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ABSTRACT

In the last decade, regularized regression methods have offered alternatives for
performing multi-marker analysis and feature selection in a whole genome con-
text. The process of defining a list of genes that will characterize an expression
profile, remains unclear. This procedure oscillates between selecting the genes or
transcripts of interest based on previous clinical evidence, or performing a whole
transcriptome analysis that rests on advanced statistics. This paper introduces a
methodology to deal with the variable selection and model estimation problems in
the high-dimensional set-up, which can be particularly useful in the whole genome
context. Results are validated using simulated data, and a real dataset from a triple-
negative breast cancer study.

Keywords variable selection, high-dimension, regularization, classification

1 Introduction

Breast cancer (BC) is the most frequent cancer among women, representing around 25% of all
newly diagnosed cancer in women (Ferlay et al., 2014). One in eight women in developed coun-
tries will be diagnosed with BC over the course of a lifetime.
The prognosis of this disease has progressively improved over the past three decades, due to the im-
plementation of population-based screening campaigns and, above all, the introduction of new ef-
fective targeted medical therapies, i.e., aromatase inhibitors (effective in hormone receptor-positive
tumors) and trastuzumab (effective in HER2-positive tumors). Breast cancer is, however, a het-
erogeneous disease. The worst outcomes are associated with the so-called triple-negative breast
cancer subtype (TNBC), diagnosed in 15-20% of BC patients. TNBC is defined by a lack of
immunohistochemistry expression of the estrogen and progesterone receptors and a lack of ex-
pression/amplification of HER2 (Dent et al., 2007). The absence of expression of these receptors
makes chemotherapy the only available therapy for TNBC.
TNBC is usually diagnosed in an operable (early) stage. Surgery, chemotherapy and radiation ther-
apy are the critical components of the treatment of early TNBC. Many early TNBC patients are
treated with upfront chemotherapy (neoadjuvant chemotherapy, NACT) and then operated on and,
perhaps, irradiated. The rationale for this sequence is the ability to predict the long-term outcome
of patients looking at the pathological response achieved with initial NACT (Cortazar et al., 2014).
With the currently available neoadjuvant chemotherapy regimens, nearly 50% of TNBC achieve
a good pathological response to this therapy, while the remaining patients have an insufficient re-
sponse. TNBC patients achieving a complete or almost complete disappearance of the tumor in
breast and axilla after NACT have an excellent outcome (less than 10% of relapses at five years),
in contrast with those with significant residual disease (more than 50% of relapses at five years)
(Symmans et al., 2017; Sharma et al., 2018).
The identification of these two different populations is therefore of the utmost relevance, in order to
test new experimental therapies in the population unlikely to achieve a good pathological response.
Several tumor multigene predictors of pathological response of operable BC to NACT have been
proposed in the past few years, taking advantage of the recent decreased economic cost of obtain-
ing an individual’s full transcriptome (Tabchy et al., 2010; Hatzis et al., 2011; Chang et al., 2003).
Most of them have been tested in unselected populations of BC patients and have shown insuffi-
cient positive predictive value and sensitivity.
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The process of defining a list of genes that will define a characteristic expression profile is still am-
biguous. This process oscillates between selecting the genes or transcripts of interest based on the
clinical evidence in previous studies or using an agnostic point of view that rests on advanced statis-
tics selection processes in multivariate analysis. RNA-Seq has become one of the most appealing
tools of modern whole transcriptome analyses because it combines relatively low cost and a com-
prehensive approach to transcript quantification. Some approaches to complex disease biomarker
discovery already pointed to the need to use a whole genome perspective using joint information
in order to predict complex traits instead of a priori selecting individual features (De Los Campos
et al., 2010; Lupski et al., 2011). This strategy would lead to high predictive accuracy, and there
would be no need to know the precise biological associations in the genome background because
of the high correlation among the biomarkers (Offit, 2011). This approach is challenging from the
statistical point of view because of the large number of biomarkers to be tested along the genome
related to the rather small sample sizes in clinical studies. On the other hand, daily clinical prac-
tice scenario requires cheaper and faster quantification platforms than whole-genome RNA-Seq
analysis. Thus, it is needed to reduce the number of biomarkers to stick with in order to define a
practical gene expression signature for the clinical community.

The regularized regression methods provide alternatives for performing multi-marker analysis and
feature selection in a whole genome context (Szymczak et al., 2009). Specifically, we focus on the
sparse-group lasso (SGL) regularization method (Simon et al., 2013), which generalizes lasso (Tib-
shirani, 1996), group lasso (Yuan and Lin, 2006) and elastic-net (Zou and Hastie, 2003), merging
lasso and group lasso penalties. The solution provided by SGL, usually involves a small number
of predictor variables, given that many coefficients in the solution are exactly zero. It has an ad-
vantage over lasso when the predictor variables are grouped, as many groups are entirely zeroed
out, but unlike group lasso, the solution is also sparse within those groups that are not completely
eliminated from the model. However, as will be explained in next sections, the SGL is not appro-
priate for the problem we are dealing with, without introducing a broader methodology to control
the regularization hyper-parameters, the groups, and the high-dimensionality issue.

