
OPTIMAL STATISTICAL DESIGNS OF MUL TfVARIATE EWMA AND 
MULTIVARIATE CUSUM CHARTS BASED ON AVERAGE RUN LENGTH 

AND MEDIAN RUN LENGTH 

by 

LEEMING HA 

Thesis submitted in fulfilment of the 
requirements for the degree 

of Doctor of Philosophy 

November 2006 



784618 
rb_ 

0 f TSl!S6 
l-4-11 
)OOb 

. . . .... . 



ACKNOWLEDGEMENTS 

First and foremost, I would like to take this opportunity to thank my supervisor, Dr. 

Michael Khoo Boon Chong for his valuable assistance, patience and comments 

throughout the completion of this thesis. I would also like to take this opportunity to 

express my thanks to the Dean of the School of Mathematical Sciences, Universiti 

Sains Malaysia, Associate Professor Dr. Ahmad lzani Md. Ismail, his deputies Mr. 

Safian Uda and Dr. Adli Mustafa, lecturers and staffs of the department for their advice 

. and support as well as those who have contributed to the implementation and 

completion of this study. 

I am very grateful to the USM librarians for all the assistance that they have 

rendered me in finding the required materials for this study. With their help, I have 

managed to use the library's resources and facilities effectively which enabled me to 

search for information related to this study electronically via the online database. I also 

wish to express my appreciation and gratitude to the staffs of the Institute of 

Postgraduate Studies for their help and guidance throughout my study in USM. 

I am indebted to my family for providing me with the opportunity to further my 

study. Special thanks to my father Mr. Lee Hock Yeo who has always respected and 

supported me in whatever decisions that I made. I would like to thank my cousin Ms. 

Lee See Ha who is also studying in USM for her support during my study. 

I also wish to extend my thanks to all of my friends, especially Ms. Ang Siew 

Wei, Ms. Yap Ping Wei and. Ms. Chua Cui King for their helpful suggestion and 

encouragement. But above all, I would like to thank God for all of his help. 

ii 



TABLE OF CONTENTS 

ACKNOWLEDGEMENTS 

TABLE OF CONTENTS 

LIST OF TABLES 

LIST OF FIGURES 

LIST OF APPENDICES 

LIST OF PUBLICATIONS 

ABSTRAK 

ABSTRACT 

CHAPTER 1 : INTRODUCTION 

1 .1 Control Charts 

1. 2 Basic Control Chart Principles 

1.3 Multivariate Quality Control Charts 

1.4 Objectives of the Thesis 

1.5 Methodologies and Organization of the Thesis 

CHAPTER 2 : SOME PRELIMINARIES AND REVIEW OF 

MULTIVARIATE EWMA AND MULTIVARIATE 

CUSUM CHARTS 

2.1 The Multivariate Normal Distribution 

2.2 The Multivariate EWMA Chart 

2.3 The Multivariate CUSUM Chart 

2.4 The Directional lnvariance Property of Multivariate EWMA and 

Multivariate CUSUM Charts 

2.5 Measures of Performance Evaluation of Control Charts 

2.5.1 Average Run Length (ARL) 

2.5.2 Median Run Length (MRL) 

2.5.3 Percentiles of Run Length Distribution 

iii 

Page 

ii 

iii 

vii 

X 

XV 

xvii 

xviii 

XX 

1 

2 

3 

4 

6 

8 

10 

13 

15 

18 

18 

18 

18 



CHAPTER 3 : MARKOV CHAIN APPROACH FOR MULTIVARIATE 

EWMA AND MULTIVARIATE CUSUM CHARTS 

BASED ON AVERAGE RUN LENGTH 

3.1 Introduction 

3.2 The Basic Theory of Markov Chain Approach for Evaluating 

the Average Run Length 

21 

23 

3.3 A One-dimensional Markov Chain Approach for the In-control 26 

Case of Multivariate EWMA Chart based on Average Run 

Length 

3.4 A Proposed One-dimensional Markov Chain Approach for the 32 

In-control Case of Muitivariate CUSUM Chart based on 

Average Run Length 

3.5 A Two-dimensional Markov Chain Approach for the Out-of­

control Case of Multivariate EWMA Chart based on Average 

Run Length 

CHAPTER 4 : A PROPOSED MARKOV CHAIN APPROACH FOR 

MULTIVARIATE EWMA AND MULTIVARIATE 

CUSUM CHARTS BASED ON MEDIAN RUN 

LENGTH 

4.1 Introduction 

4.2 The Basic Theory of Markov Chain Approach for Evaluating 

the Probability of Run length 

4.3 A Proposed Markov Chain Approach for Evaluating the Run 

Length Performance of Multivariate EWMA and Multivariate 

CUSUM Charts 

4.4 The Effect of the Number of States on the Markov Chain 

Analysis 

CHAPTER 5 : PROGRAM DESCRIPTION AND OPERATION 

5.1 Introduction 

5.2 The Markov Chain Approach and the Simulation Methoo 

iv 

35 

43 

43 

45 

50 

61 

62 



CHAPTER 6 : PROPOSED OPTIMAL STATISTICAL DESIGNS OF 

MULTIVARIATE EWMA AND MULTIVARIATE 

CUSUM CHARTS 

6.1 Introduction 

6.2 Statistical Design of Control Charts 

6.3 A Proposed Optimal Statistical Design of the Multivariate 

EWMA Chart 

6.3.1 A Numerical Example to Illustrate the Construction of 

Plots for the Optimal Design of the Multivariate EWMA 

Chart based on Average Run Length 

6.3.2 A Numerical Example to Illustrate the Construction of 

Plots for the Optimal Design of the Multivariate EWMA 

Chart based on Median Run Length 

6.4 A Proposed Optimal Statistical Design of the Multivariate 

CUSUM Chart 

63 

66 

69 

72 

75 

78 

6.4.1 A Numerical Example to Illustrate the Construction of 80 

Plots for the Optimal Design of the Multivariate CUSUM 

Chart based on Average Run Length 

6.4.2 A Numerical Example to Illustrate the Construction of 81 

Plots for the Optimal Design of the Multivariate CUSUM 

Chart based on Median Run Length 

CHAPTER 7 : A PROPOSED GRAPHICAL METHOD FOR 

OPTIMAL DESIGNS OF MUL nVARIATE EWMA 

AND MUL TtV ARIA TE CUSUM CHARTS 

7.1 Introduction 86 

7.2 A Proposed Graphical Method for the Multivariate EWMA Chart 86 

7 .2.1 An Illustrative Example for the Optimal Design of the 90 

Multivariate EWMA Chart based on Average Run Length 

7.2.2 An Illustrative Example for the Optimal Design of the 94 

Multivariate EWMA Chart based on Median Run Length 

7.3 A Proposed Graphical Method for the Multivariate CUSUM 

Chart 

v 

99 



7.3.1 An Illustrative Example for the Optimal Design of the 

Multivariate CUSUM Chart based on Average Run 

Length 

7.3.2 An Illustrative Example for the Optimal Design of the 

Multivariate CUSUM Chart based on Median Run 

Length 

CHAPTER 8 : CONCLUSION 

8.1 Introduction 

8.2 Summary 

8.3 Suggestions for Further Research 

BIBLIOGRAPHY 

APPENDICES 

101 

103 

106 

107 

108 

112 

Appendix A Noncentral Chi-square Distribution 119 

Appendix B Program Description 123 

Appendix C Computer Programs 136 

Appendix D Graphs of the Optimal Chart Parameters of Multivariate 158 

EWMA and Multivariate CUSUM Charts 

vi 



LIST OF TABLES 

Page 

Table4.1 A comparison of the in-control ARLs of the MEWMA chart 55 
for r = O.I and 0.5, computed using the Markov chain 
approach with m = 100, 200, 300 and the simulation 
method with I 00,000 repetitions for p = 2 and I 0 

Table4.2 A comparison of the in-control ARLs of the MCUSUM chart 56 
for k = O.I and 1.0, computed using the Markov chain 
approach with m = 100, 200, 300 and the simulation 
method with 100,000 repetitions for p = 2 and 10 

Table 4.3 A comparison of the out-of-control ARLs of the MEWMA 56 
chart for r = 0.1 computed using the Markov chain 
approach with m = 5, I5, 25 and the simulation method 
with IOO,OOO repetitions for in-control ARLs of 100 and 370 
for p = 2 and I 0, respectively 

Table 4.4 A comparison of the in-control percentiles of the run length 57 
distribution of the MEWMA chart using the exact method of 
the Markov chain approach with m = 100, 200, 300, the 
approximation method of the Markov chain approach with 
m = 100, 200, 300 and the simulation method with 100,000 
repetitions for the in-control ARL of 500, r = 0.1, and p = 2 
and IO 

Table4.5 A comparison of the in-control percentiles of the run length 57 
distribution of the MCUSUM chart using the exact method 
of the Markov chain approach with m = 100, 200, 300, the 
approximation method of the Markov chain approach with 
m = 100,200, 300 and the simulation method with 100,000 
repetitions for the in-control ARL of 500, k = 0.1, and p = 2 
and 10 

