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Abstract

This paper presents a hash and a canonicalization algorithm for Notation 3

(N3) and Resource Description Framework (RDF) graphs. The hash algorithm

produces, given a graph, a hash value such that the same value would be ob-

tained from any other equivalent graph. Contrary to previous related work,

it is well–suited for graphs with blank nodes, variables and subgraphs. The

canonicalization algorithm outputs a canonical serialization of a given graph

(i.e. a canonical representative of the set of all the graphs that are equivalent to

it). Potential applications of these algorithms include, among others, checking

graphs for identity, computing differences between graphs and graph synchro-

nization. The former could be specially useful for crawlers that gather RDF/N3

data from the Web, to avoid processing several times graphs that are equiva-

lent. Both algorithms have been evaluated on a big dataset, with more than 29

million triples and several millions of subgraphs and variables.
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1. Introduction

Semantic Web technologies describe resources and their relations using graphs,

normally represented by means of Resource Description Framework (RDF) de-
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Fernández Garćıa), luiss@it.uc3m.es (Luis Sánchez Fernández), cdk@it.uc3m.es (Carlos
Delgado Kloos)

1Corresponding author’s phone number: +34916245940; Fax: +34916248749
2The author would like to thank the Decentralized Information Group at the MIT Com-

puter Science and Artificial Intelligence Laboratory for hosting him during the first stage of
this research.

Preprint submitted to Journal of Computer and System Sciences November 9, 2009



scriptions. More specifically, RDF is based on node– and edge–labelled directed

graphs. Nodes of a graph represent resources, normally labelled with a URI

(some resources like blank nodes and literals are not labelled). Edges model

a relation between two nodes, and are directed. Edges are also labelled with

a URI. In the rest of this paper, the term graph will be used to refer to this

specific kind of graphs used in the Semantic Web.

RDF is usually serialized using the RDF/XML notation. However, RDF/XML

is not the only notation available to describe resources in the Semantic Web.

Other commonly used notations are N–triples and Notation 3 (N3). N3 [1] is a

more compact and readable alternative to RDF/XML. In addition, it extends

RDF with additional semantics that provide the ability to:

• Express triples about graphs, i.e., graphs with one or more statements can

be subject or object of triples. They are referred to as subgraphs in this

work. Doing the same with reification in RDF would be complex, because

reification works on triples, but not on graphs.

• Add variables to a graph and quantify them, either universally or existen-

tially.

The combination of subgraphs and variables makes it possible to express

rules in N3.

The ability to produce a hash value from a graph can potentially simplify

operations like checking graphs for equivalence, detecting duplicates in large

collections of graphs, computing differences between graphs and implementing

caches of graphs, among others.

A general purpose text–based hash function is not enough for that, mainly

because of two reasons. Firstly, it depends on the specific serialization of

the graph (ordering of triples, disposition of white–spaces, namespace prefixes,

knowledge representation language, etc.). Different serializations of the same

graph produce different hash values, precluding general purpose hash functions

from being used for some applications like checking whether two serializations

correspond to the same or different graphs. Secondly, some applications, like

computing differences between graphs, need not only the whole hash of a graph

but also partial hashes of its components (nodes, triples, etc.).
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In this work we present an algorithm for computing hash values from the

kind of graphs used in the Semantic Web. It produces the same hash value for

equivalent graphs (i.e. any possible serialization of the same graph). Further-

more, hash values do not depend on the specific language used for serializa-

tion: the same graph produces the same hash value regardless if it is serialized

with RDF/XML, N3 or N–triples. The algorithm also produces partial hashes

for triples, variables and subgraphs, that may be used for other purposes like

canonicalization and graph comparison.

In addition to the hash algorithm, a graph canonicalization algorithm derived

from the former is presented. Graph canonicalization is, up to a point, related

to hashing, because the hash algorithm can help to compute canonical graphs,

as will be explained in Section 7. Given a graph G, a canonicalization algorithm

must produce an equivalent graph that is canonical, i.e., the algorithm would

produce exactly the same graph when applied to every graph G′ equivalent to

G.

The problems of hashing and canonicalizing graphs would be fairly straight-

forward if graphs were only a set of statements in which all subject, predicate

and object were labelled. A naive solution for hashing would be computing the

digest of the label of each component of each statement (using a hash function

for strings), and mixing those digests with appropriate operators. A solution for

canonicalizing would be concatenating the labels of subject, predicate and object

of each statement and sorting the resulting strings lexicographically. However,

that assumption is not true in general because:

• Blank nodes do not have a label, and variables have a label that is bound

to a local scope (i.e. the label of a variable does not matter, as long as the

same label is used in all the triples referring to it). However, both blank

nodes and variables can be subject or object in triples. Therefore, their

hash values cannot be based on a label, but on how those blank nodes or

variables are related to other nodes in the graph.

• N3 allows subgraphs to be subject or object of statements. That makes

hashing variables even trickier, because the same variable can appear in

multiple (sub)graphs, and therefore not only its relations to other nodes

have to be considered, but also in which graphs those relations happen.
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• Sets and lists require special consideration when variables and blank nodes

appear as members of those data structures.

The algorithms presented in this paper are designed to solve these problems.

The subject of this work is related to the classical graph isomorphism problem

from graph theory. Section 2 reviews that relation. Section 3 briefly introduces

the syntax of N3. The basic definitions and notation used in the rest of the paper

are presented in Section 4. The hash algorithm itself is presented in Section 5

(basic features) and 6 (advanced features). The canonicalization algorithm is

explained in Section 7. The algorithms can be used for a number of purposes in

Semantic Web applications. Some of them are discussed in Section 8. Finally,

Section 9 shows the results of the experiments carried out with the purpose of

validating the algorithms.

2. Equivalence and canonicalization in graph theory

The problems of graph hashing and canonicalization are closely related to

the problem of graph isomorphism, a widely studied problem in the field of

graph theory. This section briefly reviews the relation between graph theory

and the work presented in this paper. The definitions and results about graph

theory explained in this section are mainly taken from [2].

2.1. Basic definitions

According to its usual definition in the literature [2], a graph G = (V,E)

consists of two sets V and E. The elements of V are called vertices (or nodes).

The elements of E are called edges (or arcs). Each edge has one or two vertices

associated to it, which are called its endpoints. An edge is said to join its

endpoints.

A directed graph (or digraph) is a graph whose edges are directed. A directed

edge is an edge in which one endpoint is designated as the tail and the other as

the head. The edge is directed from its tail to its head [2].

A labelled graph is a graph with labels associated to its vertices and/or

edges [2].
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2.2. Graph isomorphism

According to its definition in [2], two directed graphs G1 = (V1, E1) and

G2 = (V2, E2) are isomorphic if there is a one–to–one, onto mapping φ : V1 → V2

such that, for any two vertices x, y ∈ V1, there is a directed edge (x→ y) in G1

if an only if there is a directed edge (φ(x) → φ(y)) in G2. The mapping φ is

called an isomorphism.

The definition of isomorphic as labelled graphs found in [2] considers labelled

vertices, but not labelled edges. Due to that, it has to be extended with an ad-

ditional condition about preservation of labels of edges. Therefore, two directed

graphs G1 = (V1, E1) and G2 = (V2, E2) are isomorphic as labelled if there is

an isomorphism φ : V1 → V2 such that for each x ∈ V1, the vertices x and φ(x)

have the same label, and for any two vertices y, z ∈ V1 so that there is a directed

edge (y → z) in G1, the directed edge (φ(y)→ φ(z)) in G2 has the same label.

As stated in [2], the problem of graph isomorphism is in NP (non-deterministic

polynomial time), but no NP–completeness proof is known and no polynomial–

time algorithm is known for general graphs. However, polynomial–time algo-

rithms are known for some classes of graphs like, for example, rooted trees,

planar graphs, graphs with bounded genus, degree or eigenvalue multiplicity.

As stated by Grohe [3], algorithms for graph isomorphism are often divided

into combinatorial algorithms [4, 5, 6], normally based on color refining, and

group–theoretic algorithms [7].

2.3. Relation between graph theory and the work presented in this paper

RDF graphs are labelled directed graphs. RDF nodes are the vertices of

the graph, with the restriction that two different labelled nodes cannot have

the same label (URI). Triples represent directed edges (subjects are their tails

and objects are their heads). Both vertices and edges are labelled with a URI.

Although blank nodes do not have a label, they can be considered as labelled

with the same special label, different from the URI of any labelled node. Literal

nodes can be considered to have a special label derived from their value. This

way, it can be assumed that all the nodes in a RDF graph are labelled.

On the contrary, N3 graphs are not graphs according to the definition in

Section 2.1, because in N3 a node of the graph may itself be another graph.
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Moreover, nodes of the internal graph may be connected by edges to nodes

outside that graph.

One of the key applications of graph hashing is graph identity, which can also

be solved with graph isomorphism techniques. Two RDF graphs are equivalent,

according to the definition of equivalence in Section 4.2, if both graphs are

isomorphic as labelled. This is true because two graphs being isomorphic as

labelled contain exactly the same triples (including labels). Blank nodes can

also be processed, because the isomorphism maps them to their equivalent blank

nodes in the other graph according to the edges going to and coming from them,

provided that all the blank nodes are labelled with the same special label.

