the precision 0.79, 

considerably lower than for the class ‘treated’ (0.96 and 0.95 respectively). For the previous 

S. aureus data set, the recall of the class ‘untreated’ was 0.96 and 0.90, also considerably 

lower than for the class ‘treated’ (0.98 and 0.99 respectively). Now, in the case of a 

balanced data set for the binary classification problem of S. aureus, both the recall and the 

precision of both classes are comparable (0.94-0.95 for each instance). This result illustrates 

the advantages of having a balanced data set, as the overall number of false positives and 

false negatives is not biased by the class imbalance of the underlying data, thereby skewing 

classification results.  

The smaller data set of S. aureus was also used to train a MoA-based model with its 

corresponding aggregated feature set. The confusion matrix results for the MoA model is 

shown in Table 19.  

 

Table 19. Confusion matrix of the 10-fold cross-validation of mechanism of action (MoA) quadratic support 
vector machine model of S. aureus, encompassing 684 mass spectra of S. aureus for external validation 1 µM. 
Antibiotics were grouped according to their MoA: cell wall synthesis inhibitors (CWL), protein synthesis 
inhibitors (PRT), nucleic acid synthesis and repair inhibitors (NUC), inhibitors of other type (OTH) and 
untreated (UNT). Indicated is the total number of spectra per class and the corresponding recall and precision 
value per class, and the overall accuracy in the bottom right in bold. 

  Model classification   

 Class labels  CWL NUC OTH PRT UNT Total Recall 

Tr
u

e 
cl

as
s 

CWL 107 0 1 0 2 110 0.97 

NUC 2 50 1 0 4 57 0.88 

OTH 0 0 19 0 3 22 0.86 

PRT 0 2 0 156 7 165 0.95 

UNT 1 1 1 4 323 330 0.98 

 Total 110 53 22 160 339 684 
 

 Precision 0.97 0.94 0.86 0.98 0.95 
 

0.96 

 

The overall model accuracy for the MoA model (0.96) is higher compared to the binary 

model (0.95) based on the same data set. Model accuracy for the previous MoA models was 

0.67 (E. coli) and 0.76 (S. aureus at 10 μM), which are all significantly lower than the 0.96 

listed here in Table 19. Two factors are main contributors to this effect: (1) the smaller set of 

antibiotics used for training in this particular MoA model, and (2) the inclusion of fewer low-

fraction MICs, as only concentrations of the antibiotics were used from 1×MIC down to 

⅛×MIC, instead of down to 1/32×MIC. This indicates that the misclassification rates seen in 
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previously discussed models (E. coli and S. aureus data set obtained with 10 µM) was at 

least partially adversely influenced by the low training set concentrations of 1/16 and 
1/32×MIC . Although a correct classification of the mass spectra is possible down to 1/32×MIC, 

it seems that including solely 1×, ½×, ¼×, and ⅛×MIC is advantageous for the precision and 

recall values of individual classes. This is a valuable observation in the context of employing 

the assay in a screening setting, as this will decrease the number of false negatives and false 

positives, as shown in Table 19.  

In this data set, there is still a class imbalance for the MoA model despite the inclusion of 

fewer antibiotics and concentrations. Comparable to the previously discussed data set and 

associated models models, the class distribution here is still skewed towards PRT (24% of 

the data set), but now also skewed towards untreated spectra (48% of the data set). Most of 

the observed misclassifications seem to be a result of the imbalance towards the class 

untreated, with 16 spectra (on a total of 330 untreated spectra) classified as untreated while 

in fact they were treated with one of the 4 other classes. However, the percentage 

misclassified as ‘untreated’ (5%) is much lower compared to the previous model obtained at 

10 µM, where 28 out of 167 spectra (17%) were misclassified as untreated. It appears that 

excluding the lowest concentrations of antibiotic treatment (1/16× and 1/32×MIC) is the main 

contributor to the high classification accuracies. Meanwhile, the class OTH has in this data 

set still has a relatively low prevalence (3%), like the class NUC (8% of the data). The class 

CWL makes up the remaining 16%. However, the classification accuracy of the class OTH is 

now strikingly high (recall of 0.86), which was very poor (0.35) in the MoA model trained for 

the 10 μM validation data set. This is because the class OTH is now only composed of 

spectra from rifampicin, while previously, the class OTH also contained spectra from cells 

treated with nitrofurantoin. Nitrofurantoin has a very different MoA than rifampicin, which 

previously caused in a wide intra-class variation. In the previous MoA model, cells treated 

with rifampicin were confused with spectra from class PRT. It was thought that this was due 

to the resemblance of the overall net result of rifampicin and the antibiotics in the class PRT, 

namely protein synthesis inhibition. It is interesting to observe that for a less diverse OTH 

class (i.e., only rifampicin), the classification of rifampicin is not confused with the class PRT, 

despite the net result, protein synthesis inhibition, is the same. Therefore, it seems that the 

model can, in this case, distinguish very well between protein synthesis inhibited by 

rifampicin (inhibiting DNA dependent RNA polymerase [208]) and the antibiotics in the class 

PRT, which are macrolides, aminoglycosides, or tetracyclines. All these antibiotics directly 

interact with either the 30S or 50S subunit of the ribosome, and not through mRNA 

inhibition like rifampicin. 

Overall, the shift in the class imbalance from the class PRT (in the first S. aureus data set) 

towards ‘untreated’ in this smaller training set, has shifted the false positive rate from the 

class PRT to the class ‘untreated’. However, despite the described imbalance, the overall 

number of misclassified spectra is only 29 on a total of 684.  
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4.2.3.3 Binary and MoA external validation: 1 µM screen 

The binary and MoA models obtained for the 1 μM screening data were both externally 

validated. Details of the classification results are listed in Table 20.  

 

Table 20. Classification details of the binary and mechanism of action (MoA) quadratic support vector machine 
classification model using the aggregated feature sets for external validation on the blind data set of S. aureus 
data. Drugs, listed in the first column, were screened at fixed concentration of 1 μM. The second column (True 
class) indicates the actual class of the drug for the binary and MoA model, the expected result of the classifier. 
The third column, labeled Literature MIC (μM), lists the literature minimal inhibitory concentration (MIC) 
values of the antibiotic in question as reference. Model classification details are given in the fourth column, 
incorrect classifications are stated in brackets. Abbreviations are as follows: CWL: cell wall synthesis inhibitor; 
NUC: nucleic acid synthesis inhibitor; PRT: protein synthesis inhibitor; OTH: other MoA. Overall performance of 
the model was evaluated using the overall accuracy, indicated at the bottom in bold. 

Drug 
True class 
(binary/MoA) 

Literature MIC (µM) Binary MoA 

Ampicillin Treated/CWL 92 [157] (Untreated) (Untreated) 

Azithromycin Treated/PRT 2.7 [157] Treated PRT 

Cefuroxime Treated/CWL 9.4 [157] Treated CWL 

Chlortetracycline Treated/PRTb 2.1 Treated PRT 

Fusidic acid Treated/PRT 1.0 Treated PRT 

Novobiocin Treated/NUC 0.2 [204] Treated (PRT) 

Paromomycin Treated/PRT 3.2 [205] Treated PRT 

Tiamulin Treated/PRT 4.1 [157] Treated PRT 

Trimethoprim Treated/NUC 6.9 (this work) (Untreated) (Untreated) 

Overall accuracy  0.77 0.66 

 

All cells treated with drugs which previously had yielded low quality spectra now all 

generated spectra of sufficient quality that could be classified by the model. Trimethoprim 

and ampicillin, which were correctly identified using the previous data set, when screened 

at 10 μM, were now both misclassified as inactive by both the binary and MoA model. In the 

case of ampicillin, this is due to its relatively high MIC of 92 μM. Upon treating S. aureus 

cells with ampicillin at 1 μM, almost a factor 100 below its MIC, it is not surprising that the 

model classifies the spectra it as inactive. Contributing to this may be that the model was 

trained with concentrations going down to only 1/8×MIC, instead of down to 1/32×MIC, as in 

the previous model. For trimethoprim, the misclassification comes unexpected, as 1 μM 

corresponds to approximately 1/7
th

 of the determined MIC, which should be within the 

capabilities of the model. However, the literature MIC of trimethoprim listed by the EUCAST 

authority is higher (27.6 μM, 8.0 mg/L) than the MIC determined in this thesis (6.7 μM, 2.0 

mg/L). If the actual MIC is in reality closer to the literature value of 27.6 μM, that would 

explain why treating S. aureus cells with 1 μM, almost 1/30×MIC, results in mass spectra that 

the model classified as inactive.  
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The binary model assigned all of the spectra obtained with treated cells to the correct class 

of ‘treated’. Even for paromomycin, which was previously classified as an inactive drug, was 

now classified as an active drug. This suggests that its previous misclassification by the other 

binary model was most likely due to the class imbalance present in the model.  

Regarding the MoA model, the correct class was assigned to all antibiotics in the test set, 

except for novobiocin. Novobiocin, an aminocoumarin a competitive inhibitor of DNA gyrase 

[209], was misclassified as a protein synthesis inhibitor (PRT). Internal validation had shown 

no significant confusion between these two classes. Therefore, it seems most likely that the 

misclassification is due to novobiocin’s relatively low MIC (0.2 µM), a factor 5× lower than 

the 1 μM screening concentration. It might be that the proteomic response in the mass 

spectra was too deviating at 5×MIC from what the model was trained on (1-1/8×MIC) and 

therefore it was misclassified. Another reason for the misclassification could be that the 

training set contained only one other gyrase inhibiting antibiotic, the quinolone 

moxifloxacin, but not a drug of the class aminocoumarins. The exact mechanism of 

aminocoumarins is slightly different from quinolones, as aminocoumarins bind to the GyrB-

subunit of DNA gyrase preventing access to ATPase active site [210]. On the other hand, 

quinolones mainly inhibit the ligase activity of topoisomerase IV [211]. Therefore, the lack of 

an aminocoumarin in the training set might explain the misclassification in this case. 

An important point to emphasize regarding the external validation (Table 20) is that the 

predictive power of the models extends beyond the recognition of target sites in the 

training set. The external validation set included fusidic acid, an antibiotic that interferes 

with protein synthesis by binding to elongation factor G, preventing its dissociation from the 

ribosome. None of the protein synthesis inhibitors in the training set had this specific target, 

but nevertheless the MoA of fusidic acid was correctly predicted by the classification model. 

The ability to recognize mass spectral effects of antibiotics that were not used in the training 

set is advantageous, as it potentially allows for identification of drugs with novel target sites 

within a known mechanism of action class. 

 

4.2.4 Summary 

The experiments performed using S. aureus show that the assay developed with E. coli is 

readily transferable to another bacterium. Similar to E. coli mass spectra, the data-

dependent feature selection workflow selected relevant, stress associated peaks, which 

allowed for the generation of robust and reliable quadratic support vector machine 

classification models. Similar model accuracies were obtained for S. aureus as for E. coli.  

The external validation of the model showcased a potential shortcoming of the assay. If a 

drug is too effective at a fixed concentration (10 μM in this case), the cells will not grow. 

Consequently, there are not enough cells to obtain spectra with sufficient quality. This 
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occurred for multiple antibiotics in the validation set when screened at 10 µM on S. aureus. 

Therefore, it was required to repeat the screening experiment, employing a 1 µM screening 

concentration. The second training data set had a more balanced class composition, as it 

contained fewer antibiotics and relatively more untreated mass spectra. Additionally, this 

data set did not include the lower concentrations of 1/16 and 1/32×MIC. The effect of a more 

balanced class composition was visible in the binary model, where both accuracy and 

precision for the two classes were equally high (all around 0.95), instead of skewed towards 

the majority class. For the MoA model, the effect of the different class composition was also 

very profound, yielding a high overall accuracy of 0.96. Additionally, the now well-defined 

(although small) class of OTH, which consisted of solely the antibiotic rifampicin, also 

showed good classification accuracies. Previously, when the class OTH consisted of widely 

different antibiotics (nitrofurantoin and rifampicin), recall and precision of the class OTH 

were poor. Now, with the class OTH only defined by rifampicin, classification accuracy was 

approximately as good as for the other classes.  

The elimination of the lowest two concentrations from the training data set (1/16× and 
1/32×MIC) also contributed to the MoA overall accuracy. In the larger data sets, most spectra 

which were misclassified by the model as ‘untreated’ (or misclassified to the majority class 

PRT) originated from cells that were treated with the lowest concentrations of antibiotics. 

By excluding the two lowest MIC fractions, fewer spectra were misclassified to the class 

‘untreated’ (although now the majority class), which greatly improved MoA model accuracy. 

Although the exclusion of the low MIC-data in the training of the model contributed to the 

increase in model accuracy, there is a trade-off in the sensitivity of the screening assay. In 

this case, the lowest detectable antibiotic effect lies in the range of 1/8×MIC instead of 
1/32×MIC for the larger data set. This can be considered sufficiently sensitive, as the model 

would still be able to pick up potential antibiotic drugs in a screening, which have only 

12.5% of the activity of an actual antibiotic drug.  

The ability of the S. aureus models to classify fusidic acid to the correct class underlines one 

of the main powers of the assay, namely it can detect (weak) activity within the relatively 

broadly defined MoAs, although that specific target was not present in the training data. 

This illustrates that the mass spectral effects that can be detected are specific enough to 

distinguish different types of MoAs, but is still diverse enough to capture effects that are 

slightly off-target for what the model was trained on.  
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4.3 Fungi  

In the two previous chapters, the drug screening assay developed in this thesis was 

elaborately discussed for its applicability on the prokaryotes E. coli and S. aureus with regard 

to antibiotics. In this chapter, the applicability of the method was investigated for eukaryote 

yeasts subjected to antifungal drugs. For this, the developed drug screening method was 

first applied to detect and classify the proteomic effects of sub-lethal concentrations of 

several antifungal drugs on Saccharomyces cerevisiae. Subsequently, the applicability on the 

clinically relevant Candida albicans was explored.  

 

4.3.1 Saccharomyces cerevisiae 

The fungal model organism Saccharomyces cerevisiae (strain BY4742) was employed and 

treated with a small, yet diverse panel of antifungal drugs. First, the MIC values of the 

antifungal drugs were determined. Subsequently, fungal cells were treated with the set of 

antifungals at MIC and sub-MIC concentrations (1×, ½×, and ¼×MIC). Following incubation of 

the yeast in presence and absence of the drugs, mass spectra were recorded. After spectral 

processing, features were selected using RF, SFS, and SBS to yield an aggregated feature set 

for both the binary and the MoA classification problem. With the aggregated feature sets, 

Q-SVM classification models were trained. As described for the experiments concerning 

bacteria, a binary classification model and a MoA model were internally validated using 10-

fold cross-validation and externally validated with a blind set of drugs. In this instance, the 

blind set of drugs consisted of antifungal and non-antifungal drugs.  
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4.3.1.1 MIC determination and spectral processing 

The drugs used to treat S. cerevisiae were amphotericin-B, amorolfine, 5-fluocytosine, 

caspofungin, and fluconazole, according to EUCAST guidelines for antifungal susceptibility 

testing. The MIC values and MoA class used for modeling of the respective drugs are listed 

in Table 21.  