Table4.6 A comparison of the 5th percentiles of the run length 58 
distribution of the MEWMA chart computed using the exact 
method of the Markov chain approach with m = 5, 10, 15, 
the approximation method of the Markov chain approach 
with m = 5, 10, 15 and the simulation method with 100,000 
repetitions for the in-control MRL of 100, r = 0 .1, p = 2 and 
10, and for various sizes of shifts o 

Table 4.7 A comparison of the I Oth percentiles of the run length 58 
distribution of the MEWMA chart computed using the exact 
method of the Markov chain approach with m = 5, 10, 15, 
the approximation method of the Markov chain approach 
with m = 5, 10, 15 and the simulation method with 100,000 
repetitions for the in-control MRL of 100, r = 0 .1, p = 2 and 
I o. and for various sizes of shifts o 

vii 



Table 4.8 A comparison of the 25th percentiles of the run length 59 
distribution of the MEWMA chart computed using the exact 
method of the Markov chain approach with m = 5, 10, 15, 
the approximation method of the Markov chain approach 
with m = 5, 10, 15 and the simulation method with 100,000 
repetitions for the in-control MRL of 100, r = 0.1, p = 2 and 
10, and for various sizes of shifts o 

Table4.9 A comparison of the MRLs {i.e., the 50th percentiles of the 59 
run length distribution) of the MEWMA chart computed 
using the exact method of the Markov chain approach with 
m = 5, 10, 15, the approximation method of the Markov 
chain approach with m = 5, 10, 15 and the simulation 
method with 100,000 repetitions for the in-control MRL of 
I 00, r = 0.1, p = 2 and 10, and for various sizes of shifts o 

Table4.10 A comparison of the 75th percentiles of the run length 60 
distribution of the MEWMA chart computed using the exact 
method of the Markov chain approach with m = 5, 10, 15, 
the approximation method of the Markov chain approach 
with m = 5, 10, 15 and the simulation method with 100,000 
repetitions for the in-control MRL of 100, r = 0.1, p = 2 and 
10, and for various ·sizes of shifts o 

Table 6.1(a) ARLs of the MEWMA schemes for p = 2, in-control ARL of 73 
100 with r in the range of 0.01 and 0.4 for shifts of o = 0.05, 
0.25 and 0.5 

Table 6.1(b) ARLs CJf the MEWMA schemes for p = 2, in-control ARL of 73 
100 with r in the range of 0.1 and 1 for shifts of o = 1, 1.5, 
2, 2.5 and 3 

Table6.2 Chart parameters for the MEWMA schemes and the 74 
corresponding ARL values based on a selected interval of r 
for p = 2 and in-control ARL of 100 for various sizes of 
shifts, o 

Table 6.3 The optimal chart parameters, r of the MEWMA schemes 74 
and the corresponding minimum ARL (ARLm.,) for p = 2, in-
control ARL of I 00, and various sizes of shifts, o 

Table 6.4 MRLs of the MEWMA schemes for p = 3 and in-control 76 
MRL of 100 for various sizes of shifts, o 

Table 6.5 Chart parameters for the MEWMA schemes and the 77 
corresponding MRL values based on a selected inverval of 
r with p = 3 and in-control MRL of 100 for various sizes of 
shifts, o 

viii 



Table 6.6 The optimal chart parameters, r for the MEWMA schemes 77 
and the corresponding minimum MRL (MRLmm) for p = 3, 
in-control MRL of 100, and various sizes of shifts, o 

Table 6.7(a) MRLs of the MCUSUM schemes for p = 4 and in-control 83 
MRL of 370 with kin the range of 0.1 and 1 for various 
sizes of shifts, o 

Table 6.7(b) MRLs of the MCUSUM schemes for p = 4 and in-control 83 
MRL of 370 with k in the range of 1.1 and 3 for various 
sizes of shifts, o 

Table 6.8 Chart parameters for the MCUSUM schemes and the 84 
corresponding MRL values based on a selected interval of 
k for p = 4 and in-control MRL of 3 70 for various sizes of 
shifts, o 

Table6.9 The optimal chart parameter, k for the MCUSUM scheme 85 
and the corresponding minimum MRL (MRL.rmn) for p = 4, 
in-control MRL of 3 70, and various sizes of shifts, o 

Table 7.1 Example of Sullivan and Woodall (1996) using the bivariate 91 
individual observations data (in percentage) from Holmes 
and Mergen (1993) 

Table 7.2 Sensitivity analysis: Values of r and H for in-control ARL of 93 
3 70 and values of out-of-control ARLs with p = 2 

Table 7.3 An example from Hawkins ( 1991) which is taken from Flury 96 
and Riedwyl {1988) that deals with the five dimensions of 
switch drums 

Table 7.4 Sensitivity analysis: Values of r and H for in-control MRL of 98 
200 and values of out-of-control MRLs with p = 5 

Table 7.5 Sensitivity analysis: Values of k and H for in-control ARL of 102 
370 and values of out-of-control ARls with p = 2 

Table 7.6 Sensitivity analysis: Values of k and H for in-control MRL of 105 
200 and values of out-of-control MRLs with p = 5 

ix 



LIST OF FIGURES 

Page 

Figure 3.1 A two-dimensional illustration of the partitioning of the 28 
control region of a MEWMA chart. The on-target distribution 
of a MEWMA chart is approximated by using a one-
dimensional Markov chain with concentric, spherical rings as 
states. Adapted from Runger and Prabhu (1996) 

Figure 3.2 A two-dimensional control region illustrating the subinterval, 29 
ig = 2g, given by the shaded region and the middle value of 
this subinterval, shown by the circle represented by the 
dotted points 

Figure 3.3 The noncentral chi-square density function, f(r}(p,c)), 31 
where the area under the curve represents the transition 
probabilities p(i,j), from sate ito state j, for j = 0, 1, 2, ... , m 
+ 1 for the one-dimensional Markov chain 

Figure 3.4 States in the Markov chain used for the off-target distribution 36 
of a MEWMA chart. A MEWMA of arbitrary dimension is 
approximated as a two-dimensional Markov chain with the 
states shown. Adapted from Runger and Prabhu (1996) . 

Figure 3.5 An illustration of a transient state of the two-dimensional 38 
Markov chain used for the off-target distribution of a 
MEWMAchart 

Figure 0.1 Optimal chart parameter r's for p = 2 with in-control ARLs of 158 
100, 200, 370, 500 and 1000 

Figure 0.2 Optimal chart parameter r's for p = 3 with in-control ARLs of 159 
100, 200, 370, 500 and 1000 

Figure 0.3 Optimal chart parameter r's for p = 4 with in-control ARLs of 159 
100, 200, 370, 500 and 1000 

Figure 0.4 Optimal chart parameter r's for p = 5 with in-control ARLs of 160 
100, 200, 370, 500 and 1000 

Figure 0.5 Optimal chart parameter r's for p = 8 with in-control ARLs of 160 
100, 200, 370, 500 and 1000 

Figure 0.6 Optimal chart parameter r's for p = 10 with in-control ARLs 161 
of 100, 200, 370, 500 and 1000 

Figure 0.7 Combinations of r and H for p = 2 with in-control ARLs of 162 
100, 200, 370, 500 and 1000 

Figure 0.8 Combinations of r and H for p = 3 with in-control ARLs of 163 

100, 200, 370, 500 and 1000 

X 



Figure 0.9 Combinations of rand H for p = 4 with in-control ARLs of 163 

100, 200, 370, 500 and 1000 

Figure 0.10 Combinations of rand H for p = 5 with in-control ARLs of 164 

100, 200, 370, 500 and 1000 

Figure 0.11 Combinations of rand H for p = 8 with in-control ARLs of 164 

100,200,370, 500 and 1000 

Figure0.12 Combinations of rand H for p = 10 with in-control ARLs of 165 

100, 200, 370, 500 and 1000 

Figure 0.13 Optimal chart parameter rs for p = 2 with in-control MRLs of 166 

100, 200, 370, 500 and 1000 

Figure 0.14 Optimal chart parameter rs for p = 3 with in-control MRLs of 167 

I 00, 200, 370, 500 and 1000 

Figure 0.15 Optimal chart parameter r' s for p = 4 with in-control MRLs of 167 

100, 200, 370, 500 and 1000 

Figure 0.16 Optimal chart parameter r's for p = 5 with in-control MRLs of 168 

100, 200, 370, 500 and 1000 

Figure 0.17 Optimal chart parameter r's for p = 8 with in-control MRLs of 168 

100, 200, 370, 500 and 1000 

Figure 0.18 Optimal chart parameter rs for p = 10 with in-control MRLs 169 

of 100, 200, 370, 500 and 1000 

Figure 0.19 Combinations of rand H for p = 2 with in-control MRLs of 170 

100, 200, 370, 500 and 1000 

Figure 0.20 Combinations of rand H for p = 3 with in-control MRLs of 171 
100,200,370, 50o·and 1000 

Figure 0.21 Combinations of rand H for p = 4 with in-control MRLs of 171 

I 00, 200, 370, 500 and 1000 

Figure 0.22 Combinations of rand H for p = 5 with in-control MRLs of 172 
100,200, 370,500 and 1000 

Figure 0.23 Combinations of rand H for p = 8 with in-control MRLs of 172 
100, 200, 370, 500 and 1000 

Figure 0.24 Combinations of rand H for p = 10 with in-control MRLs of 173 
100, 200, 370, 500 and 1000 

