

This is a postprint version of the following published document:

García-Reinoso, Jaime; Fernández, Norberto; Vidal,
Iván; Arias Fisteus, Jesús (2015). Scalable Data
Replication in Content-Centric Networking based on
Alias Names. Journal of Network and Computer
Applications, (2015), v. 47, pp.: 85-98.

DOI: https://doi.org/10.1016/j.jnca.2014.10.003

© 2014 Elsevier Ltd. All rights reserved.

This work is licensed under a Creative Commons Attribution-
NonCommercialNoDerivatives 4.0 International License.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidad Carlos III de Madrid e-Archivo

https://core.ac.uk/display/326005971?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1016/j.jnca.2014.10.003

Ztreamy: A middleware for publishing semantic streams on the Web

Jesus Arias Fisteus,a,1, Norberto Fernandez Garciaa, Luis Sanchez Fernandeza, Damaris Fuentes-Lorenzoa

aDepto. de Ingenieŕıa Telemática, Universidad Carlos III de Madrid, Avda. de la Universidad, 30, 28911, Leganés (Madrid), Spain

Abstract

In order to make the semantic sensor Web a reality, middleware for efficiently publishing semantically-annotated data
streams on the Web is needed. Such middleware should be designed to allow third parties to reuse and mash-up data
coming from streams. These third parties should even be able to publish their own value-added streams derived from
other streams and static data. In this work we present Ztreamy, a scalable middleware platform for the distribution
of semantic data streams through HTTP. The platform provides an API for both publishing and consuming streams,
as well as built-in filtering services based on data semantics. A key contribution of our proposal with respect to other
related systems in the state of the art is its scalability. Our experiments with Ztreamy show that a single server is able,
in some configurations, to publish a real-time stream to up to 40000 simultaneous clients with delivery delays of just a
few seconds, largely outperforming other systems in the state of the art.

Key words: semantic sensor Web, stream distribution middleware, semantic stream

1. Introduction

Nowadays, there are well known best practices for pub-
lishing linked data on the Web in an interoperable man-
ner, so that it can be retrieved, queried, browsed, etc. by
applications [1]. However, they are principally aimed at
publishing static data, and do not properly accommodate
the vast amounts of time-dependent data about the physi-
cal world produced by sensors. This kind of dynamic data
is not restricted to physical sensors. For example, there
are social sensors that capture information published in
the social sphere (social networks, blogs, etc.)

Data from sensors is usually processed in the form of
streams. In [2] a data stream is defined as a real-time, con-
tinuous, ordered (implicitly by arrival time or explicitly by
timestamp) sequence of items. Streams are different to
stored data in several aspects: they cannot normally be
stored in their entirety, and the order in which data is re-
ceived cannot be controlled. Wrapping sensor data into
semantic formats like RDF, and extending it with seman-
tic annotations, facilitate data integration. In the same
way the linked data initiative does, publishing in an open
manner on the Web this dynamic information, accompa-
nied by proper semantic annotations, opens the door to
independently-created applications and mashups. These
applications can exploit information in unforeseeable ways

Email addresses: jaf@it.uc3m.es (Jesus Arias Fisteus),
berto@it.uc3m.es (Norberto Fernandez Garcia), luiss@it.uc3m.es
(Luis Sanchez Fernandez), dfuentes@it.uc3m.es (Damaris
Fuentes-Lorenzo)

1Corresponding author’s phone number: +34916245940; Fax:
+34916248749

by integrating sensor data, linking to sources of static in-
formation, etc. This kind of platform is called the se-
mantic sensor Web [3]. Current research in this area is
aimed at providing solutions to problems such as the an-
notation and transformation of data coming from sensors,
integration of data from heterogeneous models, integration
of sensor data with linked data (and static data in general),
discovery of relevant streams, querying and reasoning on
streams, provenance of data (e.g. identifying the quality
or reliability of different streams, sensors, etc.), large scale
distribution of streams, etc.

In this article we present Ztreamy, a middleware for
publishing streams of semantically-annotated data on the
Web. By using it, data sources can publish their streams,
and applications can consume them. It also allows op-
erations such as mirroring, joining, splitting and filtering
these streams. There are other frameworks that can be
used for publishing sensor data, such as DataTurbine [4].
Some have even been designed for RDF sensor streams,
such as the Linked Stream Middleware (LSM) [5]. Our
most important contributions with respect to previous work
are the scalability of the proposal and its use of HTTP,
which makes it available to a wide range of application
environments. As we show in the evaluation, Ztreamy can
handle much bigger data rates and number of clients from
a single server than other existing solutions. In addition,
it provides mechanisms for broadcasting the streams from
several servers when additional performance is needed. An-
other difference with respect to some of the available solu-
tions is that it provides built-in services for manipulating
data represented with the RDF data model. This reduces
the effort needed to develop applications on top of it, be-
cause of the widespread availability of tools (query proces-

Preprint submitted to Journal of Web Semantics October 29, 2013

sors, data stores, reasoners, etc.) for RDF.
The rest of this paper is organized as follows. Section 2

describes a scenario that motivates the need of our pro-
posal and its main requirements. Section 3 describes the
design decissions behind Ztreamy. We evaluate its perfor-
mance and compare it to other systems in section 4. Sec-
tion 5 discusses other existing middleware platforms for
sensor networks. Finally, section 6 concludes this article.

