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Summary 
 

In oncology, predictive biomarkers define patient subgroups that are likely to benefit 

from a specific cancer treatment. Since clinical studies entail high costs and low 

success rates, pre-clinical model systems like cancer cell lines are needed to generate 

biomarker hypotheses. Existing computational methods to predict drug response have 

several limitations. First, models often include large numbers of altered genes which 

contrasts with clinical predictive biomarkers that mostly include single altered genes. 

Second, models often assume that the effects of individual alterations are independent, 

although many biological processes rely on the interplay of multiple molecular 

components. 

We developed an analytical framework to investigate the role of interactions in drug 

response based on linear regression models. Using data from two large cancer cell 

line panels, we conducted an exhaustive analysis of models with up to three genomic 

alterations. To increase model size, we constructed mutation interaction networks and 

applied module search algorithms to select subsets of mutations for drug response 

prediction models. We summarized important covariates as background models that 

served as a reference to evaluate the performance of models with genomic alterations. 

We observed that including interactions increased the performance and robustness of 

drug response prediction models. Moreover, we identified several candidate 

interactions with consistent association patterns in two large cancer cell line panels. 

For example, we observed that cancer cell lines with BRAF and TP53 mutations 

showed worse response to BRAF inhibitors than cell lines with only BRAF mutations. 

Clinical data supports the resistance interaction between BRAF and TP53 mutations 

since patients with BRAF and TP53 mutations respond worse to the BRAF inhibitor 

Vemurafenib than patients with only BRAF mutations. This suggests that inhibition of 

the oncoprotein BRAF and reactivation of the tumor suppressor protein TP53 could be 

a promising combination therapy. Our analytical framework moreover allows to 

distinguish tissue-specific mutation associations from associations that are 

generalizable across tissues. In addition, we identified synthetic lethal triplets where 

the simultaneous mutation of two genes sensitizes cells to a drug. Our network-based 

approach outperformed a standard method for drug response prediction, the 
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regularized regression algorithm elastic net. Based on 14 million models of different 

size, seven mutations were determined as the optimal model size. 

In summary, we show that considering interactions in drug response prediction models 

unlocks a large predictive potential. Our interaction-based modeling approach 

contributes to a system-level understanding of the factors that mediate drug response. 
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Zusammenfassung 
 

In der Onkologie definieren prädiktive Biomarker Untergruppen von Patienten, die mit 

hoher Wahrscheinlichkeit von einer bestimmten Krebsbehandlung profitieren. Da 

klinische Studien mit hohen Kosten und niedrigen Erfolgsraten einhergehen, sind 

präklinische Modellsysteme wie Krebszelllinien erforderlich, um 

Biomarker-Hypothesen aufzustellen. Bestehende rechnergestützte Methoden zur 

Vorhersage der Wirkstoffantwort weisen mehrere Einschränkungen auf. Erstens 

beinhalten Modelle oft eine große Anzahl von veränderten Genen, was im Gegensatz 

zu klinischen prädiktiven Biomarkern, die meist einzelne veränderte Gene beinhalten, 

steht. Zweitens folgen Modelle oft der Annahme, dass die Auswirkungen einzelner 

Änderungen voneinander unabhängig sind, obwohl viele biologische Prozesse auf das 

Zusammenspiel mehrerer molekularer Komponenten angewiesen sind. 

Wir entwickelten einen Analyserahmen, um die Rolle von Interaktionen in der 

Wirkstoffantwort auf Grundlage von linearen Regressionsmodellen zu untersuchen. 

Anhand von Daten aus zwei großen Krebszelllinienbanken führten wir eine 

umfassende Analyse von Modellen mit bis zu drei genomischen Veränderungen durch. 

Um die Modellgröße zu erhöhen, konstruierten wir Mutationsinteraktionsnetzwerke 

und verwendeten Modulsuchalgorithmen, um Mutationsgruppen für die Vorhersage 

der Wirkstoffantwort auszuwählen. Wir fassten wichtige Kovariablen als 

Hintergrundmodelle, die als Referenz für die Bewertung von Modellen mit 

genomischen Veränderungen dienen, zusammen. 

Wir beobachteten, dass das Berücksichtigen von Interaktionen die Güte und 

Robustheit der Modelle zur Vorhersage der Wirkstoffantwort erhöhte. Darüber hinaus 

identifizierten wir mehrere Kandidateninteraktionen mit konsistenten 

Assoziationsmustern in zwei großen Krebszelllinienbanken. Zum Beispiel 

beobachteten wir, dass Krebszelllinien mit BRAF- und TP53-Mutationen schlechter auf 

BRAF-Inhibitoren ansprechen als Zelllinien mit nur BRAF-Mutationen. Klinische Daten 

unterstützen die Resistenzinteraktion zwischen BRAF- und TP53-Mutationen, da 

Melanompatienten mit BRAF- und TP53-Mutationen schlechter auf den BRAF-Inhibitor 

Vemurafenib ansprechen als Patienten mit nur BRAF-Mutationen. Dies legt nahe, dass 

die Hemmung des Onkoproteins BRAF und die Reaktivierung des 

Tumorsuppressorproteins TP53 eine vielversprechende Kombinationstherapie sein 
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könnte. Unser Analyserahmen erlaubt es zudem, gewebespezifische 

Mutationsassoziationen von Assoziationen zu unterscheiden, die man über Gewebe 

hinweg verallgemeinern kann. Darüber hinaus identifizierten wir synthetisch letale 

Tripletts, bei denen die gleichzeitige Mutation zweier Gene Zellen für ein Medikament 

sensibilisiert. Unser netzwerkbasierter Ansatz übertraf eine Standardmethode für die 

Vorhersage von Wirkstoffantworten, den regularisierten Regressionsalgorithmus 

Elastic Net. Auf Grundlage von 14 Millionen Modellen unterschiedlicher Größe wurden 

sieben Mutationen als optimale Modellgröße ermittelt. 

Zusammenfassend zeigen wir, dass die Berücksichtigung von Interaktionen in 

Modellen zur Vorhersage der Wirkstoffantwort ein großes prädiktives Potenzial bietet. 

Unser interaktionsbasierter Modellierungsansatz trägt zu einem Verständnis der 

Faktoren, die die Wirkstoffantwort vermitteln, auf Systemebene bei.  
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Introduction 
 

1. Concepts of cancer development 

 

Cancer arises when normal cells acquire alterations that confer a selective growth 

advantage (Vogelstein et al., 2013). Genomic instability fosters the multistep process 

of cancer development where successive alterations trigger the outgrowth of cell 

clones (Hanahan and Weinberg, 2011). Only a subset of alterations, termed cancer 

driver alterations, promote tumorigenesis. The remaining alterations, termed 

passenger alterations, accumulate over time as a by-product of defective genome 

maintenance, but do not confer a selective growth advantage. 

Genomic alterations can affect the sequence or the copy number of a genomic region 

(Vogelstein et al., 2013). Mutations, which alter the DNA sequence, comprise 

single-base substitutions and insertions or deletions of one or a few DNA bases. Since 

mutations change the protein product of the affected gene, it is possible to distinguish 

activating and inactivating mutations. A prominent example of a gene that is frequently 

targeted by activating mutations is BRAF. Compared to the wild-type protein kinase 

BRAF, the exchange of the amino acid valine at position 600 by glutamic acid 

increases the enzymatic activity of the oncogenic kinase 500-fold (Wan et al., 2004). 

Inactivating mutations often target tumor suppressor genes that counteract 

tumorigenesis in healthy cells (Vogelstein et al., 2013). A frequently mutated tumor 

suppressor is the transcription factor TP53, termed the guardian of the genome (Lane, 

1992). While intact TP53 triggers cell death in response to DNA damage, tumor cells 

with mutated TP53 tolerate the accumulation of DNA damage. 

Besides mutations, cancer driver genes can be targeted by copy number alterations 

(CNAs; Vogelstein et al., 2013). Since amplified or deleted genomic regions often span 

several genes, identifying the gene that provides the cancer cell with a selective growth 

advantage can be challenging (Vogelstein et al., 2013). Genomic copy number 

changes mostly translate into changes in transcript and protein abundances (Tang and 

Amon, 2013). In contrast to mutations, the amino acid sequence of the wild-type protein 

remains unchanged.  
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2. Pharmacogenomics 

 

Despite the growing availability of cancer drugs, their effectiveness is often confined to 

small patient subgroups which limits the overall success of cancer therapies 

(Garraway, 2013). Precision medicine approaches account for the large heterogeneity 

of tumors by selecting a tailored therapy for each individual patient based on their 

tumor’s genetic alterations. Molecular markers that characterize the populations of 

likely responders and non-responders enable informed therapy decisions at an early 

stage. To identify these predictive biomarkers, genomic and pharmacological data 

must be linked. Since clinical trials are time-consuming, cost-intensive and often 

unsuccessful (Prasad and Mailankody, 2017), extensive preclinical efforts to identify 

candidate biomarkers are needed. 

Genomic and pharmacological screens of cancer cell lines enable the identification of 

molecular markers that are associated with drug sensitivity or drug resistance. The 

large number of potential genomic markers, the large heterogeneity of tumors and the 

low frequency of individual alterations call for cancer cell line panels of extensive size. 

Each of the pharmacogenomic screening projects Genomics of Drug Sensitivity in 

Cancer (GDSC; Garnett et al., 2012; Iorio et al., 2016), Cancer Cell Line Encyclopedia 

(CCLE; Barretina et al., 2012) and Cancer Therapeutic Response Portal (CTRP; Basu 

et al., 2013; Seashore-Ludlow et al., 2015) contains publicly available data for up to 

1001 cancer cell lines and up to 481 drugs. Screened drugs include cytotoxic 

chemotherapeutics, which mainly affect rapidly dividing cells like tumor cells, and 

targeted drugs, which inhibit specific molecules that are critical for tumor growth. Drug 

response is measured by exposing cancer cell lines to different concentrations of a 

given drug and recording the percent viability. Plotting the viability values against the 

drug concentration generates dose-response curves (Figure 1). 

Despite the discordance of drug response measurements between duplicate screens 

(Safikhani et al., 2016) and across datasets (Haibe-Kains et al., 2013), concordant 

candidate biomarkers and known markers can be found (Haverty et al., 2016). The 

successful prediction of drug response in patients by models based on cell line data 

(Geeleher et al., 2014) suggests clinical translatability. This implies that 

pharmacogenomic in vitro drug screens represent a valuable model system.  
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3. Drug response prediction models 

 

A variety of computational methods to predict drug response has been developed. A 

standard algorithm (Barretina et al., 2012; Basu et al., 2013; Garnett et al., 2012; Iorio 

et al., 2016) is the regularized linear regression algorithm elastic net that extends least 

squares regression by two penalty terms on the regression coefficients (Zou and 

Hastie, 2005). Additional approaches include non-linear methods like support vector 

machines (Dong et al., 2015), random forests (Nguyen et al., 2016) and neural 

networks (Menden et al., 2013). Attempts to identify the best-performing algorithm for 

drug response prediction yielded controversial results. While one study selected 

regularized linear regression as the winning algorithm (Jang et al., 2014), another study 

reported that non-linear models perform best (Costello et al., 2014). A third study 

concluded that no algorithm consistently outperformed the other, suggesting that the 

algorithm choice plays a minor role (Bayer et al., 2013). 

An advantage of linear models is their good interpretability (Azuaje, 2017). Linear 

models represent the association between input features like cancer alterations and 

an output feature like drug response in compact formulas. In the simplest case, 

alterations are encoded by binary variables that represent the presence or absence of 

alterations. Regression coefficients can then be interpreted as the strength of the 

association between each alteration and drug response. The predicted drug response 

value for a given sample equals the sum of the regression coefficients that correspond 

to the alterations it harbors. 

Several studies on drug response prediction concluded that expression data is the 

most predictive data type, while models based on genomic data perform poorly 

(Costello et al., 2014; Iorio et al., 2016; Jang et al., 2014). However, genomic 

biomarkers are better suited to translate to clinical biomarkers (Nass and Moses, 2007; 

Paziewska et al., 2014). For instance, DNA is more stable than RNA, which facilitates 

its utilization by liquid biopsies, a non-invasive technique for disease diagnostics and 

monitoring (Crowley et al., 2013). Since existing drug response prediction models 

mostly focus on expression data (Azuaje, 2017), the availability of models utilizing 

genomic data is limited. 
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In the clinical setting, patients receiving a given treatment are often selected based on 

single-gene predictive biomarkers (Goossens et al., 2015). For example, patients that 

receive a BRAF inhibitor must harbor the BRAFV600E mutation. However, a one-to-one 

mapping between the drug target and the predictive biomarker does not always suffice. 

Instead of single-gene models, computational algorithms often output large multi-gene 

models for the prediction of drug response. On the one hand, the predictive 

performance of multi-gene models is better than the performance of single-gene 

models (Knijnenburg et al., 2016; Nguyen et al., 2016). On the other hand, model 

complexity limits biological interpretability and validation in independent datasets. To 

bridge the gap between model sizes in clinical practice and computational methods, 

novel approaches are needed. 

Models that predict drug response based on multiple altered genes usually assume 

that the effects of individual alterations are independent (Jiang et al., 2018). However, 

many cellular processes involve the joint action of multiple molecular components, 

which implies that the effects of individual alterations depend on each other. To 

quantify interdependencies, models that predict drug response based on multiple 

alterations can discriminate the joint effect from the individual alteration effects. For 

two alterations, the joint effect is additive if the combined phenotype in cells with both 

alterations corresponds to the sum of the phenotypes in cells with either of the 

alterations. Deviations from additivity reflect interdependencies between alterations 

and are defined as genetic interactions (Bateson et al., 1905). 

In model organisms like yeast, pairwise genetic interactions were extensively studied 

by introducing two mutations at once and comparing the resulting phenotype with the 

phenotype in presence of either mutation (Jasnos and Korona, 2007; Tong et al., 2001, 

2004). These studies showed that interactions are common. More recently, methods 

that consider interactions were proposed in the pharmacogenomic field. Proposed drug 

response prediction algorithms rely on logic combinations of up to four genomic 

alterations (Knijnenburg et al., 2016), pairs of alterations where one mediates drug 

sensitivity while the other suppresses this effect (Liu et al., 2016) and a genome-wide 

score that is calculated based on interactions between alteration pairs (Jiang et al., 

2018). However, these methods are restricted to logic models (Knijnenburg et al., 

2016; Liu et al., 2016) or pairwise interactions between genomic and transcriptomic 
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alterations (Jiang et al., 2018; Liu et al., 2016). Systematic and quantitative studies of 

interactions between two genomic alterations in drug response are rare. 

Analogous to genetic interactions, the association between an alteration and drug 

response can depend on the tissue of origin. To date, it remains controversial whether 

drug response in cancer cell lines is tissue-specific or not (Garnett et al., 2012; Iorio et 

al., 2016; Jaeger et al., 2015). Deciding whether drug response should be predicted 

by tissue-specific or pan-cancer models is regarded as a critical challenge in the 

development of computational drug response prediction methods (Azuaje, 2017). 

 

4. Aim of this thesis 

 

The main objective of this thesis is to evaluate the role of genetic interactions and 

tissue specificity in drug response prediction models. To assess whether the poor 

predictive potential of genomic data (Iorio et al., 2016) can be improved by 

incorporating interactions, we developed an analytical framework (Figure 1) and a 

network method based on linear regression models. We used the large-scale drug 

screening dataset GDSC (Iorio et al., 2016) for identification of candidate interactions 

and the CTRP dataset (Seashore-Ludlow et al., 2015) for validation. 
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Figure 1: Schematic overview of the analytical framework. Building blocks for drug 

response prediction models comprise covariates, alterations, alteration-tissue 

interactions and alteration-alteration interactions. Filled boxes represent background 

models, horizontal arrows represent interactions and the vertical arrow represents the 

association with drug response. 

 

In Chapter 1, we fitted drug response prediction models including up to three mutations 

or CNAs. We evaluated and compared models based on different performance metrics 

while focusing on the relevance of genetic interactions. 

In Chapter 2, we tested whether a mutation has different effects depending on the 

tissue in which it occurs. We used mutation-tissue interactions to investigate which 

associations of mutations with drug response are tissue-specific. 

In Chapter 3, we combined the findings of Chapter 1 and 2. In models that account for 

tissue-specific mutation associations, we searched for examples of mutation pairs that 

interact with respect to drug response. Furthermore, we identified synthetic lethal 

relationships where the simultaneous mutation of two genes confers drug sensitivity. 

In Chapter 4, we represented interactions between mutations with respect to drug 

response in a network of mutations. We applied module search algorithms to identify 



13 
 

sets of mutations that strongly interact and used these sets of mutations to predict drug 

response.  
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Results 
 

1. Genetic interactions 

 

We aimed at analyzing the association of genomic alterations with drug response in 

small, easily interpretable models. However, factors other than alterations can affect 

drug response. To separate these effects from alteration effects, we summarized these 

factors as covariates (Figure 1). 