 

Table 21. List of antifungals used for S. cerevisiae experiments. Listed are drugs and their corresponding drug 
class and main target, next to the mechanism of action (MoA) classification abbreviation used for model 
training, and the antifungals’ determined minimal inhibitory concentration (MIC) values (mg/L).  

Name Drug class, target Class (abbreviation) MIC (mg/L) 

Amphotericin-B 
Polyene antifungal, binds ergosterol, thereby disrupting 
membrane integrity 

Membrane disruptor (MEM) 0.25 

Amorolfine 
Morpholine drug, inhibiting ∆14-sterol reductase and 
cholestenol ∆-isomerase, depleting ergosterol 

Sterol biosynthesis inhibitor (STB) 0.25 

5-Flucytosine 
Pyrimidine pro-drug, converted intracellularly to 
fluorouracil, inhibits RNA and DNA synthesis 

Nucleic acid synthesis inhibitor (NUC) 16.00 

Caspofungin 
Echinocandin drug, inhibits β(1,3)-D-glucan-synthase, 
involved in cell wall synthesis 

Cell wall synthesis inhibitor (CWL) 0.008 

Fluconazole Azole drug, inhibits lanosterol 14α-demethylase  Sterol biosynthesis inhibitor (STB) 8.00 

 

The drugs were classified for modeling according to their general MoA as either membrane 

disruptors (MEM; amphotericin-B), sterol biosynthesis inhibitors (STB; amorolfine and 

fluconazole), nucleic acid synthesis inhibitors (NUC; 5-flucytosine), and cell wall synthesis 

inhibitors (CWL; caspofungin). No EUCAST reference MIC values exist for S. cerevisiae, but all 

MICs found are within reasonable range as reported in literature [57, 212-215]. The 

obtained mass spectra were aligned towards six tentatively identified alignment peaks, 

which are listed in Table 22.  

 

Table 22. Reference peaks used for spectra alignment during spectral processing of S. cerevisiae data set. 
Listed is the respective protein name, second column lists corresponding UniProtKB accession number; third 
column lists the theoretical m/z value, followed by the observed m/z value in the fourth column. Fifth column 
lists absolute mass error in ppm. Last column shows theoretically calculated isoelectric point (pI). Inset on the 
right shows average mass spectrum of S. cerevisiae with asterisk (*) indicating reference peaks. 

Protein name UniprotKB 
Theoretical 

m/z 
Observed 

m/z 
Error 
(ppm) 

pI 

 

60S ribosomal protein L41-B P0CX87 3338.2 3342.1 1186 13.0 

Uncharacterized protein 
YOL038C-A 

Q3E7Z9 3622.3 3625.9 991 11.8 

Plasma membrane ATPase 
proteolipid 2 (position 6-43) 

P40975 4285.3 4282.4 673 11.6 

Uncharacterized protein 
YGR204C-A 

Q8TGT7 4539.3 4538.5 192 10.0 

gag-4 (position 98-438) P0C2J2 4611.9 4614.7 589 4.6 

40S ribosomal protein S29-A P41057 6597.5 6602.1 688 10.3 

*
*

*

*

*

*

Untreated

Alignment peak*
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Similar to E. coli and S. aureus, some of the identified proteins for S. cerevisiae are known 

ribosomal associated proteins (60S ribosomal protein L41-B and 40S ribosomal protein S29-

A), and most proteins having a relatively high pI (>10.0). Contrary to the assayed bacteria, 

almost no mass spectral peaks were observed beyond m/z 8000 (see exemplary mass 

spectrum S. cerevisiae provided in Table 22). Therefore, the mass range was adjusted to m/z 

2000-10000. The mass error of the reference peaks was relatively high, with errors above 

300 ppm for most peaks. The error was higher than was observed previously for E. coli and 

S. aureus (below 300 ppm for all peaks). The exact origin of this error is not known. It can 

only be speculated that the mass spectrometer required further calibration, or that the 

alignment peaks were insufficient to remove the mass drift in the spectra. The relatively 

larger error was not considered an obstacle, as the feature selection process uses the 

centroid peak values of the detected peaks after alignment. Therefore, the relative error in 

the centroid peak value is a systematic error. Hence, feature selection can still use the 

apparent m/z values. Detailed information of the feature selection results for the binary 

model and MoA model can be found in Appendix Figure 8 and Appendix Figure 9, 

respectively. Peaks selected in the aggregated feature set are shown in Appendix Table 3. 

For the binary classification problem, six peaks were selected and for the MoA classification 

problem five peaks were selected. None of the selected peaks in either of the aggregated 

feature sets have been identified, even after extending the database search range from ± 

300 ppm to ± 1000 ppm to compensate for the present mass error in centroid peak values.  

 

4.3.1.2 Binary model  

Although none of the selected peaks of S. cerevisiae were identified, illustrative details of 

three selected peaks for the binary model are provided in Figure 15 to highlight their 

discrimanitory power between the two classes.  

 

Figure 15. Mass spectral details of S. cerevisiae. (a) Details of peak 2679.8, selected for binary 
model. Average mass spectra of untreated cells (59 spectra, black) and treated cells (122 
spectra, red), ± mean absolute deviation (MAD) indicated with shades. Depicted in (b) details 
of m/z 5659.8, and m/z 5965.7, selected for the binary model. Colors are as described for (a). 

Untreated

Treated 

Untreated

Treated 

a b
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The peak at m/z 2679.8 shown in Figure 15a illustrates the separation between untreated 

and treated S. cerevisiae cells. This peak was selected for the binary model, presumably 

because the relative intensity increased significantly from 15.7% ± 2.3 for untreated cells to 

19.5% ± 1.8 for treated cells. Other peaks in this region, between m/z 2630 and m/z 2660, 

do not allow for this distinction and were consequently not selected. Depicted in Figure 15b, 

the two selected peaks at m/z 5659.8 and m/z 5665.7 are shown. Both peaks show a 

relative intensity decrease of almost a factor 2 upon treatment with antibiotics. The 

intensity of the peak at m/z 5659.8 decreases from 8.2% ± 0.8 to 5.8% ± 1.4 upon treatment 

with antifungals. The peak at m/z 5665.7 decreases from 9.2% ± 1.0 to 6.0% ± 1.6 percent 

point relative intensity upon treatment with antifungals. The peaks selected in the 

aggregated feature set for the binary classification problem were subsequently used to train 

the corresponding Q-SVM model. The internal validation results of the trained model are 

shown as a confusion matrix in Table 23.  

 

Table 23. Confusion matrix of the 10-fold cross-validation of binary quadratic support vector 
machine model with the aggregated feature set of S. cerevisiae, encompassing 181 mass 
spectra (all antifungals at all assayed concentrations). Indicated is the total number of spectra 
per class and the corresponding recall and precision value per class, and the overall accuracy 
in the bottom right in bold. 

Tr
u

e 
cl

as
s 

 Model classification   

Class labels Treated Untreated Total Recall 

Treated 113 9 122 0.93 

Untreated 6 53 59 0.90 

Total 119 62 181  

Precision 0.95 0.85  0.92 

 

In total, the dataset of S. cerevisiae consisted of 181 spectra, of which 122 were obtained 

from cells treated with antifungal drugs and 59 spectra from untreated cells. This class 

imbalance, with 67% of the data originating from treated cells, is comparable with the class 

imbalance the bacterial data sets. Similar to those models, a lower precision and recall for 

the untreated class is observed (0.85 and 0.90, respectively) compared to the treated class 

(0.95 and 0.93, respectively). The overall mean accuracy of the binary model for S. cerevisiae 

is 0.92, which is similar to the overall mean accuracy obtained for assayed bacteria (E. coli: 

0.92, S. aureus: 0.95-0.97). The trained model was externally validated using a blind dataset 

to determine its generalization towards unseen data. The external validation results are 

shown in Table 24.  
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Table 24. Classification details of binary classification model for S. cerevisiae for external 
validation on the blind data set. The second column (True class) indicates the expected result 
of the classifier. Details of correct classifications are listed, and incorrect classifications are 
stated in brackets. Overall performance is reported at the bottom.  

Drug True class Model classification 

Loperamideb Untreated (Treated) 

Cefuroximed Untreated Untreated 

Ribavirina Untreated  Untreated 

Clotrimazole Treated Treated 

Voriconazole Treated Treated 

Fenpropimorph Treated Treated 

Nystatin Treated Treated 

Tavaborolec Treated Treated 

Overall accuracy 0.88 
a) Antiviral 
b) Opioid 

 

c) Mechanism of action not present in training data 

d) Antibacterial 
 

 

The blind set of drugs was composed of several antifungal drugs: clotrimazole, voriconazole 

(two azoles, similar to the azole in the training set), fenpropimorph (similar to amorolfine in 

the training set), nystatin (similar to amphotericin-B in the training set), and tavaborole 

(which did not have a respective drug in the training class). In addition to these antifungal 

drugs, three other drugs with no antifungal activity were assayed: cefuroxime 

(antibacterial), loperamide (an opioid), ribavirin (an antiviral drug).  

External validation resulted in an accuracy of 0.88, which indicates a reasonably good 

performance, and is in line with the internal validation accuracy of 0.92. However, the 

binary model misclassified cells as ‘Treated’ with loperamide (an opioid receptor agonist). 

This misclassification might be due to the relatively low precision of the class ‘untreated’ of 

the binary model (0.85). However, literature reports exist which implicate tramadol, another 

opioid receptor agonist similar to loperamide, as having in vitro antifungal activity against 

Candida yeasts [216]. Thus, there may be a (nonlethal) proteomic response when exposed 

to loperamide which shows variations closer to mass spectra obtained with treated cells 

rather than untreated cells. Nevertheless, in this work the classification of loperamide as 

being an active antifungal is considered incorrect. Further experiments should clarify 

whether loperamide results truly in an antifungal proteomic response in S. cerevisiae. 

Cefuroxime, an antibacterial β-lactam drug, was correctly identified as inactive drug. 

Ribavirin, an antiviral pyrimidine analog, was correctly identified as inactive on S. cerevisiae. 

Although ribavirin has been implicated as having mild antifungal activity against C. albicans 

[217], it was not classified by the model as such for S. cerevisiae in this experiment. 

The mass spectra from cells treated with the two azole drugs in the blind set, clotrimazole 

and voriconazole, were correctly identified as antifungal drugs. Fenpropimorph and 
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nystatin, both having an analogous drug in the training set of the model (amorolfine and 

amphotericin B, respectively), were correctly identified as antifungal drugs.  

Among the blind set there was one drug, tavaborole, with a mechanism of action that was 

not part of the training set. Tavaborole is an antifungal protein synthesis inhibitor, as it 

inhibits leucyl-tRNA synthetase [55]. Despite the fact that the model was not trained on this 

(or a similar) type of antifungal, the binary model correctly classified the mass spectra from 

S. cerevisiae exposed to tavaborole as being treated with an antifungal. This indicates that 

the binary model is able to pick up general stress response signatures in the fungal mass 

spectra, even beyond to what it was trained for. This is advantageous screening 

characteristic, as it indicates that the assay might have the ability to detect drugs with novel 

mechanisms of action.  

 

4.3.1.3 MoA model 

Before the performance of the MoA model will be presented and evaluated, exemplary 

peaks selected for the MoA will be discussed. Depicted in Figure 16 are two peaks which 

were selected in the region of m/z 3600-4100 and two selected peaks in the region of m/z 

5600 - 5750.  

 

 

Figure 16. (a) Details of peaks observed at m/z 3868.6 and 4035.5, selected for the 
mechanism of action (MoA) model. Colors are as follows: average spectra from untreated 
cells (black); cells treated with cell wall synthesis inhibitors (CWL, red), the class membrane 
disruptors (MEM, orange), sterol synthesis inhibitors (STB, yellow). Shades indicate ± mean 
absolute deviation. (b) Details of peaks observed at m/z 5659.8 at 5665.7, both selected for 
MoA model. Colors are as described for (a). 

 

Figure 16a shows the average intensity of the peak at m/z 3868.6, which was selected for 

the MoA model. Although this peak allows for the distinction of the classes MEM (relative 

intensity 68.3% ± 4.1) and STB (55.9% ± 2.1), the peak is less suitable for the distinction 

between CWL (71.5% ± 2.1) and untreated cells (74.9% ± 2.0). The peak at m/z 4035.5 was 
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selected for the MoA model as well, which shows similar discriminatory properties, with a 

strong influence on the peaks’ intensity depending on antifungal treatment. Intensity of this 

peak is highest for untreated cells (49.4% ± 2.2), but not significantly different from cells 

treated with antifungals of the class CWL (48.3% ± 2.8). However, its relative intensity drops 

significantly upon treatment with the class MEM (44.2% ± 3.7) and even more upon 

treatment with antifungal of the class STB (30.3% ±3.3). Figure 16b shows details of peaks 

observed at m/z 5659.8 and m/z 5665.7, which were also selected for the binary model 

(Figure 15b). Similar to the peak at m/z 3868.6 in Figure 16a, the spectra of cells treated 

with CWL and untreated cells show a comparable relative intensity the selected peak at m/z 

5659.8 (7.6% ± 0.8 and 8.2% ± 0.8, respectively), but are still significantly higher than for the 

class MEM and STB (4.4% ± 0.9 and 5.7% ± 1.1, respectively). Analogous information is 

obtained from the peak at m/z 5665.7, where similar relative intensities were obtained for 

the classes CWL and untreated (8.2% ± 0.8 and 9.2% ± 1.0, respectively) and significantly 

lower intensities for the classes STB and MEM (5.8% ± 1.1 and 4.3% ± 1.2, respectively). The 

MoA model was trained with five selected peaks in total. The results of internal validation of 

the MoA model based on the selected peaks are shown in Table 25. 

 

Table 25. Confusion matrix of the 10-fold cross-validation of mechanism of action quadratic 
support vector machine model of S. cerevisiae using the aggregated feature set. Antifungals 
were grouped according to their mechanism of actions: cell wall synthesis inhibitors (CWL), 
sterol biosynthesis inhibitors (STB), nucleic membrane disruptors (MEM), and untreated 
(UNT). Indicated is the total number of spectra per class and the corresponding recall and 
precision value per class, and the overall accuracy in the bottom right in bold.  