2. Motivation and requirements

In this section we introduce a motivating scenario based
on the concept of smart cities, in which sensor networks
play a key role. The SmartSantander project [6] is one of
several examples of research initiatives in this area. They
have in common that a large number of physical sensors
(traffic, weather, air quality, noise, etc.) are deployed
across the city. They may be complemented by other kinds
of dynamic data sources, such as the current status of pub-
lic transport services, the schedule of traffic lights for the
next few minutes, tweets geo-located in that city, data
contributed by citizens through applications installed on
their smartphones, etc. We are especially interested in an
open scenario that enables an ecosystem of data providers
and third-party applications that offer meaningful services
to citizens by using that data. In this scenario, providers
(e.g. public entities and companies) publish dynamic data
in the form of streams. We identify some requirements
that a platform for publishing streams in such an scenario
should fulfill:

1. The ability for applications to consume the streams
of data they are interested in. For example, a traf-
fic application does not probably need to know about
the status of the water supply systems, and a neighborhood-
specific application may not need to subscribe to
streams from other parts of the city. Providers should
be able to logically group data into separate streams.
Client applications would subscribe just to the streams
they are interested in.

2. The ability for any party to publish value-added streams
by merging, splitting, filtering, processing, enrich-
ing with external data, etc. other streams, or just
mirroring them for a better load distribution. This
would foster the openness of the platform and con-
tribute to the appearance of innovative services. For
example, a third party could publish a new stream
that enriched the current traffic status stream with
predictions based on statistics about the past and
foreseeable circumstances such as planned cultural
events and demonstrations, bad weather, etc.

3. The ability to scale with the number of consumers
and the data rate. A big city would produce vast
volumes of data and support large amounts of con-
sumers simultaneously subscribed to the most popu-
lar streams. A system that does not scale can greatly
degrade user experience or even be unfeasible. Apart

from being scalable, the system should also be cheap
enough to enable budget-limited parties (small com-
panies, nonprofits, individuals) to publish their own
small-scale streams from consumer-grade devices and
network connections.

4. Accessibility from a wide range of application envi-
ronments. The use of a wide-spread standard pro-
tocol such as HTTP would ease the creation of ap-
plications for desktops, smartphones, Web browsers,
etc. in almost any programming language. Provid-
ing middleware libraries for the most common ones
would also contribute to this objective.

5. Configurable quality of service, such as delivery re-
liability and latency. Firstly, consumers should not
miss current items in the stream. In case of a net-
work disruption, they should be made aware and, if
the disruption is reasonably short, be able to retrieve
the items they missed as soon as they reconnect. Sec-
ondly, the platform has to distribute data as quickly
as possible, because responsiveness is a key factor
in some applications such as public emergency an-
nouncements. We believe that maximum delays of a
few seconds under normal network conditions are a
sensible target to achieve. Publishers should be able
to configure, according to their needs and the char-
acteristics of the stream, the size of the time window
for which they are able to redeliver data to clients
that suffer disruptions, and the latencies they target,
because both parameters have an associated cost.

6. Flexibility in network layout. Publishers should be
able to deploy their infrastructure according to the
requirements of the application, from simple client-
server layouts to complex tree-like distribution. This
aspect is also related to the scalability of the system.
For example, publishers might want to replicate from
each area of the city the streams that are popular
there.

7. Semantic annotation. We believe that wrapping data
with semantic annotations, as promoted by the se-
mantic sensor web [3], is necessary for data inter-
operability and integration in such a vast and het-
erogeneous scenario. The platform should support
its use and provide facilities based on those seman-
tics. For example, an application could use semantic
techniques to select relevant data from a stream and
enrich it with static linked data.

3. The Ztreamy stream distribution platform

Our main objective is making Ztreamy a scalable mid-
dleware platform for publishing and consuming semanti-
cally annotated data streams on the Web, for scenarios
such as the one presented in the previous section. In this
section we explain and justify how we have devised it from
the points of view of architecture, data representation and
data transport. Further implementation details are avail-
able at [7].

2

TCP/IP

Filter Receiver

Parser

HTTP Server HTTP Client

SerializerBuffer

Dispatcher

Stream

publishing API

Stream

consuming API

Stream

filtering API

C
o

re
 p

la
tfo

rm

Applications

Figure 1: Architecture of Ztreamy.

3.1. Architecture

Following the definition in [2], we consider that a stream
is a sequence of timestamped items, being an item the ba-
sic unit of data generated by sensors (or data sources in
general).

According to requirement 4, Ztreamy acts as a mid-
dleware library for applications. Figure 1 shows its ar-
chitecture. The main functions that the platform exposes
to applications are: consuming, publishing and filtering
streams, and sending items for publication in a stream.

Also following requirement 4, items are consumed, pub-
lished and sent to streams through HTTP. This allows ac-
cess from every major application environment, even for
applications that do not use our platform as a library.
When there are security requirements, such as confiden-
tiality, integrity or access control, HTTPS can be used in-
stead. Consumers subscribe to a stream by just sending a
GET HTTP request to its URI. The URI also allows them
to select the access mechanism: long-lived requests or long-
polling. For scalability reasons, long-lived requests, also
known as HTTP streaming, are the preferred mechanism.
With this mechanism the server sends the HTTP response
in chunks as new data is available, but never finishes the
response neither closes the connection. This way of com-
munication is efficient because just one underlying TCP
connection is used and just one HTTP request needs to be
processed for a possibly long period of time.