Graph isomorphism is also related to graph hashing and canonicalization be-

cause some graph isomorphism algorithms can solve both the hash and canon-

icalization problem. Several isomorphism algorithms, for example [8], can pro-

duce a canonical numbering for nodes in the graph, from which a canonical

serialization of the graph can be derived. A hash value for the graph could be

computed by applying a text–based hash function to that canonical serialization.

Since N3 graphs do not comply with the definition of graph in Section 2.1,

direct application of the well-known graph isomorphism algorithms presented

above is not possible.

Instead of trying to adapt those graph isomorphism algorithms to the charac-

teristics of N3 graphs, we propose in this work new algorithms for both hashing

and canonicalizing N3 graphs, with a competitive polynomial–time complex-

ity between O(N logN) and, in the worst–case, O(N2). The counterpart is

the possibility of hash collisions, which could prevent the canonicalization al-

gorithm from being deterministic. Nevertheless, as our experiments show (see

Section 9.3), the probability of that to happen is extremely low when 64–bit

hash values are computed on graphs up to a several hundred million edges.

3. A brief introduction to the notation of N3

This section presents a brief introduction to the notation of N3, with special

focus on the constructions used in the examples of this paper. More details

about N3 can be found in [1].

Graphs are serialized in N3 as a list of statements (triples), each one finished

7



with a period. A statement is composed, in this order, by its subject, predicate

and object. Subjects and objects are nodes of the graph. N3 defines several

kinds of nodes (labelled nodes, which are represented by URI, literal values,

lists, sets, variables, blank nodes and subgraphs), each one represented with a

different syntax. Predicates and labelled nodes are denoted using their URI.

Prefixes may be used to make the notation compact when many components

share the beginning of their URIs. Literal nodes are directly represented by

their value within quotation marks:

@prefix voc: <http://www.example.com/vocabulary/> .

@prefix dis: <http://www.example.com/disney/> .

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

dis:mickey rdf:type voc:mouse .

dis:mickey voc:has-name "Mickey Mouse" .

dis:goofy voc:friend-of dis:mickey .

dis:goofy voc:friend-of dis:daisy .

Triples sharing the same subject can be represented in a compact way, sepa-

rated by semicolons. If they share both the subject and predicate, their objects

may be separated by commas:

dis:mickey rdf:type voc:mouse ;

voc:has-name "Mickey Mouse" .

dis:goofy voc:friend-of dis:mickey, dis:daisy .

Anonymous nodes are represented by square brackets that enclose the pred-

icates and objects of triples of which the anonymous node is subject. Because

an anonymous node itself is actually a node, it appears in the subject or object

of a statement. The following example can be read as a certain cartoon friend

of Mickey was featured on TV :

[ rdf:type voc:cartoon;

voc:friend-of dis:Mickey ] voc:featured-on voc:tv .

Variables may be declared either existentially or universally quantified with,

respectively, the “@forAll” or “@forSome” keywords. The following example

says that there exists a certain node whose name is “Mickey Mouse” that is

friend of Goofy :

@forSome :y .

:y voc:has-name "Mickey Mouse" .

:y voc:friend-of dis:goofy .
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A subformula (subgraph) is represented by its statements enclosed in braces.

It may be the subject or object of a statement. The combination of subformulae

and variables makes it possible to express rules. The following statement has

predicate “log:implies” and both its subject and object are subformulae. Its

meaning is for all nodes :x and :y, if :y is parent of :x and :x is a female,

then :x is daughter of :y :

@forAll :x, :y .

{ :y voc:parent-of :x .

:x voc:gender voc:female }

log:implies

{ :x voc:daughter-of :y } .

4. Definitions and notation

This section defines the concepts of graph and graph equivalence upon which

this work is based, and introduces the notation that will be used in the following

sections.

4.1. Definition of graph

Definition 1. An N3 graph G = (M,S) is a set M of nodes and a set S of

edges where:

• Nodes are typed. Given a node, its type is one of the following: la-

belled node (a node labelled with a URI), literal node (a node labelled

with a literal piece of text and, optionally, a data–type identifier and/or

a language identifier), list (an ordered sequence of nodes from M), set

(an unordered collection of nodes from M), variable (anonymous node,

universally-quantified variable or existentially-quantified variable) or sub-

graph (defined below).

• The labelling of labelled nodes is injective, i.e. for all a, b labelled nodes

in M , if the label of a is equal to the label of b, then a = b.

• Edges are directed and labelled with a URI, and have exactly two end–

points in M (named subject and object). Contrary to labelled nodes, the

labelling of edges does not need to be injective, i.e. different edges may

have the same label.
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• An N3 graph G′ = (M ′, S′) is a subgraph of the graph G if G′ is contained

in the set M of nodes of G.

In order to use the usual nomenclature of RDF and N3, an N3 graph /

subgraph may be also referred to in this work as formula / subformula, and an

edge as a triple or statement.

4.2. Definition of graph equivalence

Preserving graph equivalence is a basic requirement for the hash algorithm,

i.e. the hash of two equivalent graphs must be the same. Different definitions

of equivalence are possible, depending on the application. This work is based

on the notion that two equivalent graphs express the same explicit meaning,

independently of their specific serialization.

For the purpose of this work, two graphs are equivalent if they contain the

same triples, independently of how they are serialized. Some of the differences

in serializations can be hidden by parsers, including differences in white–spaces

and line–breaks, the specific syntax used for serialization (e.g., RDF/XML, N3,

N–triples) and the use of compact notations with N3 connectors like “,” and

“;”. Hence, this work is focused on other changes in serializations that are not

normally handled by parsers, like the order in which statements are serialized

and how anonymous nodes are treated.

Definition 2. Two nodes x and y are equivalent if and only if their type is the

same and:

• If labelled nodes, their URIs are equal.

• If literal nodes, their value, data type and language are equal.

• If lists, being x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , ym), n = m and xi

equivalent to yi for all i = 1 . . . n.

• If sets, being X = {x1, x2, . . . , xn} and Y = {y1, y2, . . . , ym}, n = m and

there exists a bijection f : X → Y such that for all xi in X the node f(xi)

is equivalent to xi.

• If variables, they have the same quantification (both blank nodes and existentially–

quantified variables are considered to be existentially–quantified) and, being
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Sx and Sy the sets of triples in which, respectively, x and y appear either

as subject or object, there exists a bijection f : Sx → Sy such that for all s

in Sx, variable x appears in the same position of s as y in f(s), predicates

of s and f(s) have the same URI, and subjects of s and f(s) are equivalent

(if x appears in the object of s) or objects of s and f(s) are equivalent (if

x appears in the subject of s) or x appears in both subject and object of s.

• If graphs, both graphs are equivalent according to the definition of graph

equivalence (Definition 4) shown below.

Definition 3. Two triples s and s′ are equivalent if and only if their subjects

are equivalent, their objects are equivalent and their predicates are labelled with

the same URI.

Definition 4. Two graphs G and G′ are equivalent if and only if, independently

of their specific serialization (syntax, white–spacing, use of compact N3 connec-

tors, etc.), being S the set of triples in G and S′ the set of triples in G′, there

exists a bijection f : S → S′ such that for every triple s in S, triples s and f(s)

are equivalent.

Figure 1 shows an example of two equivalent N3 graphs. The first two triples

of each graph are equal (although serialized in different order). Variable :x is

equivalent to :b, :y to :c and :z to :a. The last triple of each graph contains

subgraphs in both their subjects and objects. Those triples are also equivalent

because their subgraphs differ only in variables that are equivalent.

Note that, in the example, themeaning of both graphs would be equivalent to

the meaning of the graph created by adding the statement “:john :issibling

:bob” to the former, because that statement can be inferred from the rule,

i.e., it represents knowledge that is implicit in the original graph. However,

from the point of view of this work, this graph is not considered equivalent

to the original graphs, because only explicit knowledge is considered. If for a

specific application it is needed to consider implicit knowledge in the graph, a

reasoning tool should be applied first to the graph until no new knowledge can

be discovered and, after that, computing the hash value of the graph extended

with the new statements.
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:bob :hasmother :alice .

:john :hasmother :alice .

@forall :x, :y, :z.

{ :x :hasmother :z . :y :hasmother :z } log:implies { :x :issibling :y }

:john :hasmother :alice .

:bob :hasmother :alice .

@forall :a, :b, :c.

{ :c :hasmother :a . :b :hasmother :a } log:implies { :b :issibling :c }

Figure 1: Two simple equivalent N3 graphs. Predicate log:implies has special semantics in

N3 (logical implication).

4.3. Notation

A formula (N3 graph) will be usually denoted as f . The set of statements

(triples) of the formula is denoted as S = {s1, . . . , sn}. The set V is the subset of

M containing all the nodes of type variable. It is denoted as V = {v1, . . . , vm}.

It does not include variables declared in upper or inner formulae.

A formula f ′ is said to be a subformula at any depth of f if there is a sequence

of formulae (f1, f2, . . . , fn) such that f ′ is a subformula of f1, f1 a subformula

of f2 and so on, and fn a subformula of f .

A statement s is composed by two nodes, subject and object, and the label

of the edge itself, predicate. They are denoted respectively as subj(s), obj(s)

and pred(s).