 

1.1. Covariate selection 

 

To select covariates, we assessed experimental conditions and global cell line 

properties as potential confounders in the GDSC dataset (Iorio et al., 2016). We 

analyzed tissue of origin, growth properties, growth medium, microsatellite instability 

status, total number of mutations and total number of CNAs. We additionally tested 30 

mutational signatures as reported by Jarvis and colleagues (Jarvis et al., 2018). 

Mutational signatures are mutation patterns that can be attributed to specific biological 

processes (Alexandrov et al., 2013). 

To identify a consensus model that includes the most predictive confounders across 

drugs, we assessed the association between potential confounders and drug response 

in three model settings. First, a univariate model with a single confounder as the 

predictive variable was fitted. Second, to estimate the effect of a confounder in a 

multivariate model with all other confounders, we compared models including all 

confounders to models that excluded exactly one confounder at a time. Third, we 

preselected the most predictive confounders and tested if including any additional 

confounder significantly improved model performance. Confounders showing high 

predictive performance in all three model settings were selected as covariates. 

In the first model setting, we fitted univariate models relating individual confounders to 

drug response. To estimate the variation in drug response that a model explains, we 

computed the adjusted coefficient of determination (adj. R²). Figure 2 shows the adj. 

R² for all tested confounders and all drugs. To summarize the predictive performance 
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of a given confounder, we used the median adj. R² across drugs. Confounders with a 

positive median adj. R² were defined as predictive of drug response. With the exception 

of mutation count, all confounders other than mutational signatures were predictive of 

drug response. In addition, eleven mutational signatures showed a predictive potential. 

In total 16 out of 36 potential confounders were classified as predictive, which implies 

that many factors other than alterations affect drug response. 

When determining the number of drugs for which a given confounder showed a 

significant association with drug response (p < 0.05, F-test), tissue (97% of the drugs), 

growth properties (73%), growth medium (53%) and CNA count (51%) were associated 

with response for more than 50% of the drugs. These four confounders also explained 

the highest proportion of variation in drug response (Figure 2). The tissue of origin was 

the most predictive confounder (maximal adj. R² = 0.44), which is in line with previous 

research (Iorio et al., 2016). 
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Figure 2: Explained variation in drug response by single confounders. The adj R² 

for univariate models relating single confounders to drug response is shown. For each 

confounder, models were fitted for all 265 drugs. Confounders are sorted by median 

adj. R²; values for signature 27 concur with the zero line (in red). 

 

In the second model setting, we assessed the predictive potential of individual 

confounders in presence of all other confounders. To this end, we set up multivariate 

models including all 36 confounders, which we termed full models. Figure 3 shows the 

performance differences between the full model and the model excluding one 

confounder based on the adj. R². Confounders with a positive median adj. R² difference 

across drugs were defined as predictive in the full model. CNA count, growth 

properties, growth medium, and tissue were the only predictive confounders, which 

confirms their outstanding predictive potential in univariate models (Figure 2). 
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When computing the percentage of drugs for which the full model performed 

significantly better than a model with all except one confounder (p < 0.05, F-test), the 

most essential confounders across drugs were tissue (87% of the drugs), growth 

medium (38%), growth properties (25%), and CNA count (21%). Together with our 

findings based on univariate models, this suggests that these four confounders play 

an important role in drug response prediction models. Therefore, we preselected 

tissue, growth medium, growth properties and CNA count as covariates. 

 

 

Figure 3: Variation in drug response explained by all but one confounder. In each 

model, all but the indicated confounder were included as predictors. The effect of 

excluding one confounder is estimated by comparing this model to a model including 

all predictor confounders. Each value represents the performance difference for one 

drug. Confounders are sorted by median adj. R² difference; values for signature 27 

concur with the zero line (in red).  
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Third, to confirm the preselection of covariates, we used a model including tissue, 

growth medium, growth properties, and CNA count and tested whether the inclusion of 

any additional confounder significantly improved the model (p < 0.05, F-test). For all 

confounders, an improvement was achieved for less than 20% of the drugs, which 

supports the preselection of covariates. 

To analyze the association of these four covariates with drug response in the CTRP 

dataset (Seashore-Ludlow et al., 2015), we used the set of overlapping drugs between 

the GDSC and the CTRP dataset. In univariate models, tissue showed significant 

associations with drug response for 91%, growth medium for 36% and CNA count for 

18% of the drugs (p < 0.05, F-test). We did not analyze the growth properties covariate 

since all cell lines in the CTRP dataset are adherent. Although the number of drugs 

showing significant associations with drug response in the CTRP dataset was lower 

than in the GDSC dataset, we maintained the selection of covariates. 

Based on the analysis of potential confounders, we defined a model with the four 

covariates tissue, growth medium, growth properties and CNA count as the default 

background model. Subsequent models that include genomic alterations contain the 

covariates of the default background model. By comparing models that include 

genomic alterations to the default background model, alteration effects can be 

separated from covariate-specific effects. 

Having assessed the association of covariates with drug response, we estimated the 

predictive performance of genomic data. To this end, we fitted univariate models 

relating mutations and CNAs that are likely to promote tumorigenesis (see Methods) 

to drug response. For most drugs, the most predictive genomic variable explained less 

than 10% of the variation in drug response (Figure 4). This confirms previous reports 

about the poor predictive potential of genomic data (Iorio et al., 2016) and supports the 

need for using a background model based on covariates. 
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Figure 4: Performance of univariate A) mutation and B) CNA models. For each 

drug, the maximal adj. R² is shown together with the model significance (adjusted p-

value (Benjamini-Hochberg correction); F-test). Drugs for which the best model 

achieves an adj. R² > 0.1 are specified. Drug IDs are indicated in brackets where 

applicable. 

 

Table 1: Best univariate mutation and CNA models (cf. Figure 4). 

Drug name (ID) Drug target Altered gene/ region Alteration type 

AZ628 BRAF BRAF mutation 

PLX4720 (1036) BRAF BRAF mutation 

Nutlin-3a (-) MDM2 TP53 mutation 

SB590885 BRAF BRAF mutation 

PLX4720 (1371) BRAF BRAF mutation 

Dabrafenib BRAF BRAF mutation 

selumetinib MEK1, MEK2 BRAF mutation 

RDEA119 (1526) MEK1, MEK2 BRAF mutation 

CP724714 ERBB2 7q12 (includes ERBB2) amplification 

IOX2 EGLN1 8q24.23 deletion 
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1.2. Alteration distribution 

 

Before analyzing the association of genomic alterations with drug response, we studied 

the distribution of alterations across cell lines. To this end, we used a list of mutations 

and CNAs that are likely to represent functional events in cancer development (see 

Methods). We assessed the frequency of single genomic alterations and the 

co-occurrence of two or three genomic alterations in cancer cell lines. For alteration 

pairs, we additionally assessed whether they tend to co-occur or to be mutually 

exclusive. 

 

1.2.1. Alteration frequency 

 

Since the frequency of alterations limits the detection of statistical relationships with 

drug response, we determined the number of cell lines harboring an alteration or a 

combination of alterations. Figure 5 shows the average number of cell lines with a 

specific alteration or combination of alterations across drug screens. As expected, 

single alterations were more frequent than alteration pairs and alteration pairs were 

more frequent than alteration triplets. 

For a given number of alterations, single mutations were more frequent than single 

CNAs (p = 0.008, Mann-Whitney-Wilcoxon test), whereas mutation pairs were less 

frequent than CNA pairs (p < 10-15, Mann-Whitney-Wilcoxon test). Pairs of one 

mutation and one CNA occurred more frequently than pure mutation or CNA pairs 

(p < 10-15 for both comparisons, Mann-Whitney-Wilcoxon test). This suggests that the 

frequency of an alteration or a combination of alterations depends on the alteration 

type. 
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Figure 5: Alteration frequency. The number of cell lines with available drug response 

data that harbors a specific alteration or combination of alterations is averaged across 

drug screens. 

 

1.2.2. Correlation 

 

To test whether a given alteration is more frequent or less frequent in presence of a 

second alteration, we computed the absolute correlation (phi coefficient) across cancer 

cell lines for alteration pairs. The maximal correlation for mutation pairs and 

mutation-CNA pairs was 0.34 and 0.21, respectively. This suggests a weak to 

moderate relationship between the occurrence of two mutations or one mutation and 

a CNA. In comparison, we observed a stronger relationship between the occurrence 

of two CNAs. In total, 1429 CNA pairs showed a correlation above 0.4 which could 

explain why CNA pairs are more frequent than mutation pairs, although single CNAs 
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are less frequent than single mutations. We identified 20 CNA pairs with a perfect 

correlation of 1. As a result, models including different CNAs can have identical 

performance. 

 

1.3. Systematic analysis of model complexities 

 

To assess drug response prediction models with different genomic alterations and 

different model sizes, we tested mutations and CNAs in models with one, two or three 

alterations with and without interaction. For each drug, models for 248 single 

mutations, 425 single CNAs, 16766 mutation pairs, 32608 CNA pairs, 14855 

mutation-CNA pairs, 275656 mutation triplets, and 779502 CNA triplets were fitted 

using the GDSC dataset. Due to missing drug response values, the final number of 

models varied across drugs and can be substantially smaller for individual drugs. All 

models contained the covariates of the default background model in addition to the 

alterations. 

 

1.3.1. Role of interactions 

 

To illustrate the relevance of interactions, we investigated mutation pair models with 

interaction. Interactions can be neglected if the joint effect of two mutations on drug 

response is additive. In this case, the joint effect can be correctly estimated by adding 

up the individual effects of both mutations. Interactions should be considered if the joint 

effect deviates from additivity, meaning that the estimated effect for cell lines with both 

mutations is smaller or larger than the sum of the individual effects. We defined joint 

effects that were smaller than additive as antagonistic and joint effects that were larger 

than additive as synergistic. 

Applying this rationale to all mutation pair models we fitted, we classified 

mutation-mutation interactions as antagonistic or synergistic. To evaluate the 

relevance of non-additivity, we compared the frequency and strength of antagonistic 

and synergistic interactions for each drug. When assessing the proportion of 

antagonistic and synergistic interactions per drug, synergistic interactions were more 
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frequent than antagonistic interactions for 88% of the drugs and less frequent than 

antagonistic interactions for 12% of the drugs. Compared to antagonistic interactions, 

synergistic interactions showed stronger associations with drug response for 81% of 

the drugs, weaker associations for 9% of the drugs (p < 0.05, Mann-Whitney-Wilcoxon 

test) and no significant differences for the remaining drugs (p ≥ 0.05, Mann-Whitney-

Wilcoxon test). Since synergistic interactions are more frequent and stronger than 

antagonistic interactions, models that neglect interactions tend to underestimate the 

joint effect of a mutation pair. 

 

1.3.2. Best model per complexity 

 

To determine the maximal model performance that can be achieved for a given model 

complexity, we assessed the performance of models that were fitted to the entire 

GDSC dataset by two metrics, the adj. R² and the Bayesian information criterion (BIC). 

We computed these metrics for all fitted models. We then selected the best model per 

drug and model complexity, resulting in twelve models per drug and 265 models per 

complexity (Figure 6). The overlap between the best models selected by adj. R² and 

BIC was 98%, which implies a high level of concordance. 

When evaluating the performance of the best models per model complexity, we found 

that models with up to three alterations explained up to 60% of the variation in drug 

response (Figure 6). In general, model performance increased with increasing model 

complexity. However, alteration pair models with interaction tended to outperform 

alteration triplet models without interaction (p = 0.1 for mutations and CNAs, 

Mann-Whitney-Wilcoxon test). This implies that adding an interaction term instead of 

an additional alteration to an alteration pair model can result in better model 

performance. 
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Figure 6: Best model per complexity. Each panel shows the model with the highest 

adj. R² per drug for the respective model complexity. 

 

1.3.2.1. Nested models 

 

To estimate the contribution of interactions to model performance, we tested whether 

the best models per complexity were nested, meaning that more complex models 

include the variables of less complex models. For alteration pair and triplet models, we 

assessed whether the best model with interaction included the variables of the best 

model without interaction. If models with interaction include less complex, purely 

additive models, this implies that additive effects predominate non-additive effects. 

Figure 7 shows the percentage of best models with interaction that are nested. Across 

all model complexities, 9% of the best models with interaction were nested. The low 

percentage of nested models suggests that for most drugs, additive contributions are 

not predominant. As a result, the variables of the best alteration pair (or triplet) model 
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with interaction cannot be foreseen by knowing the variables of the best alteration pair 

(or triplet) model without interaction. 

For individual model complexities, the percentage of nested models varied between 

3% for CNA triplet models with interaction and 15% for CNA pair models with 

interaction (Figure 7). Compared to alteration triplet models, alteration pair models 

showed higher percentages of nested models. This is expected since alteration triplet 

models include more than one interaction term (see Methods) which entails greater 

differences in model complexity and potentially model performance. For mutation-CNA 

pair models, the percentage of nested models was lower than for mutation pair models 

and CNA pair models. This suggests that for most drugs, including interactions in 

mutation-CNA pair models unlocks a high predictive potential.  
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Figure 7: Proportion of nested models. The percentage of drugs for which the best 

model with interaction contains the variables of the best model without interaction is 

shown. Models are grouped by alteration type (horizontal axis) and model size (vertical 

axis). Mut: mutation. 

 

1.3.2.2. Model performance with respect to the default background model 

 

To further assess the performance of best models per complexity, we used the default 

background model as a lower performance boundary. We evaluated model 

performance based on model comparison tests and based on the BIC. Models 

outperforming the default background model were defined as useful models. 

First, we used model comparison tests to assess for how many drugs the best model 

selected by adj. R² performed better than the default background model. Figure 8 
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shows the percentage of drugs for which the best model per complexity outperformed 

the default background model (q < 0.1, Benjamini-Hochberg correction per drug and 

complexity, F-test). 

Of all best models, 40% outperformed the default background model. For individual 

model complexities, the percentage of drugs for which the default background model 

was outperformed varied between 22% for mutation triplet models without interaction 

and 67% for mutation triplet models with interaction. In general, the number of drugs 

for which the background model was outperformed was substantially greater for 

models with interaction compared to models without interaction. This suggests that 

including interactions improves model performance. For 85% of the drugs, the default 

background model was outperformed for at least one model complexity, indicating that 

the model sizes we studied are sufficiently complex for most drugs. 
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Figure 8: Proportion of drugs for which the best model per complexity 

outperforms the default background model based on a model comparison test 

(p < 0.05, F-test). Models are grouped by model size (horizontal facets) and alteration 

type (vertical facets). Percentages refer to the best models selected by adj. R². Mut: 

mutation. 

 

To complement the selection of useful models based on model comparison tests, we 

evaluated model performance based on the BIC. As a reference value, we computed 

the BIC of the default background model. For each model complexity, we extracted the 

model with the lowest BIC. To determine the percentage of drugs for which a model of 

a given complexity performed better, we compared the BIC values of the model with 

alterations and the default background model (Figure 9). 

Of all best models, 81% had lower BIC values than the default background model. For 

individual model complexities, the percentage varied between 95% for mutation-CNA 
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pair models with interaction and 48% for CNA triplet models with interaction. While 

single alterations and alteration pairs showed consistently high percentages, we 

observed considerably lower fractions for alteration triplet models. This suggests that 

alteration triplets constitute an upper complexity boundary for some drugs. For all 

drugs, there was at least one model with a lower BIC than the default background 

model, which implies that models with up to three alterations represent useful drug 

prediction models. 

 

 

Figure 9: Proportion of drugs for which the best model per complexity 

outperforms the default background model based on the Bayesian information 

criterion (BIC). Models are grouped by model size (horizontal facets) and alteration 

type (vertical facets). Percentages refer to the best models selected by BIC. Mut: 

mutation. 

 



31 
 

1.3.3. Best model per drug 

 

Having chosen the best models per drug and complexity, we selected the best model 

per drug across complexities, resulting in one model per drug. As described above, we 

used the adj. R² and the BIC as model performance metrics. 

In summary, the adj. R² clearly favored alteration triplet models with interaction over all 

other model complexities (Figure 10). Mutation triplet models accounted for more than 

50% of all best models per drug. Based on the BIC, the best-performing models were 

more evenly distributed across model complexities. In general, models with interaction 

made up a greater proportion of best models than models without interaction. 

Mutation-CNA pair models with interaction represented the best model complexity for 

the greatest number of drugs. In summary, the selection of best models per drug 

suggests that models with interaction outperform models without interaction. 
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Figure 10: Best model per drug across model complexities. The proportion of 

models for which a given model complexity represents the best model across model 

complexities based on adj. R² (left) or BIC (right) is shown. Mut: mutation, -int: without 

interaction, +int: with interaction. 

 

1.3.4. Model robustness 

 

To estimate model robustness, we performed a cross-validation analysis. Due to the 

processing and memory intensity in a cross-validation setting, alteration triplet models 

were excluded from this analysis part. In each cross-validation instance (see Methods), 

the data was split into training and test set. We fitted models of different complexity to 

the training data and evaluated model performance using the prediction error of the 

test set. The model with the lowest test error was chosen as the best model so that a 

different model can be selected in each cross-validation instance. We used the 

frequency of the most frequently selected model as a proxy for model robustness. 
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When comparing the robustness of models including the same number, but different 

types of alterations, we found that single-CNA models were less robust than 

single-mutation models (p < 10-7, Mann-Whitney-Wilcoxon test; Figure 11). Similarly, 

CNA pair models with interaction showed lower robustness than mutation pair models 

with interaction (p = 0.02, Mann-Whitney-Wilcoxon test) and mutation-CNA pair 

models with interaction (p = 10-4, Mann-Whitney-Wilcoxon test). This implies that 

alteration pair models that include only CNAs are more sensitive to changes in the 

training data than alteration pair models that include at least one mutation. 