  Model classification   

 Class labels CWL MEM STB UNT Total Recall 

Tr
u

e 
cl

as
s CWL 22 0 0 7 29 0.76 

MEM 2 27 1 1 31 0.87 

STB 1 0 61 0 62 0.98 

UNT 6 0 0 53 59 0.90 

 Total 31 27 62 61 181 
 

 Precision 0.71 1.00 0.98 0.87 
 

0.90 

 

The overall mean accuracy is 0.90, reflecting a good model performance. The limited 

complexity due to the relative low number of antifungal drugs and sub-lethal concentrations 

might have contributed to the relatively good performance. The model suffers from a small 

class imbalance, which translates to relatively low recall for the underrepresented classes 

CWL and MEM (29 and 31 spectra and a recall of 0.76 and 0.87, respectively) compared to 

the class of STB and UNT (62 and 59 spectra and a recall of 0.98 and 0.90, respectively). The 

precision of the class CWL is also relatively low, which is mainly attributed to confusion with 

the class ‘untreated’. This confusion involves the spectra from cells from the class CWL 
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treated with the lowest concentrations (¼×MIC, details not shown). The observed confusion 

of the model is in line with the observations discussed for the exemplary peaks in Figure 15, 

where the mass spectral peaks obtained with untreated cells frequently overlapped with the 

spectral peaks from the class CWL. A good performance is seen for the class MEM, with a 

precision of 1.00. This indicates that the MoA model was able to correctly classify all spectra 

for that class during internal validation. However, the recall of the class MEM is slightly 

lower at 0.87, which indicates a relatively high number of false negatives for this class. 

Overall, the peaks in the aggregated feature set seem to contain sufficient discriminatory 

information to distinguish the different MoA classes. This was further evaluated by means of 

external validation of the model, as was described for the binary model. The results of the 

external validation are listed in Table 26.  

 

Table 26. Classification details of mechanism of action (MoA) model for S. cerevisiae during 
external validation on the blind data set. The second column (True class) indicates the 
expected result of the classifier: cell wall synthesis inhibitors (CWL), sterol biosynthesis 
inhibitors (STB), nucleic membrane disruptors (MEM), or untreated. Third column indicates 
the classifications by the model. Incorrect classifications are stated in brackets. Overall 
performance is indicated at the bottom. 

Loperamideb Untreated Untreated 

Cefuroximed Untreated Untreated 

Ribavirina Untreated Untreated 

 

 

Among the drugs in the external validation set are the two commonly used triazole drugs, 

clotrimazole and voriconazole. Both these drugs are very similar to fluconazole, the sterol 

biosynthesis inhibitor (STB) in the training set of the MoA model. Both antifungals were 

correctly classified as such, which is in line with the high accuracy of that class seen in the 

internal validation of the MoA model. The MoA model was also able to correctly identify 

compounds that do not have an antifungal action, as is the case for the antiviral ribavirin, 

the opioid loperamide, and the antibiotic cefuroxime. In comparison with the binary model, 

the performance is better in this regard, where loperamide was incorrectly identified as 

treated.  

Drug True class Model classification 

Clotrimazole STB STB 

Voriconazole STB STB 

Fenpropimorph STB STB 

Tavaborolec PRT (MEM) 

Nystatin MEM (STB) 

Overall accuracy 0.75 
a) Antiviral drug 
b) Opioid 

 

c) MoA not present in training data 

d) Antibacterial 
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The varying outcome between the binary and the MoA model is attributed to the class-

dependent peak selection. The data-dependent feature selection resulted in some overlap 

of the aggregated feature sets of the binary and MoA classification problem. In total, 4 

peaks were selected for both classification problems, but each classification problem also 

had specific peaks selected uniquely for its respective classification problem (see Appendix 

Table 3). The peaks selected for the binary model may have shown higher similarity 

between the response of loperamide and the treated spectra, while for the MoA model a 

higher similarity in peak values was found for untreated spectra.  

Two misclassifications were found for the MoA model, where tavaborole and nystatin were 

misclassified as MEM and STB, respectively. For tavaborole, it is understandable that the 

model was unable to assign the class correctly, as its class (protein synthesis inhibitor) was 

not part of the classification model training set of S. cerevisiae. Taking into account that 

tavaborole is not classified as ‘untreated’, it can be considered the best outcome under the 

circumstances, as it could be considered worse if tavaborole would have been classified as 

an inactive drug.  

The misclassification of cells treated with nystatin was not expected based on the internal 

validation results, as the class precision of MEM was 1.00. It is thought that nystatin (class 

MEM) was misclassified to the class STB, as these two mechanisms of action have the same 

overall net result. As both the class MEM and STB disrupt membrane integrity, the cells 

proteomic response may therefore be relatively similar to each other. Only one MEM 

compound (amphotericin-B) was included in the training set, while two compounds were 

included for the class STB (amorolfine and fluconazole). As a consequence, it may be that 

the intra-class variation of STB captures more overlap with the proteomic response of 

nystatin than solely the intra-class variation caused by solely amphotericin-B, as all three 

antifungals overall disrupt membrane stability through a degree of interference with 

ergosterol. This brings the used class division of the training set itself into the discussion. 

Amphotericin-B directly binds to ergosterol [218], and amorolfine [219] and fluconazole 

[220] disrupt the biosynthesis of ergosterol by inhibiting specific enzymes in the sterol 

biosynthesis route. Nevertheless, one could consider them all a member of the more 

broadly defined class of inhibitors that disrupt membrane stability through interference 

with ergosterol. To improve class definition, one could first perform exploratory data 

analysis using, for example, unsupervised clustering approaches to assist in determining 

class boundaries and class-inclusion criteria. To properly asses the performance of each 

class in the training set, the validation set should in that case preferably contain one (or 

multiple) members of that respective class to capture the variation of intra-class proteomic 

effects. 

This misclassification observed for the MoA models of S. cerevisiae reveals a possible 

resolution limit of the developed screening assay. If the overall net result of the classes 
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involved is similar, the model cannot properly distinguish them when training models with 

multiple different mechanisms of action classes, as was seen for the classes MEM and STB. 

To further validate the model, it would be advised to include one or multiple echinocandins 

(inhibiting cell wall synthesis) and pyrimidine analogues (inhibiting nucleic acid synthesis) in 

the blind test set, to also evaluate the distinction of the model between those classes.  

 

4.3.2 Candida albicans 

After demonstrating the assay’s applicability for S. cerevisiae, results obtained with the 

developed assay applied to the clinically relevant eukaryote yeast C. albicans will be 

discussed in this subchapter. The MIC values of C. albicans (ATCC 90028) were determined 

for a set of antifungal drugs, and subsequently the cells were treated with sub-MIC 

concentrations (1×MIC, ½×MIC, and ¼×MIC) of those drugs. Mass spectra of the cells were 

recorded, and feature selection using RF, SFS, and SBS was performed to yield aggregated 

feature sets for both the binary and the MoA models. The constructed Q-SVM classification 

models were evaluated solely by internal 10-fold cross-validation. This was done to obtain a 

preliminary indication of the model performance when trained with C. albicans data, but the 

models’ generalization towards unknown data cannot be discussed.  

 

4.3.2.1 MIC determination and spectral processing 

The MIC values were determined for a small set of antifungals according to EUCAST 

guidelines for antifungal testing. Drugs were classified as sterol biosynthesis inhibitors (STB; 

fluconazole and miconazole), nucleic acid inhibitor (NUC; 5-flucytosine), and cell wall 

synthesis inhibitors (CWL; caspofungin). The MIC values are listed in Table 27.  

 

Table 27. List of antifungals used for C. albicans experiments. Listed are drugs and their corresponding drug 
class and main target, next to the mechanism of action (MoA) classification abbreviation used for model 
training, and the antifungals’ determined minimal inhibitory concentration (MIC) values (mg/L). 

Name Drug class, target 
Class 
(abbreviation) 

MIC 
(mg/L) 

5-Flucytosine 
Pyrimidine pro-drug, converted intracellularly to 
fluorouracil, inhibits RNA and DNA synthesis 

Nucleic acid synthesis inhibitor (NUC) 0.5 

Caspofungin 
Echinocandin drug, inhibits β(1,3)-D-glucan-synthase, 
involved in cell wall synthesis 

Cell wall synthesis inhibitor (CWL) 0.125 

Fluconazole Azole drug, lanosterol 14α-demethylase Inhibitor Sterol biosynthesis inhibitor (STB) 0.25 

Miconazole Azole drug, Lanosterol 14α-demethylase Inhibitor Sterol biosynthesis inhibitor (STB) 32 
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Out of the set of assayed antifungals, the EUCAST authority only provides a reference value 

for fluconazole of ≤ 2 mg/L [159], which is within reasonable accuracy as the MIC reported 

here of 0.25 mg/L. The CLSI provides a reference value for caspofungin ≤ 0.25 mg/L [221], 

also in line with the value reported in this thesis (0.125 mg/L). The obtained MIC values for 

the other antifungals are also within range of reported literature values determined under 

similar circumstances [222, 223]. Only for miconazole, the obtained MIC of 32 mg/L was 

relatively high compared to literature values (0.25 mg/L [224]), which may partially due to 

the subjectivity involved in determining the MIC visually [225].  

After the C. albicans cultures were exposed to the antifungals, mass spectra were recorded 

and subsequently aligned to abundant identified  reference peaks. Listed in Table 28 are 

several tentatively identified protein peaks used for mass spectra alignment.  

 

Table 28. Reference peaks used for spectra alignment during spectral processing of C. albicans data set. Listed 
is the respective protein name, where RL corresponds to Ribosomal Large subunit (50S) and RS to Ribosomal 
Small subunit (30S), followed by the respective protein unit number. Second column lists corresponding 
UniProtKB accession number; third column indicates whether the initiator methionine (M) is removed. Fourth 
column lists the theoretical m/z value, followed by the observed m/z value in the fifth column. Sixth column 
lists absolute mass error in ppm. Last column shows theoretically calculated isoelectric point (pI). Inset on the 
right shows average mass spectrum of C. albicans with asterisk (*) indicating reference peaks. 

Name UniprotKB 
Initiator M 
removed 

Theoretical 
m/z 

Observed 
m/z 

Error 
(ppm) 

pI 

 

Mfa1p A0A1D8PI68 Yes 4163.6 4166.0 580 9.4 

RL40 C4YHX3 No 6062.3 6058.3 661 10.3 

RL39 Q96W55 Yes 6199.3 6201.2 302 12.3 

RS29A C4YMQ1 Yes 6470.3 6468.3 322 9.8 

RL29 C4YCU6 Yes 6982.1 6980.8 177 11.0 

 

These alignment peaks were mainly basic (pI >9.4) ribosomal associated proteins, except for 

Mfa1p, which has mating pheromone activity [226]. As was observed for S. cerevisiae, 

almost no peaks were observed beyond m/z 8000.The mass error is higher (above 300 ppm 

for 4 out of 5 peaks) than was observed for E. coli and S. aureus (below 300 ppm), but 

comparable to S. cerevisiae. As for S. cerevisiae, the exact origin of the relatively large error 

is unknown, but not considered a major issue. After spectral alignment, feature selection 

was performed as described previously. Details of feature selection using RF, SFS, and SBS 

are provided in Appendix Figure 6 and Appendix Figure 7. All peaks selected in the 

aggregated feature set for Q-SVM model construction are listed in Appendix Table 2. None 

of the selected peaks could be identified, even by extending the database mass search to ± 

700 ppm, based on the largest error (661 ppm) observed for RL40 in this data set.  

Untreated

Alignment peak*
**

*
*

*
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4.3.2.2 Binary model 

Similar to the chapters of the other organisms, the binary model results will be presented 

and discussed first. Despite the unknown identity of the selected peaks, the information 

contents of several peaks that were employed to train the binary model are shown in Figure 

17. 

 

 

Figure 17. (a) Mass spectral details of C. albicans. In (a) details of selected peak at m/z details 
of peak 4033.5. Average mass spectra of untreated cells (black) and treated cells (red), mean 
absolute deviation is indicated with shades. Depicted in (b) details of selected peak observed 
at m/z 6424.0. Colors are as described for (a).  

 

Figure 17a depicts one of the peaks selected for the binary model, observed at m/z 4033.5. 

Mass spectra from cells treated with antifungals (red) show a peak with an average relative 

intensity of 7.0% ± 1.1, while mass spectra from untreated cells (black) lack this peak almost 

completely (intensity 3.1% ± 0.9). The separation between untreated and treated cell 

spectra can also be found for the adjacent peaks at m/z 4043.3 and m/z 4063.0, although 

these were not selected for the binary model. This may be due to the relatively large MAD 

for untreated cells observed for these peaks. For example, at the peak at m/z 4043.3 the 

MAD is over one-third of the signal, at 6.6% ± 2.3. The relatively larger MAD in the data from 

untreated cells might originate from the fact that the cells were not synchronized, but an 

additional comparative study would be required to confirm this. However, the MAD of the 

spectra from cells that were untreated is relatively small in some other areas, such as the 

selected peak at m/z 6424.0, shown in Figure 17b. Here, the intensity of treated cells was 

relatively high, 3.3% ± 1.3, compared to spectra from untreated cells at 0.7% ± 0.3. The Q-

SVM models using the aggregated feature set were constructed with the selected peaks and 

the resulting confusion matrix of the internal validation using 10-fold cross-validation of the 

binary model is shown in Table 29.  

  

Untreated

Treated 

Untreated

Treated 

a b
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Table 29. Confusion matrix of the 10-fold cross-validation of binary quadratic support vector 
machine model with the aggregated feature set of C. albicans, encompassing 185 mass 
spectra (all antifungals at all assayed concentrations). Indicated is the total number of spectra 
per class and the corresponding recall and precision value per class, and the overall accuracy 
in the bottom right in bold. 

  Model classification   

Tr
u

e 
cl

as
s Class labels Treated Untreated Total Recall 

Treated 126 1 127 0.99 

Untreated 8 50 58 0.86 

Total 134 51 185  

 Precision 0.94 0.98  0.95 

 

Comparable to the other binary models discussed in this thesis, the class imbalance of the 

data set results in a relatively low recall value for the minority class untreated (0.86) 

compared to the class treated (0.99). Nevertheless, a high overall mean accuracy of 0.95 

was obtained during internal validation of the binary model obtained with C. albicans data. 