The hash value or partial hash value of an item (formula, statement, variable,

etc.) x, as computed by the algorithm, is denoted as h(x). For example, the

hash value of a given formula f is h(f).

The URI of a labelled node x is denoted as uri(x). A literal node x is

characterized by its textual value text(x) and, optionally, its language lang(x)

and data type dtype(x).

The hash algorithm for string values presented in Section 5.3 is denoted as

hs(t) where t is the string to be hashed.

The XOR operator will be denoted as “⊗”. For example: a ⊗ b. The

modular product operator (modulo N) will be denoted with no explicit symbol.

For example: h(a)h(b) means product of the hash values of a and b modulo N .
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Given a term a, a modulo N will be denoted as (a)N . However, in order

to keep equations as concise as possible, products are always assumed to be

computed modulo N , despite the modulo operator not being explicitly shown.

5. A first approach to the hash algorithm

This section shows a first approach to the hash algorithm. In order to im-

prove readability, a simplification of the algorithm is presented here. The expla-

nation of the algorithm is completed in Section 6, which presents the advanced

features not covered in this section.

5.1. Operators

An intuitive way of computing a hash value for a graph is computing a partial

hash value for each triple, and then mixing all the partial values into one. The

result will be independent of the order of the triples if the mixing operator is

commutative and associative.

The algorithm we propose in this work uses two operators for mixing hash

values:

• XOR: the bit–wise exclusive OR operator is commutative and associative,

and widely used for mixing hash values. Hash values generated by the

algorithm must be between 0 and N − 1 for a certain value of N that is

not a power of 2 (see Section 5.2). Because N is not a power of two, their

XOR could be out of that range even when both operators are between 0

and N−1. The problem is solved by computing results of XOR operations

modulo N . However, modulo has always to be computed only with the

final result of a sequence of XOR operations, because XOR modulo N is

commutative but not associative. That is, the XOR of values a1, a2, . . . , an

must be computed as (a1 ⊗ a2 ⊗ · · · ⊗ an)N in order to both maintain

associativity and keep the result between 0 and N − 1.

• Multiplication (modulo N): this operator is also commutative and asso-

ciative, and can spread values when computed in modulo.

The reason for using two different mixing operators is that commutativity

and associativity are not always suitable. For example, an intuitive way of
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hashing a triple is to separately compute partial hashes for subject, predicate

and object, and mix them together later. In this case, the mixing operator

cannot be commutative nor associative because if, for example, subject and

object are swapped, the hash value of the whole triple would not be affected by

the change.

A solution to the above–mentioned problem is taking advantage of the fact

that XOR and multiplication have the property that, in general:

a(b⊗ c) 6= a⊗ (bc) (1)

Because of that, the hash values of subject, predicate and object of a given

triple s can be mixed to obtain the hash value h(s) of the triple as follows:

h(s) = ((h(subj(s)) ksubj)⊗ (h(pred(s)) kpred)⊗ (h(obj(s))kobj))N (2)

Where ksubj , kpred, kobj are constants. This is further explained in the follow-

ing sections. The equation above produces different hash values if, for example,

subject and object are swapped. The same principle is applied, as explained

later, for other purposes in the algorithm, like making partial hashes inside a

subgraph be opaque to the supergraph.

5.2. Selection of N

Hashes are computed modulo N , so that they are between 0 and N−1 (they

are contained in the Galois field ZN ). The obvious choice is to establish N = 2n,

where n is the number of bits used for representing hash values. However, it

is not a good choice, because there are chances that the result of a modular

multiplication is zero even if both operands are not zero (note that here integer

multiplication is represented explicitly with the “·” symbol to avoid confusion

with the modular multiplication, that is implicitly represented with no symbol

throughout the paper):

∀a, b ∈ ZN , ∃m ∈ N / a · b = m ·N =⇒ (a · b)N = 0 (3)

In fact, in the case of N = 2n, it is easy to find pairs of non–zero numbers

whose multiplication is zero. For example, (4 · 8)16 = 0.
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Once a multiplication returns zero, further multiplications to mix it with

other partial hashes result again in zero, and therefore the other partial hashes

do not affect the global hash value, leading to probable collisions.

The problem does not happen, however, when N is prime. It is a well-known

fact that when N is prime, if (a · b)N = 0, with a, b ∈ ZN , then either a = 0 or

b = 0.

As a consequence, it is convenient for n–bit hash values to choose N as

the largest prime number that can be encoded with an unsigned n–bit integer.

Given that 64–bit hashes are computed with the algorithms presented in this

work, the value chosen for N is 264 − 59.

5.3. Hashing string values

Some steps of the hash algorithm rely on hashing text (string values). It

is the case, for example, of labelled nodes, whose URIs are hashed using a

text–hashing function. For the purpose of hashing an N3 graph, any good text–

hashing algorithm may be chosen.

5.4. Constants

The hash algorithm uses a set of 16 different constants that are mixed with

other hashes. For example, constants are used to make hashes of terms depend

on their position in a triple. They are denoted as: ksubj , kpred, kobj , klist, kset,

kdtype, klang, ksetitm, kuniv, kexist, klab, klit, kopq, klseed, klmul and kfitm.

Concrete values for those constants may be randomly chosen, although their

quality should be experimentally validated (some combinations of values might

increase the probability of hash collision). Tab. 1 in Section 9 lists the values

selected for the experimental validation of the algorithm, which showed a good

behavior.

5.5. Hashing a formula

Let f be a formula with set of statements S. Let V be the set of variables

declared directly in f . The algorithm takes as input an initial hash value for

every variable in V and for every variable declared in any inner subformula (at

any depth). The output of the algorithm is the hash value of the formula, and

the hash value of every statement and variable appearing in S and V .
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The initial hash value for a variable v is computed as:

h(v) =







kuniv, if v is universally–quantified,

kexist, if v is existentially–quantified.
(4)

The use of initial hash values for variables is related to the multi–step variant

of the algorithm, and will be explained in Section 6.

Applying the hash algorithm to f comprises several steps: first, computing

the hash value of the statements in S; then, computing the hash value of the

variables in V ; and, finally, mixing those hash values. If S = {s1, . . . , sm} and

V = {v1, . . . , vn}, the hash value of f is computed as:

h(f) = h(s1)h(s2) · · ·h(sm)h(v1)h(v2) · · ·h(vn) (5)

The next sections explain how hash values of statements and variables are

computed.

5.6. Hashing statements

The hash value of a statement s is computed from the hash value of its three

terms: subject, predicate and object.

h(s) = ((h(subj(s))ksubj)⊗ (h(pred(s))kpred)⊗ (h(obj(s))kobj)⊗ pf )N (6)

The value pf is specific for the formula f in which the statement appears.

It depends on the path from the root formula of the graph to the formula f .

It is an advanced feature designed to avoid some kinds of hash collisions. Its

computation is explained in Section 6.2.

The rationale behind equation 6 is:

• The hash value of each term is mixed with a constant to make the hash

value of the statement change if positions of terms change in the statement

(for example, if subject and object are swapped).

• The hash from each part of the statement is mixed with XOR because in

the upper level (formula) hashes are mixed with a multiplication. This

prevents collisions, as explained in Section 5.1.
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The algorithm for computing the hash value of each term depends on its

type (labelled node, literal value, list, formula or variable). If the term is a

subformula, its hash value is computed recursively as explained in Section 5.5.

The following sections explain how to compute the hash value of any other term

type.

5.7. Hashing labelled nodes and predicates

The hash value of a labelled node is the hash value of its URI, as computed

by the text–hashing function of Section 5.3. That hash value is mixed with the

constant klab to avoid collisions with other kinds of nodes (for example, literal

values) with the same textual value:

h(node) = (hs(uri(node))⊗ klab)N (7)

Hash values of predicates are computed the same way, using the URI of the

predicate.

5.8. Hashing literal values

N3 literals comprise a data value and, optionally, a language declaration and

a data type declaration. The string representation of the literal node is hashed

using the string–hashing function. The same function is applied, if present, to

the language declaration and the data type:

h(node) = ((hs(text(node)) hlang(node) hdtype(node))⊗ klit)N (8)

Where hlang(node) and hdtype(node) are computed as:

hlang(node) =







1, if no language is specified,

(hs(lang(node))⊗ klang)N , otherwise.
(9)

hdtype(node) =







1, if no data type is specified,

(hs(dtype(node))⊗ kdtype)N , otherwise.
(10)
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5.9. Hashing lists

The hash value for each term l1, . . . , ln in the list is computed recursively.

Then, it is mixed with a code that depends on the position of the term in the

list. Finally, all those figures are mixed to get the final hash of the whole list:

h(l) =
((

(h(l1)⊗m1)N (h(l2)⊗m2)N · · · (h(ln)⊗mn)N

)

⊗ klist

)

N
(11)

m1 = klseed (12)

mi = mi−1klmul, ∀i ≥ 2 (13)

Values mi make the hash value change when nodes change their position

in the list, because lists containing the same nodes in different order are not

equivalent. Constants klseed and klmul have been tested to guarantee that mi

values are not repeated at least up to i = 232.

5.10. Hashing sets

The hash value for each term l1, . . . , ln in the set is computed recursively.