When comparing model robustness within a given alteration type, but across model 

complexities, single-alteration models were more robust than alteration pair models 

(p < 10-15 for all pairwise comparisons, Mann-Whitney-Wilcoxon test). However, 

alteration pair models with interaction were more robust than alteration pair models 

without interaction (p < 10-5 for mutation pair models, p = 0.02 for CNA pair models 

and p = 10-5 for mutation-CNA pair models). This suggests that including interactions 

increases model robustness to changes in the training data. 
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Figure 11: Model robustness. Each data point represents the most frequent model 

across cross-validation instances for one drug. Models are grouped by model size 

(horizontal facets) and alteration type (vertical facets).  

 

1.3.5. Performance differences between model complexities 

 

To complement our analyses based on adj. R² and BIC, we evaluated model 

performance based on test errors. As lower performance boundaries, we included a 

null model predicting the mean drug sensitivity across cell lines and the default 

background model containing only covariates. For each drug, we compared all model 
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complexities in pairs. Figure 12 shows the percentage of drugs for which a specific 

model complexity predicts drug response better or worse than another model 

complexity (p < 0.05, Mann-Whitney-Wilcoxon test). 

Since the covariates of the default background model are included in all models with 

alterations and explain large proportions of the variation in drug response (Figure 2), 

we used the default background model as a reference to evaluate performance 

differences. We found that models with interaction outperformed the default 

background model for more drugs than models without interaction. Including 

interactions increased the percentage of models outperforming the default background 

model by 21% (48% - 27%) for mutation pair models, 19% (42% - 23%) for CNA pair 

models, and 26% (54% - 28%) for mutation-CNA pair models (Figure 12). Models with 

two instead of one alteration showed comparable increases of 21% (27% - 6%) for 

mutation pair models, 17% (23% - 6%) for CNA pair models, and 22% (28% - 6%) for 

mutation-CNA pair models. Accordingly, adding an interaction term to an alteration pair 

model can be as beneficial to performance as adding a second alteration to a single-

alteration model. In contrast to CNA pair models, mutation pair models and 

mutation-CNA pair models with interaction were never outperformed by any other 

model complexity we tested (p ≥ 0.05, Mann-Whitney-Wilcoxon test), which suggests 

that these model complexities are optimal in our setting.  
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Figure 12: Comparison of model complexities based on test errors. The 

distribution of test errors across 50 cross-validation instances for model 1 and 2 are 

compared. The percentage of drugs for which model 2 had A) better and B) worse test 

errors than model 1 (p < 0.05, Mann-Whitney-Wilcoxon test) is shown. Models are 

denoted as null (null model), background (default background model), single (single-

alteration model), -int (alteration pair model without interaction) and +int (alteration pair 

model with interaction). Mut: mutation. 

 

1.3.6. Interaction examples 

 

To stringently select interaction examples, we focused on alteration pair models with 

interaction that significantly outperformed alteration pair models without interaction 

based on test errors (p < 0.05, Mann-Whitney-Wilcoxon test; Figure 12A). 

 

1.3.6.1. Mutation pair models 

 

We found that mutation pair models with interaction outperformed mutation pair models 

without interaction for one drug, the BRAF inhibitor Dabrafenib (p = 0.04, Mann-
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Whitney-Wilcoxon test). The most frequent model across cross-validation instances 

(frequency: 34%) was BRAF*TP53. This model was also selected as the best model 

based on adj. R² and BIC. The BRAF*TP53 model predicts that cell lines with BRAF 

and TP53 mutations respond worse to Dabrafenib than cell lines with only BRAF 

mutations (p < 10-10, t-test; Figure 13A). 

Similarly, the BRAF*TP53 model was the best mutation pair model with interaction 

based on adj. R² and BIC for the BRAF inhibitor PLX4720 (drug ID 1371). We observed 

that the BRAF-TP53 interaction was associated with resistance to PLX4720 (p < 10-7, 

t-test; Figure 13B). For both Dabrafenib and PLX4720, we validated the interaction 

effect between BRAF and TP53 in the CTRP dataset (p = 0.005 (Dabrafenib) and 

p < 10-4 (PLX4720), t-test; Figure 13). This suggests that the resistance association 

we observed is robust across different BRAF inhibitors and datasets. 

 

 

Figure 13: Simultaneous mutation of BRAF and TP53 mediates resistance to the 

BRAF inhibitors A) Dabrafenib and B) PLX4720 in the GDSC and the CTRP 

dataset. Each point represents a single cell line. Cell lines are grouped by mutation 

status of TP53 and BRAF and by dataset. The median drug response per group is 

specified by horizontal lines. Drugs and drug targets are depicted in bold and italics, 

respectively. 
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Both Dabrafenib and PLX4720 are selective inhibitors of BRAF kinases harboring the 

gain-of-function V600E mutation (Rheault et al., 2013; Tsai et al., 2008). Therefore, we 

reassessed the BRAF*TP53 model by restricting BRAF mutations to BRAFV600E 

mutations. We confirmed the BRAF-TP53 interaction for Dabrafenib in the GDSC 

dataset (p < 10-9, t-test) and for PLX4720 in both datasets (p < 10-4 (GDSC) and 

p = 0.048 (CTRP), t-test). We could not confirm the BRAF-TP53 interaction for 

Dabrafenib in the CTRP dataset since too few cell lines with simultaneous BRAFV600E 

and TP53 mutations were screened (see Methods). 

To test for translatability of our in vitro results to in vivo data, we used a clinical trial 

dataset including 31 melanoma patients with BRAFV600-mutated tumors that were 

treated with the BRAF inhibitor Vemurafenib (Van Allen et al., 2014). We extracted the 

mutation status of BRAF and TP53 and clinical response to the BRAF inhibitor 

Vemurafenib, which is a PLX4720 analog (Michaelis et al., 2014). We found that 

patients with BRAF, but without TP53 mutations tend to respond better to Vemurafenib 

treatment than patients with both BRAF and TP53 mutations (disease control rate: 50% 

and 85%, relative risk: 3.25 [90% confidence interval 1.06-9.94], p = 0.1; see Methods). 

The response differences in patients with BRAF-mutated tumors with or without 

additional TP53 mutations suggest clinical relevance. 

 

1.3.6.2. Mutation-CNA pair models 

 

For two drugs, a mutation-CNA pair model with interaction outperformed a 

mutation-CNA pair model without interaction (Figure 12A). For example, mutation-CNA 

models with interaction performed better for the BRAF inhibitor SB590885 (p = 0.04, 

Mann-Whitney-Wilcoxon test). The most frequent model across cross-validation 

instances (frequency: 42%) contained a BRAF mutation and an amplification of the 

genomic region 3p14.1. This model was also selected as the best model based on adj. 

R² and BIC. The amplified 3p14.1 region includes the genes encoding the transcription 

factors FOXP1 and MITF. The model predicts that simultaneous mutation of BRAF and 

amplification of 3p14.1 is associated with drug sensitivity (p < 10-19, t-test; Figure 14). 
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We could not validate the model in the CTRP dataset since SB590885 was not 

screened. 

Since SB590885 selectively inhibits activated BRAFV600E kinases (King et al., 2006), 

we excluded cell lines with other BRAF mutations than BRAFV600E from the 

BRAF-mutated group. Retesting our model confirmed the sensitizing interaction effect 

of a BRAF mutation and a 3p14.1 amplification (p < 10-18, t-test). 

 

 

Figure 14: Simultaneous mutation of BRAF and amplification of 3p14.1 mediates 

sensitivity to the BRAF inhibitor SB590885 in the GDSC dataset. Each point 

represents a single cell line. Cell lines are grouped by alterations (amp: amplification, 

mut: mutation) and the median drug response per group is indicated by horizontal lines. 

The drug target is depicted in italics. 
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The second drug for which mutation-CNA models with interaction outperformed 

mutation-CNA models without interaction was PLX4720 (drug ID 1036, p = 0.03, 

Mann-Whitney-Wilcoxon test). For PLX4720, the most frequent mutation-CNA pair 

model with interaction included a BRAF mutation and a 3q26.1 amplification 

(frequency: 56%). This model was also selected as the best model based on adj. R² 

and BIC. The sensitizing contribution of the interaction term between a BRAF mutation 

and a 3q26.1 amplification was consistent in the GDSC (p < 10-19, t-test) and the CTRP 

dataset (p = 0.04, t-test; Figure 15). 

 

 

Figure 15: Simultaneous 3q26.1 amplification and BRAF mutation mediates 

PLX4720 sensitivity in the GDSC and the CTRP dataset. The drug target BRAF is 

indicated in italics. Each point represents an individual cell line. Cell lines are grouped 

by dataset (GDSC or CTRP) and alteration status (amp: amplification, mut: mutation). 

The median drug response for each group is specified by horizontal lines. 
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When restricting the BRAF-mutated group to cancer cell lines with BRAFV600E 

mutations, the sensitizing interaction effect was significant in the GDSC dataset 

(p < 10-17, t-test) and marginally significant in the CTRP dataset (p = 0.1, t-test). 

 

1.3.7. Duplicate model 

 

In addition to the lower performance boundary represented by the default background 

model, we used the agreement of duplicate screens as an upper performance 

boundary. In the GDSC dataset, 14 unique drugs were screened twice such that 28 

drugs can be compared. The drug response values of the duplicate screens showed 

Pearson correlations between 0.13 (p = 0.0002) for the Bromodomain-containing 

protein inhibitor JQ1 and 0.84 (p < 10-15) for the EGFR/ ERBB2 inhibitor Afatinib. For 

each of the 28 drugs, we fitted a univariate model with the drug response values of the 

duplicate screen as the predictive variable. We termed these models duplicate models. 

We found that the duplicate model performed better than models with up to two 

alterations (Figure 12) for 16 drugs and worse for 12 drugs (p < 0.05, Mann-Whitney-

Wilcoxon test). We further assessed the 12 drugs for which the duplicate model was 

outperformed by models with alterations. 

For 8 of the 12 drugs, the duplicate model did not only perform worse than models with 

alterations but also worse than a null model predicting the mean drug response across 

cell lines. Since the mean drug sensitivity is a better predictor than the duplicate drug 

response, this suggests low variability of the drug response data. 

For another 3 of the 12 drugs, the duplicate model was outperformed by the default 

background model. This suggests that the covariates tissue, growth medium, growth 

properties, and CNA count are more robust predictors than the duplicate drug 

response. 

For 1 of the 12 drugs, the MEK inhibitor RDEA119 (drug ID 1014), a mutation pair 

model with interaction was the only complexity for which the duplicate model was 

outperformed. The model that was most frequently selected in the cross-validation 

instances was ATM*NRAS (frequency: 16%). This model was also the best model 
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based on adj. R² and BIC. The model predicts that cell lines with simultaneous ATM 

and NRAS mutations respond worse to RDEA119 than cell lines with only NRAS 

mutations (Figure 16). We could not validate this model in the CTRP dataset since 

RDEA119 was not screened. 

 

 

Figure 16: Simultaneous mutation of ATM and NRAS mediates resistance to the 

MEK inhibitor RDEA119 in the GDSC dataset. Each point represents a single cell 

line. Cell lines are grouped by mutation status of ATM and NRAS and the median drug 

response per group is shown (horizontal lines). The drug target is depicted in italics. 
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2. Tissue specificity 

 

Having evaluated the role of genetic interactions in drug response (Chapter 1), we 

tested whether the association between genomic alterations and drug response 

depends on factors other than alterations. Since the tissue of origin strongly affects 

drug response (Figure 2), we assessed whether the tissue covariate can modulate the 

association between a genomic alteration and drug response. Due to the high number 

of tissue categories (see Methods), the alteration frequency across cell lines limits the 

detection of statistical associations. Since mutations are more frequent than CNAs 

(Figure 5), we analyzed the tissue specificity of mutation associations. 

To distinguish mutation associations that are tissue-specific from associations that can 

be generalized across tissues, we introduced interactions between individual 

mutations and the tissue covariate in single-mutation models (see Methods). We 

defined associations between mutations and drug response as tissue-specific if the 

mutation-tissue interaction term improved the model (p < 0.05, F-test) and as 

generalizable across tissues otherwise. We found that 17% (374 out of 2232) of the 

mutation associations were tissue-specific. 

To assess whether the tissue specificity we observed is driven by random differences 

between data subsets, we generated 1000 randomized datasets. In each 

randomization instance, we shuffled the tissue annotation while maintaining the 

uneven mutation distribution across tissues (see Methods). The percentage of 

tissue-specific associations in the original dataset was larger than in the randomized 

datasets (p < 0.001, randomization test; Figure 17). 
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Figure 17: Proportion of tissue-specific mutation associations. Single-mutation 

models with mutation-tissue interaction term were classified as tissue-specific 

(p < 0.05, F-test) or general. The observed percentage of tissue-specific associations 

is higher than in datasets with randomly sampled tissue annotations (p < 0.001, 

randomization test). 

 

2.1. Models with tissue-specific mutation associations outperform 

models with general mutation associations 

 

To test whether tissue-specific and general mutation associations show differences in 

model performance, we assessed the adj. R² of single-mutation models with 

mutation-tissue interaction term. Since the mutation-tissue interaction term is 

significant (p < 0.05, F-test) for tissue-specific associations only, we expected a 
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positive contribution to the adj. R² for tissue-specific rather than associations. 

Accordingly, we found that tissue-specific models tend to explain higher proportions of 

the variation in drug response than general models (p < 10-18, Mann-Whitney-Wilcoxon 

test). 

To test whether the improvement in performance is greater than expected by chance, 

we generated 100 randomized datasets by permuting the tissue annotation and 

maintaining the unequal mutation frequencies across tissues (see Methods). For the 

original dataset and the randomized datasets, we computed the estimated 

performance difference between tissue-specific and general models. The observed 

performance difference between tissue-specific and general models exceeded random 

expectation (p = 0.01, randomization test, Figure 18).  
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Figure 18: Performance difference between models with tissue-specific and 

general mutation associations. Models were compared based on the adj. R². The 

performance difference in the original data (observed value) is greater than in data with 

randomly sampled tissue annotations (p = 0.01, randomization test). 

 

2.2. Mutations can mediate drug sensitivity and resistance in 

different tissues 

 

To further characterize tissue-specific associations between a mutation and drug 

response, we filtered for associations where the mutation coefficient was significant in 

more than one single-tissue model (p < 0.05, t-test). The sign of the mutation 

coefficient estimate defines the direction of the effect. Negative mutation coefficients 

represent sensitivity associations while positive coefficients represent resistance 

associations. For the same gene and the same drug, the mutation coefficient switched 
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the sign across tissues in 15% (17 out of 115) of the associations. Since most 

mutations consistently mediate either drug sensitivity or drug resistance in all cancer 

types, this indicates that differences between tissues of origin tend to be quantitative 

rather than qualitative. 

To compare the percentage of sign-switching mutation associations to random 

expectation, we generated 100 randomized datasets by shuffling the tissue annotation 

(see Methods). For the original dataset, the percentage of mutation associations 

showing different signs across tissues was larger than expected at random (p < 0.01, 

randomization test; Figure 19). This suggests that mutations can be associated with 

drug sensitivity and resistance in different tissues. 

 

 

Figure 19: Proportion of mutations mediating drug resistance and sensitivity in 

different tissues. The percentage of sign-switching mutation associations in the 

original data (observed value) is higher than in data with randomly sampled tissue 

annotations (p < 0.01, randomization test).  
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The largest difference in mutation coefficient estimates between tissues was observed 

for the association of BRCA1 mutations with response to the AURKB inhibitor 

ZM-447439 (Figure 20). Mutations in BRCA1 tend to sensitize to the drug in large 

intestine derived cancer cell lines (p = 0.03, t-test) and confer resistance in leukemia 

cell lines (p = 0.003, t-test). In cancer cells originating from the aerodigestive tract, the 

digestive system (other than large intestine), the urogenital system and the lung 

(non-small cell lung cancer), BRCA1 mutations were associated with ZM-447439 

resistance (p ≥ 0.05, t-test). We could not validate this finding in the CTRP dataset 

since the drug was not screened. 

 

 

Figure 20: BRCA1 mutations mediate sensitivity or resistance to the AURKB 

inhibitor ZM-447439 in different tissues. BRCA1 mutations are associated with drug 

sensitivity in large intestine cancer cell lines and with resistance in leukemia cell lines. 

Drug response values are grouped by tissue of origin and by mutation status of 

BRCA1. Each point represents one cancer cell line. 