The fact that the model has a relatively low recall for the class untreated (compared to the 

other organisms) may be explained by looking at details of some peaks that were selected 

for this model. The relatively large MAD, present in several of the selected peaks of the class 

untreated, may have contributed to this effect. External validation was not performed for C. 

albicans. However, based on its similar model performance during internal validation 

compared to S. cerevisiae (and the assayed bacteria), it indicates promising results if 

external validation was to be conducted.  
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4.3.2.3 MoA model 

The MoA model was constructed with five unidentified peaks (listed in Appendix Table 3). 

Exemplary peaks selected for the MoA model of C. albicans are shown in Figure 18.  

 

 

Figure 18. Details of peaks selected for the mechanism of action (MoA) model. In (a) details of 
peak at m/z 5745.3 Spectra are averages of the whole data set colored as follows: untreated 
cells (black); cell wall synthesis inhibitors (CWL, red); class nucleic acid synthesis and 
processing inhibitors (NUC, green) and antifungals inhibiting sterol biosynthesis (STB, yellow). 
Shades indicate ± mean absolute deviation. (b) Details of peak at m/z 5848.1 and 5910.7. 
Colors are as described for (a).  

 

Figure 18a shows details of the peak at m/z 5745.3. At this peak, the distinction between 

untreated cells spectra (10.3% ± 2.9) and spectra from cells treated with 5-fluocytosine 

(NUC; 7.0% ± 1.1) is significant, as is the distinction with the spectra from cells treated with 

antifungals of the classes CWLs (3.5% ± 0.5) and STBs (4.1% ± 0.8). Nevertheless, the spectra 

of CWL and STB do overlap slightly. A similar observation on the overlap of the classes CWL 

and STB can be made from the peak at m/z 5848.1 in Figure 18b. The relative intensity for 

the untreated spectra is 6.5% ± 1.8, while for the cells treated with antifungals of the class 

NUC the intensity is significantly lower at 3.7% ± 0.6. For both CWL (2.7% ± 0.4) and STB 

(2.7% ± 0.5), the intensity is even lower than for NUC, but those two classes are 

indistinguishable from each other. Similarly, the selected peak at m/z 5910.7 (Figure 18b) 

shows relatively high intensity for spectra obtained with cells treated with NUC (15.6% ± 

2.3), which is different from untreated cells (12.0% ± 1.8). However, the distinction between 

CWL (12.9% ± 1.6) and STB (13.7% ± 2.3) and untreated is, once again, not observed for this 

peak. As was seen for peaks selected for the binary model, the peak at m/z 5745.3 shows a 

relatively large MAD in its relative intensity (10.3% ± 2.9) for the untreated cells compared 

to the spectra from cells treated with the antifungals. For the peak at m/z 5848.1, the MAD 

is roughly a factor 3 larger (at 1.8 percent point MAD) for the untreated cells’ spectra 

compared to the treated cells’ spectra (0.4-0.6 percent point MAD). The internal validation 

results of the MoA model are shown as a confusion matrix in Table 30. 
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Untreated

CWL

NUC
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Table 30. Confusion matrix of the 10-fold cross-validation of mechanism of action quadratic 
support vector machine mechanism of action (MoA) model of C. albicans, encompassing 185 
mass spectra. Antifungals were grouped according to their mechanism of actions: cell wall 
synthesis inhibitors (CWL), sterol biosynthesis inhibitors (STB), nucleic acid synthesis and 
repair inhibitors (NUC), and untreated (UNT). Indicated is the total number of spectra per 
class and the corresponding recall and precision value per class, and the overall accuracy in 
the bottom right in bold. 

  Model classification   

 Class labels CWL NUC STB UNT Total Recall 

Tr
u

e 
cl

as
s CWL 21 0 10 0 31 0.68 

NUC 0 29 1 2 32 0.91 

STB 9 1 53 1 64 0.83 

UNT 0 3 0 55 58 0.95 

 Total 30 33 64 58 185 
 

 Precision 0.70 0.88 0.83 0.95 
 

0.85 

 

The performance during internal validation was reasonably well, with an overall accuracy of 

0.85. This performance is slightly worse than the performance of the MoA model reported 

for S. cerevisiae (0.90). The confusion matrix shows that the lowest accuracies occur for the 

classes CWL and STB, as the MoA model is unable to make a proper distinction between 

spectra from cells treated these two antifungal classes. This particular confusion resulted in 

a total of 19 misclassifications, indicating that the selected peaks do not contain enough 

discriminatory power for these two classes. This is in line with the observation of the 

exemplary peaks in Figure 18a, where the distinction between the classes CWL and STB is 

less pronounced than between the classes untreated and NUC. Another reason might be 

that, despite the fact that the sterol biosynthesis inhibitors (inhibiting lanosterol 14α-

demethylase [46]) and the cell wall synthesis inhibitors (inhibiting β(1,3)-D-glucan-synthase 

[53]) have a different target, their biological net result is similar, namely an increase in cell 

permeability which eventually causes cell lysis. This may result in a highly similar proteomic 

response, or at least the differences between the azole drugs and echinocandins cannot be 

resolved under current assay conditions in C. albicans. In addition, the MoA model also 

suffers from a minor class imbalance, as the classes CWL (consisting only of mass spectra 

only from caspofungin) and NUC (comprising only the antifungal 5-fluocytosine) each 

accounting for 17% of the data. On the other hand, the classes of untreated spectra and STB 

are relatively large, with 31% and 35% of the data, respectively. Though this does not seem 

to have any obvious effect on the overall classification accuracy of each of the classes, it 

does contribute to the lower recall and precision of the classes CWL and STB. For the class 

CWL, a relatively large fraction of the spectra (10/31) is misclassified as STB. Conversely for 

the class STB, 9 out of the 64 spectra were misclassified as CWL. This confusion mainly had 

its impact on the relatively small class of CWL, resulting in a relatively low precision and 

recall of 0.70 and 0.68 respectively. For the class STB, the confusion with the class CWL has 
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less of an effect on the precision and the recall (both 0.83) due to its relative larger sample 

size of 64 spectra. The classes NUC and ‘untreated’ are well distinguishable from each other, 

and the other classes. This is reflected in a high precision and recall score for both the class 

NUC (0.88 and 0.91 respectively) and the class ‘untreated’ (both 0.95).  

Although the proof-of-concept study demonstrates that the workflow can be applied to C. 

albicans, it also shows that the currently employed class definitions could be further 

optimized, as was suggested for S. cerevisiae data set. It appears that the used classes of 

CWL and STB, with which it was attempted to resolve the effects of azole and echinocandin 

drugs, do in fact show similar cellular effects as measured in the MALDI-TOF assay. This 

indicates that the resolution of the method is limited, though further experiments including 

different feature selection methods or modeling approaches may increase the resolution. 

For future work, it is advised to also use additional echinocandins and azole drugs in the 

model training and test set confirm the (dis)similarity between those classes. Additionally, 

other drugs that could be categorized in the class of sterol biosynthesis inhibitors, such as 

allylamines (inhibiting squalene monooxygenase) [52], morpholine antifungal drugs [227], 

and drugs directly interacting with ergosterol, such as the polyene antifungals (such as 

amphotericin-B and nystatin [228] could be investigated to see how well the current assay 

resolves these stresses. 

 

4.3.3 Summary 

To summarize, the applicability of the developed assay has been shown for the eukaryote 

yeasts S. cerevisiae and C. albicans. The performed studies reflect that the assay is readily 

transferable to eukaryote cells to detect the effects of antifungal drugs. The data-dependent 

workflow selected relevant peaks, which, although unidentified, allowed for the generation 

of robust and reliable quadratic support vector machine classification models.  

It would be of interest to perform external validation for C. albicans, in order to advance 

and further understand the application of the developed method. The external validation of 

the S. cerevisiae MoA model pointed out an inherent shortcoming of the developed 

method, where a MoA will inherently be assigned to the incorrect MoA if that particular 

MoA was not present in the training set. Nevertheless, the binary model was able to 

correctly identify mass spectra from cells treated with an unknown MoA as ‘treated’ 

(tavaborole, a protein synthesis inhibitor).  

The MoA model of both S. cerevisiae and C. albicans indicated that the employed class 

definition is suboptimal to correctly identify antifungal drugs, if their overall effect in terms 

of cellular stress is similar. For S. cerevisiae, this manifested itself in confusion between the 

class of STB and MEM, as both classes of antifungals disrupt the membrane through 

interference with ergosterol. For C. albicans, the model had trouble distinguishing the class 
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STB from CWL, as these antifungal classes all result in fungal cell membrane or cell wall 

instability. Further analysis of larger data sets would be required to show how well the 

distinction can be made between these highly similar classes. It would be of value to 

investigate additional feature selection approaches, or different class definitions for 

modeling. This could assist in determining whether or not there are specific peaks in the 

mass spectrum that allow for a better distinction between the classes which currently show 

a high similarity. 
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4.4 HeLa 

After demonstrating the transferability of the MALDI-TOF MS assay from prokaryotes to 

eukaryote fungal species to detect sub-lethal effects of specific drugs, an exploratory 

analysis of the method applied to human HeLa cells was undertaken. Two experiments have 

been performed for this purpose, which employed different kinds of stress. Firstly, the 

effect of a diverse set of drugs on the proteome of HeLa was investigated. Secondly, the 

proteomic effect on HeLa cells subjected to physical stresses was explored. In those 

experiments, HeLa cells treated with drugs were compared to cells incubated at an elevated 

temperature of 43 °C and HeLa cells that were exposed to UV-light.  

 

4.4.1 Drug stress 

4.4.1.1 Toxicity determination and spectral processing 

The CC50 concentrations of the drugs investigated were determined using the commercially 

available CellTiter-Blue® viability assay kit. The drugs were selected to cover a diverse range 

of pharmacological classes, from anticancer drugs, such as tubulin polymerization inhibitors, 

to different types of hormones, such as corticosteroids, tamoxifen, and thyroid hormone. 

The drugs investigated, and their respective CC50 concentrations, are listed in Table 31.  

 

Table 31. List of drugs used in HeLa experiments, their drug class and main target, mechanism of action (MoA) 
class abbreviation used for modeling, and their respective 50% cytotoxicity values (CC50, in mM). 

Name Drug class, target MoA class CC50 (mM) 

Combretastatin Dihydrostilbenoid drug, tubulin polymerization inhibitor TUB 0.234 

Paclitaxel Taxane drug, tubulin depolymerization inhibitor TUB 0.062 

Vinblastine Vinca alkaloid, tubulin polymerization inhibitor TUB 0.066 

Colchicine alkaloid, tubulin polymerization inhibitor TUB 0.381 

Dexamethasone-21-phosphate Corticoid steroid hormone, binds glucocorticoid receptor CORT 0.150 

Prednisolone Corticoid steroid hormone, binds glucocorticoid receptor CORT 0.240 

L-Tyroxine Thyroid hormone T4 substitute; thyroid nuclear receptors THR 0.127 

Tamoxifen Selective estrogen receptor modulator (prodrug), estrogen receptors SERM 0.020 

Ciclosporine Immunosuppressant, cyclophillin binder IMM 0.021 

Tretinoin retinoic acid, binds retinoic acid receptor and Pin1 ligand TRE 0.127 

Pravastatin Statin, HMG-CoA reductase inhibitor STAT 0.425 

Loperamide Opioid, binds opioid-receptor agonist OPID 0.026 

Ergotamine neurotransmitter analog, binds 5-hydroxytryptamine receptors type 1-8 NTA 0.055 

 

The determined CC50 concentrations were all in the low mM range. Relatively large classes 

were obtained upon classification according to the global MoA of the employed drugs, such 

as the tubulin (de)polymerization inhibitors (class TUB; composed of combretastatin, 

paclitaxel, vinblastine, and colchicine) compared to other classes that consisted of only one 

drug (loperamide, class OPID). This was due to the exploratory design of the study, which 

initially did not take into account the relative size of the drug classes. The main aim of this 
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study was to include a diverse selection of drugs to explore and evaluate the overall assay 

performance. After exposing HeLa cells overnight to the drugs at the determined CC50, mass 

spectra were recorded. Following mass spectral acquisition, peaks were aligned to five 

tentatively identified consistently observed reference peaks, listed in Table 32.  

 

Table 32. Reference peaks used for spectra alignment during spectral processing of HeLa data set. Listed is the 
respective protein name, second column lists corresponding UniProtKB accession number; third column lists 
the theoretical m/z value, followed by the observed m/z value in the fourth column. Fifth column lists absolute 
mass error in ppm. Last column shows theoretically calculated isoelectric point (pI). Inset on the right shows 
average mass spectrum of untreated HeLa cells with asterisk (*) indicating reference peaks. 

Name, notes UniprotKB 
Theoretical 

m/z 
Observed 

m/z 
Error 
(ppm) 

pI 

 

Minor 
histocompatibility 
protein HB-1a 

O97980 4939.5 4939.0 100 4.8 

Minor 
histocompatibility 
protein HB-1 

O97980 4965.5 4966.2 128 5.0 

metallothionein-2b P02795 6085.2 6085.6 66 8.2 

Ribosomal 40S S30 P62861 6648.9 6650.1 193 12.3 

Ubiquitinc P0CG47 8565.9 8565.2 76 6.5 
a suspected natural variant (YH) or PTM of O97980 
b acetylated 
c maturated monomer, position 77-152 

 

 

Unlike the other assayed organisms, not all major peaks were identified as ribosomal 

associated proteins with a relatively high pI. Two of the most abundant peaks were 

observed just below m/z 5000, at m/z 4939.0 and m/z 4966.2. The observation of the major 

peak at m/z 4966.2 is in agreement with observations by other researchers investigating 

human cells, although the peak at m/z 4939.0 was not reported in their papers [137, 229, 

230]. These peaks were tentatively identified as minor histocompatibility protein HB-1, and 

a corresponding isoform. In addition to the minor histocompatibility proteins, a 

metallothionein protein, a ribosomal protein, and ubiquitin were used for alignment of the 

mass spectra. Only the one ribosomal associated protein in this alignment set does have a 

relatively high pI of 12.3, consistent with observed ribosomal peaks from the other assayed 

organisms. The metallothionein protein also has a relatively high pI of 8.2, but this was not 

the case for the major peaks belonging to histocompatibility proteins HB-1, with a pI of 4.8-

5.0. The absolute mass error of the peaks after spectral alignment was considered good, 

being below 300 ppm.  

After spectral alignment, the aggregated feature sets for the binary and MoA classification 

problem were determined using the feature selection algorithms. Details of the feature 

selection by RF, SFS, and SBS are provided in Appendix Figure 10 and Appendix Figure 11 for 

the binary and MoA classification problem, respectively. 