Each hash value is mixed with a constant, and then all these hashes are combined

into one:

h(l) =
((

(h(l1)⊗ ksetitm)N (h(l2)⊗ ksetitm)N · · · (h(ln)⊗ ksetitm)N

)

⊗ kset

)

N

(14)

5.11. Hashing variables and blank nodes

Computing hash values for variables is challenging because those hash values

cannot depend on their URI, as shown previously in Fig. 1. The same applies

to blank nodes, which do not have a URI. This section explains how a hash

value can be computed for variables and blank nodes based on their context,

i.e., their relations to the rest of the nodes of the graph.

Blank nodes are almost equivalent to existentially quantified variables, with

the only difference that the former do not have a URI. Considering that the

URI of variables do not affect their hash value, the way of computing the hash

value of a blank node and an existentially quantified variable is the same.
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5.11.1. Dependency between hashes of statements and variables

In order to make the hash value of a variable be affected by its context, it is

computed from the hash values of the statements in which the variable appears

either as subject or object. However, the hash values of those statements are

affected by the hash value of the variable itself (see Eq. 6). In other words, the

hash of a statement has to influence the hash of the variables referenced by it,

and vice versa.

Our solution to this mutual dependency is computing first the hash values

of the statements, based on the initial hash values for variables of Eq. 4. Once

hash values for every statement have been computed, hash values for variables

are computed from the hash values of the statements referring to them.

With this solution, hash values of statements are not influenced by hash

values of variables. This can be a problem in some occasions, because partial

hashes of variables and statements may collide. The solution to this issue is

explained later in Section 6. It is based on running the hash algorithm in

several steps, using the final hash values of variables in one step as the initial

values for the next step.

5.11.2. Computing the hash of variables

This section explains how to compute the hashes of variables, provided that

hashes of statements have already been computed.

Let f be a formula with immediately nested subformulae f1, . . . , fk. Let v

be a variable declared at f that appears in at least one statement of f or any

of its inner subformulae (at any depth). The partial hash of v at f is computed

as:

h{f}(v) = hlocal
{f} (v)

(

h{f1}(v)⊗ h(f1)
)

N
· · ·

(

h{fk}(v)⊗ h(fk)
)

N
(15)

The final hash value of v is obtained from its partial hash value at the formula

f in which it is declared:

h(v) = h{f}(v)h
ext(v) (16)

Values hlocal
{f} (v) and hext(v) for variables are computed by the recursive al-

gorithm shown in Alg. 1 and 2. This algorithm avoids multiple causes of hash
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collision for variables in graphs with nested subformulae, when those subformu-

lae have similar structure. The objective is making the hash of the variable not

only dependent on the inner structure of the subformulae it appears in but also

on the location of those subformulae in the whole graph. In other words, vari-

ables appearing in subformulae that are equal will have a different hash value

because those subformulae are in different locations of the whole graph.

Algorithm 1 Computation of hlocal
{f} (v) and hext(v) for variables.

Require: For all v, hext(v) must be initialized to 1 before the first call to this

procedure.

procedure compute hash vars(f):

for each variable v declared in f or any upper formula and appearing in f

or its subformulae (any depth) do

if v is existentially–quantified or blank node then

hlocal
{f} (v)← kexist

else

hlocal
{f} (v)← kuniv

end if

end for

for each statement s in f do

call process term(subj(s), h(s), ksubj , f)

call process term(obj(s), h(s), kobj , f)

end for

end procedure

6. Advanced features of the hash algorithm

The hash algorithm presented in Section 5 has several limitations that cause

undesirable hash collisions in some cases. This section explains the causes for

these collisions and two mechanisms introduced in the algorithm to avoid them.

Almost all the collisions have their origin in the way variables and blank

nodes are handled. Hashes of statements in which variables appear depend

only on whether these variables are universal or existential, but not on their

actual hash value (see Section 5.11.1). This may provoke collisions in the hash
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Algorithm 2 Computation of hlocal
{f} (v) and hext(v) for variables. Auxiliary

procedure.

procedure process term(t, h(s), mpath, f):

if t is a variable then

if v declared at f or any upper formula then

hlocal
{f} (t)← hlocal

{f} (t)(h(s)⊗mpath)N

else

hext(t)← hext(t)(h(s)⊗mpath)N

end if

else if t is a list then

m← klseed

for each term ti in t do

call process term(ti, h(s), ((mpathm)⊗ kopq)N , f)

m← mklmul

end for

else if t is a set then

for each term ti in t do

call process term(ti, h(s), ((mpathksetitm)⊗ kopq)N , f)

end for

else if t is a formula then

for each statement si of t do

call process term(subj(si), h(s), ((mpathkfitmksubj)⊗ kopq)N , f)

call process term(obj(si), h(s), ((mpathkfitmkobj)⊗ kopq)N , f)

end for

end if

end procedure
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@forAll :x, :y .

{

:x a :Dog .

:y a :Cat

}

log:implies

{

:x a :Animal .

:y a :Animal

} .

Figure 2: Example of collision in canonicalization. Although the algorithm produces a different

hash for variables “:x” and “:y”, the hash of the last two statements is the same.

of statements, as shown in Fig. 2. In the example, the last two statements have

the same hash because they only differ in the variable, and both variables are

universally quantified.

The problem in the example is that the final hash value produced for vari-

ables, which is different for “:x” and “:y”, does not influence the hash value of

the statements referring to them.

Fig. 3 shows another example of collision. The hash value of the graph

should change if the labelled nodes “:big” and “:small” were swapped, but it

does not. The cause is that there are two blank nodes that differ only on those

nodes.

The solution proposed to avoid this kind of collisions consists of two com-

plementary techniques: running the algorithm in multiple steps, and making

partial hashes of statements and variables depend on the path from the root

formula of the graph to them.

6.1. Multi–step hashing

The solution for avoiding collisions like the one in the example of Fig. 2 is to

run the hash algorithm twice. The first step is as explained in Section 5. The

second step is similar, with the only difference that the initial hash values of

variables are those obtained at the end of the first step, instead of the constants

for universal and existential variables of Eq. 4. This way, the hash values com-

puted for “:x” and “:y” in the first step influence the hashes produced in the

second step for the statements referring to them.
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:something log_:arg1 [

a log_:FunctionCall;

log_:functionName :or;

log_:arg1 [

a log_:FunctionCall;

log_:functionName :not;

log_:arg1 :big

];

log_:arg2 [

a log_:FunctionCall;

log_:functionName :or;

log_:arg1 [

a log_:FunctionCall;

log_:functionName :not;

log_:arg1 :small

]

]

] .

Figure 3: Example of hash collision due to blank nodes. If the labelled nodes “:big” and

“:small” are swapped in this graph, the hash value of the new graph remains the same,

although it is not equivalent to the original one.

[ :managed_by [ :knows [ :likes :Art ] ] ] .

[ :managed_by [ :knows [ :likes :Sports ] ] ] .

Figure 4: Example of a graph that needs three steps to resolve collisions.

Although the collision shown in Fig. 2 can be resolved in two steps, other

collisions may require more steps. For example, the graph shown in Fig. 4 needs

three steps.

The graph contains six blank nodes. In the first step, only the inner–most

blank nodes do not collide (the ones that like art and sports). In the second

step, they influence the hash of the two blank nodes in the middle (the ones

that “know” them), but the first blank nodes (subject of “managed by”) still

collide. Finally, in the third step, the blank nodes in the middle influence the

first blank nodes and no more collisions happen.

The example above can be generalized. When there are two or more chains

of dependencies between variables, and the chains differ only in one of their

endpoints, as many steps as nodes in the chains are needed to resolve collisions
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@forSome :a, :b, :c, :d .

:a :likes :b .

:c :likes :d .

:a :dislikes :d .

:c :dislikes :b .

:a :likes :c .

:c :likes :a .

Figure 5: Example of a graph with a symmetry that has collisions independently of the number

of steps the hash algorithm has executed.

in the variables in the opposite endpoint. Collisions are resolved step by step

through the chain of dependency.

One conclusion is that the number of steps required depends on the structure

of the graph. Furthermore, given a specific number of steps, it is possible to

find a graph with collisions after those steps that would not have collisions with

one more step (for example, in the example of Fig. 4, intermediate blank nodes

may be inserted to increase the number of needed steps.

Therefore, the hash algorithm should be run, step by step, until no collisions

happen. This can be done with a loop that checks if there are collisions at the

end of every single step.

However, some kinds of graphs present collisions independently of the num-

ber of steps being run. This happens in trivial cases, like two different variables

appearing in statements which only differ in the variables themselves. Symme-

tries involving several variables are less trivial cases. Fig. 5 shows an example

of symmetry.

In that example, the hash of “:a” collides with the hash of “:c” and the

hash of “:b” collides with the hash of “:d”. This happens independently of the

number of steps being run, because there is a symmetry.

If the hash algorithm were run until no collisions occur, it would never stop

in case of symmetries like the one mentioned above. Therefore, it is necessary to

introduce a new condition. After a given step, a new step has to be computed

if:

• There is at least one collision, and only one step has been run.
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@forAll :x, :y.

{:x :predicate :y} log:implies {:y :predicate :x} .