Figure 0.25(a) Combinations of k and H for p = 2 with in-control ARLs of 174 
100, 200, 370, 500 and 1000 (0.025 ~ k ~ 0.5) 

xi 



Figure 0.25(b) Combinations of k and H for p = 2 with in-control ARLs of 175 

100, 200, 370, 500 and 1000 (0.5 $ k $ 1.5) 

Figure 0.26(a) Combinations of k and H for p = 3 with in-control ARLs of 175 

100, 200, 370, 500 and 1000 (0.025 $ k $ 0.5) 

Figure D.26(b) Combinations of k and H for p = 3 with in-control ARLs of 176 

100, 200, 370, 500 and 1000 (0.5 $ k $1.5) 

Figure D.27(a) Combinations of k and H for p = 4 with in-control ARLs of 176 

100, 200, 370, 500 and 1000 (0.025 $ k S 0.5) 

Figure 0.27(b) Combinations of k and H for p = 4 with in-control ARLs of 177 

100,200,370,500 and 1000 (0.5 S k S 1.5) 

Figure 0.28(a) Combinations of k and H for p = 5 with in-control ARLs of 177 

100, 200, 370, 500 and 1000 (0.025 $ k S 0.5) 

Figure 0.28(b) Combinations of k and H for p = 5 with in-control ARLs of 178 

100, 200, 370, 500 and 1000 (0.5 S k $ 1.5) 

Figure D.29(a) Combinations of k and H for p = 8 with in-control ARLs of 178 

100, 200, 370, 500 and 1000 (0.025 $ k s 0.5) 

Figure 0.29(b) Combinations of k and H tor p = 8 with in-control ARLs of 179 

100, 200, 370, 500 and 1000 (0.5 S k $ 1.5) 

Figure D.30(a) Combinations of k and H for p = 10 with in-control ARLs of 179 

lGO, 200, 370, 500 and 1000 (0.025 s k ~ 0.5) 

Figure D.30(b) Combinations of k and H for p = 10 with in-control ARLs of 180 

100,200, 370, 500 and 1000 (0.5 $ k s 1.5) 

Figure D.31(a) Optimal chart parameter ~s for p = 2 with in-control MRLs of 181 

100, 200, 370, 500 and 1000 (0.05 $ o s 0. 7) 

Figure 0.31(b) Optimal chart parameter Its for p = 2 with in-control MRLs of 182 

100,200, 370, 500 and 1000 (0.7 $ o $1.4) 

Figure 0.31(c) Optimal chart parameter f(s for p = 2 with in-control MRLs of 182 

100,200,370, 500 and 1000 (1.4 So$ 2) 

Figure 0.32{a) Optimal chart parameter f(s for p = 3 with in-control MRLs of 183 

100,200, 370, 500 and 1000 (0.05 so s 0.7) 

Figure 0.32(b) Optimal chart parameter I( s for p = 3 with in-control MRLs of 183 

100,200, 370,' 500 and 1000 (0.7 $ o s 1.4) 

Figure D.32(c) Optimal chart parameter k's for p = 3 with in-control MRLs of 184 

100,200, 370, 500 and 1000 (1.4 $ o s 2) 

xii 



Figure 0.33(a) Optimal chart parameter /Cs for p = 4 with in-control MRLs of 184 

100, 200, 370, 500 and 1000 (0.05 5 ~ 5 0.9) 

Figure 0.33(b) Optimal chart parameter /Cs for p = 4 with in-control MRLs of 185 

100,200,370, 500 and 1000 (0.9 so s 1.8) 

Figure 0.33(c) Optimal chart parameter /Cs for p = 4 with in-control MRLs of 185 

100,200,370,500 and 1000 (1.8 so 5 2.5) 

Figure 0.34(a) Optimal chart parameter /Cs for p = 5 with in-control MRLs of 186 

100,200,370, 500 and 1000 (0.05 5o 51) 

Figure D .34(b) Optimal chart parameter /Cs for p = 5 with in-control MRLs of 186 

100, 200, 370, 500 and 1000 (1 ::; o s 2) 

Figure 0.34(c) Optimal chart parameter Its for p = 5 with in-control MRLs of 187 

100,200, 370, 500 and 1000 (2 5 ~ s 3) 

Figure D.35(a) Optimal chart parameter Its for p = 8 with in-control MRLs of 187 
100, 200,370, 500 and 1000 (0.05::; o 51) 

Figure D.35(b) Optimal chart parameter Its for p = 8 with in-control MRLs of 188 
100,200,370, 500 and 1000 (1::; o s 2) 

Figure 0.35(c) Optimal chart parameter IC s for p = 8 with in-control MRLs of 188 

100, 200, 370, 500 and 1000 (2 so S 3) 

Figure 0.36(a) Optimal chart parameter Its for p = 10 with in-control MRLs 189 
of 100,200,370, 500 and 1000 (0.05 so s 1) 

Figure 0.36(b) Optimal chart parameter Its for p =to with in-control MRLs 189 
of 100,200,370, 500 and 1000 (1 ::; 8::; 2) 

Figure 0.36(c) Optimal chart parameter /Cs for p = 10 with in-control MRLs 190 
of 100, 200, 370, 500 and 1000 (2::; ~::; 3) 

Figure D.37(a) Combinations of lc and H for p = 2 with in-control MRLs of 191 
100, 200, 370, 500 and 1000 (0.05 s k s 0.~) 

Figure 0.37(b) Combinations of k and H for p = 2 with in-control MRLs of 192 
100, 200, 370, 500 and 1000 (0.5::; k '5: 1.5) 

Figure 0.37(c) Combinations of k and H for p = 2 with in-control MRLs of 192 
100,200, 370, 500 and 1000 (1.5 s k '5: 3) 

Figure 0.38(a) Combinations of k and H for p = 3 with in-control MRLs of 193 
100, 200, 370, 500 and 1000 (0.05 ::; k 5 0.5) 

Figure D.38(b) Combinations of lc and H for p = 3 with in-control MRLs of 193 
100, 200, 370, 500 and 1000 (0.5 s k '5: 1.5) 

xiii 



Figure 0.38(c) Combinations of k and H for p = 3 with in-control MRLs of 194 

100, 200, 370, 500 and I 000 ( 1.5 ~ k ~ 3) 

Figure 0.39(a) Combinations of k and H for p = 4 with in-control MRLs of 194 

100, 200, 370, 500 and 1000 (0.05 ~ k ~ 0.5) 

Figure 0.39(b) Combinations of k and H for p = 4 with in-control MRLs of 195 

100, 200, 370, 500 and 1000 (0.5 ~ k ~ 1.5) 

Figure 0.39(c) Combinations of k and H for p = 4 with in-control MRLs of 195 

100,200,370,500 and 1000 (1.5 ~ k ~ 3) 

Figure 0.40(a) Combinations of k and H for p = 5 with in-control MRLs of 196 

100, 200, 370, 500 and 1000 (0.05 ~ k ~ 0.5) 

Figure 0.40(b) Combinations of k and H for p = 5 with in-control MRLs of 196 

100, 200, 370, 500 and 1000 (0.5 ~ k ~ 1.5) 

Figure 0.40(c) Combinations of k and H for p = 5 with in-control MRLs of 197 

100,200,370, 500 and 1000 (1.5 ~ k~ 3) 

Figure 0.41(a) Combinations of k and H for p = 8 with in-control MRLs of 197 

100, 200, 370, 500 and 1000 (0.1 ~ k s; 0.5) 

Figure 0.41 (b) Combinations of k and H for p = 8 with in-control MRLs of 198 

100, 200, 370, 500 and 1000 (0.5 ~ k ~ 1.5) 

Figure 0.41{c) Combinations of k and H for p = 8 with in-control MRLs of 198 

100,200, 370, 500 and 1000 (1.5 ~ k ~ 3) 

Figure 0.42(a) Combinations of k and H for p = 10 with in-control MRLs of 199 

100, 200, 370, 500 and I 000 (0.1 ~ k ~ 0.5) 

Figure 0.42(b) Combinations of k and H for p = I 0 with in-control MRLs of . 199 

100, 200, 370, 500 and 1000 (0.5 ~ k 5: 1.5) 

Figure 0.42(c) Combinations of k and H for p = 10 with in-control MRLs of 200 

100, 200,370, 500 and 1000 (1.5 ~ k ~ 3) 

xiv 



LIST OF APPENDICES 

Page 

A.1 Definition of the noncentral chi-square distribution 119 

A.2 Proofs to show that z,_I = igU and that IIXt + ( 1-r)igUirll
2 120 

follows a noncentraf chi-square distribution, for the multivariate 
EWMAchart 

A.3 Proofs to show that Sr-I= igV and that IIXt + igUII2 
follows a 121 

noncentral chi-square distribution, for the multivariate CUSUM 
chart 

8.1 Program description for the Markov chain approach 123 

8.2 Program description for the simulation method 132 

C.1 A program to compute the in-control ARL (or to determine the 136 
control limit H) of a multivariate EWMA chart using the Markov 
chain approach 

C.2 A program to compute the out-of-control ARL of a multivariate 137 
EWMA chart using the Markov chain approach 

C.3 A program to determine the control limit H for the in-control 139 
MRL or percentiles of the run length distribution of a 
multivariate EWMA chart using the Markov chain Approach 