Untreated

Alignment peak*

*

*

*

*
*

https://www.uniprot.org/uniprot/P62861
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4.4.1.2 Binary model 

The aggregated feature selection based on the binary classification results in a feature set 

containing only two peaks, fewer peaks than in the aggregated feature sets of other for any 

of the other assayed organisms. The selection of only two peaks is presumably due the 

highly unbalanced data set, as only 9 out of the 155 spectra (5.8%) originated from 

untreated cells. Especially the RF algorithm suffers from the extreme bias in such cases, as 

the a priori chances of correctly assigning the class ‘treated’ is already 94.2%. In this case, it 

resulted in only 4 peaks above the feature importance threshold value by the RF (see 

Appendix Figure 10). Likewise, the forward feature selection algorithm suffered from the 

imbalance and selected few peaks. Details of the two peaks selected for the binary model 

are depicted in Figure 19.  

 

 

Figure 19. Mass spectral details from HeLa cells. (a) Details of peak at m/z 5382.8. Depicted 
are average mass spectra of untreated cells (black) and treated cells (red), mean absolute 
deviation (MAD) is indicated with shades. (b) Shows details of peak at m/z 10888.9, colored as 
described for (a). 

 

The unidentified peak selected for the binary model observed at m/z 5382.8 shown in Figure 

19a was selected by all three feature selection algorithms. The peak allowed for a good 

distinction between the two classes, as the intensity decreased from 4.7% ± 2.5 for 

untreated cells to 2.2% ± 0.7 relative intensity upon treatment with drugs. In addition to this 

peak, the peak at m/z 10888.9 was selected, shown in Figure 19b. The peak was tentatively 

identified as protein NCBP2AS2 (Q69YL0; theoretical m/z 11985.0, relative mass error 69 

ppm, theoretical pI 12.0). This protein, also known as hypoxia-induced angiogenesis 

regulator (HIAR), was previously reported by a proteomic study of cancer-associated 

fibroblasts [231]. There it was found that this protein was induced as a response to hypoxic 

stress. Interestingly, Figure 19b shows a decrease in abundance of NCBP2AS2 for spectra 

obtained with treated (stressed) cells, whereas it was shown in literature that the protein 

NCBP2AS2 was upregulated by hypoxic stress. The peak at m/z 10888.9 decreased almost a 

factor two in intensity, from 5.2% ± 0.8 relative intensity to 3.4% ± 0.9 upon treatment with 

Untreated

Treated 

a b

Untreated

Treated 
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drugs. The selection of this protein as a response to drug-induces stresses suggests that the 

protein may be involved in more than just hypoxic stress, and is possibly a more general 

stress-associated protein. 

Using the two selected peaks in the aggregated feature, a Q-SVM model was trained and 

evaluated. The extreme class imbalance of the binary problem makes the relevant 

application and interpretation of the constructed binary model limited. Nevertheless, the 

results of the internal validation performed in this work serve to illustrate that the 

developed MS-based screening assay can be –in principle– applied to HeLa cells. The results 

of the binary model are shown in Table 33.  

 

Table 33. Confusion matrix of the 10-fold cross-validation of binary quadratic support vector 
machine model of HeLa encompassing 155 mass spectra using the two peaks in the 
aggregated feature set. Indicated is the total number of spectra per class and the 
corresponding recall and precision value per class, and the overall accuracy in the bottom 
right in bold. 

  Model classification   

Tr
u

e 
cl

as
s 

 

Class labels Treated Untreated Total Recall 

Treated 144 2 146 0.99 

Untreated 6 3 9 0.33 

Total 150 5 155  

 Precision 0.96 0.60  0.95 

 

Table 33 shows an overall mean accuracy of 0.95 for the binary model, which is comparable 

to the binary models of other assayed organisms. However, the indicated performance is 

largely an effect of the large class imbalance towards the class of treated cells. Arbitrarily 

classifying all spectra to the class treated would yield an overall accuracy of 0.94, almost 

equal to the current classifier performance. Due to the class imbalance, the binary model is 

properly trained to recognize treated sample mass spectra, but can hardly detect untreated 

cells’ spectra. This is illustrated by the high recall and precision of the model for identifying 

treated HeLa cell spectra, regardless of the drug compound (recall 0.99 and precision 0.96). 

Contrarily, the precision and recall for the class untreated is low (0.60 and 0.33 

respectively). Due to the class imbalance and lack of external validation of the model, the 

practical implications of this model should be improved by balanced experimental design. 

Nevertheless, the results illustrate the concept of the MALDI-TOF MS method for HeLa cells.  
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4.4.1.3 MoA model  

For the MoA classification problem, features were evaluated using RF, SFS, and SBS (see 

Appendix Figure 11), to create the aggregated feature set. In total, seven peaks were 

included in the aggregated feature set. Five of these seven peaks were tentatively identified. 

Details of the peaks are listed in Table 34. 

 

Table 34. Aggregated feature set of peaks selected from HeLa spectra for the MoA model. Listed is the 
observed m/z value and the theoretical m/z value of the protein, if identified. For identified proteins is 
indicated the absolute relative mass error in ppm, UniProt accession number, theoretical isoelectric point (pI), 
and the corresponding name and notes of the protein, next to post-translational modifications (PTMs).  

Observed 
m/z 

Theoretical 
m/z 

Error 
(ppm) 

UniProtKB pI Name; notes, PTMs 

4283.5 - - - - - 

4966.2 4965.5 128 O97980 5.0 Minor histocompatibility protein HB-1 

6048.5 6049.1 92 P80297 8.3 Metallothionein-1X, oxidized 

6085.6 6085.2 66 P02795 8.2 Metallothionein-2, acetylated  

10638.8 - - - - - 

10888.9 10891.6 252 Q69YL0 12.0 Protein NCBP2AS2, hypoxia induced cancer associated protein 

11984.2 11985.0 69 Q13278 8.4 Putative protein RIG, molecular marker for tumor progression 

 

Multiple peaks selected for the MoA model have an annotated function as being involved in 

stress-associated processes, among which metallothionein proteins and protein NCBP2AS2. 

The protein NCBP2AS2 was also selected for the binary classification problem, emphasizing 

its responsiveness to the drug-induces stresses. Additionally, the peak at m/z 11984.2 was 

identified as putative protein RIG. This protein is known to be involved in malignant 

progression of glioblastomas [232]. The identification of the peak at m/z 11984.2 as protein 

RIG (a known glioblastoma biomarker) is ambiguous, as its expression has so far only been 

shown in brain, heart, and lung tissue [232]. It might of course be that the observed peak at 

m/z 11984.2 belongs to a different protein, which is not necessarily annotated in the 

UniProt database. The three feature selection methods found the peaks with the most 

predictive power were the metallothioneins, found at m/z 6048.5 and 6085.6. The 

metallothioneins are a type of small, cysteine rich, stress responsive proteins [233]. Details 

of these peaks are shown in Figure 20.  
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Figure 20. Mass spectral details of HeLa cells. Shown are details of peaks selected at m/z 
6048.5 and m/z 6085.6. Depicted are average spectra (solid line) ± the MAD (shaded area). 
Spectra are colored according to drug class treatment as follows. Red: tubulin (de)-
polymerization inhibitors (TUB); orange: Immunosuppressant (IMM); blue: corticosteroids 
(CORT); green: neurotransmitter analog (NTA); dark magenta: opioid receptor agonist (OPID); 
yellow: thyroid hormone (THR); lime: statins (STAT); pink: selective estrogen receptor 
modulator (SERM); cyan: tretinoin (TRE); black: untreated cells.  

 

Metallothioneins are cysteine-rich, low-molecular weight proteins, known to interact with, 

as well as being transcriptionally regulated by, heavy metals (first described in 1957 [234]) 

and corticosteroids [233]. The increase of the relative abundance of metallothioneins in 

HeLa cells upon treatment with the corticosteroid dexamethasone had already been 

described in 1979 by Karin and Herschman [235]. Later it was established that the 

(up)regulation of metallothioneins is a more general response towards corticosteroids, and 

other types of stress, and is involved in apoptotic pathways [233, 236, 237]. This strong 

regulatory effect of corticosteroids on metallothioneins is in agreement with a 4-fold 

increase in abundance for peak observed at m/z 6085.6 (see Figure 20) upon treatment with 

the class CORT (composed of prednisolone and dexamethasone 21-phosphate). The 

intensity of the peak increases significantly to 44.0% ± 3.5 upon treatment with the 

corticosteroid drugs compared to the other drug treatments (on average 11.1% ± 1.2) and 

untreated cells (intensity 10% ± 0.6).  

One might expect that the peak observed at m/z 6057.2 in Figure 20 (another suspected 

metallothionein) would also be selected for modelling, as it is also quite responsive to the 

steroid drugs, like the peaks at m/z 6048.5 and m/z 6085.6. The reason why this peak at m/z 

6057.2 was not selected for the aggregated feature set may lie in the fact that it cannot 

provide additional information to the distinction of the corticosteroids captured in the peak 

at m/z 6085.6. The peak at m/z 6048.5 (identified as metallothionein-1X), does provide 

additional information. Not only did this peak respond significantly to the corticosteroid 

treatment (CORT; 20.3% ± 1.3), but it also responded to tubulin (de-)polymerization 

Untreated
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inhibitors (TUB; 16.2% ±2.7) and immunosuppressing drugs (IMM; 14.5% ± 0.9 percent 

point) compared to the other drug treatments (on average 10.8% ± 1.2) and untreated cells 

(10.0% ± 0.6). This specific metallothionein is reportedly involved in apoptotic signaling in 

response to cisplatin, an anticancer drug which causes DNA damage [238]. 

The detection of multiple, stress-associated proteins shows that the aggregated feature 

selection method applied to HeLa mass spectra is able to detect relevant proteins in 

response to various drug treatment. Using the aggregated feature set, a MoA classification 

model was trained. The classification results of the MoA model are shown in Table 35 as a 

confusion matrix.  

 

Table 35. Confusion matrix of the 10-fold cross-validation of MoA quadratic support vector machine model 
using the aggregated feature set of HeLa exposed to drugs. Class abbreviations are as follows: CORT: 
corticosteroids, IMM: immunosuppressant; NTA: neurotransmitter agonist, OPID: opioid, SERM: selective 
estrogen-receptor modulator, STAT: statin, THR: thyroid hormone, TRE: tretinoin, TUB: tubulin 
(de)polymerization inhibitor, UNT: untreated. Indicated is the total number of spectra per class, the 
corresponding recall and precision value per class, and the overall accuracy in the bottom right in bold. 

  Model classification   

 Class labels CORT IMM NTA OPID SERM STAT THR TRE TUB UNT Total Recall 

Tr
u

e 
cl

as
s 

 

 

CORT 22 0 0 0 0 0 0 0 1 0 23 0.96 

IMM 0 9 2 0 0 1 0 0 0 0 12 0.75 

NTA 0 1 5 3 1 0 1 0 0 1 12 0.42 

OPID 0 0 2 3 4 3 0 0 0 0 12 0.25 

SERM 0 0 3 2 5 0 2 0 0 0 12 0.42 

STAT 0 0 0 5 1 3 2 0 0 0 11 0.27 

THR 0 0 1 2 4 0 5 0 0 0 12 0.42 

TRE 0 0 1 0 0 0 0 5 0 3 9 0.56 

TUB 0 0 1 0 0 0 0 0 42 0 43 0.98 

UNT 0 0 3 1 0 0 0 1 0 4 9 0.44 

 Total  22 10 18 16 15 7 10 6 43 8 155 
 

 Precision  1.00 0.90 0.28 0.19 0.33 0.43 0.50 0.83 0.98 0.50 
 

0.66 

 

Table 35 shows relatively high recall and precision values for several classes, as is the case 

for the corticosteroids (CORT; dexamethasone and prednisolone), the group of tubulin 

ligands (TUB; paclitaxel, combretastatin, colchicine and vinblastine), and, to lesser extent, 

the class immunosuppresses (IMM; cyclosporine) and tretinoin (TRE). Some of the other 

assayed drug classes, particularly L-thyroxine (THR), loperamide (OPID), tamoxifen (SERM), 

pravastatin (STAT), and ergotamine (NTA) show fewer distinct alterations in their respective 

mass spectra. From this first group of drugs (CORT, TUB, IMM and TRE), it is expected that 

they have a strong effect on the HeLa cells, as the classes of TUB and TRE are composed of 

specific anti-cancer drugs, intended to cause cell death. Additionally, the class IMM, 

composed of cyclosporine, is known to cause specific drug-induced superoxide mediated 
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cell damage in HeLa cells [239]. For the class of CORT it was expected that they would be 

classified correctly, as the spectra of HeLa cells treated with the corticosteroid drugs had 

shown to provoke such a specific and strong response in several selected peaks belonging to 

metallothioneins (see Figure 20). The other drugs (THR, OPID, SERM, STAT, and NTA), are 

not particularly known to be anticancer drugs and cause specific, intentional damage, 

except the class SERM (used as anti-cancer medicine [240]). The drugs of the class THR, 

OPID, STAT, and NTA do all have reported regulatory functions [241-244]. A partial reason 

for the non-distinctive proteomic response in this second group of drugs lies in the 

expression level of their respective target receptor. The lack of a specific response for the 

class SERM (composed of tamoxifen) can be explained by the fact that HeLa cells are 

naturally estrogen-receptor negative [245]. In a similar way, the spectra from cells treated 

with loperamide may not yield a distinct reaction, as the expression levels of its respective 

target receptor protein, the opioid receptor, is low to even absent in HeLa cells (originally an 

epithelial adenocarcinoma) [246]. The same is true for cells treated with ergotamine. 

Ergotamine mainly binds to the 5-HT receptors, which are mostly located in parts of the 

brain and vascular smooth muscles [247]. Therefore, a specific effect from HeLa cells was 

not expected. As a consequence, a correct classification is limited for those non-specific 

stressors and they are confused with each other by the model. However, the lack of 

respective target receptor is not an issue for some of the other drugs with poor 

classification performance (among which L-thyroxine, pravastatin). For these drugs, the 

respective target receptors are present in HeLa cells, thus their poor performance is likely 

due to a non-distinctive proteomic response. Consequently, these drugs are confused by the 

MoA model. However, since all drugs were all dosed at their relative CC50, there should be a 

(partially lethal) response. The response signatures of the HeLa cells to these non-specific 

stressors are still distinct enough to separate them to some degree from the untreated cells. 