 



49 
 

2.3. Examples of tissue-specific and general mutation associations 

 

To increase confidence in our list of tissue-specific and general mutation associations, 

we filtered for consistency between the GDSC and the CTRP dataset. Compared to 

the unfiltered list, we observed an increase in the percentage of tissue-specific 

mutation associations. In the validated list, 32% of the mutation associations were 

tissue-specific (cf. Figure 17). 

To illustrate the differences between tissue-specific and general associations, we fitted 

single-mutation models to data from individual tissues. The association between a 

given mutation and a given drug was compared across tissues. Figure 21 displays all 

tissue-specific and general mutation associations in the GDSC dataset that show 

consistent association patterns in the CTRP dataset. 

We identified the association of EGFR mutations with response to the EGFR/ ERBB2 

inhibitor Afatinib (drug screened twice; p < 10-4 (drug ID 1032) and p = 0.007 

(drug ID 1377), F-test) and the EGFR inhibitor Gefitinib (p = 10-4, F-test) as examples 

of tissue-specific mutation associations. The sensitivity association between EGFR 

mutations and Afatinib and Gefitinib was especially pronounced in non-small cell lung 

cancer cell lines. In accordance with our results, Afatinib and Gefitinib approval is 

confined to the treatment of patients with EGFR-mutated non-small cell lung cancer 

(Kazandjian et al., 2016; Wecker and Waller, 2018). 

Likewise, the association of TP53 mutations with resistance to the MDM2 inhibitor 

Nutlin-3a shows tissue specificity (p < 10-8, F-test). Although several tissues of origin 

showed strong effects, the strongest association in the single-tissue models was 

observed in cancer cell lines originating from the nervous system. In line with this, 

mutations in TP53 were previously reported as negative predictors of Nutlin-3a 

response in medulloblastoma (Kunkele et al., 2012) and glioblastoma multiforme 

(Villalonga-Planells et al., 2011). 

In addition, the association of BRAF mutations with response to the BRAF inhibitor 

PLX4720 is tissue-specific (drug screened twice; p < 10-7 (drug ID 1036) and p < 10-8 

(drug ID 1371), F-test). The sensitizing effect of BRAF mutations is especially 

pronounced in skin and thyroid cancer cell lines. In accordance with our results, BRAF 
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inhibitors showed clinical efficacy in melanoma (Hauschild et al., 2012) and thyroid 

cancer (Falchook et al., 2015). 

Similarly, we found that the association between NRAS mutations and response to the 

BRAF inhibitor PLX4720 shows tissue specificity (drug screened twice; p < 10-4 

(drug ID 1036 and 1371), F-test). We observed a particularly strong resistance 

association in skin cancer cell lines. In line with this, NRAS mutations were previously 

reported to confer resistance to BRAF inhibitors in melanoma by reactivating mitogen-

activated protein kinase signaling (Nazarian et al., 2010). 

We also observed a tissue-specific association between TP53 mutations and response 

to PLX4720 (p = 0.007 (drug ID 1371), F-test). Mutations of TP53 tend to confer 

resistance to PLX4720, an effect which is especially pronounced in skin cancer cell 

lines. In accordance with our results, a joint role for BRAF and TP53 mutations was 

reported in skin cancer development (Yu et al., 2009). 

Besides tissue-specific mutation associations, Figure 21 shows the estimated mutation 

coefficients across tissues for general mutation associations (p ≥ 0.05, F-test). For a 

given mutation and a given drug, the estimated mutation coefficients were almost 

identical which visually confirms our classification of these associations as 

generalizable across tissues. Overall, the strongest mutation coefficient estimates for 

individual tissues were weaker than for tissue-specific associations (p < 10-15, Mann-

Whitney-Wilcoxon test). This confirms our finding that models with tissue-specific 

mutation associations tend to achieve better performance (Figure 18).  
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Figure 21: Comparison of tissue-specific and general mutation associations 

across tissues in the GDSC dataset. For each tissue of origin, a separate single-

mutation model was fitted. Mutation coefficients across tissues are shown for tissue-

specific (blue) and general (grey) mutation associations with drug response. Tissue-

specific mutation associations show higher variability than general associations. Drug 

names (bold, with drug IDs in brackets), drug targets (italic) and mutated genes (plain) 

are indicated. NSCLC: non-small cell lung cancer. 

 

2.3.1. Correlation between tissue-specific mutation associations and 

frequencies 

 

To test whether the tissue specificity of mutation associations is linked to tissue-specific 

mutation frequencies, we correlated mutation coefficient estimates and mutation 

frequencies in single tissues. Since mutation coefficients can have positive or negative 

signs, absolute values represent the strength of the effect. 

In the GDSC dataset, TP53 mutations showed a strong association with resistance to 

the MDM2 inhibitor Nutlin-3a in tissues with low TP53 mutation frequencies (Figure 22; 

Pearson’s r = -0.55, p = 0.03). Likewise in the GDSC dataset, BRAF mutations were 

strongly associated with sensitivity to the BRAF inhibitor PLX4720 in tissues with high 

BRAF mutation frequencies (drug screened twice, Pearson’s r = -0.89, p 0.01 (drug ID 

1036) and r = -0.92, p = 0.008 (drug ID 1371)). In both datasets, higher TP53 mutation 

frequencies were related to weaker associations between TP53 mutations and 

PLX4720 resistance (Pearson’s r = -0.52, p = 0.04 (GDSC, drug ID 1371) and 

r = -0.93, p = 10-4 (CTRP)). This was the only tissue-specific association showing 

significant correlations with mutation frequencies in both datasets. In summary, we 

found that some tissue-specific differences in mutation associations are linked to 

tissue-specific mutation frequencies. 
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Figure 22: Correlation between tissue-specific mutation coefficient estimates 

and mutation frequencies in the A) GDSC and B) CTRP dataset. Each point 

represents one tissue of origin. Tissues with particularly strong mutation associations 

are depicted. Drug names (bold, with drug IDs in brackets), targets (italic) and mutated 

genes (plain) are indicated. 
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3. Combining genetic interactions and tissue specificity 

 

3.1. Drug-specific background models 

 

To summarize our findings that (i) the association between covariates and drug 

response is variable across drugs (Figure 2 and Figure 3), (ii) single mutations can be 

strongly associated with drug response (Figure 4A) and (iii) mutation associations can 

depend on the tissue of origin (Figure 17 and Figure 21), we created new, drug-specific 

background models. Compared to the default background model, drug-specific 

background models can exclude covariates and include single mutations as well as 

mutation-tissue interactions (see Methods). 

Depending on the drug, the resulting drug-specific background models contained 

between 0 and 13 variables. The covariates of the default background model tissue 

(93%), growth medium (42%), CNA count (27%) and growth properties (26%) were the 

most frequently included variables, followed by TP53 (5%), NRAS (5%), BRAF (4%) 

and KRAS mutations (3%). For five drugs, the drug-specific background model did not 

have any variables, meaning that it corresponds to a null model predicting the mean 

drug response across cell lines. For another nine drugs, the variables of the 

drug-specific and the default background model were identical. 

We found that drug-specific background models explained up to 60% of the variation 

in drug response (Figure 23). Compared to the default background model, 

drug-specific background models performed better for 62% of the drugs (161 drugs) 

based on the adj. R² and for 90% of the drugs (238 drugs) based on the BIC (Figure 

23). This implies that drug-specific background models improve predictive 

performance for most drugs. 
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Figure 23: Performance of default and drug-specific background models. A) For 

each drug, the coefficient of determination (adj. R²) and the significance (adjusted p-

value (Benjamini-Hochberg correction); F-test) of the default and the drug-specific 

background models are shown. Selected drugs are labeled, the labeled model for 

UNC0638 (drug screened twice) corresponds to drug ID 245. B) Performance 

differences between drug-specific and default background models based on adj. R² 

and Bayesian information criterion (BIC). Drugs showing the largest differences are 

labeled. 

 

To complement the comparisons based on adj. R² and BIC, we performed a 

cross-validation analysis and compared the performance of both background models 

based on test errors. For 11 drugs, the drug-specific background model outperformed 

the default background model (p < 0.05, Mann-Whitney-Wilcoxon test). The 

corresponding drug-specific background models were enriched for models containing 

mutations (p = 10-4, chi-square test), suggesting that the inclusion of mutations drives 

the improvement in model performance. For one drug, the receptor tyrosine kinase 

inhibitor AMG-706, the drug-specific background model performed worse than the 

default background model (p < 0.001, Mann-Whitney-Wilcoxon test). Since the model 

for AMG-706 had the highest number of variables (13) across all drug-specific 
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background models, this could imply model overfitting. No significant differences were 

found for the remaining drugs (p ≥ 0.05, Mann-Whitney-Wilcoxon test). 

Compared to the default background model, the drug-specific background model for 

the MDM2 inhibitor Nutlin-3a showed the most significant decrease in test errors 

(p < 10-15, Mann-Whitney-Wilcoxon test). The background models for Nutlin-3a also 

differed most in terms of adj. R² and BIC (Δ adj. R² = 0.32, Δ BIC = -288; Figure 23). 

The drug-specific background model for Nutlin-3a contained the covariates tissue and 

CNA count, the mutation status of TP53 and RB1 and the interaction term between 

TP53 and tissue (cf. Figure 21). This illustrates the predictive potential of individual 

mutations and mutation-tissue interactions. 

 

3.2. Identification of mutation-mutation interactions and synthetic 

lethal triplets 

 

To find examples of mutation-mutation interactions in drug response, we used mutation 

pair models containing the covariates of the drug-specific background models. To 

select mutation-mutation interaction examples (Table S1), we filtered for mutation pair 

models with interaction that outperformed simpler models and showed consistent 

association patterns in both datasets. 

We found that the interaction between BRAF and TP53 mutations is associated with 

resistance to the BRAF inhibitor PLX4720 (drug ID 1371, p < 10-3 (GDSC) and 

p = 0.047 (CTRP), t-test). This confirms our previous finding based on a model 

including the covariates of the default background model (Figure 13). The drug-specific 

background model for PLX4720 included the mutation status of BRAF and NRAS as 

well as the mutation-tissue interaction terms for both genes. This is in line with the 

tissue specificity that we observed for the association between BRAF or NRAS and 

PLX4720 response (Figure 21). 

In addition, we observed that the interaction between CREBBP and FGFR2 mutations 

mediates resistance to the cytotoxic drugs Gemcitabine (p = 0.01 (GDSC) and 0.02 

(CTRP), t-test), Bleomycin (drug ID 1378, p = 10-4 (GDSC) and 0.008 (CTRP), t-test) 

and SN-38 (p < 10-5 (GDSC) and p = 0.002 (CTRP), t-test; Figure 24). Since both 
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CREBBP (Dutto et al., 2018) and FGFR2 (Huang et al., 2015) are involved in DNA 

repair, drug resistance may arise due to increased DNA repair capacity or increased 

DNA damage tolerance (Cheung-Ong et al., 2013).  
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Figure 24: Simultaneous mutation of CREBBP and FGFR2 mediates resistance 

to several cytotoxic drugs in the GDSC and the CTRP dataset. The response to 

(A) Gemcitabine, (B) Bleomycin and (C) SN-38 is shown. Drugs (bold) and drug targets 

(italic) are specified. Cell lines are represented as points and grouped by mutation 

status of CREBBP and FGFR2. Horizontal lines depict the median drug response for 

each group. 
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To identify mutation pairs that jointly mediate drug sensitivity, we used the concept of 

synthetic lethality. Two genes are termed synthetically lethal if their simultaneous 

perturbation is lethal although the perturbation of each individual gene is viable (O’Neil 

et al., 2017). Both genes can be perturbed by molecular alterations or targeted drugs. 

We extended the concept of synthetic lethality to three perturbations consisting of two 

mutations and one drug. These sets of three perturbations, which we termed synthetic 

lethal triplets, can be considered as special cases of mutation-mutation interactions. 

Accordingly, we applied additional conditions to identify them (see Methods and 

Table S1). 

We found that simultaneous mutation of CTNNB1 and PIK3CA sensitizes cell lines to 

the MDM2 inhibitor Nutlin-3a (Figure 25A). According to our definition, CTNNB1 and 

PIK3CA mutations and Nutlin-3a treatment form a synthetic lethal triplet. The 

sensitizing contribution of the CTNNB1-PIK3CA interaction was consistent between 

the GDSC and the CTRP dataset (p = 0.02 in both datasets, t-test). The drug-specific 

background model for Nutlin-3a contained the covariates tissue and CNA count, the 

mutation status of TP53 and RB1 and the interaction term between TP53 and tissue. 

The TP53-tissue interaction confirms our previous finding regarding the tissue-specific 

association of TP53 mutations with Nutlin-3a response (cf. Figure 21 and Chapter 3.1). 

The pro-apoptotic transcription factor FOXO3 may integrate signals from CTNNB1, 

PIK3CA and Nutlin-3a (Figure 25B). On the one hand, FOXO3 is inhibited by CTNNB1 

and PI3K/ AKT signaling (Tenbaum et al., 2012). On the other hand, FOXO3 is 

degraded through ubiquitination by MDM2, which is the Nutlin-3a target (Fu et al., 

2009). 

In addition, we found that cell lines with both KRAS and MAP3K4 mutations show 

increased sensitivity to the DNA synthesis inhibitor Cytarabine (p = 0.003 (GDSC) and 

0.001 (CTRP), t-test; Figure 25C). The drug-specific background model for Cytarabine 

contained the covariates growth properties and tissue. On one hand, cell proliferation 

including DNA synthesis (Zhang and Liu, 2002) is regulated by mitogen-activated 

protein kinase signaling in which both KRAS and MAP3K4 are involved (MetaCore, 

Ras family GTPases in kinase cascades; http://pathwaymaps.com/maps/379;Figure 

25D). On the other hand, DNA synthesis is inhibited by Cytarabine. These relationships 

may explain why the three perturbations form a synthetic lethal triplet. 
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Figure 25: Synthetic lethal triplets between a mutation pair and a drug in the 

GDSC and the CTRP dataset. A) Simultaneous mutation of CTNNB1 and PIK3CA 

mediates sensitivity to the MDM2 inhibitor Nutlin-3a. B) The transcription factor FOXO3 

may link the synthetic lethal triplet between CTNNB1 and PIK3CA mutations, and 

Nutlin-3a. C) Simultaneous mutation of KRAS and MAP3K4 mediates sensitivity to the 

DNA synthesis inhibitor Cytarabine. D) KRAS and MAP3K4 act in parallel pathways to 

promote DNA synthesis which may explain their synthetic lethal interaction with 

Cytarabine. Cell lines in A) and C) are grouped by mutation status, horizontal lines 

indicate the median drug response. Drugs (bold) and drug targets (italic) are depicted.  
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4. Mutation interaction networks 

 

In Chapter 1, we established that the association of a single alteration with drug 

response can depend on other alterations in the cancer cell. In principle, the analysis 

of interactions can be extended beyond alteration pairs and triplets. However, the 

number of possible combinations greatly increases for larger sets of alterations. 

Combinatorial complexity and the associated computational cost limit the model size 

for which an exhaustive search according to our analytical framework is feasible. For 

example, we already tested several hundreds of thousands of models for combinations 

of three alterations (Chapter 1.3). Since larger sets of alterations do not allow to fit 

models for all possible combinations of alterations, a subset of models must be 

preselected for testing. 

We developed a network approach to select alteration subsets for drug response 

prediction models in a three-step procedure. Since the co-occurrence of different CNAs 

can be strongly correlated (Chapter 1), we restricted the following analyses to 

mutations. First, we constructed networks that represent all interactions among cancer 

driver mutations at once. In these networks, nodes represent mutations and edges 

represent their interaction with respect to drug response. We termed these networks 

mutation interaction networks. Second, we used module search algorithms to partition 

these networks (Blondel et al., 2008; Clauset et al., 2004; Rosvall and Bergstrom, 

2008). The resulting modules are defined as network regions with dense connections 

within a given module and sparse connections between two different modules (Girvan 

and Newman, 2002). Since network edges represent interactions between mutations, 

modules represent sets of mutations that strongly interact with respect to drug 

response. Third, we used linear regression models with interaction to predict drug 

response based on these sets of mutations. This approach entails several advantages. 

By partitioning mutation interaction networks into modules of arbitrary size, we 

increased the maximal number of mutations that can be included in a model beyond 

mutation pairs and triplets. By using module search algorithms to preselect sets of 

mutations, we decreased the number of fitted models for a given number of mutations 

compared to all possible combinations of mutations. 

The main idea of our approach is that every set of mutations can be represented by 

both a network and a linear regression model. Independent effects are represented by 
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nodes or main effects while pairwise cooperative effects are represented by edges or 

interaction effects. We distinguish three different network levels, namely edges, 

networks, and modules (Figure 26). In this context, the smallest possible network is an 

edge which corresponds to a mutation pair model with interaction. 

An edge model predicts drug response based on a mutation pair whose joint effect 

corresponds to the sum of both node effects and the edge effect. The node or main 

effects are additive while the edge or interaction effect is non-additive. Two mutations 

are synergistic if the joint effect of both mutations is larger than the sum of their 

individual effects, and antagonistic otherwise. 