C.4 A program to compute the in-control MRL or percentiles of the 140 
run length distribution of a multivariate EWMA chart using the 
Markov chain approach 

c.s A program to compute the out-of-control MRL or percentiles of 141 
the run length distribution of a multivariate EWMA chart using 
the Markov chain approach 

C.6 A program to compute the out-of-control MRL or percentiles of 143 
the run length distribution of a multivariate EWMA chart using 
the approximation method of the Markov chain approach 

C.7 A program to compute the in-control ARL (or to determine the 146 
control limit H) of a multivariate CUSUM chart using the 
Markov chain approach 

c.a A program to compute the out-of-control ARL of a multivariate 147 
CUSUM chart using the simulation method 

C.9 A program to determine the control limit H for the in-control 148 
MRL or percentiles of the run length distribution of a 
multivariate CUCUM chart using the Markov chain approach 

XV 



C.10 A program to compute the in-control MRL or percentiJes of the 149 
run length distribution of a multivariate CUSUM chart using the 
Markov chain approach 

C.11 A program to compute the out-of-control MRL or percentiles of 150 
the run length distribution of a multivariate CUSUM chart using 
the simulation method 

C.12 A program to compute the sample mean vector and sample 151 
covariance matrix (in correlation form) of the examples in 
Sections 7.2.1 and 7.3.1 

C.13 A program to compute the square root of the noncentrality 152 
parameter, o for a given sample mean vector and sample 
covariance matrix 

C.14 A program to compute the in-control and out-of-control ARLs 153 
(or to determine the control limit H) for the MEWMA chart using 
the simulation method 

C.15 A program to compute the in-control MRL, out-of-control MRL 154 
and percentiles of the run length distribution for the MEWMA 
chart using the simulation method 

C.16 A program to compute the in-control MRL or percentiles of the 155 
run length distribution for a multivariate EWMA chart using the 
approximation method of the Markov chain approach 

C.17 A program to compute the in-control MRL or percentiles of the 156 
run length distribution for a multivariate CUSUM chart using the 
approximation method of the Markov chain approach 

0.1 The optimal smoothing constant r of a multivariate EWMA 158 
chart based on average run length 

0.2 The smoothing constant rand corresponding control limit H of 162 
a multivariate EWMA chart based on average run length 

0.3 The optimal smoothing constant r of a multivariate EWMA 166 
chart based on median run length 

0.4 The smoothing constant rand corresponding control limit H of 170 
a multivariate EWMA chart based on median run length 

0.5 The reference value k and corresponding control limit H of a 174 
multivariate CUSUM chart based on average run length 

0.6 The optimal reference value k of a multivariate CUSUM chart 181 
based on median run length 

0.7 The reference value k and corresponding control limit H of a 191 
multivariate CUSUM chart based on median run length 

xvi 



LIST OF PUBLICATIONS 

1. Lee, M.H. and Khoo, M.B.C. (2006). Optimal Statistical Design of a Multivariate 
EWMA Chart based on ARL and MRL Communications in Statistics -
Simulation and Computation 35(3), 831-847. 

2. Lee, M.H. and Khoo, M.B.C. (2006). Optimal Statistical Design of a Multivariate 
CUSUM Chart based on ARL and MRL. /ntemational Joumal of Reliability, 
Quality and Safety Engineering 13(5). 

xvii 



REKABENTUK BERSTATISTIK OPTIMA BAGI CARTA-CARTA EWMA 
MUL TIV ARIAT DAN CUSUM MUL TIVARIAT BERDASARKAN PURATA 

PANJANG LARIAN DAN MEDIAN PANJANG LARIAN 

ABSTRAK 

Carta kawalan multivariat ialah alat yang berkuasa dalam kawalan proses yang 

melibatkan kawalan serentak beberapa cirian kualiti yang berkorelasi. Carta-carta 

multivariat hasil tambah longgokan {MCUSUM) dan multivariat purata bergerak 

berpemberat eksponen (MEWMA) sentiasa dicadangkan dalam kawalan proses 

apabila pengesanan cepat anjakan tetap yang keciJ atau sederhana dalam vektor min 

adalah diingini. Tesis ini memperkembangkan suatu kaedah grafik untuk menentukan 

pilihan optima parameter carta MEWMA and MCUSUM bagi pengesanan cepat suatu 

saiz anjakan yang diingini. Carta-carta kawalan ini adalah direka bentuk secara 

berstatistik dan kaedah yang digunakan adalah berdasarkan pendekatan am yang 

hanya tersedia ada untuk carta-carta univariat EWMA dan CUSUM. Prestasi carta-

carta kawalan adalah diukur dengan purata panjang larian (ARL) yang diperoleh 

dengan menggunakan pendekatan rantai Markov atau kaedah simulasi Reka bentuk 

berdasarkan median panjang larian (MRL) juga diberikan memandangkan MRL adalah 

lebih bermakna sebagai ukuran pemusatan berkenaan dengan taburan panjang farian 

yang sangat terpencong. Reka bentuk berdasarkan MRL dijafankan dengan 

menggunakan pendekatan rantai Markov atau kaedah simufasi. Sefain memberikan 

pendekatan grafik untuk mempermudahkan prosedur sedia ada dafam reka bentuk 

carta-carta optima MEWMA dan MCUSUM yang berdasarkan terutamanya pada ARL, 

tesis ini memperkenalkan strategi reka bentuk optima dua carta tersebut dengan 

menggunakan MRL, yang hanya tersedia ada untuk carta-carta univariat EWMA dan 

CUSUM sahaja. Setiap skema reka bentuk adalah berdasarkan pada aspek taburan 

panjang larian yang diperoleh dengan menggunakan cerapan-cerapan tak bersandar 

daripada taburan normal multivariat. Bifangan cirian kualiti yang dipertimbangkan ialah 

p = 2, 3, 4, 5, 8 dan 10. Prosedur untuk reka bentuk optima carta-carta MEWMA dan 
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1.1 Control Charts 

CHAPTER 1 
INTRODUCTION 

One of the most powerful tools that has been used extensively in quality 

improvement work is a control chart. The general idea of a control chart was sketched 

out in a memorandum that Walter Shewhart of Bell Laboratory wrote on May 16, 1924 

(Montgomery, 2005). The control chart found widespread use during World War II and 

has been employed, with various enhancements and modifications, ever since. The 

construction of a control chart is based on statistical principles. Specifically, the charts 

are based upon some of the statistical distributions. When used in conjunction with a 

manufacturing process (or a non-manufacturing process), a control chart can indicate 

when a process is out-of-control. Ideally, we would want to detect such a situation as 

soon as possible after its occurrence. Conversely, we would like to have as few false 

alarms as possible. 

While the bulk of the literature on control charts deal with a single measurement 

on the process, methods are available which may be employed when two or more 

characteristics are measured at the same time on a process. Shewhart also recognized 

this problem but a great deal of what will be discussed is due to the work by Harold 

Hotelling in the 1930s and 1940s. These techniques include his r -procedure and its 

extensions to multivariate generalizations of control chartS for means and standard 

deviations or ranges (Jackson, 1985). 

Recent papers dealing with multivariate control procedures include the works of 

Villalobos et al. (2005), Yang and Rahim (2005), Zhou et al. (2005), Bodecchi et al. 

(2005), Champ et al. (200'i), Marengo et al. (2006), Aparisi et al. {2006); and Testik 

and Runger (2006). 



1.2 Basic Control Chart Principles 

A control chart is a graphical display of a quality characteristic that has been 

measured or computed from a sample versus the sample number or time. The chart 

contains a centre line that represents the average value of the quality characteristic 

corresponding to the in-control state. Two other horizontal lines are the upper control 

limit and the lower control limit. These control limits are chosen so that if the process is 

in-control, nearly all of the sample points will fall between them. As long as the points 

plot within the control limits, the process is assumed to be in control and no action is 

necessary. However, a point that plots outside cf the control limits is interpreted as 

evidence that the process is out-of-control, hence investigation and corrective action 

are required to find and eliminate the assignable cause or causes responsible for this 

behavior. It is customary to connect the sample points on the control chart with straight­

line segments, so that it is easier to visualize how the sequence of points has evolved 

overtime. 

There is a dose connection between control charts and hypothesis testing. The 

control chart is a test of the hypothesis that the process is in a state of statistical control. 

A point plotting within the control limits is equivalent to failing to reject the hypothesis of 

statistical control, and a point plotting outside the control limits is equivalent to rejecting 

the hypothesis of statistical control. 

An important factor in control chart usage is the design of the control chart. By 

this we mean the selection of sample size, control limits, and frequency of sampling. In 

most quality control problems, it is customary to design the control chart using primarily 

statistical considerations. The use of statistical criteria such as these along with 

industrial experience has led to general guidelines and procedures for designing 

control charts. Recently, however, control chart design from an economic point of view 

has begun, considering explicitly the ~n~: of sampling, losses from allowing defective 
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product to be produced, and the costs of investigating out-of-control signals that are 

actually false alarms (Montgomery, 2005). 