Figure 6: Example of a graph in which the component pf of Eq. 6 is necessary to avoid a hash

collision between two variables.

• Or there is at least one collision, more than one step has been run, and the

number of collisions (number of variables and statements with the same

hash as other variables and statements) is fewer than in the previous step.

With these modifications, the algorithm stops after two steps with the graph

of Fig. 5. With the graph in Fig. 2 it stops after two steps. With the graph in

Fig. 4 it stops after three steps.

The stop condition proposed in this section has been proven to be correct in

absence of random collisions. The proof is shown in appendix A.

6.2. Computing the path component

When the hash of a statement is computed with Eq. 6, a term called pf is

used, being f the formula in which the statement appears. The objective of pf

is making the position of a statement (path from the root formula of the graph

to the actual formula in which the statement appears) influence its hash value.

The rationale behind pf is to avoid hash collisions between variables or blank

nodes in graphs like the ones in Fig. 3 and Fig. 6. In the latter, variables “:x”

and “:y” are different, because “:x :predicate :y” implies “:y :predicate

:x”, but not vice versa. Therefore, both variables should have a different hash,

but they would not if pf values were not used.

The value of pf is different for each formula. It is computed as follows:

• The root formula of the graph has proot = 1.

• For a given formula f , a direct child g (formula, list or set) of it has

pg = ((pfm)⊗ kopq)N , where m takes as value ksubj or kobj depending

on the position of g (subject or object) in the statement of f in which it

appears.
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• For a given list l, a direct child g (formula, list or set) of it has pg =

((plm)⊗ kopq)N , where m is the value mi defined in Eq. 13 for the position

i of g in the list.

• For a given set s, a direct child g (formula, list or set) of it has pg =

((psksetitm)⊗ kopq)N .

When pf is used, hashes of variables “:x” and “:y” in Fig. 6 do not collide

because the two subformulae in the statement differ in their value of pf , due

to one of them being in the subject of the statement and the other one in the

object. The collision in Fig. 3 is also avoided by using this mechanism.

Even though pf values introduce big changes in hashes depending on the

position of variables and subformulae, their use is consistent with the notion of

equivalence. For example, other equivalent variations of the graph in Fig. 6, like

{:y :predicate :x} log:implies {:x :predicate :y}, produce exactly the

same hash value.

7. Using the hash algorithm for canonicalization

The class of equivalence of a given graph is defined as the set composed by

the graph itself and all the possible graphs equivalent to it. One of the graphs

in a class of equivalence will be selected to represent the class itself, and will be

called the canonical graph for that class of equivalence.

The problem is designing the algorithm that chooses the canonical graph for

each class of equivalence. The algorithm should be able to compute, given a

graph, the canonical graph for its class of equivalence.

From the definition of equivalence, choosing the canonical representation of

a graph consists in choosing:

• The canonical order of the declarations of variables.

• The canonical name for each variable of the graph.

• The canonical order for the statements of the graph.

• The canonical order for the items of sets.

• The canonical serialization in terms of syntax, white–spacing, etc.
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This work is focused on the first four aspects, because the last one, serial-

ization, can be trivially solved by establishing a strict output format.

If graphs did not contain variables, a trivial solution to the problem would

be to sort statements and items of sets according to the lexicographical order of

their N3 serialization. However, because graphs can actually contain variables

and canonicalization cannot depend on their names, other kind of solution is

necessary.

The hash algorithm can, as shown in this section, be used for canonicalizing

graphs, by using the partial hashes it computes for each statement and variable

in the graph:

• If a partial hash value is assigned to each variable in a graph, variable

declarations can be sorted according to the ordering of their hash values.

• Variable names can be chosen from the position of the variable in that

order.

• If a partial hash value is assigned to each statement, statements can be

sorted according to their hash values.

• In a similar way, if hash values are assigned to each item in a set, those

items can be sorted.

Therefore, the canonicalization algorithm that we propose comprises three

steps:

1. Execute the hash algorithm on the graph and keep the partial hash of

every single statement, node in a set and variable obtained from the last

step of the algorithm.

2. Sort the variables by hash value (from lower to upper) and name them

with relative URIs “<#X_n__>” where “n” is 0 for the variable with the

lowest hash, 1 for the next, etc.

3. Sort the statements by hash value (from lower to upper).

4. Recurse on every direct subformula.

5. Serialize the graph. Variable declarations, statements and items of sets

are serialized according to the ordering of their hashes.
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The canonicalization algorithm sketched above does not work if two different

variables, two different statements of the same formula or two different items of

the same set have the same hash value, because more than one order is possible.

Therefore, the algorithm, as presented above, is non–deterministic. Section 7.1

discusses the issue in depth and develops the algorithm further to solve the

problem.

7.1. A solution to canonicalization collisions

There are two kinds of collisions that prevent the hash algorithm from pro-

ducing a deterministic canonical graph:

• Collisions due to symmetries in the graph: graphs with symmetries related

to variables cannot be canonicalized by using only the multi–step hash

algorithm, because several variables (and statements in some cases) have

the same hash value.

• Random collisions: hashes can collide, from a probabilistic point of view,

in variables and statements with neither similarities nor symmetries.

Random collisions that only affect statements that do not contain variables

can be solved by sorting the statements that collide according to the lexicograph-

ical order of their respective N3 serializations. However, this solution cannot be

applied when the collision affects variables or statements containing variables.

Random collisions that cause canonicalization to fail have, however, an ex-

tremely low probability, because only collisions in variables or statements in the

same formula are relevant. Considering 64–bit hashes, 232 variables or state-

ments in the same formula are necessary to get a probability of collision in that

formula of approximately 0.5 (see Section 9.3 for an explanation). Therefore,

it can be assumed that random collisions are very unlikely to happen with 64–

bit hashes. Moreover, if a given application requires graphs bigger than that,

hashes may be computed with more bits, just choosing a new value for N and

new, bigger constants.

The other kind of collisions, those due to symmetries, although improbable in

normal N3 graphs, can happen. The canonicalization algorithm should produce

a deterministic canonical graph even in such cases.
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# Possible serialization 1:

@forAll <#X_0__> , <#X_1__> , <#X_2__> , <#X_3__> .

<#X_0__> :likes <#X_1__> .

<#X_1__> :likes <#X_0__> .

<#X_0__> :likes <#X_3__> .

<#X_1__> :likes <#X_2__> .

<#X_0__> :dislikes <#X_2__> .

<#X_1__> :dislikes <#X_3__> .

# Possible serialization 2:

@forAll <#X_0__> , <#X_1__> , <#X_2__> , <#X_3__> .

<#X_0__> :likes <#X_1__> .

<#X_1__> :likes <#X_0__> .

<#X_0__> :likes <#X_2__> .

<#X_1__> :likes <#X_3__> .

<#X_0__> :dislikes <#X_3__> .

<#X_1__> :dislikes <#X_2__> .

Figure 7: Two different serializations of the graph in Fig. 5 that the (incomplete) canonical-

ization explained in section 7 might produce.

The graph in Fig. 5 is an example of symmetry. Variables “:a” and “:c”

get the same hash values, as well as variables “:b” and “:d”. The same hap-

pens to some statements that differ only on those variables, like “:a :likes

:b” and “:c :likes :d”. Therefore, the relative order of those variables and

statements cannot be deterministically decided by the basic canonicalization

algorithm. Fig. 7 shows the two possible canonical serializations of that graph.

This section explains how to improve the basic canonicalization algorithm to

make it deterministic in case of symmetries.

The cause of this problem is that, although variables “:a” and “:c” can be

interchanged without altering the meaning of the graph, and the same occurs

to “:b” and “:d”, there is a relation across these pairs of variables that has to

be preserved (in the example, “:a” likes “:b” and dislikes “:d”, whereas “:c”

likes “:d” and dislikes “:b”). This asymmetry of variable co–occurrences can

be exploited to produce a deterministic canonical graph.

For every pair of variables v1 and v2 for which there is at least one state-

ment with subject v1 and object v2, their co–occurrence hash value h(v1, v2) is

computed as follows:
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h(v1, v2) = (h(pred(s1))⊗ h(pred(s2))⊗ · · · ⊗ h(pred(sk)))N (17)

where s1, s2, . . . , sk are all the statements that have v1 as subject and v2 as

object.

Once all the necessary steps of the hash algorithm have been executed and

variables have been sorted according to their hash value (there is a sorted se-

quence v1, v2, . . . , vm of variables), every group of variables with the same hash

value is arbitrarily sorted. In order to sort them deterministically, variables in

colliding groups are rearranged within the group by using the co–occurrence

hash values as follows.

Colliding groups are processed sequentially (beginning with the group with

lowest hash value and ending with the one with highest hash value). Assume

that vk is the first variable in a given colliding group. The primary sorting crite-

rion is the value h(v, v1) for every variable v in that group. The secondary sort-

ing criterion is h(v1, v), then h(v, v2), and so on until h(v, vk−1) and h(vk−1, v).

Note that if k for the first group is 1, variables in that group are not rearranged

at all, because there are no preceding variables. Nevertheless, this is an expected

case that does not affect the performance of the algorithm, as shown later.