 

4.4.2 Physical and chemical stress 

In addition to the exploratory analysis of the assay on HeLa cells treated with a variety of 

drugs, the effects of different environmental stresses has been surveyed. This was done to 

investigate whether the proteomic changes that would be visible in MALDI-TOF mass 

spectra would be sufficient to distinguish cells based on the type of physical and 

physiochemical stress. Cells were treated with two drugs at their CC50 which have a different 

MoA, namely ergotamine (neurotransmitter analog; class NTA) and cyclosporine 

(Immunosuppressant, class IMM). These drugs were selected as they had shown to be 

reasonably distinguishable from untreated HeLa cells in the previous experiment. In 

addition, cells were treated with physical stressors that in this context have been labelled as 

two different MoAs: UV light exposure for several minutes and thermal stress for one hour 
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at 43 °C. After exposure to these stressors, mass spectra were recorded as described in the 

Experimental chapter.  

Mass spectra were aligned to the same set of reference peaks as described in the previous 

subchapter (details are provided in Appendix Table 4). Peak error remained within 300 ppm 

for all reference alignment peaks. Subsequently, peaks were evaluated using RF, SFS, and 

SBS for both the binary and MoA classification problem, of which details are provided in 

Appendix Figure 12 and Appendix Figure 13. Details of the aggregated feature sets and 

internal validation of both the binary and the MoA model will be discussed in the following 

sections.  

 

4.4.2.1 Binary model 

With the relatively well-balanced data set that was obtained by investigating physical and 

physicochemical stressors, more than 2 peaks were selected compared to the previously 

discussed binary feature set. Neither of the two peaks that were selected for the previous 

binary model, were selected for the current binary model. This is presumably an effect of 

the more balanced data set and the different types of stresses to which the cells were 

subjected. The peaks selected in the aggregated feature sets for the binary model are listed 

in Table 36.  

 

Table 36. Aggregated feature set of peaks selected in HeLa mass spectra for the binary model stressed with 
chemical and physical stressors. Listed is the observed m/z value and the theoretical m/z value of the protein, 
if identified. For identified proteins is indicated the absolute relative mass error in ppm, UniProt accession 
number, theoretical isoelectric point (pI), and the corresponding name and notes of the protein, next to post-
translational modifications (PTMs), if applicable. Details of peaks marked with asterisk (*) are provided in 
Figure 21. 

Observed 
m/z 

Theoretical m/z 
Error 
(ppm) 

ProtKB 
Accession 

pI Name, notes 

4986.1 4983.9 439 A1L3X4 8.4 Putative metallothionein MT1DP 

5804.4* - - - - - 

6058.3* 6057.2 189 P04732 8.4 Metallothionein-1E 

6085.6* 6085.2 63 P02795 8.2 Metallothionin-2, acetylated 

9956.1 - - - - - 

11604.7 11602.5 193 K7EIQ3 9.0 Uncharacterized protein ZNF561-AS1 

 

Although some of the stresses to which the cells were subjected in this experiment were of 

a different nature than the drugs discussed in the previous section, multiple 

metallothioneins were selected here again (m/z 4986.1, m/z 6085.5, and m/z 6085.6). The 

selection of metallothioneins is in line with literature, stating metallothioneins are involved 

in general stress responses, regardless of the exact underlying mechanism [236]. The 

https://www.uniprot.org/uniprot/A1L3X4
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identification of metallothionein MT1DP (m/z 4986.1) is ambiguous, as its mass accuracy is 

beyond the acceptable error of 300 ppm. However, its function description (responsiveness 

to stress) and the absence of other proteins in the database within reasonable error around 

m/z 4986.1 make it a likely identification. Details of several peaks for selected the binary 

model are depicted in Figure 21. 

 

 

Figure 21. Mass spectral details from HeLa cells. (a) Details of peak at m/z 5804.4. In black is 
depicted the average intensity ± mean absolute deviation (MAD) in the shaded area of 
untreated cells’ mass spectra. In red is depicted average intensity ± MAD of treated cells. (b) 
Details of peak at m/z 6058.6 and m/z 6085.6. Spectra colored as described for (a). 

 

In Figure 21a, details of the unidentified peak at m/z 5804.4 are depicted, whose relative 

intensity increases from 4.5% ± 0.4 to 5.3% ± 0.4 upon being subjected to the stressors. The 

intensity of the metallothionein peaks depicted in Figure 21b at m/z 6058.3 and m/z 6085.6 

both increased upon stressing the HeLa cells. The peak at m/z 6058.6 increases slightly from 

5.3% ± 0.8 to 6.0% ± 0.9 when stressing the cells, while the peak at m/z 6085.6 increases 

significantly from 6.5% ± 0.4 to 7.6% ± 0.7 upon stressing the cells. Using the aggregated 

feature set, the binary Q-SVM model was trained. The internal validation results of the 

binary model are shown in the confusion matrix in Table 37. 

 

Table 37. Confusion matrix of the 10-fold cross-validation of binary Quadratic support vector 
machine model with the aggregated feature set of HeLa cells, treated with a variety of 
stressors. Indicated is the total number of spectra per class and the corresponding recall and 
precision value per class, and the overall accuracy in the bottom right in bold. 

  Model classification   

Tr
u

e 
cl

as
s 

 

Class labels Treated Untreated Total Recall 

Treated 147 4 151 0.97 

Untreated 3 39 42 0.93 

Total 150 43 193  

 Precision 0.98 0.91  0.96 

 

Untreated

Treated 

a b

Untreated

Treated 
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The binary model trained with the aggregated feature set has a high overall performance of 

0.96, classifying 186 out of the 193 spectra to the correct class. Although this data set also 

suffers from class imbalance, overall the recall and precision scores are in line with what 

was observed for the binary models of the assayed bacteria and yeasts. The class imbalance 

on the binary model still has its effects on the underrepresented class ‘untreated’, reflected 

in a lower recall and precision values of 0.93 and 0.91, respectively, when compared to the 

‘treated’ class (0.97 and 0.98, respectively). Compared to the previously discussed 

organisms, the performance of the ‘untreated’ class is among the best, considering the 

spectra only make up 22% of the data.  

 

4.4.2.2 MoA model  

For the MoA model, seven peaks were included in the aggregated feature set. These peaks 

are listed in Table 38.  

 

Table 38. Aggregated feature set of peaks selected in HeLa mass spectra for the mechanism of action (MoA) 
model stressed with chemical and physical stressors. Indicated is the observed and theoretical mass and 
respective absolute error in ppm of identified proteins. Protein accession number is listed in the fourth 
column, next to the theoretically calculated isoelectric point (pI). Last column lists protein name, and if 
applicable post translational modifications (PTMs) and notes. Details of peaks marked with asterisk (*) are 
provided in Figure 22. 

Observed 
m/z 

Theoretical 
m/z 

Error 
(ppm) 

UniProtKB 
 

pI Name, PTMs, notes 

4284.7 4285.0 56 P0DPQ6 11.4 
DT3UO_HUMAN DDIT3 upstream open reading 
frame protein; involved in apoptotic and 
autophagy regulation 

4966.3 4965.5 150 O97980 5 Minor histocompatibility protein HB-1 

6046.2* 6049.1 -477 P02795 8.2 
Metallothionein-1X, oxidized, May be involved 
in FAM168A anti-apoptotic signaling 

8565.6* 8565.9 27 P0CG47  6.5 Ubiquitin, position 77-152 

9956.1 - - - - - 

10795.5* 10793.4 197 O00453 8.4 Leukocyte-specific transcript 1 protein 

11984.1 11985.0 69 Q13278 8.4 
Putative protein RIG, molecular marker for 
tumor progression 

 

In this particular feature set, 6 out of the 7 peaks were tentatively identified. The protein 

observed at m/z 4284.7 was identified as DDIT3 upstream open reading frame protein. The 

selection of this protein is in line with its functional annotation, as this protein is known to 

be involved in apoptotic signaling [248]. Additionally, this protein shows high similarity to 

DNA-damage-inducible transcript 3 protein (P35638, also known as CHOP), a multifunctional 

transcription factor which has an essential role in responses to a wide variety of cell stresses 

[249], underlining its stress-associated function. Two alignment peaks were selected for the 

aggregated feature set, namely the peak at m/z 4966.3, tentatively identified as minor 
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histocompatibility protein HB-1, and the alignment peak tentatively assigned to ubiquitin, 

observed at m/z 8565.6. Ubiquitin is a small protein which is involved in many cellular 

regulatory processes, among which responses to external and internal cellular stresses [250] 

and apoptotic signaling [251], emphasizing the ability of the feature selection algorithms to 

detect relevant stress-associated proteins. As was seen for the MoA model concerning 

solely drug response, the metallothionein 1X was selected here again. In this case, its 

centroid peak value was observed m/z 6046.2, although it was previously observed at m/z 

6048.5. This small mass discrepancy is due to inherently limited mass resolution of the 

machine. Additionally, the peak at m/z 10795.5 was identified as leukocyte-specific 

transcript 1 protein. Contrary to what its name implies, this protein is widely expressed in a 

variety of tissues and not only limited to leukocyte cells [252], and has a possible role in 

modulating immune responses [253]. It is speculated that this peak was selected as its 

expression level is possibly influenced by cyclosporine, the immunomodulation drug in this 

data set. Details of metallothionein-1X, ubiquitin, and leukocyte-specific transcript 1 protein 

are provided in Figure 22.  

 

 

Figure 22. Details of peaks from HeLa, selected for the MoA model. Depicted in (a) is the peak at m/z 6046.2. 
Depicted are average mass spectra ± MAD colored as follows: black: untreated; green: treated with 
neurotransmitter analog (NTA) ergotamine; red: incubated at elevated temperature (T43°C); purple: treated 
with ultraviolet light (UV); and orange: treated with immunosuppressant (IMM) cyclosporine. In (b) selected 
peak observed at m/z 8565.6. Spectra are colored as described for (a). Depicted in (c) selected peak at m/z 
10795.5 (Leukocyte-specific transcript 1 protein). Spectra are colored as described for (a).  

 

The data in Figure 22 illustrate why these peaks were selected, as each of the depicted 

peaks gives a specific and clear separation from the other classes. The peak in Figure 22a at 

m/z 6046.2, which was tentatively identified as a metallothionein, is elevated to 6.1% ± 0.6 

only when treated with ergotamine (the class NTA) compared to 4.4% ± 0.4 for the other 

classes, on average. This effect of the class NTA on this particular peak was not seen in the 

previous experiment which only involved drugs. There, the peak had not responded 

significantly to ergotamine (11.9% ± 1.1) compared to untreated cells (11.6% ± 1.1). This 

also illustrates the considerable day-to-day variation in the mass spectra, as the untreated 
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cells in this experiment have a relative intensity more than half (4.7% ± 0.5) of what they 

had in the previous experiment (11.6% ± 1.1). This also emphasizes the essential 

requirement of data-dependent feature selection for classification modeling, as relative 

peak intensity can change considerably between experiments.  

The peak shown in Figure 22b (m/z 8565.6, tentatively identified as ubiquitin) strongly 

responds to the incubation at elevated temperature (intensity 8.4% ± 0.6), but is unaffected 

by treatment of the other classes (intensity 5.3% ± 0.3). This is in line with literature, which 

also describe the involvement of ubiquitin in heat-shock like stresses [254]. 

The peak in Figure 22c at m/z 10795.1, identified as leukocyte-specific transcript 1 protein, 

uniquely responds to UV treatment (intensity 1.2% ±0.2), but is practically absent in the 

other cases (intensity on average 0.3% ±0.1). This observation is contrary to what was 

expected, as the leukocyte-specific transcript 1 protein is known for its immunomodulatory 

involvement, but does not respond here to the immunomodulatory drug cyclosporine (class 

IMM).  

Interestingly, in Figure 22a at m/z 5978.4, another peak which is uniquely present after 

incubation under UV light (purple) which is absent for all other treatments. However, this 

peak was not selected for the final aggregated feature set. Presumably, the peak would be 

redundant, as it would contain no additional information considering the peak at m/z 

10795.1 in Figure 22c. Using the aggregated feature set, a multiclass quadratic support 

vector machine model was generated. Internal validation results per stressor are shown in 

Table 39. 

 

Table 39. Confusion matrix of the 10-fold cross-validation of quadratic support vector 
machine model of the different stressors with the aggregated feature set of HeLa cells. Class 
abbreviations are as follows: IMM: immunosuppressant; NTA: neurotransmitter agonist; T43: 
incubation at 43° Celsius; UNT: untreated; UV: incubated under ultraviolet light. Indicated is 
the total number of spectra per class, the corresponding recall and precision value per class, 
and the overall accuracy in the bottom right in bold. 

  Model classification   

 Class labels IMM NTA T43 UNT UV Total Recall 

Tr
u

e 
cl

as
s 

IMM 18 0 0 1 0 19 0.95 

NTA 0 20 0 0 0 20 1.00 

T43 0 0 58 0 0 58 1.00 

UNT 0 0 1 41 0 42 0.98 

UV 0 0 0 0 54 54 1.00 

 Total 18 20 59 42 54 193 
 

 Precision 1.00 1.00 0.98 0.98 1.00 
 

0.99 
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The confusion matrix shows an overall accuracy of 0.99, which is higher than for the binary 

model constructed with the same data set, and even the highest overall accuracy described 

in this work. The performance is attributed to the different type of stressors 

(physiochemical and physical), which have unique effects on certain mass spectral peaks 

(see Figure 22). This causes the inter-class variation to be relatively wide, making it easier 

for the model to distinguish the respective proteomic responses. This supports a previously 

raised discussion point, where comparable inter-class variation was suggested as possible 

source of poor classification performance. The extensive inter-class variation and the 

resulting model performance during internal validation are also reflected by the relatively 

high recall and precision values, which are above 0.98 for all classes (except recall for the 

class IMM, which was still high at 0.95). 

 

4.4.3 Summary 

This last chapter of this thesis showed that the developed MALDI-TOF MS-based drug 

screening assay was also transferable to HeLa cell cultures subjected to a variety of 

stressors. The internal validation of models trained on mass spectra obtained with cell 

treated with several drugs shows promise, but requires further optimization to explore its 

full potential by generating a more balanced data set. In addition, the misclassification of 

non-distinctive stressors indicates that such drugs may not serve as the optimal training set 

for drug screening purposes.  