1.3 Multivariate Quality Control Charts 

There are many situations in which the simultaneous monitoring or control of 

two or more related variables is necessary. Process-monitoring problems in which 

several related variables are of interest are sometimes called multivariate quality 

control problems. The original work in multivariate quality control was done by Hotelling 

(1947), who applied his procedures to bombsight data during World War II. This subject 

is particularly important today, as automatic inspection procedure makes it relatively 

easy to measure many parameters on each unit of product manufactured. Many 

chemical process plants and semiconductor manufacturers routinely maintain 

manufacturing databases with process and quality data on hundreds of variables. Often 

the total size of these databases is measured in millions of individual records. 

Monitoring or analysis of these data with univariate SPC procedure is often ineffective. 

The use of multivariate methods has increased greatly in recent years for this reason 

(Montgomery, 2005). 

The most familiar multivariate process monitoring and control procedure is the 

Hotelling's T 2 control chart for monitoring the mean vector of a process. It is a direct 

analog of the univariate Shewhart X chart. The Hotelling's T 2 chart is a multivariate 

- Shewhart type control chart that only takes into account the present information of the 

process, so consequently it is relatively insensitive to small and moderate shifts in the 

process mean vector. To provide more sensitivity to small and moderate shifts, 

multivariate exponentially weighted moving average (MEWMA) and multivariate 

cumulati:e sum (MCUSUM) control charts are developed. Their advantage is that they 

take into account the present and past information of the process. Therefore, they are 
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followed by selecting the combination of chart parameters, i.e., the smoothing constant, 

r for the MEWMA chart (or the reference value, k for the MCUSUM chart) and its 

corresponding control limit, H. The combination of the chart parameters obtained is 

optimal in the sense that for a fiXed in-control ARL or MRL, it produces the lowest out­

of-control ARL or MRL for the specified magnitude of a shift in the mean vector for a 

quick detection. Graphs of the optimal chart parameters of the MEWMA and MCUSUM 

charts for various in-control ARLs or MRLs based on different magnitude of shifts in the 

mean vector are given. Examples illustrating the application of these graphs are also 

provided. 
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OPTIMAL STATISTICAL DESIGNS OF MULTIVARIATE EWMA AND 
MULTIVARIATE CUSUM CHARTS BASED ON AVERAGE RUN LENGTH 

AND MEDIAN RUN LENGTH 

ABSTRACT 

A multivariate control chart is a powerful tool in process control involving a 

simultaneous monitoring of several correlated quality characteristics. The multivariate 

cumulative sum (MCUSUM) and multivariate exponentially weighted moving average 

(MEWMA) charts are often recommended in process monitoring when a quick 

detection of small or moderate sustained shifts in the mean vector is desired. This 

thesis develops a graphical method to determine the optimal choices of the parameters 

of the MEWMA and MCUSUM charts for a quick detection of a desired size of a shift. 

These control charts are statistically designed and the method used follows the general 

approach that is currently available only for univariate EWMA and CUSUM charts. The 

performances of the control charts are measured by the average run length (ARL) that 

is derived using a Markov chain approach or a simulation method. The design based 

on the median run length (MRL) is also given as the MRL is a more meanin~ful 

measure of centrality with respect to the highly skewed run length distribution. The 

design based on MRL is made using the Markov chain approach or the simulation 

method. Besides providing a graphical approach to simplify the existing procedure in 

the design of optimal MEWMA and MCUSUM charts which are based mainly on the 

ARL, this thesis introduces the optimal design strategy of the two charts using the MRL, 

which are currently available for the univariate EWMA and CUSUM charts only. Each of 

the design schemes is based on the aspects of the run length distribution derived using 

independent observations from the multivariate normal distribution. The number of 

quality characteristics considered are p = 2. 3, 4. 5, 8 and 10. The procedure for the . 
optimal design of the MEWMA and MCUSUM charts consists of spedfying the desired 

in-control ARL or MRL and the magnitude of the shift (i.e., the square root of the 

noncentr~lity parameter, o) in the process mean vector to be detected quickly. This is 
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MCUSUM terdiri daripada penetapan ARL atau MRL dalam kawalan yang diingini dan 

magnitud anjakan dalam vektor min proses (iaitu, punca kuasa dua parameter tak 

memusat, o) yang akan dikesan dengan cepat. lni diikuti dengan pemilihan kombinasi 

parameter-parameter carta, iaitu pemalar peficinan, r untuk carta MEWMA (atau nilai 

rujukan, k untuk carta MCUSUM) dan had kawalannya yang sepadan, H. Kombinasi 

parameter-parameter carta yang diperoleh adalah optima dengan kenyataan bahawa 

bagi ARL atau MRL dalam kawalan yang ditetapkan, ia menghasilkan ARL atau MRL 

luar kawalan yang terendah untuk magnitud anjakan dalam vektor min yang ditetapkan 

untuk pengesanan cepat. Graf-graf parameter carta optima bagi carta MEWMA dan 

MCUSUM untuk pelbagai ARL atau MRL dafam kawalan berdasarkan magnitud 

anjakan dalam vektor min yang benainan adalah diberikan. Contoh-contoh yang 

menunjukkan apfikasi graf-graf ini turut diberikan. 
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more powerful to detect smaH shifts than the Hotelling's T 2 chart. The MEWMA 

statistics is a more straightforward generalization of the corresponding univariate 

procedure than the MCUSUM statistics. Furthermore, the design of the MEWMA 

control chart is simpler and it can also be used as a process forecasting tool (Chua and 

Montgomery, 1992). 

One of the design criteria for both univariate and multivariate control charts is 

statistical design. Statistical design procedures refer to choices of optimal chart 

parameters that ensure the control chart perfonnance meets certain statistical criteria. 

These criteria are often based on aspects of the run length distribution of the chart, 

such as the average run length (ARL) or the median run length (MRL). It is 

recommended that a multivariate control chart is designed to have a specified ARL (or 

MRL) value at shift o = 0 and a minimum ARL (or MRL) value at shift o = O~t where 0t is 

the smallest magnitude of a shift in the process mean vector considered important 

enough to be detected quickly. Note that o is referred to as the square root of the 

noncentrality parameter. The values of the chart parameters are optimal as these 

values appear to minimize the ARL (or MRL) at shift o = o1 for a given ARL (or MRL) at 

shifto =0. 

Multivariate control charting procedures can be computationaUy intensive. The 
·, 

availability of computer software will be a major detennining factor in the future use of 

such charts. 

1.4 Objectives of the Thesis 

In this thesis, we propose the statistical designs of the MEWMA and MCUSUM 

charts. The objectives of the thesis are as follows: 
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(i} to develop the optimal designs of the MEWMA and MCUSUM charts. Besides 

simplifying the existing procedures in designing an optimal MEWMA or 

MCUSUM chart, based mainly on the ARL, this thesis proposes the design 

strategies of the charts using the MRL. Thus, ARL is used as a primary criterion 

for evaluating the performances of these control charts, whereas the use of 

MRL as a secondary criterion for designing the MEWMA and MCUSUM charts, 

which is an important contribution of this thesis is also recommended. Optimal 

designs of the MEWMA and MCUSUM charts allow a more complete study of 

the performances of these control charts. The optimal designs based on MRL 

are currently available in the literature for the univariate EWMA and CUSUM 

charts only. This study extends the optimal designs to the multivariate cases. 

(ii) to propose a four step procedure in obtaining the chart parameters of optimal 

MEWMA and MCUSUM charts based on ARL and MRL. The four step 

procedure is currently available for the univariate EWMA and CUSUM control 

charts only in the literature. This procedure is extended to the multivariate 

EWMA and CUSUM control charts in this thesis. Although optimal statistical 

designs of the MEWMA and MCUSUM charts based on ARL are given in 

Prabhu and Runger (1997) and Crosier (1988) respectively, this thesis provides 

a more complete step-by-step approach (i.e., a four step procedure) for the 

optimal designs of the charts compared to the existing methods which are . 

insufficient and incomplete. 

(iii) to obtain an optimal set of values for the chart parameters associated with the 

MEWMA or MCUSUM. procedure: the control limit H and the smoothing 

constant r for the MEWMA chart or the control limit H and the reference value k 

for the MCUSUM chart. 
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(iv) to present user-friendly programs that allow practitioners to determine the 

optimal chart parameters of the MEWMA and MCUSUM control charts in aU 

possible situations. The programs are implemented using the Markov chain 

approach or the simulation method, and the programs calculate the ARL, MRL, 

control limits and percentiles of the run length distribution for the MEWMA and 

MCUSUM charts. 

(v) to provide a graphical approach by means of graphs that guide practitioners in 

the optimal designs of the MEWMA and MCUSUM charts for detecting shifts of 

a desired magnitude in the mean vector. These graphs can give immediate 

approximation of the optimal chart parameters of the control charts for a given 

in-control ARL or MRL. 

1.5 Methodologies and Organization of the Thesis 

In this thesis, the one-dimensional Markov chain approach described by Runger 

and Prabhu (1996) is applied for the in-control case of the optimal designs of the 

MEWMA and MCUSUM charts based on ARL. The two-dimensional Markov chain 

proposed by Runger and Prabhu (1996} is used to approximate the ARL for the out-of­

control case of the MEWMA chart. As for the MCUSUM chart, the simulation method is 

used for the out-of-controi case to study the performance of the chart based on the 

ARL. 