The long-lived requests mechanism is complemented
with buffering for improving performance. Instead of send-
ing items to consumers as soon as they are available for
publication, they are stored in a buffer, which is period-
ically dumped to the network. As shown in the experi-
ments of section 4, using this buffer may significantly im-
prove performance: A bigger buffer window (i.e. a bigger
period) reduces CPU consumption, improves compression
ratios and helps to reduce network load (requirement 3).
Its downside is that it delays the delivery of data, although
this increase in delay is predictable and bounded by the
period at which the contents of the buffer are sent. The
platform allows that period to be configured, or the mech-
anism to be disabled if needed.

Some HTTP client libraries are not compatible with
long-lived requests, as they wait the response to be fin-
ished before returning data to the application. In that

case, consumers can use long-polling instead, in which the
server finishes the response as soon as all the available
data has been sent, and the consumer sends a new HTTP
request immediately after that. Servers need to keep the
most recent data items in memory, so that long-polling
clients can receive them in their next request. This feature
is also used for providing reliability to long-lived clients
(requirement 5), because they are able, in case of network
disruptions, to receive the missed items after reconnection,
if they are still in memory. The publisher can configure
how many items are stored in memory for this purpose,
and therefore control the period of time for which a dis-
ruption may happen without the client losing data.

The use of HTTP has also the advantage of allowing
conventional load balancing techniques for scalability (re-
quirement 3), such as those based on DNS or front-end
reverse proxy servers.

Filtering allows applications to select the part of a
stream that matches some criteria (requirement 1). Fil-
ters can be installed at the server side by the publisher,
e.g. for automatically splitting one stream into more spe-
cific streams (requirement 2), and at the client side by the
consumer application. Some filters exploit the semantic
annotations of the data (requirement 7). At the moment,
Ztreamy already provides some types of built-in filters:

• By source or application: Given the identifier of a
specific data source (e.g. a specific sensor) or appli-
cation, the filter selects the items from them.

• By vocabulary: Given a URI prefix (e.g. a namespace
URI), it selects the items whose triples contain URIs
with the given prefix.

• By SPARQL queries: Given an ASK SPARQL query,
it selects the items for which the query evaluates to
true. This filter works on the graph of a single item
of the stream.

• Custom filters: In case more complex filtering be-
haviors are needed, the platform allows applications
to register their custom filter components, which im-
plement a simple interface. The platform runs those
filters once for every data item. However, because
they can keep memory, they are also able to base
their decisions on previously seen items.

On top of the basic API provided by the core of the
platform, other necessary services for the semantic sensor
Web could be built, although they are out of the scope of
our contribution. For example, continuous query systems
can be developed with the custom filters facility.

Ztreamy is flexible in how nodes are laid out in the
network. It consists of interconnected nodes, which may
act with one or more of these basic roles:

• Sources: They produce original data. In the case
of physical sensors with limited computing capacity,
or not directly connected to the network, the source
may be the computer that reads or adapts their data.

3

• Publishers: They are HTTP servers that publish one
or more streams. They receive the data to be pub-
lished from sources or other streams.

• Consumers: They subscribe to the streams they are
interested in.

This flexibility helps to comply with requirements 1, 2,
3 and 6. For example, a node acting as both a consumer
and a publisher can repeat streams for load balancing, join
several streams into one, filter a stream or split it into sev-
eral ones by means of filters, produce higher-level streams
by doing some processing on other streams, etc. It is also
possible for a node to integrate the source and publisher
in the same process.

When servers apply buffering, cascading several of them
(e.g. cascaded repeaters) makes data be buffered once per
server, which increases end-to-end delivery delays. In or-
der to prevent this, the platform provides for each stream
a special URI to access an unbuffered version of it with
priority delivery, intended to be used in those cases.

3.2. Data representation and compression

Data items in a stream are represented with headers
and body. Headers contain some metadata about the
item, whereas the body contains its main data. Manda-
tory headers include a unique item identifier, a creation
timestamp, the identifier of the source of the item and
the data type and length of its body. Optional headers
include application identifier and identifiers of the inter-
mediate nodes the item was transmitted through. Appli-
cations may also use custom extension headers. According
to requirement 7, the body of the item should normally be
a serialization of RDF, such as Turtle. Figure 2 shows an
example. Ztreamy provides code for the creation, serial-
ization and parsing of RDF data. Non-RDF data can also
be transported, e.g. in the first stages of its acquisition,
but in order to exploit the benefits of semantic technolo-
gies it should be semantically annotated somewhere in its
processing pipeline.

Experiments with a preliminary prototype showed that
the bandwidth in the server is one of the main limiting fac-
tors to the number of simultaneous clients and data rates
it can handle. Because data is represented with textual se-
rializations of RDF, and it is usual for sources to produce
regular structures, there is room for big gains by com-
pressing the data. However, due to the probably small
size of the items in the stream, compressing each item
in isolation would not achieve significant compression ra-
tios. Therefore, stream compression techniques should be
used. We chose the general-purpose Zlib library2, because
it is widely available, compatible with the standard Deflate
protocol and able to work in stream mode. Nevertheless,
compressing streams instead of single items poses a chal-
lenge: in order to reduce CPU and memory consumption

2http://www.zlib.net/ (Available 9th Jul. 2013)

Event-Id: 1100254f-f4ba-49aa-8c47-605e3110169e
Source-Id: 83a4c888-c395-4bb7-a635-c5b864d6bd06
Syntax: text/turtle
Application-Id: identi.ca dataset
Timestamp: 2012-10-25T13:31:24+02:00
Body-Length: 843

@prefix dc: <http://purl.org/dc/elements/1.1/> .
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix geo: <http://www.w3.org/2003/01/geo/wgs84_pos#> .
@prefix webtlab: <http://webtlab.it.uc3m.es/ns/> .
<http://identi.ca/notice/97535534>

dc:creator <http://identi.ca/user/94360>;
dc:date "2012-10-25T11:28:51+00:00";
webtlab:content

"Completed registrations for #wmbangalore !Wikimedia
DevCamp Banglalore: 2430 applications,
130 invitations sent http://is.gd/FtXMhT";

webtlab:conversation
<http://identi.ca/conversation/96703048>;

webtlab:hashtag "wmbangalore";
webtlab:location [a geo:Place;

geo:lat "13.018",
geo:long "77.568"] .