The last part of this study showed how UV and temperature stress provoked specific 

proteomic alterations captured by specific peaks in the aggregated feature set, measured by 

MALDI-TOF MS. This highlights the method’s versatile and adaptable nature. This study also 

illustrated the beneficial effects of high inter-class differences on the model accuracy. With 

the current results of this exploratory study, it was shown that not only drug-induced, but 

also physical stress could be distinguished from one another. This may serve as a starting 

point where more clinically relevant proteomic responses can be classified, such as the 

identification between different apoptotic pathways and necrosis. 
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5 Conclusion  

Current literature reports suggest that target-based screening methods applied for 

antibiotic drug discovery has yielded a relatively low output. As a result, attention has 

shifted towards phenotypic screening approaches to fulfill the urgent unmet medical need 

for new antibiotic drugs. However, available phenotypic screening approaches such as 

macromolecular synthesis assays, cytological profiling, and microarrays use complex 

reagents and equipment, may require engineered bacterial strains, and use relative high 

screening concentration to detect a cellular drug responses. To bridge the gap between the 

current unmet medical need in antibiotic drug discovery and the limitations of available 

phenotypic screenings assays, it was aimed to develop a novel proteomics-based phenotypic 

screening approach. In this thesis is described a high-throughput, label-free, phenotypic cell-

based assay using MALDI-TOF MS coupled to advanced machine learning strategies, which is 

able to detect sub-lethal stress in bacterial cell cultures induced by antibiotic drugs. The 

employed machine learning strategies also allow for phenotypic information extraction on 

the mechanism of action of the assayed compounds, one of the mayor limitations 

mentioned for target-based screening approaches. As the advantages of phenotypic drug-

discovery are being more widely realized, the developed method was also investigated for 

eukaryote yeasts and human HeLa cells in response to drugs. 

Several objectives were realized to establish this method. One of the objectives was to 

establish a high-throughput experimental workflow and to reduce experimental variation 

that is commonly present in mass spectral data. A standardized workflow was established by 

performing liquid handling procedures in 96-well and 384-well format by means of semi-

automatic robotics. Experimental variation was minimized by synchronizing the bacterial cell 

division cycles, which resulted in reduced peak intensity fluctuations. Computational 

measures to minimize the influence of inherent MALDI-TOF MS experimental variations 

included the development of a custom computational workflow in the MATLAB 

programming environment. This computational workflow handled the import of the raw 

MALDI-TOF MS data and performed required pre-processing steps of the mass spectral data. 

These steps involved raw data import, baseline correction, normalization, smoothing, peak 

alignment, and peak detection.  

A data analytical objective was to establish a data-dependent computational pipeline that 

would minimize user interference and could be operated independently of the assayed 

organism or drug type(s) investigated. Extraction of relevant mass spectral features was 

done by means of data-dependent feature selection, facilitated by defining selection 

thresholds based on the corresponding training data set and classification problem. To 

ensure robustness of the computational pipeline, different peak selection algorithms were 

applied to yield four different feature sets, which were coupled to nine different 

classification models for an E. coli data set. These combinations of feature sets and models 
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were subsequently trained for two different classification problems (binary and mechanism 

of action). The resulting 72 different models were evaluated based on internal and external 

validation accuracy. Model evaluation was performed using a data set of E. coli comprising 

over 900 MALDI-TOF MS mass spectra, from cells exposed to 17 different antibiotics with 

four different mechanisms of actions, at sub-lethal concentrations ranging 1×-1/32×MIC. The 

evaluation of 72 models showed that an aggregated feature set, composed of features that 

were selected by a random forest of decision trees, and sequential forward and backward 

feature selection, in combination with a quadratic support vector machine model resulted in 

the best performance. Classifying mass spectra as treated or untreated resulted in an overall 

accuracy of 0.92 for internal validation and 0.95 for external validation. Classification based 

on the respective mechanism of action of the antibiotics resulted in a classification accuracy 

of 0.67 for internal validation and 0.80 for external validation. In-depth evaluation of the 

data-dependent feature selection method showed that the selected peaks in E. coli mass 

spectra included multiple known stress associated peaks. This underlined the ability of the 

computational pipeline to identify relevant features in the data set without prior 

knowledge.  

A sub-aim of this work was to explore the assay’s applicability beyond antibiotic drug 

screening. Therefore, after establishing the standardized experimental workflow in 

combination with the data-dependent computational pipeline for E. coli, the applicability 

and versatility of the screening method was demonstrated on data sets obtained from the 

Gram-positive bacterium S. aureus, the eukaryotic yeasts S. cerevisiae and C. albicans,  and 

mammalian HeLa cells. A training set for each organism, exposed to a variety of drugs, was 

used to select features in a respective aggregated feature set, with which Q-SVM models 

were trained. As was seen for E. coli, the feature selection algorithms continued to select 

relevant peaks, some of which were identified as stress associated proteins. These peaks 

allowed the Q-SVM models to distinguish between treated and untreated mass spectra, as 

well as the distinction mass spectra treated with drugs with different mechanisms of action, 

all at sub-lethal concentrations of the employed drug. Internal validation for all organisms 

showed comparable performance to E. coli, with overall accuracies between 0.92 and 0.99 

for the binary models and accuracies between 0.76 and 0.96 for MoA models. This showed 

that the developed MALDI-TOF MS assay and computational pipeline were readily 

transferable to a diverse range of organisms and responses to stressors. 

A similarity between the data sets of the assayed organisms was the imbalance of the 

training data set, which resulted in recurring lower precision and recall values for minority 

classes. Careful experimental design in future projects should focus on eliminating class 

imbalance to further improve the classification performance of the assay. Nevertheless, the 

application of the developed method for organisms tested subsequent to E. coli, each 

showed several strengths of the classification models, and potential areas of improvement. 

For example, external validation of models trained for S. aureus showed that the screening 
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concentration is an experimental variable which needs to be carefully selected, as a high 

screening concentration may result in insufficient cell growth when cells are treated with 

potent drugs. This, in its turn, leads to unsatisfactory mass spectral signals that cannot be 

processed for analysis. Nevertheless, this observation underlines the assay’s capability to 

detect proteomic responses at sub-minimal inhibitory concentrations, to identify weakly 

active drugs.  

The data set for S. aureus that was subsequently produced with exclusion of the lowest 

screening concentrations (1/16× and 1/32×MIC) showed that removing class imbalance and 

inter- and intra-class variability can significantly improve model accuracy. Another 

important assay characteristic which was highlighted by the S. aureus data was the 

identification of a drug compound with a target protein that was not included in the training 

set. Here, the classification model was able to correctly classify fusidic acid, a steroid 

antibiotic inhibiting elongation factor G, as a protein synthesis inhibiting antibiotic. This is 

noteworthy, as the model was not trained with inhibitors specifically targeting elongation 

factor G. This demonstrates that the developed assay is capable of returning drug hits with 

similar mechanisms of action, even though the model was not specifically trained to 

recognize the exact response of that target site.  

The transfer of the assay to the yeast S. cerevisiae showed the applicability of the method 

stretches beyond the prokaryotic domain. An important finding of the external validation of 

the binary model trained with S. cerevisiae data was the detection of antifungal activity of a 

drug with a mechanism of action which was completely absent from the training data set. 

This is a result of utmost importance, as it indicates that the developed methodology is able 

to find drugs with novel mechanisms of action when employing the binary class definition.  

Even though external validation was not undertaken, experiments performed using C. 

albicans confirmed that the training set composition can significantly influence classification 

performance, as including only 1×, ½×, and ¼×MIC spectra in the training set led to internal 

validation accuracies of 0.95 for both the binary and the MoA model. This was in line with 

observations made based on the S. cerevisiae data set. The results for both yeast data sets 

showed that some drugs, although having dissimilar mechanisms of action, resulted in an 

overall similar proteomic response. In those instances, the model could not classify these 

drugs with high accuracy. This was specifically observed for the sterol biosynthesis 

inhibitors, which were mainly confused with cell wall synthesis inhibitors in the case of C. 

albicans. This raised the discussion on the importance of class division of drug compounds 

to train classification models. This topic could be covered in future work, where 

classification models might benefit from additional (un)supervised machine learning 

approaches for different class divisions, depending on which drugs are used in the training 

sets.  
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Lastly, the screening performed with HeLa cells confirmed the transferability of the 

developed assay to mammalian cells. In this proof-of-concept study, the screened drugs did 

not only include specific anti-cancer drugs but also hormones and immunomodulation 

drugs, among others. It was shown that several types of drugs cause specific proteomic 

MALDI-TOF MS signatures in HeLa cells (such as corticosteroids and tubulin polymerization 

inhibitors), while others did not (statins, neurotransmitter antagonists, opioids). This 

suggests that rational consideration should be taken when investigating certain types of 

drugs using the MALDI-TOF MS assay, as their distinction from untreated cells and each 

other can be limiting. In addition, the detection of the proteomic response of HeLa cells as a 

result of UV and thermal stress showed promising results of the assay’s applicability beyond 

drug screening capabilities, such as the distinction between apoptosis and necrosis. 

Additional studies should be performed to explore the full potential of the developed assay 

for such specific applications.  

As a response to the urgent need for a phenotypic screening assay that aids the search for 

new antibiotic drugs, this thesis has provided a high-throughput compatible, label free, cell-

based screening assay that is capable of measuring sub-lethal drug effects in a 

pharmacological relevant setting. The assay’s versatile, adaptable, and data-dependent 

characteristics make it suitable for whole-cell screening of potential drug compounds 

libraries for a variety of cells and drug types. Moreover, the ability to detect existing, but 

also new mechanisms of action of screened drugs is a highly sought-after characteristic, as 

this information can be used as a starting point for further target elucidation or to prioritize 

hits based on the detected MoA. The adaptability to multiple organisms and different types 

of cellular stress opens up a new chapter for the applications of proteomic profiling using 

MALDI-TOF MS. 
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6 Outlook 

In this thesis, a framework is described which can analyze MALDI-TOF mass spectral data of 

cell cultures to identify (drug) stress responsive peaks in the proteome. Classification models 

were trained with the responsive mass spectral peaks to identify unknown (drug) stress 

responses based on a similar proteomic profiles.  

For the purpose of drug screening, it was shown that binary models were able to accurately 

classify mass spectra to the class of either treated or untreated, and multiclass mechanism 

of action models were able to classify mass spectra to defined (drug) stress classes. To 

exploit the classification models even further, it would be interesting for future work to 

consider a two-step classification sequence. First, the binary model would identify active 

drugs, and subsequently, a mechanism of action model would identify the mechanism of 

action. This makes the mechanism of action classification problem inherently less complex, 

as one class (the class of untreated) could be removed from this classification problem. Such 

a two-step classification approach would most likely increase the overall accuracy of the 

method, as well as the precision and recall values for individual classes. It would also be 

interesting to investigate whether one could add a third level in this proposed classification 

sequence. In this step, one can attempt the identification of antibiotic differences within a 

MoA class, such as the difference between 50S and 30S ribosomal binding antibiotics within 

the class of protein synthesis inhibitors.  

The work described in this thesis evaluated approximately 100 to 200 peaks for modeling 

purposes, depending on assayed organism, experimental settings, and applied stressors. 

Typically, in the order of only 10 peaks were selected and then used for the classification 

models. Both peak and model evaluation showed that these selected peaks contain relevant 

information that is significantly distinct to discriminate between several different proteomic 

responses. However, the overall information content of the mass spectra could be extended 

in future research for further improvement of the model’s discriminatory power. A relatively 

simple way to expand the feature set under with the current experimental workflow is to 

widen the measured m/z range, especially in the lower (m/z <4000 range). Although mass 

spectra get progressively noisier in the lower m/z region under current settings and with the 

employed matrix, it could be of interest to investigate which peaks are selected below m/z 

4000 and whether these benefit the overall classification performance. A second 

experimental modification that could be undertaken to expand the feature set, could lie the 

choice of matrix. For example, one could use 2,5-dihydroxyacetophenone or sinapinc acid as 

matrix, as both these matrices are known to produce ions of larger proteins in the range of 

8-100 kDa. Another relatively straightforward experimental adjustment that could be made 

to obtain additional features from the same samples is to measure the whole-cell samples 

not only in positive-ion mode, but also in negative-ion mode. Changing the charge mode of 

the mass spectrometer cause will cause a different (degree of) ionization of the desorbed 
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proteins. As described in this work, with the current settings most highly ionizable proteins 

in positive-ion mode are ribosomal proteins with an isoelectric point above 9.0. In negative 

mode, (other) proteins would be ionized to a different degree, potentially complementing 

the set of peaks measured in positive mode.  

Implementing only one of these alterations to the assay may already significantly increase 

the number of features available for subsequent feature evaluation procedures. Although 

gathering additional peaks for feature evaluation would intuitively yield a better 

classification performance, the features do not necessarily add complementary 

discriminatory information. Upon implementation of additional features, the feature 

selection methods and data-dependent selection criteria and thresholds should also be 

closely re-evaluated in order to prevent overfitting and poor generalization of the models. 

Future work could also explore different feature selection criteria, or different feature 

selection and evaluation approaches. For example, the current algorithm for the 

construction of the random forest could be optimized to deal with the recurring class 

imbalance and can be tuned for potentially larger feature sets. It may also be considered to 

use a different feature selection algorithm than sequential feature selection, as it was found 

to be relatively computationally intensive. An interesting alternative would be LASSO (least 

absolute shrinkage and selection operator) or elastic net regularization to select features, 

for which several MATLAB functions and infrastructures are readily available. These 

algorithms are of specific interest as it has been applied for the purpose of classification of 

proteomic and genomic data in the past.  

As discussed throughout this thesis, data set composition is a crucial point for both feature 

selection algorithms and modelling. The class imbalances observed in the employed data 

sets have shown to adversely influence the minority classes. Future work should carefully 

consider the drug stressor screening space to include proteomic responses from each class, 

while also producing a sufficient amount of untreated cell samples to balance the data set. 

The amount of untreated samples is of particular interest when a binary model is trained. In 

addition, one should carefully consider the members of each class, in order to avoid diffuse 

and diverse classes such as the class ‘other’, as was the case for the assayed bacteria in this 

thesis. As mentioned for the experiments performed on the yeast strains, one could also 

investigate the class division and composition of a data set before model training by means 

of unsupervised learning techniques. Such an approach may prevent a class division which 

yields highly similar classes, as was seen for the membrane and cell wall interfering 

antifungal drugs.  

Several peaks selected for modelling were tentatively identified as stress associated peaks 

using the TagIdent tool. Although this protein identification tool provided valuable 

information, the results should be further validated. This could be done by screening mutant 

or deletion strains of each of identified peaks, to confirm their involvement in the cellular 
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drug response. To reduce the amount of possible database matches based on the observed 

m/z alone, information on the isoelectric point could be incorporated. This can be done 

using techniques such as liquid-phase isoelectric focusing or 2D gel electrophoresis. 

Alternatively, one could implement multiplexed LC-MS/MS experiments and database 

matching on tryptic digested protein fractions to shed more light on the identity of the 

observed proteins.  