To quantify deviations from additivity in our mutation interaction network, we used 

weighted edges. Large edge weights represent strong antagonism or synergy between 

two mutations, which could imply that the corresponding proteins interact physically or 

participate in the same biological process. By emphasizing edge weights, we aim to 

facilitate the identification of mutation sets that show strong cooperativity with respect 

to drug response. Accordingly, modules can be interpreted as functional units that 

jointly influence drug response. 

 

4.1. Algorithm description 

 

For the initial evaluation of our algorithm, we selected the ten compounds with the 

highest mean drug sensitivity across cell lines in the GDSC dataset. Our entire 

algorithm (Figure 26) was embedded in a cross-validation loop (see Methods). In each 

cross-validation instance, we split the full dataset for a given drug into training and test 

set. We used the training set for model fitting on the level of input edges and result 

modules and the test set to compute the prediction error on the level of result modules. 

To assemble edge models (Figure 26), which represent the basic building block of our 

mutation interaction networks, we fitted mutation pair models with interaction for all 

mutation pairs that co-occur in cancer cell lines with available drug response data (see 

Methods). For each edge model, the edge weight is based on the mutation-mutation 

interaction term. To find a statistical measure for the edge weights that is robust to 

changes in the training data, we computed the coefficient of variation across training 

sets for different statistics. We compared the coefficient estimate, the t-statistic and the 
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significance (log-transformed FDR-corrected p-value) of the interaction term. The 

coefficient estimate and the t-statistic can have positive or negative signs depending 

on whether the interaction term mediates drug sensitivity or resistance. Since module 

search algorithms (Blondel et al., 2008; Clauset et al., 2004; Rosvall and Bergstrom, 

2008) cannot deal with negative edge weights, absolute values were used. We found 

that the absolute value of the t-statistic, termed variable importance (Kuhn, 2008), 

showed less variability than the absolute coefficient estimate and the significance of 

the interaction term (p < 10-15; Mann-Whitney-Wilcoxon test). Therefore, we used the 

variable importance of the interaction term as the edge weight. When assessing the 

relation between edge weight and variability, we observed that stronger edges were 

less variable (Spearman's rho = -0.91; p < 10-15), indicating higher robustness. 

In the mutation interaction networks, an edge has no meaning by itself–it solely 

represents a mutation pair for which a model was fitted. Only the edge weight is 

informative since it defines the strength of the mutation-mutation interaction. However, 

module search algorithms (Blondel et al., 2008; Clauset et al., 2004; Rosvall and 

Bergstrom, 2008) consider both edge number and edge weight. For the decision 

whether a network region is a module or not, many weak edges within this region can 

have the same positive contribution as few strong edges. To reduce noise originating 

from high numbers of weak edges, we used different edge thresholds that include only 

a defined percentage of strongest edges (10 to 100% in 10% steps; Figure 26). The 

thresholding step removes weak edges from the input network, thereby facilitating 

module detection. 

To assemble mutation interaction networks (Figure 26), we compiled a list of weighted 

edges based on all mutation pair models. This edge list defines the mutations to be 

included in the network as nodes and the connections among them. 

To select mutation subsets for drug response prediction models (Figure 26), we 

partitioned our mutation interaction network using a module search algorithm that 

maximizes the sum of edge weights within modules and minimizes the sum of edge 

weights between modules (Blondel et al., 2008). To keep mutation numbers as small 

as possible, the module search algorithm was applied recursively on every identified 

module until no smaller module could be found. Both the primary modules and the 

submodules were kept for further analysis. Each module was translated into a 

regression model by interpreting nodes as main effects and edges as interaction 
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effects. We fitted the resulting model using the training data and computed the 

prediction error using the test data. 

 

 

Figure 26: Schematic overview of our network-based drug response prediction 

algorithm. 

 

4.2. Algorithm improvement 

 

To improve the performance of module-based models, we assessed the effect of 

different changes to the algorithm. As described above, the covariates tissue, growth 

medium, growth properties, and CNA count explain large proportions of the variation 

in drug response (Figure 2 and Figure 23A). To test whether the covariates of the 
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default background model affect the performance of our method, we included the 

covariates in edge and module models (Figure 26). Including the covariates 

significantly improved the test error of the module models (p < 10-15, Mann-Whitney-

Wilcoxon test). 

To test whether including information about the functional impact of mutations 

improves model performance, we replaced the binary mutation events in the input data 

by Combined Annotation Dependent Depletion (CADD) scores (Kircher et al., 2014). 

In contrast to binary mutation data that encodes the presence or absence of a mutation 

in a given gene, CADD scores encode the deleteriousness of mutations such that 

different mutations within the same gene can have different scores. Based on the test 

error of the module models, using binary mutation data resulted in better performance 

than using CADD scores (p < 10-15, Mann-Whitney-Wilcoxon test). 

To assess the influence of the module search algorithm on model performance, we 

compared the algorithms Infomap (Rosvall and Bergstrom, 2008), Fast Greedy 

(Clauset et al., 2004) and Louvain (Blondel et al., 2008). In contrast to the other two 

algorithms, the Infomap algorithm can include node weights in addition to edge 

weights. We defined node weights as the variable importance of the corresponding 

mutation in a univariate model. The Infomap algorithm runs a random walk on the 

network, with edge weights determining the node visit frequency and node weights 

enabling random jumps between nodes. Modules are defined as network regions with 

a long persistence time of the random walker. However, the Infomap algorithm often 

did not accomplish to partition the input network and returned the full network instead. 

The module search algorithms Fast Greedy and Louvain split the network into modules 

by maximizing the modularity of the partition (see Methods). This implies that the sum 

of edge weights is maximized within modules and minimized across modules. When 

running the analysis with Fast Greedy and Louvain, Louvain’s method generated 

module models with lower test errors than Fast Greedy (p = 0.002, Mann-Whitney-

Wilcoxon test). Thus, we included the covariates of the default background model, 

used binary mutation data and chose Louvain’s method as our module search 

algorithm.  
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4.3. Module evaluation 

 

To assess model robustness and performance, we ran our network-based algorithm 

(Figure 26) for all 265 drugs in the GDSC dataset and retrieved more than 14 million 

result modules for evaluation. The modularity of the network partition (see Methods) 

correlated with better performance (Spearman’s rho = 0.04; p < 10-15). This supports 

using the modularity as the optimizing function for the module search. 

When analyzing the relationship between model performance and module size, we 

observed a positive correlation between module size and test error (Spearman's 

rho = 0.27; p < 10-15). Based on the median test error across all models with a given 

number of mutations, seven mutations were determined as the optimal model size 

(Figure 27). 

When analyzing the frequency of result modules across cross-validation instances, we 

found that smaller modules occurred more frequently than bigger ones (Spearman's 

rho = -0.31; p < 10-15). Together, these results imply that smaller modules tend to show 

increased model performance and robustness. 
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Figure 27: Median test error of all modules with a given number of mutations. 

For visualization purposes, the horizontal axis is truncated at 20 mutations. For larger 

modules (up to 192 mutations), the median test error continues to increase. RMSE: 

root mean squared test error. 

 

To evaluate the performance of module models compared to other model complexities, 

we retrieved the module with the lowest test error in each cross-validation instance. 

We first compared the distribution of test errors for the best module and the default 

background model. For 47% of the drugs, the best module performed significantly 

better than the default background model (p < 0.05, Mann-Whitney-Wilcoxon test). 

Compared to mutation pair models with interaction, the number of drugs for which the 

default background model was outperformed decreased by 1% (47% - 48%; cf. Figure 

12A). 

When comparing mutation module models to mutation pair models with interaction, 

there was a significant difference in test errors (p < 0.05, Mann-Whitney-Wilcoxon test) 

for only one drug. For the MDM2 inhibitor Nutlin-3a, mutation pair models with 
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interaction outperformed mutation module models (p = 0.006, Mann-Whitney-Wilcoxon 

test). With the exception of Nutlin-3a, we thus observed comparable performance for 

mutation module models and mutation pair models. 

 

4.4. Method comparison 

 

To compare the performance of our network method to other methods, we selected 

the regularized regression approach elastic net (Zou and Hastie, 2005), which is a 

standard method for drug response prediction (Barretina et al., 2012; Basu et al., 2013; 

Garnett et al., 2012; Iorio et al., 2016). We compared model performance based on 

test error distributions by selecting the module with the lowest test error in each 

cross-validation instance. Our method performed significantly better than elastic net 

without interaction for 38% of the drugs and better than elastic net with interaction for 

42% of the drugs (p < 0.05, Mann-Whitney-Wilcoxon test). Elastic net with or without 

interaction never outperformed our method (p ≥ 0.05, Mann-Whitney-Wilcoxon test). 

Our module models were significantly smaller than the models generated by elastic 

net with or without interaction (p < 10-15, Mann-Whitney-Wilcoxon test) which could 

explain the differences in performance. 

 

4.5. Ensemble models 

 

Since the module models with the lowest test error differ across cross-validation 

instances, we aimed to select a single ensemble model for each drug. We tried two 

different approaches to create ensemble models (see Methods). First, we selected the 

most frequent nodes and edges across cross-validation instances. We iterated over 

different frequency thresholds and included all variables above a certain threshold. 

Second, we clustered the result modules that were generated in the cross-validation 

instances. For each cluster, we retrieved a medoid module that represents the modules 

in this cluster. For both approaches, we selected the model with the best BIC as the 

ensemble model. 
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When comparing the BIC values of the ensemble models generated by both 

approaches, the frequency-based approach performed better than the cluster-based 

approach for 91% of the drugs and worse for 8% of the drugs. For the remaining two 

drugs, the ensemble models generated by both approaches were identical. In both 

cases, the selected ensemble models were mutation pair models with interaction. 

When comparing the number of mutations in the ensemble models, we observed that 

the frequency-based approach yielded smaller models than the clustering-based 

approach (p < 10-15, Mann-Whitney-Wilcoxon test). Since we observed higher test 

errors with increasing model size (cf. Chapter 4.3), the differences in model size could 

explain the better performance of the frequency-based approach. 

For eight drugs, we validated the frequency-based ensemble model in the CTRP 

dataset (see Methods and Table 2). For seven of these drugs, the ensemble model 

was a single-mutation model or a mutation pair model with or without interaction. For 

the BRAF inhibitor Dabrafenib, we identified a model consisting of AXIN2, BRAF, 

CDH1 and RB1 mutations as the ensemble model. Besides the mutations, the model 

included interactions between BRAF and all other mutations (Figure 28). 

 

Table 2: Validated frequency-based ensemble models. 

Drug name (ID) Drug target Ensemble model 

Gefitinib EGFR EGFR 

Afatinib (1032) ERBB2, EGFR KRAS+MAP3K4 

PLX4720 (1036) BRAF BRAF*BRCA1 

Nutlin-3a (-) MDM2 RB1*TP53 

MK-2206 AKT1, AKT2 HRAS+PIK3CA 

PLX4720 (1371) BRAF BRAF 

Dabrafenib BRAF cf. Figure 28 

GDC0941 (1527) PI3K PIK3CA 
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Figure 28: Ensemble model for the BRAF inhibitor Dabrafenib. A) Network 

representation. B) Model representation. AUC: area under the dose-response curve. 

 

The ensemble model (Figure 28) predicts that BRAF mutations mediate sensitivity to 

Dabrafenib (p < 10-39 (GDSC) and < 10-4 (CTRP), t-test) while the interaction between 

BRAF and AXIN2 (p = 0.003 (GDSC) and 0.008 (CTRP), t-test), and BRAF and RB1 

(p = 0.0003 (GDSC) and < 10-4 (CTRP), t-test) mediate Dabrafenib resistance (Figure 

29 and Figure 30). This means that cell lines with only BRAF mutations tend to respond 

while cell lines with BRAF and either AXIN2 or RB1 mutations are resistant to 

Dabrafenib. Of note, the main effects for AXIN2, CDH1 and RB1 and the BRAF-CDH1 

interaction term were not significant (p ≥ 0.05 in both datasets). Moreover, no cell line 

in the CTRP dataset contained both CDH1 and BRAF mutations. 

Compared to the BRAF*TP53 model that we identified in Chapter 1.3.6.1, the 

ensemble model for Dabrafenib performed worse based on adj. R² and BIC 

(Δ adj. R² = -0.02 (GDSC and CTRP), Δ BIC = 50 (GDSC) and 2 (CTRP)). Together 

with the observation that 7 out of 8 validated ensemble models contained one or two 

mutations, these results imply that single-mutation or mutation pair models predict drug 

response best for most drugs.  
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Figure 29: A module consisting of AXIN2, BRAF, CDH1, and RB1 explains 

response to the BRAF inhibitor Dabrafenib in the GDSC dataset. Cell lines are 

grouped by tissue of origin and by mutation status of BRAF, AXIN2 and RB1 (none: 

BRAF, AXIN2, and RB1 wild-type; both: BRAF and AXIN2 or BRAF and RB1 mutated).  
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Figure 30: A module consisting of AXIN2, BRAF, CDH1, and RB1 explains 

response to the BRAF inhibitor Dabrafenib in the CTRP dataset. Cell lines are 

grouped by tissue of origin and by mutation status of BRAF, AXIN2 and RB1 (none: 

BRAF, AXIN2, and RB1 wild-type; both: BRAF and AXIN2 or BRAF and RB1 mutated).  
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Discussion 
 

In this thesis, we studied the role of interactions in drug response (Figure 1). In 

Chapter 1, we presented an analytical framework for the exhaustive testing of models 

combining up to three genomic alterations. We found that genetic interactions unlock 

a high predictive potential. In Chapter 2, we assessed whether mutation associations 

depend on the tissue of origin. Compared to mutation associations that can be 

generalized across cancer types, tissue-specific mutation associations showed higher 

predictive performance. In Chapter 3, we combined the results of the first two Chapters 

by fitting models that consider both genetic interactions and tissue specificity. We 

identified candidate mutation pairs that interact with respect to drug response. In 

Chapter 4, we generated mutation interaction networks that represent 

interdependencies between all mutations at once. We partitioned these networks into 

modules and used the corresponding sets of mutations to predict drug response 

(Figure 26). Overall, models with seven mutations showed optimal predictive 

performance, but mutation pair models with interaction performed best for many drugs. 

We found that considering interactions between genomic alterations improves the 

performance and robustness of drug response prediction models. Models without 

interaction assume that individual alteration effects are additive, but biological systems 

rely on the joint action of molecular components, which can involve synergism or 

antagonism. We found that synergistic mutation-mutation interactions were more 

frequent and stronger than antagonistic interactions (Chapter 1.3.1), indicating that 

neglecting interactions results in an underestimation of the association between two 

mutations and drug response. 

 

1. Analytical framework 

 

To analyze the association of genomic alterations with drug response, models 

including up to three alterations with or without interaction were set up. To assess the 

predictive performance for different model complexities, we fitted models on the entire 

GDSC dataset and evaluated model performance based on the adj. R² and the BIC. 
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When choosing the best model per complexity for each drug, the models that were 

selected based on both metrics contained identical variables for 98% of the drugs 

(Chapter 1.3.2). In contrast to the high concordance of best models within 

complexities, the evaluation of best models across complexities was rather discordant 

(Figure 10). Although the BIC penalizes the number of parameters in the model more 

heavily, both metrics agree that models with interaction account for larger proportions 

of best models per drug than models without interaction. 

To test whether additive or non-additive effects dominate model performance, we 

assessed whether the best models per complexity were nested, meaning that more 

complex models include the variables of less complex models. For most drugs, the 

best model with interaction did not include the variables of the best model without 

interaction (Figure 7), which implies that interactions strongly contribute to model 

performance. Since the best model with interaction can rarely be foreseen knowing the 

variables of the best model without interaction, our interaction-based approach 

identifies predictive combinations of variables that additive models miss. 

To control for confounding factors, we summarized important covariates as 

background models. Although previous models also included covariates (Iorio et al., 

2016), our study goes beyond other approaches and systematically assesses the 

contribution of a large panel of potential confounders (Chapter 1.1). We defined 

models with genomic alterations as useful models if they outperformed the default 

background model that includes the covariates tissue, growth properties, growth 

medium, and CNA count. Both the adj. R² and the BIC agree that a useful model with 

up to three alterations can be identified for most drugs (85% or 100%; Chapter 1.3.2.2). 

When comparing models with alterations to the default background model, a model 

comparison test (q < 0.1, Benjamini-Hochberg correction, F-test) is more stringent than 

comparing the BIC values of both models without requiring a specific BIC difference. 

This explains why the percentage of drugs outperforming the default background 

model is lower (cf. Figure 8 and Figure 9). 

To evaluate the relevance of interactions, we compared the number of useful models 

with and without interaction. Based on model comparison tests (Figure 8) and test 

errors (Figure 12), including interactions lead to a consistent increase in the number of 

drugs for which a useful model could be found. This implies that interactions unlock a 

predictive potential that additive models cannot capture. 
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The number of drugs that benefit from adding an interaction term to an alteration pair 

model (between 19 and 26%; Figure 12) resembled the number of drugs that benefit 

from adding a second alteration to a single-alteration model (between 17% and 22%; 

Figure 12). Similarly, we observed that the best model with two alterations and 

interaction can predict drug response better than the best model with three alterations, 

but without interaction (Figure 6). Together, these findings imply that including an 

interaction has a similar or even better potential to improve drug response prediction 

models as adding an alteration. 