Some statements may have the same hash value because of variables ap-

pearing in them having the same hash value. Once variables have been sorted

according to the criteria above, their ordering can be used to establish a de-

terministic ordering for those statements. The primary criterion for sorting

statements is still their hash value. Then, if the statements have a variable in

their subject, the position of that variable in the sequence of ordered variables

is the second criterion (or -1 if the subject is not a variable). Finally, if the

statements have a variable in their object, its position is the third criterion (or

-1 if the object is not a variable).

Some variables may still collide (specially those that are close to the be-

ginning of the sorted list) after they have been sorted with the criteria above.

Nevertheless, it does not matter, because they are symmetrical and the canon-

ical graph will still be deterministic. To understand this point, consider the

example. Variables “:a” and “:c” have the lowest hash values. Even after the

improved algorithm is applied, they are non–deterministically sorted. However,
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it does not matter because now “:b” and “:d” are sorted accordingly: if “:a” is

chosen as the first variable, “:b” is chosen as the third one, but if “:c” is chosen

as the first variable instead, “:d” is chosen as the third one. Both situations

lead to exactly the same serialization of the graph due to how statements are

ordered. In fact, the second canonicalization shown in Fig. 7 is produced in

both cases.

With the improvements explained above, the canonical output of the algo-

rithm is deterministic even when symmetries occur.

8. Applications of the algorithms

The proposed hash and canonicalization algorithms can be applied to a num-

ber of scenarios. Some of them are discussed in this section.

8.1. Graph identity detection

Detecting whether several graphs are equivalent is useful for a number of

applications like, for example, those in which processing the same graph several

times leads to a waste of resources. For instance, Oren et al. [9] mention dupli-

cate detection as an area of further research in the context of Sindice, an index

for open linked data. Equivalence detection can also be useful to detect whether

a new version of a graph contains relevant changes with respect to a previous

version (regardless of changes in notation, ordering, naming of variables, etc.).

This kind of serialization–independent comparison of graphs is not straight-

forward, as shown in previous sections. The hash and canonicalization algo-

rithms proposed in this work can solve the problem.

Graphs can be compared by comparing their hash values. If their hash

values are different, the graphs are definitely not equivalent. If their hash values

are equal, they are very likely to be equivalent, but further tests with other

algorithms are necessary to assure that. One possibility is to serialize their

canonical graphs, using the canonicalization algorithm (Section 7), and use a

simple text–comparison tool. Only in the unlikely case that the canonicalization

algorithm were not able to produce a deterministic canonical representation of

both graphs, due to a statistical collision, other comparison algorithms would

need to be considered.
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This algorithm for graph comparison is notation–independent, in the sense

that graphs serialized with different notations (e.g. RDF and N3) can be com-

pared.

8.2. Computing differences between graphs and synchronization

For some applications, graphs have to be compared in order to detect their

differences, for example for remote synchronization of RDF graphs [10] or to

mix the triples of several graphs into one graph, avoiding duplicate statements.

In order to do this, it is necessary, basically, to detect which statements and

variables of the graphs are equal, and which ones are different. An obvious

solution is comparing every statement in one graph with all the statements in

the other graph, but the complexity of this algorithm is quadratic with respect

to the number of statements.

A solution with complexity O(N logN) would be applying the hash algoritm

proposed in this work to compute the array of partial hashes of the statements of

each graph, sorting those arrays, and comparing them with a simple linear–time

algorithm.

Hash collisions might make the algorithm over–detect common hashes. How-

ever, there is an extremely low probability of that to happen. Applications hav-

ing strict requirements about this can compare the statements with the same

hash to avoid false positives. Note that even in this case the number of com-

parisons of statements is highly reduced because only statements suspected to

be equal are compared.

If the algorithm has to deal with variables, the unit for computing hashes

has to be a minimum self–contained graph, as explained in [10].

If the graphs contain subgraphs, the algorithm proposed works if subgraphs

are treated as a unit and it is executed recursively on subgraphs appearing in

statements that have the same hash value. If there is the need to identify also

the differences between subgraphs statement by statement, the problem is not

trivial and needs to be further studied.

8.3. Storing graphs in hash tables

Some Semantic Web applications may require graphs or parts of graphs to

be stored in hash tables for later retrieval, being the graphs themselves the
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keys of the hash tables. In this case, a hash algorithm for graphs is absolutely

necessary. It is the case, for example, of caches of graphs implemented with

hash tables.

9. Validation

As stated in [11], a good hash function should satisfy two requirements: (1)

its computation should be very fast; and (2) it should minimize collisions.

The first requirement, fast computation, has implications in the performance

of systems using the hash algorithm. Section 9.2 analyzes the computation time

of the algorithm for graphs of different sizes.

The second requirement, minimization of collisions, is also very important

for hash algorithms. For example, when hash values are used to compare graphs,

a high rate of collisions leads to a high rate of false positives, which degrades

the performance of the applications relying on the hash algorithm. It has also

consequences for canonicalization, because semantic graphs with collisions in

the hash of statements or variables defined at the same level cannot be deter-

ministically canonicalized with the algorithm proposed in this work. Section 9.3

analyzes the probability of hash collision of the algorithm.

A prototype of the hash and the canonicalization algorithm was implemented

in Python in order to test and validate them. It uses CWM [12] to parse input

graphs. The experiments were run on this prototype.

The description of the hash algorithm left open the selection of a hash func-

tion for string values (Section 5.3) and the value of several constants (Sec-

tion 5.4). The prototype uses the Python’s built-in hash function and the con-

stants listed in Tab. 1.

9.1. Data–set

In order to test the algorithm, a relatively big set of N3 and/or RDF files

was needed. Particularly, N3 files with subgraphs were preferred because our

experience during the initial design and testing phases of this algorithm showed

that hashing subgraphs is a potential source of hash collisions in case of design

errors in the algorithm. It is not difficult to find big amounts of RDF data

or generate them automatically from data sources. However, big real–world
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ksubj 41fbe48c045cc9ae kuniv 5a9ee26bddc7fc70

kpred 00bad7a94840f874 kexist c47fced69d144f22

kobj 5724e0c64cf12be5 klab 418034d90ff93b33

klist e9bf7ebef4b0b2d9 klit 76de978e6b243c5d

kset b1b679fa7b11e586 kopq 60c31fea734ab6b8

kdtype b9e474b819981c67 klseed 25189d055841d312

klang 72dffc38531a8870 klmul 01c4d4bbac73aa93

ksetitm 712fa2c0c5d65b16 kfitm f122de4aaf060e36

Table 1: Constants used by the hash algorithm (hexadecimal).

N3 data-sets with nested subgraphs and variables are more difficult to find.

Generating random N3 graphs could be an option, but real–world data was

preferred to avoid the potential problem of using data with biased properties.

For the purpose of validating this work, we built an N3 data–set based on

the TPTP (Thousands of Problems for Theorem Provers) problem library [13].

The TPTP library of problems contains 9894 (as of version 3.3.0) prob-

lems used for testing automated theorem proving systems. They are specially

interesting for testing the hash algorithm because they include propositions,

universally and existentially quantified variables and rules. They were auto-

matically translated into N3 to create a big data–set intensive in variables and

subgraphs. As a result, 9894 N3 files were obtained. The main figures for this

dataset are:

• Number of statements: 29,122,676.

• Number of subformulae: 6,100,441.

• Number of variables: 5,744,262.

• Total file-size: 1,9 GB

9.2. Complexity and computation time

In order to test the requirement of fast computation time, the evolution of

the computation time of the algorithm with respect to the size of the input N3

graph was analyzed, both theoretically and empirically with the data–set.
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9.2.1. Theoretical analysis

The multi–step hash algorithm consists of several steps of the basic hash

algorithm presented in Section 5, each one followed by an algorithm to detect

partial hash collisions. This section shows how computation time grows when

the size (number of statements and variables) of the input graph is increased.

The time needed for computing one step of the basic hash algorithm is the

sum of the time needed for:

• Computing the hash of every statement: it is linear, because the hash of

a statement is computed in constant time.

• Computing the hash of every variable: due to the recursive Algorithm 1,

complexity is quadratic in the worst case (N3 graphs in which the tree

of nested subformulae is extremely unbalanced, i.e. it forms a sequence

instead of a tree). For the usual graphs containing just some subformulae,

complexity is almost linear. For graphs not containing subformulae at

all (like RDF graphs), it is definitely linear, because computation time

depends only on the number of statements that contain a variable as

subject or predicate.

• Mixing hashes of statements and variables: it is linear, because they are

mixed by multiplying the hashes of all the statements and variables.

Therefore, a basic hash step has linear complexity (O(N)) for RDF graphs,

and linear or almost linear complexity for the usual N3 graphs. Complexity is

O(N2) in the worst case, but that case seems likely to seldom appear in normal

applications.

The algorithm to detect partial hash collisions can be implemented by sorting

the partial hashes and a linear–time algorithm for detecting adjacent equal hash

values. Its complexity is O(N logN) because of the sort algorithm.

The number of steps of the algorithm to be run does not depend on the

number of statements or variables of the graph, and is, therefore, a constant

from the point of view of the complexity analysis.