<http://identi.ca/user/94360> foaf:based_near [a geo:Place;
geo:lat "52.392";
geo:long "4.899"];

foaf:name "S....... M......" .

Figure 2: Example of a post retrieved from the Identica micro-
blogging service and wrapped with semantic metadata. It includes
the headers that our platform introduces.

in the server, the stream should ideally be compressed only
once for all the consumers. However, new subscribers to
an already running stream would need to know the cur-
rent compression context in order to begin to decompress
the stream. In order to address this issue, we use a main
compression context, common for all the consumers except
the recently connected ones. New consumers are served,
at the beginning, data compressed in an ad-hoc compres-
sion context. Periodically, the state of the main context
is reset so that those new consumers can synchronize to
it and abandon their ad-hoc context. The main context
is reset periodically, instead of whenever there is a new
subscription, because there is a cost in compression ratios
every time its state is reset, due to the compressor losing
its memory about previously seen data.

General purpose or RDF-specific compression algorithms
would have been another alternative for compression. An
RDF compression system that achieves better compression
ratios than general purpose algorithms is presented in [8].
However, it has been designed for compressing large RDF
graphs instead of streams.

3.3. Implementation of Ztreamy

We have implemented Ztreamy on top of the Tornado
Web server3. We selected it because of its efficiency when
handling large amounts of long-lived clients, as well as the
convenient asynchronous server and client HTTP libraries
it provides. The efficiency of Tornado is due to its use
of non-blocking input/output (the epoll notification ser-
vices of the Linux kernel, and similar services in other

3http://www.tornadoweb.org/ (Available 17th Jan. 2013)

4

platforms), which allows the system to efficiently handle
many network sockets from a single thread, instead of the
traditional approach of using blocking input/output in one
thread per client. It avoids, when there is a large number
of clients, the cost associated to the management by the
operating system of such a number of threads.

We have publicly released our prototype of Ztreamy
with an open source license4. It provides application pro-
gramming interfaces so that stream clients and sources can
be developed in the Python programming language with
a minimal effort. Nevertheless, as they communicate with
servers through HTTP, clients and sources can be devel-
oped in any other language, including JavaScript executed
from Web browsers. This prototype implements all the
functions of the core platform depicted in figure 1.

4. Performance evaluation

We carried out a series of experiments with Ztreamy
and other systems in order to measure how their perfor-
mance evolves as the number of clients connected to the
stream and the data rate change. We used the following
performance indicators:

• CPU use: absolute amount of CPU time the server
needed to process a given load. Because the experi-
ments were designed so that a source sends data for
an average duration of 100s, the percentage of a core
of the CPU used by the server can be approximated
by this CPU time, unless it enters saturation.

• Delivery delay: time from the instant the source is
ready to send an item to the instant the client ap-
plication parses it.

The experiments were run with the stream servers of
all the systems we compare installed on a Linux 3.0.2 com-
puter with an Intel Core i7 CPU at 2.8 GHz, with 4 cores
and hyper-threading, and 8 GB of RAM memory. In or-
der to get a high number of clients connected to the server,
clients were run from 4 different computers, up to 10000
clients per computer. Some clients were located in the
same 1 Gbps Ethernet network as the server, while others
were in a different 100 Mbps LAN. Round-trip transmis-
sion time within the LAN of the server was around 0.1ms,
and around 0.5ms to the second LAN. Servers and clients
were run on CPython 2.7 virtual machines. In order to
precisely measure delivery delays, all the machines were
synchronized with the same NTP server. Their estimated
offsets with respect to the reference were checked in every
experiment to be less than 5ms.

The timing of the items in the stream followed a Pois-
son process with a data rate that varied depending on the
experiment, and an average duration of 100s. Each exper-
iment was repeated 10 times with the same parameters.

4http://www.it.uc3m.es/jaf/ztreamy/ (Available 17th Jan. 2013)

We computed the 95% confidence interval for each data
point. However, since they were negligible, and in order
to improve legibility, we do not show those confidence in-
tervals in the plots.

The dataset consisted of posts captured from the micro-
blogging site Identica. We have published this dataset
along with all the software and instructions needed to re-
peat our experiments5. We converted each Identica post
into an item in the stream, represented using Turtle. The
dataset contains 25749 posts published in a period of 4
days. The average size of a post, once it is represented
with Turtle, is 880.95 bytes.

The results we report are specific for this dataset and
could change for others. The characteristics of the dataset
that affect results the most are the size of the items and
compressibility. Other factors such as the hardware of the
server and the performance of the network have also some
impact. However, we are less interested in absolute per-
formance values than in comparing the systems under the
same conditions and studying how performance varies as
different parameters change (number of clients, data rate).