Adding a second alteration to a single-alteration model results in a large decrease in 

model robustness (Figure 11). In contrast, adding an interaction term to an alteration 

pair model increases model robustness. In summary, our results show that interactions 

positively contribute to model performance and robustness. 

By defining interactions based on linear regression models, the approach we adopted 

is similar to a previous study (Jiang et al., 2018). However, Jiang and colleagues 

focused on alteration pairs where one alteration affects the drug target, which restricts 

the analysis to targeted drugs. In contrast, we identified predictive markers for both 

targeted drugs and cytotoxic chemotherapeutics. For instance, our findings suggest 

that the interaction between CREBBP and FGFR2 mutations consistently mediates 

resistance to several cytotoxic drugs (Figure 24). 

Moreover, including the alteration status of the target gene as a default predictive 

variable (Jiang et al., 2018) presumes a prominent predictive influence. However, we 

found that alterations of the drug target do not always show the strongest association 

with drug response in univariate models (Figure 4 and Table 1). For instance, the 

association between TP53 mutations and resistance to the MDM2 inhibitor Nutlin-3a 

is the strongest mutation association across drugs. Nevertheless, TP53 is not directly 

targeted, but only indirectly affected since MDM2 mediates its ubiquitin-dependent 

degradation (Kojima et al., 2006). 

Since the method proposed by Jiang and colleagues predicts responders and 

non-responders by computing the correlation with a genome-wide signature (Jiang et 

al., 2018), it is difficult to trace back which marker genes drove the prediction. In 

contrast, our models contain far fewer alterations, which facilitates their interpretability. 
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2. Network method 

 

To integrate the information about pairwise mutation-mutation interactions, we 

constructed mutation interaction networks. In these networks, nodes represent 

mutations while edges represent mutation pairs. Edges are weighted by the 

non-additive effect of the mutation pair on drug response. Our approach is conceptually 

similar to a network method that uses expression data to define interactions with 

respect to disease (Watkinson et al., 2008). While our method weights edges by the 

variable importance in a linear regression model (Kuhn, 2008), Watkinson and 

colleagues employ the information-theoretic measure of synergy. 

When applying our network method, we identified more than 14 million modules and 

used the corresponding sets of mutations to predict drug response. By restricting 

model fitting to module-based mutation sets instead of all possible combinations of 

mutations, the model space is decreased. Thus, module search algorithms replace a 

model selection technique. 

When partitioning mutation interaction networks into modules, each partition has an 

assigned modularity value that is computed based on the sum of weighted edges within 

and across modules. The modularity is the optimizing function of the module search 

algorithm we used (Blondel et al., 2008). We found a weak correlation between the 

modularity of the partition and the performance of the resulting module models 

(Chapter 4.3). Since the modularity is computed based on edge weights, this 

observation highlights the importance of the edge weight definition. Choosing an 

alternative edge weight measure that results in a stronger correlation between 

modularity and performance could improve the overall performance of our method. 

Since the module search algorithm used in the present study cannot consider node 

weights, future studies could evaluate edge weight measures that combine the 

information about the variable importance of nodes and edges. Alternatively, 

algorithms that consider node and edge weights, but optimize a function other than 

modularity, could be assessed (Dittrich et al., 2008; Lecca and Re, 2015). However, 

the Infomap algorithm, which belongs to this class, did not yield satisfactory results 

(Chapter 4.2). 
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When linking the number of mutations in a module model to predictive performance, 

we found that fewer mutations were associated with better performance (Chapter 4.3). 

We identified seven mutations as the optimal number of mutations in a model (Figure 

27). However, the direct comparison between module models and mutation pair 

models with interaction showed significant differences for only one drug, the MDM2 

inhibitor Nutlin-3a, for which mutation pair models with interaction outperformed 

module models. Similarly, the assessment of ensemble models that are based on the 

most frequently included alterations across cross-validation instances suggests that 

models with up to two mutations often achieve the best performance (Chapter 4.5 and 

Table 2). In summary, the model sizes we identified as optimal are by far smaller than 

models generated by conventional computational methods. In accordance with our 

results, a previous study modeling drug response based on gene expression data 

determined 6 to 12 genes as the optimal model size (Dong et al., 2015). 

A previous study highlighted elastic net, a standard method for drug response 

prediction (Barretina et al., 2012; Basu et al., 2013; Garnett et al., 2012; Iorio et al., 

2016), as one of the best-performing algorithms (Jang et al., 2014). In comparison, our 

network method showed better performance for 42% of the drugs and comparable 

performance for the remaining drugs (Chapter 4.4). Notably, the elastic net 

implementation we used allows to include interaction effects without the corresponding 

main effects, which violates variable hierarchies. In this model setting, an interaction 

term represents the association between two co-occurring mutations and drug 

response, but can no longer be interpreted as a non-additive contribution. Future 

studies could implement elastic net with a hierarchy constraint as it was proposed for 

lasso regression (Bien et al., 2013). 

 

3. Candidate genetic interactions 

 

To select candidate interactions for a given drug, we compared the performance of 

alteration pair models with and without interaction based on test errors. In each 

cross-validation instance, 80% of the data were used for model training while the 

remaining 20% of the data were held out for model testing. We extracted the best test 

error in each cross-validation instance and used a statistical test (p < 0.05, Mann-
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Whitney-Wilcoxon test) to compare the test errors of alteration pair models with and 

without interaction. 

Our procedure to select candidate interactions is very stringent for the following 

reasons. First, training models based on 80% of the available cell lines decreases the 

number of detectable associations, which strongly depends on the number of training 

cell lines (Iorio et al., 2016). Second, since we compared distributions of only 50 test 

errors that correspond to 50 cross-validation instances, the statistical test we applied 

sets a high hurdle for an improvement by interactions. Increasing the number of 

cross-validation instances would increase the statistical power, but goes beyond the 

scope of this thesis. Third, the covariates of the default background model account for 

large proportions of the variation in drug response. Therefore, alteration pair models 

with and without interaction can have very similar test errors, which impedes the 

detection of statistically significant performance differences. In summary, the stringent 

procedure we chose filters for high-confidence interactions. 

For example, we found that the interaction between BRAF and TP53 mutations 

mediates resistance to several BRAF inhibitors. Gain-of-function BRAF mutations and 

loss-of-function TP53 mutations were reported to interact in promoting tumorigenesis 

(Yu et al., 2009). Here, we found evidence for the relevance of the BRAF-TP53 

interaction in drug response. We show that the simultaneous mutation of BRAF and 

TP53 mediates resistance to BRAF inhibitors, whereas cell lines with only BRAF 

mutations tend to respond (Figure 13). We observed consistent association patterns 

for the BRAF inhibitors Dabrafenib and PLX4720 in the GDSC and the CTRP dataset. 

In accordance with our results based on in vitro data, we found that melanoma patients 

with only BRAF mutations tend to respond better to the BRAF inhibitor Vemurafenib 

than patients with BRAF and TP53 mutations (Chapter 1.3.6.1). 

In line with our results, two experimental studies showed that TP53 activation can 

potentiate the effect of BRAF inhibitors. One study showed that the microRNA-3151 

links BRAF and TP53 signaling (Lankenau et al., 2015). As a downstream effector of 

BRAF, the microRNA-3151 downregulates TP53 expression and nuclear localization. 

The overexpression of microRNA-3151 in Vemurafenib-resistant skin and thyroid 

cancer cell lines points towards combining BRAF and microRNA-3151 inhibition. 

According to another study, resistance to the BRAF inhibitor Vemurafenib can be 

overcome by a combination therapy with the TP53 reactivator PRIMA-1Met in 
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melanoma cell lines and patient-derived xenograft models (Krayem et al., 2016). 

PRIMA-1Met completed a phase I clinical trial (Lehmann et al., 2012) and a combination 

trial with the BRAF inhibitor Dabrafenib is ongoing 

(https://www.clinicaltrials.gov/ct2/show/NCT03391050). Accordingly, the BRAF-TP53 

interaction we identified represents a promising target for combination therapies, which 

underlines the utility of our modeling approach. 

As an example of a mutation-CNA interaction, we found that the interaction between 

mutation of BRAF and amplification of the genomic region 3p14.1 is associated with 

sensitivity to the BRAF inhibitor SB590885 (Figure 14). However, we could not validate 

our finding in the CTRP dataset because SB590885 was not screened. Since 

amplification of 3p14.1 in the GDSC cancer cell line panel is rare, very few cell lines 

have only the amplification or both the amplification and a BRAF mutation. Future 

studies could increase confidence in the association we identified by downsampling 

the group of wild-type and BRAF-mutated cells to match these small sample numbers 

and repeatedly fitting the same model to balanced data subsets. 

Previous research identified the master lineage transcription factor MITF as the target 

of the 3p14.1 amplification (Garraway et al., 2005). The authors showed that MITF 

overexpression and BRAF mutation cooperate in tumorigenesis, which supports the 

interaction between both alterations that we identified in drug response. However, 

MITF amplification was discussed as a clinical resistance mechanism in 

BRAF-mutated melanoma (Van Allen et al., 2014) which contradicts our results. 

Intriguingly, both high and low expression of MITF have been associated with BRAF 

inhibitor resistance (Müller et al., 2014), suggesting that MITF plays a complex role in 

determining BRAF inhibitor responsiveness. 

For the BRAF inhibitor PLX4720, we identified a sensitivity interaction between BRAF 

mutations and amplification of 3q26.1 in the GDSC and the CTRP dataset (Figure 15). 

This interaction was not identified in a previous study (Iorio et al., 2016). Although 

amplification of 3q26.1 is frequent in melanoma cell lines (Tanami et al., 2004), the 

co-occurrence of BRAF mutations and 3q26.1 amplifications was not restricted to skin 

cancer cell lines in the datasets we used. In contrast to Tanami and colleagues, we did 

not observe increased frequencies of the 3q26.1 amplification in BRAF-mutated cell 

lines (p = 0.57 (GDSC) and 0.76 (CTRP), chi-square test) 
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Using our network method, we found that the interaction between BRAF and either 

AXIN2 or RB1 mutations confers resistance to Dabrafenib in the GDSC and the CTRP 

dataset (Figure 29 and Figure 30). Follow-up studies could combine the sensitivity 

associations (BRAF mutations alone or in combination with either 3q26.1 or 3p14.1 

amplifications) and the resistance associations (BRAF mutations with either TP53, 

AXIN2 or RB1 mutations) that we identified for different BRAF inhibitors into a single 

drug response prediction model. 

We used drug-specific background models as a performance reference to identify 

additional mutation-mutation interaction candidates. Since drug-specific background 

models can include single mutations and mutation-tissue interactions, their 

performance is usually higher compared to the default background model (Figure 23). 

We required that the final mutation pair model outperformed the drug-specific 

background model with either of the mutations (p < 0.05, F-test), which results in a high 

hurdle for detecting an improvement by interactions. 

Based on this selection criterion, we identified several candidate interactions between 

two mutations that jointly mediate drug sensitivity or resistance (Chapter 3.2 and 

Table S1). We observed that the corresponding proteins often act in parallel signaling 

pathways upstream of the drug target. Future investigations could build on our 

observations and analyze pathway topologies systematically as it was done in a study 

on drug combinations (Menden et al., 2017). 

We identified synthetic lethal triplets between two mutations and a drug, for instance 

CTNNB1 and PIK3CA mutations that sensitize cancer cell lines to the MDM2 inhibitor 

Nutlin-3a (Figure 25A and B). The interaction between CTNNB1 and PIK3CA has 

already been discussed in the context of tumorigenesis (Riemer et al., 2017), but not 

drug response. Since synthetic lethality databases usually list synthetic lethal gene 

pairs (Jerby-Arnon et al., 2014; Li et al., 2014), they do not allow to validate the 

synthetic lethal triplets we found. Instead, we identified candidate synthetic lethal 

triplets in the GDSC dataset and validated them in the CTRP dataset. 

A previous study (Liu et al., 2016) aimed to identify alteration pairs consisting of one 

alteration that sensitizes to a drug and a second alteration that reverts this effect. If 

perturbation of the first gene is lethal whereas the simultaneous perturbation of both 

genes is viable, such a relationship is termed synthetic viability (Motter et al., 2008). 
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Since targeting the second, resistance-mediating alteration by a second drug could 

have a synergistic effect, synthetic viable relationships represent potential 

opportunities for combination therapies. Although identifying synthetic viable alteration 

pairs was not the primary objective of this work, the BRAF-TP53 interaction we found 

to be associated with BRAF inhibitor resistance is in fact a synthetic viable relationship. 

Likewise, the BRAF-AXIN2 and the BRAF-RB1 interaction are synthetic viable. In all 

three examples, the BRAF mutation mediates BRAF inhibitor sensitivity, while the 

second mutation, which suppresses this effect, could potentially be targeted by a 

second drug. This shows that our analytical framework can be used to generate 

hypotheses for two-drug combinations. 

 

4. Tissue specificity 

 

In previous studies, tissue specificity was analyzed in models based on cell lines from 

individual tissues of origin (Iorio et al., 2016). However, the tissue specificity of drug 

response in cancer cell lines is controversial (Garnett et al., 2012; Iorio et al., 2016; 

Jaeger et al., 2015). Therefore, we modeled drug response in a pan-cancer setting 

using the tissue of origin as a covariate. By considering mutation-tissue interactions in 

pan-cancer models, our analytical framework allows to distinguish tissue-specific 

mutation associations from associations that are generalizable across tissues. As an 

additional advantage, regression coefficients can be estimated based on all cell lines. 

We observed that models with tissue-specific mutation associations explain drug 

response better than models with general mutation associations (Figure 18). This is in 

line with previous findings (Iorio et al., 2016) and underlines the relevance of 

mutation-tissue interactions. 

The candidates we identified as tissue-specific mutation associations show 

consistency across identical and similar drugs. For example, the tissue-specific 

association between EGFR mutations and EGFR inhibitors was consistent for two 

Afatinib screens and one Gefitinib screen (Figure 21). Both drugs are approved for the 

treatment of EGFR-mutated non-small cell lung cancer (Kazandjian et al., 2016; 

Wecker and Waller, 2018), the cancer type for which we observed the strongest 

association between EGFR mutations and drug sensitivity. 
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We found that some mutations mediate drug sensitivity and resistance in different 

tissues (Figure 19 and Figure 20). Since the sign of the mutation coefficient determines 

the direction of the effect, we termed these associations sign-switching associations. 

Due to the limited number of cell lines with a specific mutation in different tissues of 

origin, we could not validate any of the sign-switching mutation associations in the 

CTRP dataset. Nevertheless, sign-switching phenomena were previously observed in 

cancer patients with BRAF-mutated tumors receiving BRAF inhibitor treatment. While 

melanoma patients showed high response rates (60-80%; Flaherty et al., 2010; Kefford 

et al., 2010), only about 5% of colorectal cancer patients responded (Kopetz et al., 

2010). Mechanistic studies revealed that BRAF inhibition activates EGFR via a 

feedback loop, thereby promoting continued proliferation in presence of a BRAF 

inhibitor (Corcoran et al., 2012; Prahallad et al., 2012). In line with the good response 

rates of melanoma patients, this feedback activation does not affect melanoma cells 

since they express lower levels of EGFR. 

 

5. Strengths and limitations 

 

A review of computational methods for drug response prediction highlighted the need 

for a thorough evaluation and validation of model performance (Azuaje, 2017). In line 

with these recommendations, our models were evaluated by different performance 

metrics and examined by both cross-validation and an independent validation dataset. 

Additionally, we used a background model as a lower performance boundary. The 

background model contains important covariates, of which the tissue of origin explains 

the highest variation in drug response. Although gene expression data is most 

predictive of drug response (Costello et al., 2014; Iorio et al., 2016; Jang et al., 2014), 

we did not consider gene expression in our models because its predictive power 

correlates with the tissue of origin. By including the tissue of origin as a covariate, we 

keep our models small enough to be readily comprehensible. 

In addition to the lower performance boundary, which is represented by the 

background models, we defined the duplicate drug response as an upper performance 

boundary. To estimate the agreement of duplicate drug screens, we created duplicate 

models that predict drug response based on the drug response values of the 
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corresponding duplicate drug screen. Surprisingly, duplicate models were 

outperformed by a null model or the default background model (Chapter 1.3.7) for 11 

out of 28 drugs, which raises concerns about data quality. In accordance with our 

results, the inconsistency of duplicate screens has been criticized (Safikhani et al., 

2016). A possible explanation is that most cell lines are resistant to most drugs which 

results in a low variability of drug response values such that biological signals can be 

confounded by measurement noise (Geeleher et al., 2016). To cope with the data 

quality issues, we believe that a stringent selection of candidate associations and their 

validation in a second cancer cell line panel is needed. Although many cell lines in the 

GDSC and the CTRP dataset are identical, the experimental procedure and the 

readout for cell viability are different (Iorio et al., 2016; Seashore-Ludlow et al., 2015). 

Therefore, we consider the datasets as independent. 