Therefore, the global complexity of the hash algorithm is betweenO(N logN),

for RDF and usual N3 graphs, and O(N2), for worst–case N3 graphs. The
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Figure 8: Distribution of the number of steps run per input N3 graph in the TPTP data–set.

complexity of the canonicalization algorithm is the same because its essential

structure is the same.

9.2.2. Experimental results

The previous theoretical analysis was complemented with an empirical eval-

uation. An experiment was run with the data–set in order to measure the rate

of growth of the computation time of the hash algorithm with respect to the

size of the graph. This dataset was selected because it uses subformulae very

extensively, and can therefore help to measure the behavior of the algorithm

with graphs that are closer to the worst–case.

In order to avoid the distortion that a variable number of steps would intro-

duce in measuring the effect of the size of the graph in its computation time,

times displayed in figures are computed as the average time per step of the al-

gorithm for each N3 file. Almost all the graphs require between one and three

steps, as shown in Fig. 8.

Figures 9, 10 and 11 show, in different scales, the relation between the av-

erage hash computation time and the size of the graph. Figure 9 shows the

computation time for all the graphs. Figure 10 zooms into the region with more

data, at the left–bottom of the graph. Figure 11 zooms even more into that

area, where almost all the graphs can be found.

Fig. 12 shows the distribution of computation time in the dataset. As shown
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Figure 9: Computation time of the hash algorithm for the TPTP dataset. Full view.

in the figure, it is less than 100ms for 60% the graphs in the dataset, and less

than 1s for more than 90% the graphs. The x axis is represented in logarithmic

scale to improve resolution in the range of lower computation times.

As expected from the theoretical analysis, a variety of growth patterns ap-

pear, depending on the structure of each N3 graph. Many of those patterns seem

to be linear. This apparently linear rate of growth of the experiments does not

contradict the theoretical lower bound of O(N logN). The explanation is that

the graphs of the experiment, although large, are not large enough to make the

time needed for sorting bigger than the time needed for the other tasks of the

algorithm.

Computation times may seem big, a portion of them in the order of sec-

onds (almost 10% the graphs are above 1s per step, as shown in Fig. 12). The

cause is that they were obtained in a low–profile computer with a non–optimized

Python prototype of the algorithm. They are subject to considerable improve-

ments in production–quality implementations. Nevertheless, what is relevant

in this analysis is the rate of growth of computation time with respect to the

size of the graph, which does not depend on the degree of optimization of the

implementation.
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Figure 10: Computation time of the hash algorithm for the TPTP dataset. Zoomed view.

9.3. Probability of hash collisions

Let us focus on the problem of hash collisions. Suppose a hash function

with 2m equiprobable outputs (i.e., an m-bit output), and a set of k hash values

obtained by applying the hash function to k different random inputs. According

to the birthday paradox, the probability of hash collision (i.e., the probability

that there are at least two equal hash values in the set) is greater than 0.5

for k = 1.18 · 2m/2 ≈ 2m/2 (see [14, Appendix 11A] for the proof and further

explanation).

Therefore, with a 64-bit hash function like the one proposed in this work,

supposing that it produces uniformly distributed hashes, the probability of col-

lision is greater than 0.5 when it is applied to 232 different inputs.

However, for non–uniform distributions of hash values, that limit could be

remarkably lower. The objective of the experiments carried out in this work is

mainly to confirm that the output of the hash function we propose is sufficiently

uniform and therefore the limit of 232 applies.

In order to verify empirically the uniformity of the hash values it produces,

the algorithm was run with the graphs of the data–set. The hash values obtained

were processed with a statistical analyzer and a collision test, as described in

the next subsections.
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Figure 11: Computation time of the hash algorithm for the TPTP dataset. Zoomed view.

9.3.1. Statistical analysis

Several statistical tests were run on the hash values obtained from the N3

graphs in the TPTP data–set, in order to estimate by different means their

likelihood to be uniformly distributed. A sequence of bytes was obtained from

the hash values (each hash value produces 8 bytes). Ent [15], a pseudo-random

number sequence test program, was run on that sequence of bytes. The main

results for this test were:

• Entropy: 7.997813 bits per byte. This value is quite close to the theoretical

value of 8 expected for a uniform sequence of bytes.

• Arithmetic mean: 127.1884. This value is close to the value of 127.5

expected for a uniform sequence of bytes.

• Value of π computed with the Monte Carlo method: 3.129567086. The

error is 0.38% with respect to the actual value of π.

• Serial correlation coefficient: -0.002159, very close to the value of 0 for a

totally uncorrelated sequence.

• Chi–square distribution test: 236.47; randomly would exceed this value

79.15% of the times, which means that the chi–square test gives no evi-

dence of non–randomness, because the result is in the (10%, 90%) interval.
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Figure 12: Distribution of computation time per step per graph in the TPTP dataset.

As a conclusion, the sequence of bytes obtained from the hash values of the

TPTP files does not show any evidence of non–randomness in the tests run by

Ent.

9.3.2. Collision test

The collision test is one of the empirical tests for randomness proposed by

Knuth in [16]. It is well–suited for testing hash functions because it allows

testing randomness with less data values than possible hash values, whereas

other tests like the chi–square test need several data instances for each hash

value.

The test consists in throwing n balls randomly into m urns that are initially

empty. The number of collisions is the number of urns with two or more balls

at the end of the experiment. The test is passed if the number of collisions is

not too high or not too low with respect to the expected value.

Given the number of collisions c that actually occurred in the experiment,

the theoretical probability p that c or less collisions occur for a random sequence

is computed with the algorithm proposed in [16], or the normal approximation

proposed in [17]. If the resulting theoretical probability is too low (p < 0.05)

or too high (p > 0.95), the sequence of data is suspicious of not being random,

because the number of collisions is either too low or too high compared to

the expected number of collisions for a uniformly–distributed random sequence.
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Because it can happen even for a truly random sequence to be in those ranges of

probabilities, the test has to be run several times with different data sequences.

If several of them turn to be suspicious, then the sequence of data fails the test,

and is considered to be non–random.

For the purpose of these experiments, we selected m = 216, instead of m =

264, in order to keep n (in this case the number of graphs) close enough to m.

Given that the hash values have 64 bits, different 16 bit data sequences were

extracted from the 64–bit hash values of the TPTP data–set:

• Positional sequences: 4 sequences were produced, each one by taking a

specific 16–bit part from each hash value (bits 1–16, 17–32, 33–48 and

49–64).

• Random position sequences: 16 sequences were produced by taking a ran-

dom 16–bit block from each hash value.

Fig. 13 shows the histogram of the values of probability obtained for each

sequence. The hashes of the TPTP data–set passed the collision test, because

the value of probability obtained for all the sequences was between 0.05 and 0.95,

which are the thresholds proposed by Knuth for this test. In other words, the

collision test showed that the number of collisions that happen in the sequences

produced from the random values is in the range expected for a uniformly–

distributed random sequence.

9.4. Conclusions of the evaluation

Hash values produced by the algorithm were found in the experiments of

Section 9.3 to be uniformly–distributed enough, because none of the tests run

on them showed evidence of non–uniformity. Due to this reason, the probability

of collision is expected to be close to 0.5 for a set of 232 hash values, according

to the birthday paradox. This value, above 4 ·109, is very high for almost all the

practical applications of the algorithm, thus making the probability of collision

extremely low for applications working with a reasonable number, even tens of

millions, of graphs. As reported by Ding et al. [18], almost all the semantic

Web documents that could be found in the Web in 2006 had less than 100

triples. The largest document found had over 1 million triples. Moreover, in
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Figure 13: Histogram of probabilities for the different sequences in the collision test.

case an application required to work with bigger graphs, the algorithm could be

extended to produce bigger hash values, by selecting a bigger value N and new

constants.

Computation time has a tendency of growth between O(N log(N)) and

O(N2). Nevertheless, most of the graphs (especially those with a few subgraphs)

exhibit an almost–linear growth up to several tens of thousands of statements,

when the sort algorithm (O(N log(N))) begins to dominate computation time.

Only some scarce graphs with many subgraphs nested one into another would

exhibit the worst case O(N2) complexity.

10. Related work

There are not many works related to hashing or canonicalizing Semantic Web

graphs in the scientific literature. The most relevant up to now are [19] and [20].

Both works are specific for RDF, and therefore do not support subformulae, an

important N3–specific feature.

Carroll [19] proposes an algorithm for canonicalizing RDF graphs, with a

similar notion of equivalence of graphs to the one proposed in this article. De-

spite that work does not consider hashing, a hash value can be trivially obtained

by applying a general purpose hash function to the canonical representation of

the graph. The canonicalization algorithm sorts triples according to their lexico-
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graphic order. As expected, blank nodes make this tricky. The author proposes

a solution for handling blank nodes similar to the one proposed in this work:

• Blank nodes are labelled initially with a generic label, equal for all the

nodes.

• Triples are sorted lexicographically (using the generic labels for blank

nodes). After sorting, variables are re–labelled with a numerical iden-

tifier according to the position of the triple in which they appear first.

Collisions may appear in this step (consecutive triples that are equal).

• Finally, triples are sorted again, now with the label computed for each

variable.