4.1. Experiments with a single server

In this section we analyze the performance of Ztreamy
and other systems when run in a single server. We selected
for comparison6: Dataturbine [4], for it being a leading free
software for sensor data delivery; Faye7, a widely used free
software HTTP publish-subscribe framework; ZeroMQ8,
the messaging system that Storm (an open-source dis-
tributed stream processing software maintained by Twit-
ter) uses to distribute its streams through the cluster, in
publish-subscribe communication mode; and the websockets-
based publishing module of LSM [5] on top of the Apache
Tomcat server. In the case of LSM, instead of directly us-
ing their code, we adapted it in order to avoid using the
query engine, so that their results are not penalized for
being the only platform running a query engine. We were
not able to compare proprietary systems such as Xively or
the infrastructure behind the streaming API of Twitter.

Ztreamy was run in four configurations (with and with-
out buffering, with and without compression). In this
section we just report the results of our best configura-
tion (0.5s server buffer and compression). The other three
variants are discussed in section 4.3, where we explain the
reasons behind the performance of our system.

First, we served a 4 items/s stream to a variable amount
of clients. We run each system with a growing number of
clients until its performance degraded too much (excessive
delivery delays, data loss or malfunctioning). Figures 3a,
3c and 4a show the results. Dataturbine and Faye stopped
working properly at 700 clients, the former with a 3% data
loss and high delays, and the latter with frequent crashes

5http://www.it.uc3m.es/jaf/ztreamy/doc/experiments/
6Dataturbine 3.2, Faye 0.8.6, ZeroMQ 2.2.0 and LSM 1.0.0
7http://faye.jcoglan.com/ (Available Jul. 11th 2013)
8http://www.zeromq.org/ (Available 9th Jul. 2013)

5

beyond that number of clients. LSM begun suffering from
high delays beyond 2000 clients and losing data beyond
5000. ZeroMQ performed better than the other systems
until approximately 8000 clients. At that point, it satu-
rated the network and became unstable. At 12000 it was
unable to deliver about 8% of the items one minute after
the source finished sending data. Ztreamy, because of it
compressing the data, did not suffer from this. At 40000
clients it still delivered the stream with less than 3s me-
dian delay and around 90% of CPU use (this can be seen
in the “1 server” curves of figure 5).

Then, we run the systems with 500 clients and a vari-
able data rate. Figures 3b, 3d and 4b show the results.
Dataturbine reached a 2.5% data loss at about 30 items/s.
Faye delivered all the data even at its saturation point,
but suffered from massive delays. LSM did not lose data
in this experiment, but begun having high delays beyond
25 items/s. ZeroMQ begun to drop data at high rates,
with a 6% data loss at 80 items/s, due to bandwidth sat-
uration. Ztreamy performed stably for these rates. The
reason it performed better than ZeroMQ in terms of CPU
use, on the contrary to the previous experiment, is that
the 0.5s buffer is more effective at higher rates because it
aggregates more data in each period. Although not shown
in the plot in order to avoid compressing the x axis too
much, Ztreamy maintained its performance until approxi-
mately 250 items/s. At that point, it delivered data with
5s delay and less than 25% of CPU use, but bandwidth
begun to affect its performance.

4.2. Load balancing with repeaters

We repeated the same experiment (4 items/s and a
variable number of clients), but adding two more servers
that acted as repeaters for the stream. The three servers
were run with a 0.5s buffer, although the repeaters con-
nected to the master server through the unbuffered chan-
nel, as explained at the end of section 3.1. Clients were
evenly balanced so that each server handled 1/3 of them.
Figure 5 compares delays and CPU consumption when
serving the stream with the two repeaters and without
them. With small amounts of clients, delays are similar
in both deployments. However, the deployment with two
repeaters is able to keep delays stable and lower for larger
amounts of clients, as expected because the use of CPU in
each server is smaller since they handle less clients each.

4.3. Discussion

Our conclusion from the comparison with other tools
is that Ztreamy is able to handle many more clients and
much higher data rates. Equally to our proposal, all the
other systems transmit on top of TCP and maintain the
connection open. Therefore, we can discard this as a rea-
son for the improvements. Buffering in the server and
compression are, however, not implemented in any of the
other systems that we analyzed.

The performance of the other systems, except ZeroMQ,
began to drop when their CPU use reached the limit. The

server window buffer mechanism presented in section 3.1
is clearly important to reduce CPU use, as it can be seen
by comparing our prototype with and without buffering in
figures 3a and 3b. As expected, the data also shows that
the more items the buffer aggregates, the bigger the ef-
fectiveness of buffering. This happens when the data rate
increases (figure 3b) and when the period of the buffer in-
creases (figure 6). The latter shows the big impact that
different buffer sizes have in CPU use in a situation in
which not using buffering would result in an extreme sat-
uration of the server.

Our data shows the effect of buffering in delivery de-
lays. Since there is a compromise between buffer size and
latency, implementing an adaptive buffer window size in-
stead of a fixed-length one would be useful for maintaining
delays as small as possible for the current server load.

The experiments also show that compression, as pre-
sented in section 3.2, contributes to the performance of
Ztreamy. It reduced application-level traffic to a 15%.
This is its key advantage with respect to ZeroMQ, which
performed quite well until it congested the network. When
no server buffer is used, compression has no significant ef-
fect. This can be observed in all the plots, in which the
two curves with no buffering almost overlap. The effect
of compression is neither important when the buffer is so
small that it aggregates small amounts of data (figures 3a
and 3c), until the network begins to saturate. At that
point our system with 0.5s buffer but no compression be-
gan to lose data. Figure 3b shows that, however, at higher
data rates, at which the buffer aggregates more data, com-
pression gives significant gains in terms of CPU. The time
needed to compress data is compensated by the time saved
in the networking stack because of transmitting less data.
Therefore, compression, when combined with a big enough
buffer, not only reduces network traffic but also saves CPU
use, which allows the system to handle bigger loads.