Using the theory of probability distribution of the run length given by Brook and 

Evans (1972), the in-control MRL values of the MEWMA and MCUSUM charts are 

computed using the one-dimensi.onal Markov chain approach. This theory is also used 

to obtain the out-of-control MRL values of the MEWMA chart using the two-dimensional 

Markov chain approach. For the out-of-control case of the MCUSUM chart based on 

MRL, the simulation method is implemented. 
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In Chapter 2, the MEWMA and MCUSUM control chart procedures are 

discussed. The properties and performance evaluation of these control charts are also 

explained in this chapter. The Markov chain representation of the multivariate control 

procedures for designing control charts based on the ARL and MRL is given in 

Chapters 3 and 4 respectively. Chapter 5 explains the Statistical Analysis System (SAS) 

programs that are used to calculate the ARL, MRL and other percentiles of the run 

length distribution of the control charts. These programs are given in Appendix C. 

Chapter 6 defines the concept of the proposed optimal statistical design of the 

MEWMA and MCUSUM control charts. Chapter 7 presents the proposed graphical 

method for the optimal design of the control charts. The graphs of optimal parameters 

of the control charts are provided in Appendix D. Examples for the application of these 

graphs are also given in Chapter 7. Finally, the conclusion of this thesis and 

suggestions for further research are presented in Chapter 8. 
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CHAPTER2 
SOME PRELIMINARIES AND REVIEW OF MULTIVARIATE EWMA AND 

MULTIVARIATE CUSUM CHARTS 

2.1 The Multivariate Normal Distribution 

The normal distribution is generally used to describe the behavior of a 

continuous quality characteristic in univariate statistical quality control. The univariate 

normal probability density function (Montgomery, 2005) is 

for -oo<x<oo. (2.1) 

Apart from the minus sign, the term in the exponent of the normal distribution 

can be written as 

(2.2) 

where the mean of the normal distribution is J.l. and its variance is <J
2

. 

This quantity measures the squared standardized distance from the random 

variable, X to the mean J.l, where the term "standardized• means that the distance is 

expressed in standard deviation units (Montgomery, 2005). 

A similar approach can be used in the multivariate case. Assume that there are 

p variables, X 1,X2 , ... ,XP in a p-component vector, X',=(X1,X2 , ••• ,XP). Let the 

mean vector of the X's be Jl' = (jJ.J,J.1.2: ... ,J.I.p), and the p X p covariance matrix, r 

contains the variances and covariances of the random variables in X, where the main 

diagonal elements of I: are the,variances of A), for}= I, 2, ... ,p, and the off-diagonal 

elements are th£ covariances. The squared standardized (generalized) distance from 

XtOJtiS 
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, 
(x- p) r-~(x- p). (2.3) 

The multivariate nonnal density function is obtained by replacing the squared 

standardized distance in Equation (2.2) by the multivariate generalized distance in 

Equation (2.3) and changing the constant tenn t/ .J2ml to a more general fonn that 

makes the area under the probability density function unity regardless of the value of p. 

Thus, the multivariate nonnal probability density function (Montgomery, 2005) is 

(2.4) 

We will now give a brief description on the sample mean vector and covariance 

matrix of a random sample from a multivariate normal distribution. Assume that we 

have a random sample of size n, X~, X2, ... , X,, from a multivariate nonnal distribution, 

where the ~~ sample vector, X 1 contains observations on each of the p variables, 

Xil ,X;2 , ... ,X lp• i = 1,2, ... ,n. It follows that the sample mean vector (Montgomery, 2005) 

is 

(2.5) 

and the sample covariance matrix is 

1 n , 

s =-2:(X1 -xXx~ -x). 
n-I t=l 

(2.6) 

The sample variances on the main diagonal of the matrix S are computed as 

. I " 2 

s~ =-I(x!l-xJ. 
n-11=1 

(2.7) 

for J = 1, 2, ... ,p, while the sample covariances as 
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(2.8) 

for j = 1, 2, ... , p, k = 1, 2, ... , p and j :1:: k. Note that the sample mean of variable j is 

computed as follows: 

n 

LXu 
X 1 = -=-;=.;_' -

n 
(2.9) 

It can be shown that the sample mean vector and sample covariance matrix are 

unbiased estimators of the corresponding population quantities, i.e., E(X)= J1 and 

E(S)= :E (Montgomery, 2005). 

The sample covariance matrix in correlation form is made up of elements R.Jk 

representing the pairwise correlation coefficient between quality characteristics .x,; and 

Xk in vector X; that is, the element in the 1& row and the kth column of the sample 

covariance matrix in correlation form is given by (Tracy et al., 1992) 

(2.10) 

2.2 The Multivariate EWMA Chart 

The MEWMA chart is first studied by Lowry ef al. (1992). Yumin (1996) 

investigates the MEWMA chart with the generalized smoothing parameter matrix. He 

introduces an orthogonal transformation such that the principal components of the 

original variables are independent of one another. Sullivan and Woodall ( 1996) use the 

MEWMA and multivariate CUS~M charts for a preliminary analysis of multivariate 

observations. They propose that the MEWMA should be applied to the data in a 

reverse time order as well as in a time order, to avoid asymmetrical performance in the 
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detection of shifts. Margavio and Conerly (1995) consider two alternatives to the 

MEWMA chart. One of these alternatives is an arithmetic moving average control chart 

which is the arithmetic average of the sample means for the last k periods. The other 

alternative is a truncated version of the EWMA which truncates the EWMA after a fairly 

short period of time so that more emphasis is placed on the most current observation. 

Simulated ARL results indicate that for some situations these alternative charts 

outperform the MEWMA chart. Kramer and Schmid (1997) propose a MEWMA control 

chart which is a generalization of the control scheme of Lowry et al. ( 1992) for 

multivariate time independent observations. Runger et al. (1999) show how the shift 

detection capability of the MEWMA control chart can be significantly improved by 

transforming the original process variables to a lower-dimensional subspace through 

the use of a U-transformation. Stoumbos and Sullivan (2002) investrgate the effeds of 

non-normality on the statistical performance of the MEWMA control chart. They show 

that with individual observations, and therefore, by extension, with subgroups of any 

size, the MEWMA chart can be designed to be robust to non-normality and very 

effective at detecting process shifts of any size and direction, even for highly skewed 

and extremely heavy-tailed multivariate distributions. Reynolds and Kim (2005) 

investigate MEWMA charts based on sequential sampling and show that the MEWMA 

chart based on sequential sampling is much more efficient in detecting changes in the 

process mean vector than standard control charts based on non-sequential sampling. 

Pan (2005) proposes a MEWMA scheme that is an alternative to the traditional 

MEWMA and the distribution of the chart statistic is derived from the Box quadratic 

form. Kim and Reynolds (2005) show how the MEWMA chart is applied to monitor the 

process mean vector when the sample sizes for the p variables are not all equal. Yeh 

et al. (2005) propose a MEWMA chart that effectively monitors changes in the 

population variance-covariance matrix of a multivariate normal pro -:ass when individual 

observations are collected. 
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Suppose that the p x I random vectors X 1 ,X2 , ••• , each representing the p 

quality characteristics to be monitored simultaneously, are observed over time. These 

vectors may represent individual observations or sample mean vectors. It is assumed 

that X 1 , i = 1, 2, ... , are independent multivariate normal random vectors with an in-

control mean vector, Jlo. For simplicity, it is assumed that each of the random vectors 

has a known covariance matrix, 1:(Lowry et al., 1992). In the multivariate case, Lowry 

et al. (1992) extend the univariate exponentially weighted moving average (EWMA) to 

vectors of EWMA's which can be written as 

z, = RX, +(I- R)zl-1 I (2.11) 

fort= 1, 2, ... , where Z 0 = 0 and R = diag(r~. r 2, ••• , rp). for 0 < '1 :s; I,j = 1, 2, ... ,p. The 

MEWMA chart gives an out-of-control signal as soon as 

T2 = Z' "t'-t Z > H 
t I £.Jz, I (2.12) 

where H > 0 is chosen to achieve a specified in-control ARL and 

l:z, = 
2 
~ r ~- (1- r Y' ]1: is the covariance matrix of Z,. If there is no prior reason to 

weigh past observations differently for the p quality characteristics being monitored, 

then r1 = r2 = ··· = rp = r. It will be discussed in Section 2.4 that the ARL performance of 

the MEWMA chart depends only on the square root of the 09ncentrality parameter, 

a= [{Jlt - Jlo )' _r-J (Jll - Jl.o )]t' where JI.J is the out-of-control mean vector. 

If r1 = r2 = ... = rp = r, then the MEWMA vector of Equation (2.11) is defined as 

(2.13) 

fort= 1, 2, .... As MacGregor and Harris (1990) point out for the univariate case, using 

the exact variance of the EWMA statistic leads to a natural fast initial response for the 

EWMA chart. Thus, initial out-of-control conditions are detected quicker. · rhis is also 

12 



true for the MEWMA chart. Because, however, it may be more likely that the process 

will stay in-control for a while and then shift out-of-control, the asymptotic (as t-+ oo) 

covariance matrix, that is, 

r 
L =-L z, 2 -r 

(2.14) 

can be used to calculate the MEWMA statistic in Equation (2.12) (Lowry et al., 1992). 

2.3 The Multivariate CUSUM Chart 

Several versions of multivariate CUSUM charts have appeared in the literature. 