The majority of candidate models we identified explained response to BRAF inhibitors. 

This shows that the predictive performance strongly depends on the drug that is 

screened. We hypothesize that the high number of sensitive cell lines and the 

specificity of the BRAF inhibition facilitate the prediction of BRAF inhibitor response. 

Similar to the influence of the screened drug, our results may also depend on the 

choice of genomic alterations. By using a preselected set of mutations and CNAs (Iorio 

et al., 2016), we aim to enrich for alterations that are recurrent and functional in cancer. 

This implies the assumption that the genes involved in cancer development and 

progression correspond to the set of genes that determine drug response. 

We focused our analyses in Chapter 2, 3 and 4 on mutations since CNAs are less 

frequent (Figure 5) and since the occurrence of two CNAs can be strongly correlated. 

When evaluating the performance and robustness of models including different 

alteration types, mutation and mutation-CNA pair models with interaction were more 

robust than CNA pair models with interaction (Figure 11) and were never outperformed 

by any other model complexity (Figure 12). Therefore, mutation-CNA pair models could 

be a promising alternative to mutation pair models. However, interpreting the functional 

consequences of CNAs is more challenging since the amplified or deleted regions 

often span several genes, only some of which may undergo positive selection during 

tumorigenesis (Cramer et al., 2016). 
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6. Conclusions and outlook 

 

In this thesis, we developed an interaction-centered approach to predict drug response 

based on genomic features. The strength of our approach lies in the exhaustive model 

search we conducted, resulting in millions of tested models (Chapter 1.3 and 4.3) and 

exceeding the number of models that were assessed in previous systematic studies 

(Jang et al., 2014). We show that interactions can unlock a considerable predictive 

potential. Since drug response prediction models with interaction show improved 

performance and robustness, our study strongly encourages the use of interactions. 

Our findings suggest that existing models can be refined by testing whether alteration 

effects depend on the alteration status of other genes or the tissue of origin. By 

considering genetic interactions and tissue specificity, this work contributes to a holistic 

view on the determining factors of drug response. 

Novel drug response prediction models should not only aim at improving predictive 

performance but also to ensure model interpretability (Azuaje, 2017; Knijnenburg et 

al., 2016). Our study complements previous attempts to create small, easily 

interpretable drug response prediction models. Unlike conventional computational 

methods that output ranked lists of important features, our method generates 

amenable hypotheses that can guide experimental studies. Integrating prior knowledge 

about signaling pathways, protein-protein interactions and chemical drug properties 

may further enhance the amenability of drug response prediction models in the future. 

Both the analytical framework and the network-based approach presented here can 

be used for the analysis of other drug screens, but also viability screens based on 

shRNA and CRISPR/Cas9 (Aguirre et al., 2016; McDonald et al., 2017; Tsherniak et 

al., 2017). To validate our candidate interactions and to find mechanistic explanations 

for strong non-additive effects, follow-up studies should focus on complementing the 

theoretical work presented here by experiments. Since statistical interactions can 

reflect biological interactions, associations with drug response that involve interactions 

can help to understand a drug’s mode of action.  
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Methods 
 

Statistical analyses 

 

We used R version 3.4.2 to conduct statistical analyses. All statistical tests were 

two-tailed. 

 

GDSC data 

 

Drug response data was retrieved from The Genomics of Drug Sensitivity in Cancer 

Project (GDSC; Yang et al., 2013; release 6, version 17; 

v17_fitted_dose_response.xlsx). The dataset comprises 1001 cancer cell lines and 

265 drugs. Most of the drugs (n = 242) target specific biological processes or pathways, 

some of them (n = 9) are cytotoxic chemotherapeutics and the remaining drugs (n = 

14) lack a defined mode of action. Since 14 out of the 265 drugs were screened twice, 

we indicate the unique drug ID where required. 

In contrast to previous studies (Garnett et al., 2012; Iorio et al., 2016; Knijnenburg et 

al., 2016), we summarized drug response by the area under the dose-response curve 

(AUC) instead of the half-maximal inhibitory concentration (IC50). The reason for this is 

that the AUC is more reliable although the IC50 is most commonly used (Huang and 

Pang, 2012). Additionally, estimating the IC50 in large drug screens can be imprecise 

since many cell lines do not achieve an inhibition of 50% (Bouhaddou et al., 2016; 

Haverty et al., 2016). In the GDSC dataset, the AUC takes values between 0 and 1 

where 0 represents drug sensitivity and 1 represents drug resistance. When fitting drug 

response prediction models, we transformed the AUC values into z-scores. 

To test for potential confounders of drug response, we retrieved cell line annotation 

data (Yang et al., 2013; release 6; Cell_Lines_Details.xlsx). We extracted tissue 

(“GDSC Tissue descriptor 1”), growth medium (“Screen Medium”), growth properties 

(“Growth properties”) and microsatellite instability status (“Microsatellite instability 

Status (MSI)”). We used mutation data from the Catalogue Of Somatic Mutations In 
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Cancer (COSMIC; Forbes et al., 2017; version 80; GRCh37/hg19; 

CosmicCLP_MutantExport.tsv) to count the total number of mutations (mutation IDs), 

including silent mutations, per cell line. CNA counts (CNV IDs) per cell line were 

computed using CNA data from COSMIC (Forbes et al., 2017; version 80; 

GRCh37/hg19; CosmicCLP_CompleteCNA.tsv), considering only CNAs with known 

minor allele and total copy number. In addition, we retrieved the proportion of 30 

mutational signatures from the literature (Jarvis et al., 2018; Supplementary Table 2-

COSMIC signatures.xls). Signature 27 did not have any non-zero values. 

To investigate the association between mutations and drug response, we retrieved a 

list of 267 potential cancer driver genes (Iorio et al., 2016). For each cell line, we 

extracted the mutation status for these genes from COSMIC (Forbes et al., 2017; 

version 80; GRCh37/hg19; CosmicCLP_MutantExport.tsv) while excluding silent 

mutations. Compared to Iorio and colleagues (Iorio et al., 2016), we used a more recent 

data version that includes a genome reduction step. Therefore, only 248 out of 267 

genes were mutated in any of the cell lines. 

To investigate the association between CNAs and drug response, we used a list of 425 

recurrently altered chromosomal segments (RACS) as defined by Iorio and colleagues 

(PANCAN_CNA_BEM.rdata.txt, Iorio et al., 2016). The location of genomic regions is 

indicated as chromosome, short (“p”) or long (“q”) arm, and cytogenic band, sub-band 

and sub-sub-band (Strachan and Read, 1999). 

 

CTRP data 

 

We used the data from the Cancer Therapeutic Response Portal (CTRP) as a 

validation dataset. Drug response data was retrieved from the publication (Seashore-

Ludlow et al., 2015). In total, 76 drugs were screened in both the GDSC (Iorio et al., 

2016) and the CTRP. Of those, 10 drugs were screened in duplicates in the GDSC 

project. 

In the CTRP dataset, AUC values can take values between 0 and 20. Like in the GDSC 

dataset, low AUC values correspond to sensitive cell lines while high values 
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correspond to resistant cell lines. As described above, AUC values were transformed 

into z-scores to fit drug response prediction models. 

The covariates tissue (“ccle_primary_site”) and growth medium (“culture_media”) were 

retrieved from the CTRP publication (Seashore-Ludlow et al., 2015). We did not include 

the growth properties covariate since all cell lines in the CTRP dataset are adherent. 

To increase the consistency of covariates between the GDSC and the CTRP dataset, 

we summarized “upper_aerodigestive_tract” and “oesophagus” as “aero_dig_tract”, 

“endometrium”, “ovary” and “urinary_tract” as “urogenital_system”, and “biliary_tract”, 

“liver” and “stomach” as “digestive_system”. Likewise, we reduced the number of 

medium categories by summarizing media with the prefix “DMEM0” as “DMEM” and 

media with the prefix “RPMI0” as “RPMI”. We grouped all remaining media into the 

category “other”. We computed CNA counts for each cancer cell line based on binary 

copy number calls for amplifications and deletions 

(CCLE_MUT_CNA_AMP_DEL_binary_Revealer.gct) that we retrieved from the CCLE 

website (portals.broadinstitute.org/ccle/data; Kim et al., 2016). 

To investigate the association between genomic alterations and drug response, we 

used the same set of 248 mutations and 425 RACS as for the GDSC dataset (see 

above). We retrieved mutation data from the CTRP publication (Seashore-Ludlow et 

al., 2015). RACS data was retrieved from the GDSC dataset such that data availability 

is limited to overlapping cell lines. However, since there can be cell lines with missing 

drug response values, but available RACS data in the GDSC dataset, there can still 

be cell lines that are unique to the validation dataset (CTRP). 

 

Linear regression models 

 

Single-mutation model 

AUC ~ β0 + β1 mut + covariates + ε 

 

Single-CNA model 

AUC ~ β0 + β1 cna + covariates + ε  
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Mutation pair model 

AUC ~ β0 + β1 mut1 + β2 mut2 + β3 mut1 mut2 + covariates + ε        (I) 

 

CNA pair model 

AUC ~ β0 + β1 cna1 + β2 cna2 + β3 cna1 cna2 + covariates + ε 

 

Mutation-CNA pair model 

AUC ~ β0 + β1 mut + β2 cna + β3 mut cna + covariates + ε 

 

Mutation triplet model 

AUC ~ β0 + β1 mut1 + β2 mut2 + β3 mut3 + β4 mut1 mut2 + β5 mut1 mut3 + β6 mut2 mut3 

+ β7 mut1 mut2 mut3 + covariates + ε 

 

CNA triplet model 

AUC ~ β0 + β1 cna1 + β2 cna2 + β3 cna3 + β4 cna1 cna2 + β5 cna1 cna3 + β6 cna2 cna3 + 

β7 cna1 cna2 cna3 + covariates + ε 

 

Mutation-tissue interaction model 

AUC ~ β0 + β1 mut + β2 mut tissue + covariates + ε 

 

In the alteration models, the AUC is the response variable, β0 is the intercept, β1,2,3,4,5,6,7 

are the coefficient estimates, mut1,2,3 and cna1,2,3 are binary variables that encode the 

alteration status of mutations and RACS, and ε is an unobserved error term. Models 

indicated as with or without interaction differ in that they include or exclude interaction 

terms. Candidate alteration pair models without interaction are denoted as alt1+alt2, 

alteration pair models with interaction as alt1*alt2, where alt (alteration) can be either a 

mutation or a CNA. Of note, alteration triplet models include three-way interactions 

between all alterations in addition to two-way interactions between pairs of alterations. 
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The included covariates are defined by the default or the drug-specific background 

model. All models were fitted using the R function lm. Models for combinations of 

alterations were fitted if the respective alterations co-occurred in at least five cell lines 

with drug response data. 

 

Alteration distribution 

 

For every single alteration, the number of cell lines with the respective alteration and 

drug response data was computed. Analogously, the number of cell lines with all 

alterations and drug response data was computed for alteration pairs and triplets. For 

the co-occurrence plots, alteration pairs or triplets that co-occurred in less than five cell 

lines with available drug response data were set to NA and not considered for 

calculating the mean co-occurrence across drugs. 

We used the function phicoef in the R package “GenomicRanges” to compute pairwise 

correlations for mutation pairs, CNA pairs, and mutation-CNA pairs. 

 

Role of interactions 

 

Synergy is defined as situations where the whole is bigger than the sum of its parts 

(Anastassiou, 2007). In mutation pair models with interaction (equation I), the sum of 

both mutation coefficients (β1 + β2) represents the sum of parts while the sum of both 

mutation coefficients and the interaction coefficient (β1 + β2 + β3) represents the whole. 

To assess the magnitude, but not the direction of the effect, we used absolute values 

for the whole and the sum of parts. Interaction types were classified as synergistic if 

|β1 + β2 + β3| > |β1 + β2| 

or antagonistic if 

|β1 + β2 + β3| < |β1 + β2|. 
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We used all fitted mutation pair models with interaction and did not require a minimal 

difference for the comparison. We refer to the absolute value of β3 as the strength of 

the association of an interaction with drug response. 

 

Background models 

 

To select covariates, we assessed the predictive performance of potential confounders 

in three model settings. In all model equations, AUC is the response variable, β0 is the 

intercept, β1-36 are the coefficient estimates, confounder1-36 are the confounder 

variables, and ε is the error term. 

 

Univariate model 

AUC ~ β0 + β1 confounder + ε 

Univariate models were fitted for all pairwise combinations of drugs and confounders. 

We extracted the adj. R² and counted the number of drugs for which a given 

confounder was significantly associated with drug response (p < 0.05, F-test). 

 

Full model 

AUC ~ β0 + β1 confounder1 + β2 confounder2 + … + β36 confounder36 + ε 

Using model comparison tests, the full model was compared against the full model 

without one confounder. We counted the number of drugs for which the full model 

significantly outperformed the full model without a given confounder (p < 0.05, F-test). 

We extracted the adj. R² for the full model and the full model without one confounder 

and computed the difference. 

 

Default background model 

AUC ~ β0 + β1 tissue + β2 growth properties + β3 growth medium + β4 CNA count + ε 
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We defined the default background model as a model with the covariates tissue of 

origin, growth properties, growth medium, and total number of CNAs (CNA count). To 

estimate the effect of adding a confounder to the default background model, we 

counted the number of drugs for which the default background model including an 

additional confounder outperformed the default background model (p < 0.05, F-test). 

 

To create drug-specific background models, we used the default background model as 

a starting point. First, we tested whether the default background model significantly 

outperformed a model without one of the four covariates (p < 0.05, F-test). Covariates 

not passing this test were excluded from the model. Second, we assessed the effect 

on performance if one of the 248 cancer driver mutations was included in the model. 

We included single mutations if the resulting model significantly outperformed a model 

with the preselected covariates (Holm-corrected q < 0.1, t-test). For models including 

mutations and the tissue covariate, we assessed whether mutation-tissue interaction 

terms improved the model. For this test, we excluded data for all tissue with less than 

five cell lines with or without the mutation. We added mutation-tissue interaction terms 

if the resulting model performed significantly better than a model with the preselected 

covariates and mutations (p < 0.05, F-test). 

 

Model performance 

 

To assess model performance, we fitted models using the entire GDSC dataset and 

computed the BIC and the adj. R². Both metrics penalize the number of variables in a 

given model. To select the best model per complexity, we assessed all fitted models 

of a given size and chose the model with the highest adj. R² or the lowest BIC. To 

compute the overlap between best models based on adj. R² and BIC, we extracted the 

variables of the best models and searched for identical models. To compare models to 

the default background model, we used model comparison tests (F-test) for the best 

models based on adj. R². For the best models based on BIC, we compared the BIC 

values without requiring a minimal difference. 
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In addition, we used cross-validation to compare the performance of different models. 

We used the createMultiFolds function in the R package “caret” (version 6.0-47; 

https://cran.r-project.org/web/packages/caret) to create 50 independent 

cross-validation instances. In each cross-validation instance, we generated a training 

set containing 80% of the data and a test set containing 20% of the data. We used the 

training set for model fitting and the test set to compute the root mean squared error 

(RMSE). In each cross-validation instance, the model with the lowest test error was 

selected as the best model. The test errors of the 50 best models, corresponding to 

the 50 cross-validation instances, were used to compare the performance of different 

model complexities. To assess model robustness, we extracted the variables of the 50 

best models and determined the frequency of the most frequently selected model. 

We used the agreement of duplicates as an upper performance boundary for drugs in 

the GDSC dataset that were screened twice. For each drug for which a duplicate 

screen was available, we fitted a univariate model, 

AUC ~ β0 + β1 AUCdup + ε 

where AUC is the drug response to predict, β0 is the intercept, AUCdup is the drug 

response of the corresponding duplicate screen, and ε is the error variable. We used 

50 cross-validation instances (see above) to compute the test errors of the duplicate 

model. 

 

Nested models 

 

To identify nested models, we extracted the variables of the best models per 

complexity based on the adj. R². For each drug, we compared alteration pair models 

with interaction to alteration pair models without interaction and alteration triplet models 

with interaction to alteration triplet models without interaction. We defined nested 

models as two models with identical main effects that differ only by the interaction 

terms. 

  



93 
 

Clinical drug response 

 

We retrieved clinical response data and mutation data and for 31 melanoma patients 

that were treated with the BRAF inhibitor Vemurafenib (Van Allen et al., 2014). Out of 

the 31 patients, all except patient 53 had BRAF-mutated tumors 

(https://cancer.sanger.ac.uk/cosmic/study/overview?paper_id=34281). We defined 

two patient subgroups. One group included patients with only BRAF-mutated tumors 

(n = 26) and the other group included patients with BRAF- and TP53-mutated tumors 

(n = 4). Clinical response was available as RECIST (Response Evaluation Criteria in 

Solid Tumors) criteria. Disease control rates for both patient subgroups were computed 

by dividing the number of patients with the RECIST criteria “complete response”, 

“partial response” and “stable disease” by the total number of patients. We computed 

the relative risk using the riskratio function in the R package “fmsb” 

(https://cran.r-project.org/web/packages/fmsb; version 0.6.3). The study (Van Allen et 

al., 2014) also included patients receiving the BRAF inhibitor Dabrafenib, but none of 

the Dabrafenib-treated patients had tumors with both BRAF and TP53 mutations. 