The underlying servers of Ztreamy, ZeroMQ and Faye
use single-threaded non-blocking input/output, which we
explained in section 3.3. Despite Faye not performing well,
we believe that it has an important contribution in the
performance of our prototype and ZeroMQ. However, we
cannot measure the gains it is providing to Ztreamy, be-
cause it is inherent to it and cannot be disabled.

Another conclusion that can be drawn from this data is
that if ZeroMQ implemented buffering and compression it
would probably outperform our system. This is so because
it does not implement an HTTP server and its code is na-
tive, while Tornado is completely written in Python, with
no native code. Note that, however, compression is not
trivial to implement in publish-subscribe communication
patterns, due to new subscriptions arriving at any time,
as explained in section 3.2.

Results also suggest that in Ztreamy data rates have
less effect in CPU use than the number of clients. Trans-
mitting higher rates to less clients tends to saturate the
network before the CPU of the server, whereas transmit-
ting lower rates to more clients tends to saturate server

6

 0

 50

 100

 150

 200

 250

 300

 350

 400

 2000 4000 6000 8000 10000 12000 14000

Av
er

ag
e

se
rv

er
 C

PU
 ti

m
e

(s
)

Number of clients

Dataturbine
Faye

LSM (websockets)
ZeroMQ

Ztreamy (compression, no buffer)
Ztreamy (no compression, no buffer)

Ztreamy (no compression, 0.5s buffer)
Ztreamy (compression, 0.5s buffer)

(a) CPU time needed to send 400 items at average 4 items/s to a
variable number of simultaneous clients.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 10 20 30 40 50 60 70 80

Av
er

ag
e

se
rv

er
 C

PU
 ti

m
e

(s
)

Data rate (items/s)

Dataturbine
Faye

LSM (websockets)
ZeroMQ

Ztreamy (compression, no buffer)
Ztreamy (no compression, no buffer)

Ztreamy (no compression, 0.5s buffer)
Ztreamy (compression, 0.5s buffer)

(b) CPU time needed to send items at different rates to 500 simul-
taneous clients.

 0

 0.5

 1

 1.5

 2

 2.5

 2000 4000 6000 8000 10000 12000 14000

M
ed

ia
n

de
liv

er
y

de
la

y
(s

)

Number of clients

Dataturbine
Faye

LSM (websockets)
ZeroMQ

Ztreamy (compression, no buffer)
Ztreamy (no compression, no buffer)

Ztreamy (no compression, 0.5s buffer)
Ztreamy (compression, 0.5s buffer)

(c) Delivery delays when sending 400 items at average 4 items/s
to a variable number of simultaneous clients.

 0

 0.5

 1

 1.5

 2

 2.5

 0 10 20 30 40 50 60 70 80

M
ed

ia
n

de
liv

er
y

de
la

y
(s

)

Data rate (items/s)

Dataturbine
Faye

LSM (websockets)
ZeroMQ

Ztreamy (compression, no buffer)
Ztreamy (no compression, no buffer)

Ztreamy (no compression, 0.5s buffer)
Ztreamy (compression, 0.5s buffer)

(d) Delivery delays when sending items at different rates to 500
simultaneous clients.

Figure 3: Compared CPU use and delivery delays for all the systems.

CPU before the network.
Finally, section 4.2 showed that the facilities for re-

peating streams improve the performance of the system in
situations in which a single server would be in saturation.

5. Related work

Xively9 (formerly COSM and Pachube) is a commercial
service to which data consumers and producers connect to
exchange real-time data. To the best of our knowledge,
there is no public information about the engineering of
their infrastructure.

Systems such as Global Sensor Networks (GSN) [9],
DataTurbine [4] and BRTT Antelope10 are well known
platforms for gathering data from sensors. They support

9https://xively.com/ (Available 9th Jul. 2013)
10http://www.brtt.com (Available 17th Jan. 2013)

storing, publishing on top of a variety of protocols, re-
motely querying, processing and visualizing the data. En-
vironmental monitoring is their most important area of
application. Of these systems, DataTurbine is probably
the one that provides functions that are more similar to
our proposal. More specifically, it can send and receive
streams of data on top of TCP and WebDAV. Although
DataTurbine is a more mature and complete product, our
proposal has two key advantages regarding the publishing
of streams: a much better performance (see section 4) and
integrated support for semantically-annotated data (e.g.
SPARQL-based filtering as explained in section 3.1).

The Open Geospatial Consortium11 (OGC) produces
standards and best practices in the area of the sensor Web.
Its proposed architecture is described in [10]. Regarding
the access to measurements from sensors, they propose
the Sensor Observations Service (SOS) and the Web Noti-
fication Service (WNS) [11]. The SOS provides a way for

11http://www.opengeospatial.org/ (Available 17th Jan. 2013)

7

 0

 5

 10

 15

 20

 2000 4000 6000 8000 10000 12000 14000

U
nd

el
iv

er
ed

 d
at

a
ite

m
s

(%
)

Number of clients

Dataturbine
LSM (websockets)

ZeroMQ
Ztreamy (no compression, 0.5s buffer)

Ztreamy (compression, 0.5s buffer)

(a) Percentage of undelivered data items when sending 400 items
at average 4 items/s to a variable number of simultaneous clients.