The ability to detect a variety of specific phenotypic stress responses on a cellular level is 

not only interesting in the field of drug discovery but also for the neighboring field of drug 

repurposing. For drug repurposing studies, the use of a phenotypic assay has the potential 

for fast drug development, as the exact target protein involved can remain unknown for a 

drug that is already FDA approved. Similarly, repurposing screenings with the developed 

assay might assist the identification of novel targets. Identified lead compounds may then 

be used for further target elucidation.  

The experiments on HeLa cells using UV and temperature as stresses illustrated how the 

method may reach even further beyond the field of drug discovery, and indicate that the 

method may also be applicable to monitor the general state of cell systems. This aligns well 

with the continuing implementation of mass spectrometry as a standard analytical 

technique in multiple fields. For example, the combination of whole-cell proteomic 

responses and machine learning could be applied for in-line process analytical technology 

setups. In such a setup, one can monitor the cells’ state in industrial fermentation processes 

such as the production of foodstuffs or the (fed-)batch production of recombinant 

biotechnological and pharmaceutical products using microorganisms.  
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7 Appendices 

7.1 Appendix Figures  

 

 

Appendix Figure 1. Synchronization of E. coli cell division. After starvation in nutrient limiting 
phosphate buffered saline solution and diluted to a McFarland standard of 1.0 while being 
resupplied with fresh Mueller-Hinton medium, after which they undergo synchronized 
division cycles. This synchronization is indicated by the doubling of the colony forming units 
per milliliter (CFU/mL, in red). This effect of synchronization is directly apparent by measuring 
only the cell turbidity using McFarland standards (blue).  
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Appendix Figure 2. Feature selection using Random Forest (RF) on S. aureus data (dataset 
validated screen at 10 µM). Exemplary data showing (a) the elbow plot of the out-of-bag error 
for 200 decision trees for the binary classifying trees. Depicted in (b) is the relative feature 
importance of each of the 175 peaks in the mass spectrum of S. aureus for the binary 
classification problem using 200 decision trees. Horizontal dotted line shows the feature 
selection threshold (mean feature importance + 1.5 × feature importance standard deviation). 
Depicted in (c) is the elbow plot of the out-of-bag error for 250 decision trees for the 
mechanism of action (MoA) classifying trees. Shown in (d) is the relative feature importance 
of each of the 175 peaks in the mass spectrum of S. aureus for the MoA classifying trees using 
250 decision trees. 
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Appendix Figure 3. Feature selection using sequential forward and backward selection (SFS 
and SBS) of S. aureus data (screen at 10 µM). Exemplary data showing (a) how frequently 
peaks were selected by SFS for the binary classification problem on S. aureus data. Horizontal 
dotted line shows selection threshold. (b) Shows how frequently peaks were selected by SBS 
for the binary classification problem. Horizontal dotted line shows selection threshold. (c) 
Shows often peaks were selected by SFS for the multiclass mechanism of action (MoA) 
classification problem. Horizontal dotted line shows selection threshold. (d) Shows how often 
peaks were selected by SBS for the multiclass MoA classification problem. Horizontal dotted 
line shows selection threshold. 
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Appendix Figure 4. Feature selection for binary classification problem of S. aureus data 
(screen at 1 µM) using random forest, sequential forward and backward selection (SFS and 
SBS). Depicted in (a) the elbow plot of the out-of-bag error for 200 decision trees for the 
binary classifying trees. Depicted in (b) is the relative feature importance of each of the peaks 
in the mass spectrum of S. aureus for the binary classification problem using 200 decision 
trees. Horizontal dotted line shows the feature selection threshold (mean feature importance 
+ 1.5 × feature importance standard deviation). Depicted in (c) how frequently peaks were 
selected by SFS for the binary classification problem and (d) shows how frequently peaks were 
selected by SBS for the binary classification problem. Horizontal dotted lines indicates 
selection threshold.  

  

a b

c d



 

 

133 

 

 

Appendix Figure 5. Feature selection for mechanism of action (MoA) classification problem of 
S. aureus data (screen at 1 µM) using random forest (RF), sequential forward and backward 
selection (SFS and SBS). Depicted in (a) the elbow plot of the out-of-bag error for 250 decision 
trees for the MoA classifying trees. Depicted in (b) is the relative feature importance of each 
of the peaks in the mass spectrum of S. aureus for the MoA classification problem using 250 
decision trees. Horizontal dotted line shows the feature selection threshold (mean feature 
importance + 1.5 × feature importance standard deviation). Depicted in (c) how frequently 
peaks were selected by SFS for the MoA classification problem and (d) shows how frequently 
peaks were selected by SBS for the MoA classification problem. Horizontal dotted lines 
indicates selection threshold. 

 

 

a b

c d



 

 

134 

 

 

Appendix Figure 6. Feature selection for binary classification problem of C. albicans data using 
random forest (RF), sequential forward and backward selection (SFS and SBS). Depicted in (a) 
the elbow plot of the out-of-bag (OOB) error for 200 decision trees for the binary classifying 
trees. Depicted in (b) is the relative feature importance of each of the peaks in the mass 
spectrum of C. albicans for the binary classification problem using 200 decision trees. 
Horizontal dotted line shows the feature selection threshold (mean feature importance + 1.5 
× feature importance standard deviation). Depicted in (c) how frequently peaks were selected 
by SFS for the C. albicans classification problem and (d) shows how frequently peaks were 
selected by SBS for the C. albicans classification problem. Horizontal dotted lines indicates 
selection threshold. 
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Appendix Figure 7. Feature selection for mechanism of action (MoA) classification problem of 
C. albicans data using random forest (RF), sequential forward and backward selection (SFS and 
SBS). Depicted in (a) the elbow plot of the out-of-bag (OOB) error for 250 decision trees for 
the MoA classifying trees. Depicted in (b) is the relative feature importance of each of the 
peaks in the mass spectrum of C. albicans for the MoA classification problem using 250 
decision trees. Horizontal dotted line shows the feature selection threshold (mean feature 
importance + 1.5 × feature importance standard deviation). Depicted in (c) how frequently 
peaks were selected by SFS for the C. albicans MoA classification problem and (d) shows how 
frequently peaks were selected by SBS for the C. albicans MoA classification problem. 
Horizontal dotted lines indicates selection threshold. 
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Appendix Figure 8. Feature selection for binary classification problem of S. cerevisiae data 
using random forest (RF), sequential forward and backward selection (SFS and SBS). Depicted 
in (a) the elbow plot of the out-of-bag (OOB) error for 200 decision trees for the binary 
classifying trees. Depicted in (b) is the relative feature importance of each of the peaks in the 
mass spectrum of S. cerevisiae for the binary classification problem using 200 decision trees. 
Horizontal dotted line shows the feature selection threshold (mean feature importance + 1.5 
× feature importance standard deviation). Depicted in (c) how frequently peaks were selected 
by SFS for the S. cerevisiae classification problem and (d) shows how frequently peaks were 
selected by SBS for the S. cerevisiae classification problem. Horizontal dotted lines indicates 
selection threshold. 
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Appendix Figure 9. Feature selection for mechanism of action (MoA) classification problem of 
S. cerevisiae data using random forest (RF), sequential forward and backward selection (SFS 
and SBS). Depicted in (a) the elbow plot of the out-of-bag (OOB) error for 250 decision trees 
for the MoA classifying trees. Depicted in (b) is the relative feature importance of each of the 
peaks in the mass spectrum of S. cerevisiae for the MoA classification problem using 250 
decision trees. Horizontal dotted line shows the feature selection threshold (mean feature 
importance + 1.5 × feature importance standard deviation). Depicted in (c) how frequently 
peaks were selected by SFS for the S. cerevisiae MoA classification problem and (d) shows 
how frequently peaks were selected by SBS for the S. cerevisiae MoA classification problem. 
Horizontal dotted lines indicates selection threshold. 
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Appendix Figure 10. Feature selection for binary classification problem of HeLa data (cells 
treated with drugs) using random forest (RF), sequential forward and backward selection (SFS 
and SBS). Depicted in (a) the elbow plot of the out-of-bag (OOB) error for 200 decision trees 
for the binary classifying trees. Depicted in (b) is the relative feature importance of each of 
the peaks in the mass spectrum of HeLa for the binary classification problem using 200 
decision trees. Horizontal dotted line shows the feature selection threshold (mean feature 
importance + 1.5 × feature importance standard deviation). Depicted in (c) how frequently 
peaks were selected by SFS for the HeLa binary classification problem and (d) shows how 
frequently peaks were selected by SBS for the HeLa classification problem. Horizontal dotted 
lines indicates selection threshold. 
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Appendix Figure 11. Feature selection for mechanism of action (MoA) classification problem 
of HeLa data (cells treated with drugs) using random forest (RF), sequential forward and 
backward selection (SFS and SBS). Depicted in (a) the elbow plot of the out-of-bag (OOB) error 
for 250 decision trees for the MoA classifying trees. Depicted in (b) is the relative feature 
importance of each of the peaks in the mass spectrum of HeLa for the MoA classification 
problem using 250 decision trees. Horizontal dotted line shows the feature selection 
threshold (mean feature importance + 1.5 × feature importance standard deviation). Depicted 
in (c) how frequently peaks were selected by SFS for the HeLa MoA classification problem and 
(d) shows how frequently peaks were selected by SBS for the HeLa MoA classification 
problem. Horizontal dotted lines indicates selection threshold. 
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Appendix Figure 12. Feature selection for binary classification problem of HeLa data (cells 
treated with physical and chemical stressors) using random forest (RF), sequential forward 
and backward selection (SFS and SBS). Depicted in (a) the elbow plot of the out-of-bag (OOB) 
error for 200 decision trees for the binary classifying trees. Depicted in (b) is the relative 
feature importance of each of the peaks in the mass spectrum of HeLa for the binary 
classification problem using 200 decision trees. Horizontal dotted line shows the feature 
selection threshold (mean feature importance + 1.5 × feature importance standard deviation). 
Depicted in (c) how frequently peaks were selected by SFS for the HeLa binary classification 
problem and (d) shows how frequently peaks were selected by SBS for the HeLa classification 
problem. Horizontal dotted lines indicates selection threshold. 
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Appendix Figure 13. Feature selection for mechanism of action (MoA) classification problem 
of HeLa data (cells treated with physical and chemical stressors) using random forest (RF), 
sequential forward and backward selection (SFS and SBS). Depicted in (a) the elbow plot of 
the out-of-bag (OOB) error for 250 decision trees for the MoA classifying trees. Depicted in (b) 
is the relative feature importance of each of the peaks in the mass spectrum of HeLa for the 
MoA classification problem using 250 decision trees. Horizontal dotted line shows the feature 
selection threshold (mean feature importance + 1.5 × feature importance standard deviation). 
Depicted in (c) how frequently peaks were selected by SFS for the HeLa MoA classification 
problem and (d) shows how frequently peaks were selected by SBS for the HeLa MoA 
classification problem. Horizontal dotted lines indicates selection threshold. 
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7.2 Appendix Tables  

 

Appendix Table 1. Prediction details of external validation data set of E. coli using aggregated feature set. The 
number 1 (green) indicates a correct prediction, a zero (red) indicating an incorrect prediction by that model 
(indicated in top row) for each of the drugs (first column).  

Drug  Model 
Linear 

Discriminant 
Quadratic  

Discriminant 
Naïve 
Bayes 

Linear 
SVM 

Quadratic 
SVM 

Cubic 
SVM 

Medium 
Gaussian SVM 

Cosine 
KNN 

Tree 

Azithromycin dihydrate 1 1 1 1 1 1 1 1 1 

Thalidomide 1 1 1 1 1 1 1 1 1 

Fusidic acid 1 1 1 1 1 1 1 1 1 

Trimethoprim 1 1 1 1 1 1 1 1 1 

Nalidixic acid 1 1 1 1 1 1 1 1 1 

Metoprolol-tartrate 0 1 1 1 1 1 1 1 1 

Ampicillin-Na 1 1 0 1 1 1 1 1 1 

Sumatriptan 0 1 0 0 1 1 1 1 0 

Fenbendazole 1 1 1 1 1 1 1 1 1 

Paromomycin sulphate 1 1 1 1 1 1 1 0 1 

Novobiocin-Na  1 1 1 1 1 1 1 1 1 

Brucine tetrahydrate 1 1 1 1 1 1 1 1 1 

Umifenovir HCl 1 1 1 1 1 1 1 1 1 

Tiamulin fumarate 0 0 0 0 0 0 0 0 0 

Ergotamine tartrate 1 1 1 1 1 1 1 1 1 

Ephedrine-HCl 1 1 1 1 1 1 1 1 1 

Loperamide-HCl 1 1 1 1 1 1 1 1 1 

Paroxetine HCl hemihydrate 1 1 1 1 1 1 1 1 1 

Cefuroxime-Na 1 1 1 1 1 1 1 1 1 

Chlortetracycline-HCl 1 1 1 1 1 1 1 1 1 
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Appendix Table 2. Peaks selected for binary and mechanism of action (MoA) model for C. 
albicans. Peaks indicated with asterisk (*) are depicted in Figure 17 and Figure 18. 

Binary model MoA model 

m/z m/z 

3883.0 3987.1 

4033.5* 5397.4 

5104.9 5745.3* 

6424.0 5848.1* 

7615.3 5910.7* 
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Appendix Table 3. Peaks selected for S. cerevisiae for binary and mechanism of action (MoA) 
classification models. Details of peaks indicated with an asterisk (*) are depicted in Figure 15. 

Binary model MoA model 

m/z m/z 

2679.8* 2817.5 

2817.5 3868.6* 

3868.6 4035.5* 

4183.1 5659.8* 

5659.8* 5665.7* 

5665.7* 
 

 

  



 

 

145 

 

Appendix Table 4. Reference peaks used for spectra alignment during spectral processing of Hela data set. 
Listed is the respective protein name in the first column, second column lists corresponding UniProtKB 
accession number. Third column lists the theoretical m/z value, followed by the observed m/z value in the 
fourth column. Fifth column lists absolute mass error in ppm. Last column shows theoretically calculated 
isoelectric point (pI). 

Name, notes UniprotKB 
Theoretic

al m/z 
Observed m/z Error (ppm) pI 

Minor histocompatibility protein HB-1, 
suspected natural variant (YH) or PTM 
of O97980 

O97980 4939.5 4939.1 88 4.8 

Minor histocompatibility protein HB-1 O97980 4965.5 4966.3 150 5.0 

metallothionin-2, acetylated P02795 6085.2 6085.6 63 8.2 

Ribosomal 40S S30 P62861 6648.9 6650.0 172 12.3 

Ubiquitin, position 77-152 P0CG47 8565.9 8565.6 27 6.5 

 

https://www.uniprot.org/uniprot/P62861
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