 

Mutation-tissue interactions 

 

To distinguish tissue-specific and general mutation associations in the GDSC dataset, 

we first selected mutations that were significantly associated with drug response in 

single-mutation models (p < 0.05, t-test). Second, we added mutation-tissue 

interaction terms and compared models with and without interaction term. We 

restricted this comparison to genes where at least two tissues with at least five cell 

lines with and without mutations were available. Mutation associations were defined 

as tissue-specific if the model with interaction was significantly better than the model 

without interaction (p < 0.05, F-test) and as general otherwise (p ≥ 0.05, F-test). 

To validate our list of tissue-specific and general associations in the CTRP dataset, we 

applied the same tests and filtered for mutations that mediate drug sensitivity or drug 

resistance in both datasets. 
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To test whether the percentage of tissue-specific associations in the GDSC dataset 

exceeds random expectation, we generated 1000 randomized datasets by permuting 

the tissue labels of the cancer cell lines. We maintained the mutation frequency of the 

original data within each tissue of origin. To compute an empirical p-value, we 

compared the percentage of tissue-specific mutation associations in the original data 

to the percentages in the randomized data. 

To compare the predictive performance of tissue-specific and general mutation 

associations, we used the adj. R² of models with mutation-tissue interaction term. We 

compared the adj. R² distribution of tissue-specific associations to the adj. R² 

distribution of general associations. We used the estimated difference in location of the 

R function wilcox.test as the effect size. We generated 100 randomized data instances 

by permuting the tissue annotation while maintaining the unequal distribution of 

mutations across tissues. We compared the adj. R² distributions of tissue-specific and 

general associations for each randomization instance. We compared the effect size of 

the original data to the distribution of effect sizes of the randomized data. 

To identify mutations that mediate resistance or sensitivity in different tissues, we 

retrieved a list of tissue-specific mutation associations and fitted single-mutation 

models to data from individual tissues. We required a significant mutation association 

in at least two tissue of origins (p < 0.05, t-test) and at least one resistance and one 

sensitivity association. We generated 100 randomized datasets as described above 

and applied the same condition to the randomized datasets. We computed empirical 

p-values by comparing the number of sign-switching mutation associations in the 

original dataset to the number of sign-switching mutation associations in the 

randomized datasets. 

For tissue-specific associations, we assessed whether the strength of mutation 

associations in single-tissue models is linked to tissue-specific mutation frequencies. 

We used the R function cor.test to compute the Pearson correlation between the 

absolute coefficient estimates in single-tissue models and the mutation frequencies in 

the corresponding tissues. 

To identify influential observations, we computed Cook’s distance based on the 

pan-cancer models. We used models with mutation-tissue interaction for 

tissue-specific mutation associations and models without interaction for general 
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associations. We excluded models with influential observations (Cook’s distance > 0.5) 

from Figure 20, Figure 21 and Figure 22. 

For pan-cancer models, the covariates of the default background model were included. 

For single-tissue models, we excluded the tissue of origin. We additionally excluded 

the growth medium and growth properties if all cancer cell lines within a given tissue 

of origin belonged to the same category. 

 

Identification of mutation-mutation interactions and synthetic lethal triplets 

 

To select examples of mutation-mutation interactions, we used a mutation pair model 

including the covariates of the drug-specific background model (equation I). We used 

the GDSC dataset for identification of mutation-mutation interaction candidates and 

the CTRP dataset for their validation. For each mutation-mutation interaction, three 

conditions had to be fulfilled. First, the mutation pair model with interaction outperforms 

the drug-specific background model (p < 0.05, F-test) and the drug-specific 

background model including one of the two mutations (p < 0.05, F-test). Second, the 

mutation-mutation interaction term is significant (p < 0.05, t-test). Third, the overall 

effect in cancer cells with both mutations (β1+β2+β3; equation I) has a consistent sign 

in the GDSC and the CTRP dataset. For synthetic lethal triplets, we additionally filtered 

for negative interaction effects (β3; equation I) and negative overall effects (β1+β2+β3; 

equation I). We excluded examples with influential observations (Cook’s 

distance > 0.5) from Figure 24, Figure 25 and Table S1. 

 

Network method 

 

We developed a method to construct mutation interaction networks from which 

mutation interaction modules can be identified. In a first step, mutation pair models 

were fitted for all mutation pairs that co-occur in at least five cell lines with drug 

response data (see above). We used a cross-validation scheme with 50 independent 

training sets containing 80% of the data. In each cross-validation instance, the 

respective training set was used for model fitting. Second, we constructed mutation 
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interaction networks where nodes represent single mutations and edges represent the 

interaction of two mutations with respect to drug response. The edges in the mutation 

interaction network are weighted. We defined edge weights as the absolute value of 

the t-statistic for the interaction term. Third, we applied an edge threshold. We sorted 

all edges by their strength and kept only a defined percentage of strongest edges. We 

removed 0-90% of the edges in 10% steps. Of note, nodes can only exist together with 

an edge. We deleted nodes that were no longer connected after edge thresholding. 

The resulting network can have a lower number of edges and nodes. Fourth, we ran a 

module search algorithm. This algorithm partitioned the full network into modules. We 

translated these modules to linear models by interpreting nodes as main effects and 

edges as interaction effects. These multivariate linear models were fitted using the 

training data. The prediction error was computed on the test data. For each module, 

we applied the module search algorithm recursively until no smaller modules could be 

identified. Each submodule was translated into a linear model and fitted using the 

training data. 

 

Algorithm improvement 

 

We evaluated performance based on the ten drugs with the highest mean drug 

response in the GDSC dataset. We used all modules across drugs, cross-validation 

instances and edge thresholds to evaluate whether changes in our algorithm improve 

performance. 

To compute CADD scores, we retrieved coding mutations from COSMIC (Forbes et 

al., 2017; version 80; GRCh37/hg19; CellLinesCodingMuts.vcf.gz) and applied 

CADD v1.3 (Kircher et al., 2014). We replaced binary mutation data by CADD scores 

and applied our network method. 
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Module search algorithms 

 

We used the R package “igraph” for module search algorithms. The functions 

multilevel.community, fastgreedy.community and infomap.community were used to 

search for modules using the algorithms Louvain, Fast Greedy, and Infomap. 

The module search algorithms Louvain (Blondel et al., 2008) and Fast Greedy (Clauset 

et al., 2004) aim to maximize the modularity function, 

Q =  
1

2m
∑ [Aij

kikj

2m
] δ(cicj)

ij

, 

where Aij represents the edge weight between nodes i and j, ki and kj represent the 

sum of all weighted edges that are attached to node i and j, respectively, 2m is the sum 

of all weighted edges in the network, and ci and cj are the modules to which the nodes 

i and j belong. The δ-function is 1 if the nodes i and j belong to the same module and 

0 otherwise. 

The Infomap algorithm (Rosvall and Bergstrom, 2008) is based on a random walk over 

the network. Edge weights determine the node visit frequency and node weights 

enable random teleportation between nodes. During the random walk, nodes are 

encoded by code words whose lengths are inversely proportional to their visit 

frequency. The aim is to minimize the description length of the network’s topology. 

Of the three tested module search algorithms, Infomap was the only one that allows to 

define node weights. Node weights for a given mutation were defined as the absolute 

value of the t-statistic for the mutation coefficient. All node weights were normalized 

such that the sum of all node weights in a network adds up to 1. 

 

Module evaluation 

 

We used all 265 drugs in the GDSC dataset for module evaluation. Across all drugs, 

all cross-validation instances and all edge thresholds, models for more than 14 million 

modules were fitted.  
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Ensemble models 

 

To summarize the 50 result modules that correspond to the 50 cross-validation 

instances for a given drug, we aimed to generate ensemble models. We tested two 

approaches to create ensemble models, a cluster-based approach and a 

frequency-based approach. All ensemble models included the covariates of the default 

background model. We used the BIC to compare the performance of both approaches. 

For the frequency-based approach, we retrieved the variable inclusion frequencies 

(VIFs) of all nodes and edges across the 50 result modules. We ranked the nodes and 

edges by VIF. We generated a list of VIF thresholds that includes all unique VIFs. For 

a given VIF threshold, we fitted a linear model including all nodes (main effects) and 

edges (interaction effects) that have at least the VIF of the current threshold. Model 

sizes can theoretically vary between 1 and the sum of all nodes and edges. When the 

VIF threshold is decreased, one or more variables are added. For each drug, we 

computed the BIC of all possible ensemble models and selected the model with the 

best BIC. 

For the cluster-based approach, we generated all pairwise combination of modules. 

For each module pair, we extracted the number of edges in both modules and the 

number of overlapping edges. We computed the cosine similarity as 

# overlapping edges

√# edges (module 1) ∗ √# edges (module 2)
. 

Using the matrix of cosine similarities, we created a dissimilarity object by computing 

the Euclidian distance between all pairs of modules. We performed k-medoid clustering 

on this dissimilarity object using the function pamk in the R package “fpc”. The function 

pamk estimates the number of clusters which corresponds to the number of result 

medoids. All result medoids were translated to linear models. For each drug, we 

computed the BIC for all medoid models and selected the model with the best BIC. 

For validation, we required that an ensemble model outperformed the default 

background model based on the BIC and based on a model comparison test (p < 0.05, 

F-test) in both the GDSC and the CTRP dataset. All mutations in the ensemble model 



99 
 

had to occur in both datasets. We excluded models with influential observations 

(Cook’s distance > 0.5) in at least one dataset. 

 

Method comparison 

 

We compared our network method against elastic net. We used cross-validation with 

50 independent splits (training: 80%, test: 20%) as described above. We used the 

function cv.glmnet in the R package “glmnet” (version 2.0-16). We enforced the 

inclusion of the default background model covariates by setting the penalty.factor 

argument for the respective coefficients to 0. We tested alpha values between 0 and 1 

in 0.1 steps. For each value of alpha, we searched the lambda value yielding the lowest 

mean squared error by 10-fold cross-validation. To calculate the test set RMSE, we 

used the combination of alpha and lambda values that yielded the lowest RMSE. Since 

the elastic net implementation we used does not respect variable hierarchies, we 

implemented elastic net with and without interaction.  
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Appendix 
 

1. Abbreviations1 

 

ACSL6 Acyl-CoA Synthetase Long Chain Family Member 6 

adj. R² adjusted coefficient of determination 

AKT cf. AKT1 

AKT1 AKT Serine/Threonine Kinase 1 

AKT2 AKT Serine/Threonine Kinase 2 

ALK ALK Receptor Tyrosine Kinase 

ATM ATM Serine/Threonine Kinase 

AURKB Aurora Kinase B 

AXIN2 Axin 2 

BCL2 BCL2, Apoptosis Regulator 

BCL2L1 BCL2 Like 1 

BCL-XL cf. BCL2L1 

BCL-2 cf. BCL2 

BIC Bayesian information criterion 

BRAF B-Raf Proto-Oncogene, Serine/Threonine Kinase 

BRCA1 BRCA1, DNA Repair Associated 

CADD Combined Annotation Dependent Depletion 

CCLE Cancer Cell Line Encyclopedia 

CDH1 Cadherin 1 

CNA copy number alteration 

COSMIC Catalogue Of Somatic Mutations In Cancer 

CREBBP CREB Binding Protein 

CTNNB1 Catenin Beta 1 

CTRP Cancer Therapeutic Response Portal 

EGFR Epidermal Growth Factor Receptor 

EGLN1 Egl-9 Family Hypoxia Inducible Factor 1 

EP300 E1A Binding Protein P300 

                                            
1 Gene names according to (Stelzer et al., 2016). 
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ERBB2 Erb-B2 Receptor Tyrosine Kinase 2 

ERK cf. MAPK1 

FGFR2 Fibroblast Growth Factor Receptor 2 

FOXO3 Forkhead Box O3 

FOXP1 Forkhead Box P1 

GDSC Genomics of Drug Sensitivity in Cancer 

HRAS HRas Proto-Oncogene, GTPase 

IGF1R Insulin Like Growth Factor 1 Receptor 

IKK Inhibitor Of Nuclear Factor Kappa B Kinase (protein complex) 

JNK cf. MAPK8 

KDM6A Lysine Demethylase 6A 

KMT2C Lysine Methyltransferase 2C 

KRAS KRAS Proto-Oncogene, GTPase 

MAPK1 Mitogen-Activated Protein Kinase 1 

MAPK8 Mitogen-Activated Protein Kinase 8 

MAP2K1 Mitogen-Activated Protein Kinase Kinase 1 

MAP2K2 Mitogen-Activated Protein Kinase Kinase 1 

MAP3K4 Mitogen-Activated Protein Kinase Kinase Kinase 4 

MDM2 MDM2 Proto-Oncogene 

MEK1 cf. MAP2K1 

MEK2 cf. MAP2K2 

MITF Melanocyte Inducing Transcription Factor 

MLL3 cf. KMT2C 

MYH10 Myosin Heavy Chain 10 

NRAS NRAS Proto-Oncogene, GTPase 

PIK3CA Phosphatidylinositol-4,5-Bisphosphate 3-Kinase Catalytic 

Subunit Alpha 

PI3K Phosphatidylinositol 3-kinase (composed of a regulatory and a 

catalytic subunit) 

PTEN Phosphatase And Tensin Homolog 

RAF Raf kinases, a family of three serine/threonine kinases (ARAF, 

BRAF and RAF1) 

RB1 RB Transcriptional Corepressor 1 

RHOA Ras Homolog Family Member A 
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SOS1 SOS Ras/Rac Guanine Nucleotide Exchange Factor 1 

THRAP3 Thyroid Hormone Receptor Associated Protein 3 

TOP1 DNA Topoisomerase I 

TP53 Tumor Protein P53 
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2. Supplementary Tables 

 

Table S1: Mutation-mutation interactions (cf. Chapter 3.2). Synth. lethal: synthetic 

lethal. 

Drug name (ID) Target Model Synth. 

lethal 

Crizotinib MET, ALK KALRN*NSD1  

Doxorubicin DNA intercalating KRAS*PIK3CB yes 

Doxorubicin DNA intercalating BRCA2*RAD21  

Gemcitabine DNA replication CREBBP*FGFR2  

Obatoclax Mesylate BCL-2, BCL-XL, MCL-1 CHEK2*EGFR  

CAL-101 PI3K delta APC*SUZ12 yes 

YM155 BIRC5 (Survivin) BMPR2*FLT3 yes 

YM155 BIRC5 (Survivin) AKAP9*MECOM yes 

PHA-793887 CDK-pan ACVR1B*THRAP3  

PI-103 PI3K alpha,DNAPK EP300*NOTCH2 yes 

PIK-93 PI4K,PI3K BRAF*MYH10 yes 

SNX-2112 HSP90 NF1*SPTAN1  

SNX-2112 HSP90 SUZ12*TP53  

Cytarabine DNA synthesis CREBBP*TP53  

Cytarabine DNA synthesis BMPR2*RAD21  

Cytarabine DNA synthesis KRAS*MAP3K4 yes 

Gefitinib EGFR EGFR*FLT3  

Gefitinib EGFR ARID1A*EGFR  

Gefitinib EGFR DICER1*EGFR  

Nilotinib ABL CTNNB1*MAP4K3 yes 

Nilotinib ABL HSP90AB1*MLL yes 

Nilotinib ABL FN1*MAP4K3 yes 

Temsirolimus mTOR ATRX*PTEN  

Bosutinib SRC, ABL, TEC ARID1A*EGFR  

Bosutinib SRC, ABL, TEC EGFR*MYH9  

Afatinib (1032) ERBB2, EGFR ARID1A*EGFR  

Nutlin-3a (-) MDM2 CSNK1G3*TP53  

Nutlin-3a (-) MDM2 CTNNB1*PIK3CA yes 

Nutlin-3a (-) MDM2 MYH11*TSC1  

MK-2206 AKT1, AKT2 MLL*SMAD4 yes 

MK-2206 AKT1, AKT2 BMPR2*KALRN  

BMS-536924 (1091) IGF1R AKAP9*MLL3  

BMS-536924 (1091) IGF1R CREBBP*TAOK2  

TW 37 BCL-2, BCL-XL ATR*FAM123B yes 

TW 37 BCL-2, BCL-XL CDC73*TRIO  

Tamoxifen ER APC*KALRN  
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UNC0638 (1236) G9a(EHMT2), GLP(EHMT1) CHD9*MYD88  

UNC0638 (1236) G9a(EHMT2), GLP(EHMT1) ATM*PTPRU  

UNC0638 (1236) G9a(EHMT2), GLP(EHMT1) CREBBP*MYD88  

PLX4720 (1371) BRAF BRAF*TP53  

Trametinib MEK1, MEK2 ATR*BRCA2  

Bleomycin (50 uM) DNA damage CREBBP*FGFR2  

Bleomycin (50 uM) DNA damage PIK3R1*SETDB1  

SN-38 TOP1 RASA1*TRIO  

SN-38 TOP1 CREBBP*FGFR2  

SN-38 TOP1 ATM*BMPR2  
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