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80

U
nd

el
iv

er
ed

 d
at

a
ite

m
s

(%
)

Data rate (items/s)

Dataturbine
ZeroMQ

Ztreamy (compression, 0.5s buffer)

(b) Percentage of undelivered data items when sending items at
different rates to 500 simultaneous clients.

Figure 4: Comparison of data not delivered between the start of the experiment and 60s after the data source sends the last event.
For clarity, only the systems that lose a significant amount of data an the best configuration of Ztreamy are shown.

 0

 20

 40

 60

 80

 100

 120

 5000 10000 15000 20000 25000 30000 35000 40000
 0

 0.5

 1

 1.5

 2

 2.5

Av
er

ag
e

se
rv

er
 C

PU
 ti

m
e

(s
)

M
ed

ia
n

de
liv

er
y

de
la

y
(s

)

Number of clients

Server CPU time per server, with 3 servers
Server CPU time with 1 server

Delivery delay with 3 servers
Delivery delay with 1 server

Figure 5: CPU time and delivery delays with 4 items/s stream
in deployments with 1 server and 3 servers (1 master server and
two repeaters).

clients to query measurements from sensors using Web ser-
vices, but require clients to poll for new data. The WNS
provides means to send notifications to clients, which reg-
ister in the service to receive them through HTTP, XMPP
or e-mail, among others. In the case of HTTP, it requires
the client to provide a Web server, which can be an in-
convenience in some situations such as when the client is
behind a firewall or Network Address Translator (NAT).
The alternatives, e-mail and XMPP, limit their usability
on the Web and, in the case of e-mail, have a poor perfor-
mance.

Data stream processing [12] and complex event pro-
cessing [13] are paradigms for processing large streams
of data. A complete survey on these technologies is pre-
sented in [14]. Queries in these systems run continuously,
which means that they produce results gradually as new

 0

 20

 40

 60

 80

 100

 120

 0 0.5 1 1.5 2 2.5 3
 0

 1

 2

 3

 4

 5

 6

 7

 8

Av
er

ag
e

se
rv

er
 C

PU
 ti

m
e

(s
)

M
ed

ia
n

de
liv

er
y

de
la

y
(s

)

Server buffer size (s)

Server CPU time
Delivery delay

Figure 6: CPU time and delivery delays to send 2000 items at
average 20 items/s to 8000 clients with different configurations
of server buffer window.

matching data arrives. Data does not necessarily need to
be stored. In many cases, especially for high data rates,
it is discarded after being processed. Twitter Storm12 is
a recent but widely used open source example of such a
system. Linked Stream Middleware (LSM) [5] is another
example, specifically designed for processing semantically-
annotated streaming data coming from sensors. Both tools
provide the ability to distribute processing through a clus-
ter. While this kind of systems focus on the infrastruc-
ture for scalably processing streaming data, our proposal
is centered on openly publishing streams on the Web, so
that they can be consumed by any client that has in-
terest in them. This affects how the platform needs to
be engineered, because the number of clients and their

12http://storm-project.net/ (Available 9th Jul. 2013)

8

connection patterns cannot normally be predicted in our
scenario, whereas these aforementioned systems distribute
the streams across a predictable cluster of computers usu-
ally under the control of the same administrators. There-
fore, the ability of the platform to scale to large numbers
of clients is more critical in our scenario. Our proposal
complements those systems. They target querying and
processing streams, whereas we target publishing them. In
fact, our proposal could be used to feed them with streams
or to publish streams resulting from their processing. Note
that LSM already provides modules for publishing streams
through PubSubHubbub13 and WebSockets14. However,
as we show in section 4, there is room for improvement in
their performance.

6. Conclusions

In this paper we presented a scalable platform for pub-
lishing semantic streams on the Web. The platform is flex-
ible, in the sense that diverse network layouts can be de-
ployed depending on the needs of the application. Streams
can be easily duplicated, aggregated and filtered. Applica-
tions written in diverse application environments can con-
sume and publish streams by accessing platform servers
through HTTP. A programming interface for Python is
also available. Besides handling HTTP communication,
the interface simplifies application development with func-
tionality such as data serialization/deserialization and built-
in semantic filtering.

The experiments show that our system outperforms
other solutions in a single server installation. We report
results in which a single server handles 4 items per second
to up to 40000 simultaneous clients, which represents a
throughput of 180Mb/s compressed application-level data,
with minimal average delays, no larger than a few seconds.
There are several engineering decisions behind this im-
proved performance. Firstly, buffering data at the server
side (storing data in a buffer and sending the contents
of this buffer periodically) reduces CPU use in the server
and lets it manage much higher loads. Secondly, although
its implementation in a publish-subscribe system is not
straightforward, compression not only reduces network load,
which proved to be a limiting factor for some systems in
our experiments, but also CPU use in the server. How-
ever, it is effective only if combined with the buffering
mechanism. Finally, servers using single-threaded non-
blocking input/output, such as the Tornado Web server
on top of which Ztreamy is built, seem to perform better
than traditional multi-threaded servers for large numbers
of clients. Apart from that, the built-in facilities for repli-
cating streams from different servers allow the system to
scale when the resources of a single server are not enough.