Woodall and Ncube ( 1985) consider the simultaneous use of several univariate 

cumulative sum (CUSUM) charts to be a single multivariate CUSUM for monitoring a 

multivariate normal process of p quality characteristics. The multivariate CUSUM chart 

is out-of-control whenever any of the univariate CUSUM chart is out-of-control. Healy 

(1987) applies the CUSUM procedure to the multivariate normal distribution for 

detecting a shift in the mean vector or for detecting a shift in the covariance matrix. 

Crosier (1988) proposes two new multivariate CUSUM charts. The first chart is referred 

to as COT, which reduces each observation to a scalar {Hotelling's T 2 statistic) and 

forms a CUSUM of the T 2 statistics. The second chart is referred to as the multivariate 

CUSUM, which forms a CUSUM vector directly from the observations. Note that the 

second chart is the multivariate version of the two-sided CUSUM chart introduced by 

Crosier (1986). Pignatiello and Runger (1990) also propose two new multivariate 

CUSUM charts. The first multivariate CUSUM chart (multivariate CUSUM #1) 

accumulates the observations before producing the quadratic forms of the mean vector 

while the second multivariate CUSUM chart (multivariate CUSUM #2) calculates a 

quadratic form for each observC!\fion and then accumulates the quadratic forms of the 

mean vector. The multivariate CUSU~1 #2 has a better ARL performance than the 

multivariate CUSUM #1. Hawkins (1991) proposes a CUSUM chart for regression 
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adjusted variables. This chart is based on the vector Z of scaled residuals from the 

regression of each variable on all other variables. Wierda ( 1994) performs a rough 

ranking based on restricted simulation studies. He shows that the mean estimating 

multivariate CUSUM #1 and the CUSUM based on regression adjusted variables seem 

to be promising, based on both the ARL considerations and the ability to interpret an 

out-of-control signal. Ngai and Zhang (2001) devefop a natural multivariate extension of 

the CUSUM chart via projection pursuit. This chart is more effective in avoiding inertia 

problem and coping with delayed shifts. Qiu and Hawkins (2001) suggest a rank-based 

multivariate CUSUM procedure which is based on the cross-sectional antiranks of the 

measurements. This procedure is distribution free in the sense that all its properties 

depend on the distribution of the antirank vector only. Qiu and Hawkins (2003) also 

propose a nonparametric multivariate CUSUM chart which is based on the order 

information among the measurement components, and on the order information 

between the measurement components and their in-control means. Runger and Testik 

(2004) provide a comparison of the advantages and disadvantages of several 

multivariate CuSUM charts. They also give the performance evaluation and 

interrelationship of the charts. 

Several authors have developed multivariate extensions of the univariate 

CUSUM. Crosier (1988) proposes two multivariate CUSUM charts. The o;1e with the 

better ARL performance and wiU be considered in this thesis is denoted by MCUSUM 

and is based on the following statistics: 

(2.15) 

and 

ifC1 ~k, 

or 
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S =(S +X -a{t-~J t t-1 t c 
t 

for t = 1, 2, .... Here, S0 = 0 and k > 0 is the reference value of the scheme with l: 

representing the covariance matrix of X, . In this thesis, it is assumed without loss of 

generality that a = 0, where a is the aim point or target value for the mean vector. An 

o~-of-control signal is generated (Crosier, 1988) when 

Y, = [s~ l:-1 S, r > H (2.16) 

where H > 0 is the control limit of the scheme. 

The MCUSUM procedure is often based on the assumption that the 

observations X, belong to an independently and identically distributed process, from a 

multivariate normal distribution. The MCUSUM scheme enables faster detection of 

small shifts in the mean vector than the Hotelling's T 2 chart. 

The MCUSUM chart is a directionally invariant scheme (Crosier, 1988), that is, 

the ARL performance of the chart is determined by the distance of the off-target mean 

vector, Jl1 from the on-target mean vector, flo. The distance is defined as the square 

root of the noncentrality parameter, o = [ (J11 -flo)' :E-1 {f11 -flo)]~. When the process 

is in-control, p 1 -flo = 0 and o = 0, whereas when the process is out-of-control, fl1 is 

different from flo, i.e., fl1 -flo -:t: 0 and o > 0. 

2.4 The Directional lnvariance Property of Multivariate EWMA and 

Multivariate CUSUM Charts 

If a process is in statistical control, the p x I random vector X,, representing the 

p quality characteristics to be monitored simultaneously at time t has a mean vector, f'<> 
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and a covariance matrix, l: . One possible effect of an assignable cause is that it will 

lead to a process having an out-of-control mean vector, J1 1 but with the same 

covariance matrix r. i.e., a shift of the process parameters from (J10 ,l:) to (Jl,,l:). 

This results in a shift in the process mean vector (Palm, 1990). 

Multivariate charts can be divided into two categories, i.e., the directionally 

invariant schemes and the direction specific schemes. The ARL performance of the 

directionally invariant control charts is determined solely by the distance of the off-

target mean vector, Jlt from the on-target mean vector, flo and not by the particular 

direction of that departure from the mean. Distance is defined as the square root of the 

size of a shift (Lowry and Montgomery, 1995). Typically, most symmetric two-sided 

univariate control charts are directionally invariant, whereas multiple univariate 

schemes used for a multivariate process are not directionally invariant. These types of 

multivariate charts are generally used for the detection of shifts in the process 

parameters along their respective axes, and must be aimed in a particular direction. 

Another way of using these charts is to aim them in the direction of the principal 

components (lowry and Montgomery, 1995). 

It is well known that the ·l chart is directionally invariant. For example, 

, 
suppose that there are p = 2 dimensions, the target mean vector is (0, o) and the 

covariance matrix is the 2 by 2 identity matrix. Then, because of directional invariance, 

the x 2 chart has the property th~ the ARL is the same for any vector that is the same 

distance from the target. Thus, for example, shifts from the tarret value for the mean 
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vector to (1, o )
1

, (o, -1 )
1

, (o.s.J2, o.s.Ji} and(- o.s.J2,- o.s.J2} all have the same 

ARL (Pignatiello and Runger, 1990). 

It has been noted by Pignatiello and Runger (1990) that many multivariate 

procedures, such as the x2 chart, Hotelling's T 2 chart, and most of the multivariate 

CUSUM charts, are directionally invariant. Lowry and Montgomery (1995) and other 

researchers such as Linna et al. (2001) also note the directional invariance property of 

many of these multivariate control charting methods which include the MEWMA chart. 

It is important to emphasize that there are two implicit assumptions in the run 

length comparisons based on the noncentrality parameter. First, it is assumed that any 

shift from the in-control mean vector, regardless of the size of the shift, is to be 

detected as quickly as possible. Second, it is assumed that a shift from Jl == Jlo to 

Jl = p 1 is to be detected as quickly as a shift from Jl = Jlo to J1 = 112 if 

I I 

(pi -flo) _r-• (pi - Jlo) = (Jt2 - Jlo) _r-I (1'2 - Jlo ), that is, the run length is a function of 

the square root of the noncentrality parameter, o (Lowry et al., 1992). 

The performances of the multivariate control charts, i.e., the MEWMA and 

MCUSUM charts considered in this study are also directionally invariant. This indicates 

that the properties of these control charts depend on J11 only through the value of the 

square root of the noncentrality parameter, o. This simplifies the evaluation of the 

properties of the control charts. 
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2.5 Measures of Performance Evaluation of Control Charts 

2.5.1 Average Run Length (ARL) 

The performance of a control chart can be evaluated in terms of its sensitivity to 

detect shifts in the parameter that is monitored. This sensitivity can be measured by the 

number of subgroups taken until the chart signals a shift. For each subgroup a point is 

plotted on the control chart. The number of plotted points until an out-of-control signal 

occurs is a discrete random variable, usually called the run length and the ARL is the 

expected value of this random variable. A sequence of ARL values, for a given control 

schema and a set of process average shifts, is called the scheme's ARL profile. ARL 

profiles are useful when alternative quality control schemes are evaluated and 

compared (Klein, 1997). 

2.5.2 Median Run Length (MRL) 

Palm (1990) points out that the run length distributions are usually highly 

skewed, hence the ARL should not be used as a sole measure of a chart's 

performance and that medians may be more useful than averages as measures of 

centrality. Hence, the MRL can be used in conjunction with the ARL and percentiles of 

run length distribution, since it is a better measure of central tendency for a skewed run 

length distribution (Dyer et al., 2003). The MRL is estimated to be the 50th percentage 

point of the probability distribution of the run length. 

2.5.3 Percentiles of Run Length Distribution 

The sensitivity of a control chart is often summarized using the mean of the run 

length distribution, i.e., the ARL. Designs and analyses of the control schemes are 

generally based on the ARL considerations. However, Palm (1990) does not believe 

that this single parameter contains er • .:>ugh information on the actual run length 

distribution to make it particularly useful in practical applications and that more than 
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ARL may be needed. A practitioner will be more interested in percentiles or percentage 

points of the run length distribution because they give more details regarding the 

expected behavior of the run lengths. The percentile of a run length distribution is the 

cumulative proportion or percent of signals given by the number of plotted statistics 

following the shift and it can be referred to as the cumulative distribution function of the 

run length. It should be noted that the percentiles of the run length completely 

characterizes the run length distribution, while the ARL does not. 