Some graphs cannot be canonicalized, because of collisions. The author

explains that multiple steps of that algorithm can fix some of the collisions. For

those graphs that cannot be deterministically canonicalized, the author proposes

a pre–canonicalization step that modifies the RDF graph by introducing new

triples that help to differentiate variables but do not modify the meaning of

the graph. However, this step is non–deterministic, and therefore some graphs

cannot be deterministically canonicalized anyway. As a consequence, the hash

value resulting for certain graphs would also be non–deterministic, provoking

some equivalent graphs to produce different hashes.

The main drawbacks of the work of Carroll compared to this work are:

• It does not support subformulae, and therefore can only be applied to a

subset of N3 graphs.

• The hash value of the RDF graphs that cannot be deterministically canon-

icalized does not preserve the equivalence relation, i.e., some equivalent

graphs can produce different hashes. The author states that this can

happen only with a very limited proportion of practically occurring RDF

graphs. On the contrary, the hash algorithm presented in this work can

produce a consistent hash value for every possible graph.

Sayers and Karp [20] propose a hash algorithm for N3 graphs that does

not need to canonicalize the graph before computing its hash. The algorithm

computes a partial hash for each triple, and then all the hash values are mixed to
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produce the hash of the whole graph. In that work, blank nodes are supported by

explicitly labelling them with new labels. Authors do not explain how labels for

blank nodes are selected. Taking into account that labels can be assigned non–

deterministically, hash values produced for graphs are also non–deterministic.

The main limitations of the work of Sayers and Karp compared to this work

are:

• It does not support subformulae, and therefore can only be applied to a

subset of N3 graphs.

• Hashes are non–deterministic if there are blank nodes, because authors do

not propose a deterministic way of selecting labels for blank nodes. For

some applications, like graph signing, this is not a limitation in general,

because labels are included in the RDF file whose signature has to be

checked. However, this non–determinism precludes the algorithm from

being used for other applications, like checking equivalence of graphs.

11. Conclusions

Two related algorithms that work on N3 graphs have been presented in

this paper. The first algorithm computes the hash value of a graph. The

second one, which is based on the partial hash values produced by the hash

algorithm, computes the canonical representation of a graph. Although designed

for N3, both algorithms are also able to work with RDF graphs represented with

RDF/XML notation, which has been widely adopted by the Semantic Web

community.

The ability to properly handle blank nodes, variables and subgraphs is the

main contribution of this work with respect to the related work found in the

literature. The mechanisms designed to handle those three N3 features led, in

fact, to most of the complexity of the algorithms.

The experiments carried out on a big N3 dataset, using a prototype imple-

mentation of the algorithms, show that the probability of hash collision is very

low (approximately 232 hash values are needed to get a probability of collision

of 0.5). This result is supported by the birthday paradox, which can be applied

to this case because the hash values produced by the hash algorithm seem to
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be random and uniformly–distributed (no evidence of non–uniformity has been

found using a collection of several randomness tests).

A theoretical analysis of the algorithms shows that their complexity is be-

tween O(N logN) and, in the worst case, O(N2). These results have been

confirmed experimentally using the dataset.

A. Proof of correctness of the stop condition of the multi–step algo-

rithm

This section proves the correctness of the stop condition proposed for the

multi–step hash algorithm in Section 6.1. Because of lemma 3 (see below), in

absence of random collisions it is guaranteed that if the number of collisions

is the same in two consecutive steps, more steps will no lower that number of

collisions. Lemmas 1 and 2 are intermediate results needed to prove lemma 3.

Definition 5. A hash collision of two items (variables, statements, etc.) is

said to be non–random iff it is caused by both hashes being computed with the

same equations from the same input data.

Let us represent the effects of the structure of the graph on the hash value

of an item x by means of a function fx : V × V × · · · × V → ZN . Given the

hashes at the previous step of those variables that affect the hash of x, it maps

them to the hash value of x at the current step. The function fx is, in general,

different for different items. However, given a specific item, it is the same for

all the steps of the hash algorithm.

The hash values of two items x and x′ at step k are therefore computed using

fx and fx′ from the hashes at step k− 1 of the variables that affect x (variables

v1, . . . , vn) and x′ (variables v′1, . . . , v
′
n′) as follows:

hk
x = fx(h

k−1
v1

, . . . , hk−1
vn

) (18)

hk
x′ = fx′(hk−1

v′

1

, . . . , hk−1

v′

n′

) (19)

By Def. 5, if the hashes of x and x′ collide, and the collision is not random,

then:
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fx = fx′ (20)

n = n′ (21)

and there exists an ordering of variables vi and v′i such that:

hk−1
v1

= hk−1

v′

1

, . . . , hk−1
vn

= hk−1
v′

n

(22)

Lemma 1. In absence of random collisions, if two variables or two statements

collide at step k, they must collide also at its previous step k − 1.

Proof. Suppose two variables v and v′ such that they collide at step k but not

at step k − 1:

hk
v = hk

v′ (23)

hk−1
v 6= hk−1

v′ (24)

(25)

The hash values of v and v′ at step k are computed using fv and fv′ from

the hashes at step k − 1 of some of the variables of the graph as follows:

hk
v = fv(h

k−1
v1

, . . . , hk−1
vn

) (26)

hk
v′ = fv′(hk−1

v′

1

, . . . , hk−1

v′

n′

) (27)

Because the collision at k is not random, it must be due to both variables

having exactly the same relations to other components of the graph, that is:

fv = fv′ (28)

n = n′ (29)

and fv and fv′ depending on equal hash values:

hk−1
v1

= hk−1

v′

1

, . . . , hk−1
vn

= hk−1
v′

n

(30)
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Given that the hashes of v and v′ do not collide at step k − 1, it necessarily

must exist 1 ≤ i ≤ n such that the pair of variables vi and v′i do not collide at

step k − 2. But taking into account that according to Eq. 30 those variables

collide at step k − 1, and applying the same reasoning by induction on vi and

v′i, there must finally exist a pair of variables that collide at step 1 but not at

step 0 (initial hash values from Eq. 4). However, if the collision at step 1 is not

random, both variables must have the same quantification, and therefore their

initial hashes must be equal, which leads to a contradiction.

If a pair of statements s and s′ is considered instead of variables, and they

collide at step k but not at step k−1, by the same reasoning applied above to v

and v′ it would imply that there must be a pair of variables that collide at step

k− 1 but not at step k− 2. However, that has been proven to be impossible. �

Lemma 2. In absence of random collisions, if the number of collisions at two

consecutive steps k and k + 1 is the same, any pair of variables v and v′ whose

hash value is equal at step k (i.e. hk
v = hk

v′) have also equal hash value at step

k + 1 (i.e. hk+1
v = hk+1

v′ ).

Proof. Because of lemma 1, variables and statements that do not collide at

step k cannot collide at step k+1. Consequently, no new (non–random) collisions

may happen at step k + 1.

Because no new collisions may happen, if the number of collisions at step k

is equal to the number of collisions at step k+1, variables and statements that

collide at step k must necessarily collide also at step k + 1. �

Lemma 3. In absence of random collisions and duplicate triples, if the number

of collisions in a given step k is equal to the number of collisions in its following

step k + 1, there will be the same number of collisions in any other future step

k′ > k + 1.

Proof. If there were less collisions at step k + 2 than at step k + 1, at least

two variables or two statements that collided at step k + 1 might not collide at

step k + 2.

Let us suppose that at least two variables v and v′ collide at step k + 1 but

do not at step k + 2. Due to lemma 1 they must also collide at step k:
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hk
v = hk

v′ (31)

hk+1
v = hk+1

v′ (32)

hk+2
v 6= hk+2

v′ (33)

Their hash values at steps k and k + 1 depend, respectively, on the hashes

of some of the variables of the graph at steps k − 1 and k:

hk
v = fv(h

k−1
v1

, . . . , hk−1
vn

) (34)

hk
v′ = fv′(hk−1

v′

1

, . . . , hk−1

v′

n′

) (35)

hk+1
v = fv(h

k
v1
, . . . , hk

vn
) (36)

hk+1
v′ = fv′(hk

v′

1

, . . . , hk
v′

n′

) (37)

Because the collisions happening at steps k and k + 1 are not random, it

must be due to functions fv and fv′ being equal and depending on equal hash

values:

fv = fv′ (38)

n = n′ (39)

hk−1
v1

= hk−1

v′

1

, . . . , hk−1
vn

= hk−1
v′

n

(40)

hk
v1

= hk
v′

1

, . . . , hk
vn

= hk
v′

n

(41)

Given that fv = fv′ , the only way to avoid a collision between v and v′ at

step k + 2 is that at least one of the equalities above no longer holds for step

k + 1. That is, there must exist vi and v′i with 1 ≤ i ≤ n such that:

hk−1
vi

= hk−1

v′

i

(42)

hk
vi

= hk
v′

i

(43)

hk+1
vi
6= hk+1

v′

i

(44)

However, it is impossible by lemma 2, because the number of collisions in

steps k and k+1 is the same. Therefore, it can be concluded that v and v′ must

still collide at step k + 2.
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If two statements colliding at step k + 1 but not at step k + 2 are taken

instead of two variables, the reasoning above is equally valid for them, leading

also to a contradiction with lemma 2.

Consequently, the number of collisions at step k + 2 has to be the same as

at steps k and k + 1. By induction, the same is true also for any other step

k′ > k + 1. �
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