13https://code.google.com/p/pubsubhubbub/ (Available 9th Jul.
2013)

14http://dev.w3.org/html5/websockets/ (Available 9th Jul. 2013)

Although Ztreamy already provides some basic seman-
tic filtering capabilities, integrating continuous query pro-
cessing and reasoning as platform services is a sensible line
for future work, as it would simplify the development of
applications on top of it. As these kinds of services are al-
ready being addressed by others ([15, 16, 17]), integrating
some of those proposals is a possibility. Another possibil-
ity would be the integration of our platform as a publish-
ing module in LSM [5], which already provides a scalable
system for semantic stream processing, but has room for
improvement in terms of how it publishes the streams.
Other services, such as stream discovery, would also bene-
fit users. This feature would be based on adding semantic
metadata to sources and streams, using ontologies in the
state of the art [18]. Other line of future research is adding
self-organization capabilities to the platform, so that it can
dynamically adapt to its operational conditions (e.g. client
load). Self-organization should include mechanisms to au-
tomatically start other servers for replicating the stream
when the load is high, and to redirect new and some of the
already connected clients to them. We plan also to support
WebSockets as an additional protocol to transmit streams,
as it may be more convenient than HTTP for JavaScript
clients that run in Web browsers.

References

[1] C. Bizer, T. Heath, T. Berners-Lee, Linked data-the story so
far, International Journal on Semantic Web and Information
Systems (IJSWIS) 5 (3) (2009) 1–22.

[2] L. Golab, M. T. Özsu, Issues in data stream management, SIG-
MOD Rec. 32 (2003) 5–14.

[3] A. Sheth, C. Henson, S. Sahoo, Semantic sensor web, IEEE
Internet Computing 12 (4) (2008) 78 –83.

[4] S. Tilak, P. Hubbard, M. Miller, T. Fountain, The ring buffer
network bus (rbnb) dataturbine streaming data middleware for
environmental observing systems, in: e-Science and Grid Com-
puting, IEEE International Conference on, 2007, pp. 125 –133.

[5] D. Le-Phuoc, H. Q. Nguyen-Mau, J. X. Parreira, M. Hauswirth,
A middleware framework for scalable management of linked
streams, Journal of Web Semantics 16 (2012) 42 – 51.

[6] J. Galache, J. Santana, V. Gutierrez, L. Sanchez, P. Sotres,
L. Munoz, Towards experimentation-service duality within a
smart city scenario, in: Wireless On-demand Network Systems
and Services (WONS), 2012 9th Annual Conference on, 2012,
pp. 175–181.

[7] J. A. Fisteus, N. Fernandez, L. Sanchez, D. Fuentes, Ztreamy:
Implementation details, Tech. rep., Universidad Carlos III
de Madrid, http://www.it.uc3m.es/jaf/papers/2013/ztreamy-
report/ (2013).

[8] J. D. Fernández, M. A. Mart́ınez-Prieto, C. Gutiérrez,
A. Polleres, M. Arias, Binary RDF representation for publica-
tion and exchange (HDT), Journal of Web Semantics 19 (2013)
22 – 41.

[9] K. Aberer, M. Hauswirth, A. Salehi, Infrastructure for data pro-
cessing in large-scale interconnected sensor networks, in: Mobile
Data Management (MDM), 2007.

[10] I. Simonis, OGC sensor web enablement architecture, Open
Geospatial Consortium (2008).

[11] I. Simonis, J. Echterhoff, Draft OpenGIS web notification ser-
vice implementation specification, Open Geospatial Consortium
(2006).

[12] B. Babcock, S. Babu, M. Datar, R. Motwani, J. Widom, Mod-
els and issues in data stream systems, in: Proceedings of the

9

twenty-first ACM SIGMOD-SIGACT-SIGART symposium on
Principles of database systems, ACM, 2002, pp. 1–16.

[13] D. Luckham, The Power of Events: An Introduction to Complex
Event Processing in Distributed Enterprise Systems, Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, 2001.

[14] G. Cugola, A. Margara, Processing flows of information: From
data stream to complex event processing, ACM Comput. Surv.
44 (3) (2012) 15:1–15:62.

[15] D. F. Barbieri, D. Braga, S. Ceri, M. Grossniklaus, An execution
environment for C-SPARQL queries, in: Proceedings of the 13th
International Conference on Extending Database Technology,
EDBT ’10, ACM, New York, NY, USA, 2010, pp. 441–452.

[16] D. Barbieri, D. Braga, S. Ceri, E. Della Valle, M. Grossniklaus,
Stream reasoning: Where we got so far, in: Proceedings of the
4th workshop on new forms of reasoning for the Semantic Web:
Scalable & dynamic, 2010, pp. 1–7.

[17] J.-P. Calbimonte, O. Corcho, A. J. G. Gray, Enabling ontology-
based access to streaming data sources, in: Proceedings of the
9th international semantic web conference on The semantic web
- Volume Part I, ISWC’10, Springer-Verlag, Berlin, Heidelberg,
2010, pp. 96–111.

[18] M. Compton, P. Barnaghi, L. Bermudez, R. Garćıa-Castro,
O. Corcho, S. Cox, J. Graybeal, M. Hauswirth, C. Henson,
A. Herzog, V. Huang, K. Janowicz, W. D. Kelsey, D. L. Phuoc,
L. Lefort, M. Leggieri, H. Neuhaus, A. Nikolov, K. Page, A. Pas-
sant, A. Sheth, K. Taylor, The SSN ontology of the W3C seman-
tic sensor network incubator group, Journal of Web Semantics
17 (2012) 25 – 32.

10