Although it may be of interest to obtain a median run length profile for a given 

scheme, such a criterion does not directly address another practical concern, namely 

the occurrence of too many early false, out-of-control signals, represented by the low 

percentiles of the run length distribution {Klein, 1997). Crowder (1987a) points out that 

in many cases, a practitioner may be concerned with the probability of early false out­

of-control signals for a given control scheme. Setting the in-control ARL at a desired 

level may not ensure that the probability of an early false signal is acceptable. He 

recommends that once ARL considerations have led to a particular control scheme, an 

analysis of the probability of such early false signals should be done. Both Palm {1990) 

and Crowder (1987a) have noted that the in-control (i.e., zero process mean shift) run 

length distributions for the control schemes also deserved consideration. The in-control 

run length distribution is the distribution of the number of plotted statistics until a false 

out-of-control signal is given by the control scheme. Thus! false out-of-control signals 

occur when the process is in-control. The early false out-of-control signals are signals 

associated with the in-control run lengths which are Jess than the ARL. The 

probabilities of the occurrences of these early signals are reflected in the lower 

percentiles of the in-control run length distribution. The 5th, I Oth and 25th percentile 

values of the in-control run length distribution are usually used to represent the early 

false out-of-control signals. Using these percentiles as a secondary criterion, and 

assuming that two schemes have essentially the same ARL pro~IP.c., the scheme with 
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the higher run lengths at each of these percentiles is chosen. The reason for this 

choice is that the scheme chosen will, in the long run, give rise to less frequent, short, 

false out-of-control signals. For example, suppose that scheme A has run lengths of 5, 

52 and 152 at the 5th, lOth and 25th percentiles of the run length distribution, while 

scheme B has run lengths of 23, 64 and 155 at these three percentiles. Then, if these 

two schemes have the same ARL profiles, scheme 8 would be preferred. 

As a conclusion, parameters of the run length distribution are generally 

accepted as appropriate measures of a chart's performance and they are used in 

practice to select an appropriate control chart with the ARL being the most commonly 

used measure. Supplementing the ARL with the percentiles of the run length 

distribution gives a more complete picture of a chart's performance (Jones et al., 2004). 

Thus, the performance criteria of a chart designed to detect a specified shift in the 

process mean consists of measures based on the ARL, MRL and percentiles of the run 

length distribution. These measures allow a thorough study of the perfonnance of a 

control chart. 
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CHAPTER3 
MARKOV CHAIN APPROACH FOR MULTIVARIATE EWMA AND 

MULTIVARIATE CUSUM CHARTS BASED ON AVERAGE RUN LENGTH 

3.1 Introduction 

There have been considerable number of approaches used to study the 

distributions and expectation of run lengths for quality control schemes, and one of the 

methods is the Markov chain approach. The Markov chain approach is introduced by 

Brook and Evans ( 1972) for evaluating the performance of the one-sided CUSUM chart. 

This approach is used by many authors to derive the ARL or the entire run length 

distribution for various control chart schemes to study the run length characteristics for 

the quality control schemes. Since each author focuses on one or more charts, 

different Markov chain applications are tailored to each case. For instance, the state 

space of the Markov chain has been formulated differently by different authors, and in 

several cases it is not specified at all (Fu et al., 2003). For example, Lucas and 

Saccucci ( 1990) consider the Markov chain approximation to examine the performance 

of a two-sided EWMA chart and provide design recommendations for the chart. 

Crowder (1987a) derives an integral equation for the EWMA chart and a computer 

program is presented by Crowder (1987b) to calculate the ARL of the EWMA chart 

using integral equation. Champ and Rigdon (1991) show that if the product midpoint 

rule is used to approximate the integral equation, the integral equation approach and 

the Markov chain approach yield the same approximation for the ARL. Jiang et al. 

(2000) applies a two-dimensional Markov chain model to approximate the run length of 

an autoregressive moving average chart. Calzada and Scariano (2003) study the 

integral equation and Markov chain approaches for computing the ARL of a two-sided 

EWMA chart. Fu et al. {2003) introduce a general unified framework on the Markov 

chain embedding technique which is based either on a simple boundary crossing rule, 

or on a compound rule. Recently, the application of the Markov chain approach is used 

by Costa and Magalhaes (2005} for developing the cost func.tion of a two-stage X 
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chart. A design procedure for a dual CUSUM chart is developed by Zhao et al. (2005) 

and an analytical formula for the ARL calculation is obtained via the Markov chain 

method. Magalhaes et al. (2006) obtain the performance measures of adaptive control 

charts through the Markov chain approach. The steady-state ARL of a synthetic control 

chart is evaluated by Costa and Rahim (2006) using the Markov chain model. Shu and 

Jiang (2006) develop a two-dimensional Markov chain model to analyze the 

performance of adaptive CUSUM charts. 

For the MEWMA scheme, Runger and Prabhu (1996) describe a two-

dimensional Markov chain approach to determine the run length performance of a 

MEWMA control chart. Prabhu and Runger (1997) use the Markov chain method to 
.. 

provide design recommendations for the MEWMA chart that parallels to many results 

provided for the univariate EWMA by Lucas and Saccucci (1990). Molnau et al. (2001b) 

then present a compuier program that calculates the ARL for the MEWMA control chart 

using the Markov chain approximation. Rigdon (1995a,b) considers an integral 

equation and a double integral equation to calculate the in-control and out-of-cot:rtrot 

ARLs for the MEWMA scheme respectively. Bodden and Rigdon (1999) provide a 

computer program for the in-control ARL approximation of the MEWMA chart that can 

be expressed as the solution of an integral equation. 

For the MCUSUM scheme, Crosier (1988) studies·a Markov chain approach for 

the approximation of the in-control ARL of a MCUSUM procedure. In this thesis, the 

one-dimensional Markov chain approach is used for the in-control case of the 

MCUSUM chart but the proposed Markov chain approach is based on the method of 

Runger and Prabhu (1996). Th~ Markov chain approach for the MCUSUM chart in this 

thesis is based on a noncentral chi-square distribution which is different with the 

method of Crosier (1988), where Crosier (1988) applies a chi-square distribution with 

the state space of the Markov chain also f()rmulated differently. Consequently, the 
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proposed technique to develop a model for the in-control case of the MCUSUM chart is 

similar to the MEWMA chart of Runger and Prabhu (1996). As discussed in Section 4.4, 

the two-dimensional Markov chain approach is infeasible to compute the ARL, MRL 

and the percentiles of the run length distribution of the out-of-control case for the 

MCUSUM chart. Consequently, the out-of-control run length performance of the 

MCUSUM chart is evaluated by the simulation method, discussed in Section 5.3. 

For ease of interpretation, the assumptions that are initially made for this thesis 

are (i} the target mean vector, flo is a zero vector, 0 and the covariance matrix, L is 

an identity matrix, I (although this assumption is made, in practice any process 

parameters, flo and :L can be considered provided that their values are known), (ii) 

the sample size is one; that is to say, the data are structured only as individual 

observations, and (iii) the process is a multivariate normal process with independently 

and identically distributed observations. 

3.2 The Basic Theory of Markov Chain Approach for Evaluating the 

Average Run Length 

The basic idea for defining the states of a Markov chain is to partition the set of 

real numbers into a finite set of intervals and to choose a number i in each interval to 

approximate the true state of the process. This means that by discretizing the values of 

the statistic used in the Markov chain, q,, to a finite set of possible values, the run 

length distribution of a control scheme can be approximated using results from the 

theory of the Markov chain (Champ and Ridgon, 1991). 

Let a control scheme be modeled as a Markov chain, the range of the possible 

values of statistic qr is discretized into the m + 2 states with 
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state 0: q, == 0, 

state i: (i- l )g < q, ::; ig, 

state m + 1: q, > UCL 

. . 2UCL d UCL . th I' 't f where i = 1, 2, ... , m, the thickness of each state IS g == , an 1s e 1m1 o 
2m+1 

the control region (Hawkins, 1992). 

The absorbing state (i.e., state m + 1} which extends past the UCL and 

corresponds to a value for which a signal is given by a control chart scheme is referred 

to as the out-of-control state. The remaining states are called the transient states, i.e., 

states 0, 1, 2, ... , m are referred to as the in-control states. The state 0 corresponds to a 

zero value for the statistic q, and the state m + l corresponds to a value of the statistic 

q, greater than the control limit of the control chart. The transition probability matrix for 

a control chart scheme can be partitioned as (Brook and Evans, 1972) 

p = (P, (I- P, )lJ 
0' 1 

(3.1) 

where I is the ( m + 1) x (m + 1) identity matrix, 0' is a 1 x (m + 1) null vector and 1 is a 

(m + l)x 1 column vector of ones. The i]tn. entry of the transition probability matrix pij = 

Pr( q1 in state j I q,_1 in state i) represents the probability that the statistic q, moves 

from state i to state j. The first m + 1 rows and columns of P correspond to the in-

control states. All the absorbing states can be combined into a single absorbing state, 

i.e., state m + 1. Here, the absorbing state is the last row and column in P. Hence, the 

sub-matrix Pr contains the in-90ntrol transition probabilities for moving from one 

tra'1sient state to another transient state. The probabilities of moving from a transient 

state to the absorbing state are found by subtraction since the elements in the rows of 

the transition probability matrix must sum to one. 
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