From a methodological point of view, this paper provides an original contribution to perform vari-
able selection and model fitting in high-dimensional problems. Furthermore, the results presented
in this paper are the first attempt in a Translational Oncology scenario of building a predictive
model for the response to treatment, based entirely on the whole genome RNA-Seq data and con-
ventional clinical variables.

This paper is organized as follows. Section 2 ties together the various theoretical concepts that
support our approach. Section 2.1 introduces the mathematical formulation of the SGL, as an op-
timization problem. Section 2.2 discusses the iterative-sparse group lasso, a coordinate descent
algorithm to automatically select the regularization parameters of the SGL. Section 2.3 describes
a clustering strategy for the variables, based on principal component analysis, which makes it pos-
sible to work with an arbitrarily large number of variables, without specifying the groups apriori.
Section 2.5 highlights our main methodological contributions: the importance and the power in-
dexes, to weight variables and models, respectively. In Section 3, a simulation study is presented,
with several synthetic matrix designs, and varying the number of variables from 40 to 4000. Sec-
tion 4 highlights the contributions of our methodology on a TNBC cohort which had undergone
neoadjuvant docetaxel/carboplatin chemotherapy. Some conclusions and lines for future work, are
drawn in the final section.
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2 Methodology and algorithms

Consider the usual logistic regression framework, with N observations in the form
{y(i), x(i)

1 , x
(i)
2 , . . . , x

(i)
p }Ni=1, where p is the number of features or predictor variables, and y(i) is

the binary response. We assume that the response comes from a random variable with conditional
distribution,

Y |(X1 . . . Xp) ∼ Ber(p(X1 . . . Xp,β)),

where
p(X1 . . . Xp,β) = (1 + exp(−η))−1,

and η is the linear predictor,

η = β0 +

p∑︂
j=1

βjXj, β = [β0 β1 . . . βp] ∈ Rp+1.

The objective is to predict the response Y for future observations of X1 . . . Xp, using an estimation
of the unknown parameter β, given by,

β̂ = argmin
β∈Rp+1

R̂(β), (1)

were

R̂(β) =
1

N

N∑︂
i=1

[︄
log

(︄
1 + exp{β0 +

p∑︂
j=1

βjx
(i)
j }

)︄
− yi(β0 +

p∑︂
j=1

βjx
(i)
j )

]︄
. (2)

The problem with this approach is that for N < p, the minimization (1) has infinite optimal
solutions. When the features X1 . . . Xp represent genetic expressions, this problem of predicting
Y becomes more extreme, since we often have N several orders of magnitude smaller than p.

As a solution, variable selection techniques are proposed, in order to tackle the analytical in-
tractability of this problem.

2.1 The sparse-group lasso

It has been shown that SGL can play an important role in addressing the issue of variable selec-
tion in genetic models, where genes are grouped following different pathways. The mathematical
formulation of this problem is,

β̂(λ) = argmin
β∈Rp+1

{︄
R̂(β) + λ2

J∑︂
j=1

γj∥β(j)∥2 + λ1∥β∥1

}︄
. (3)

Here J is the number of groups, and β(j) ∈ Rpj are vectors with the components of β correspond-
ing to j-th group (of size pj), and γj =

√
pj , j = 1, 2, . . . , J . The regularization parameter is

λ = [λ1 λ2] ∈ R2
+.

The problem with (3) is that vector β̂(λ) of estimated coefficients depends on the selection of a
vector of regulation parameters λ, which must be chosen before estimating β̂(λ). The selection
of λ is partly an open problem, because although there are several practical strategies for choosing
these parameters, there is no established theoretical criterion to follow. In most cases, the regu-
larization parameters are set a priori, based on some additional information about the data, or the
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characteristics of the desired solution, e.g., greater λ1 implies more components of β̂ identically
zero. The most commonly used methodology to select λ consists of moving the regulation param-
eters in a fixed grid, usually not very thin. However, this approach has many disadvantages.(Laria
et al., 2019) In contrast, we propose the iterative-sparse group lasso, a coordinate descent algo-
rithm, recently introduced by Laria et al..

2.2 Selection of the optimal regularization parameter

Traditionally, the data set Z = {y(i), x(i)
1 , x

(i)
2 , . . . , x

(i)
p }Ni=1 is partitioned into three disjoint data

sets, ZT ,ZV and Ztest. The data in ZT is used for training the model, i.e., solving (3). ZV is used
for validation, i.e., finding the optimal parameter λ. The remaining observations in Ztest are used
for testing the prediction ability of the model on future observations. Specifically, the selection of
the optimal parameter λ is based on the minimization of the validation error, defined as

R̂V (λ) =
1

#ZV

∑︂
(y(i),x(i))∈ZV

[︂
log(1 + exp{η(β̂T )})− y(i)η(β̂T )

]︂
, (4)

where

β̂T (λ) = argmin
β∈B

{︄
R̂T (β) + λ2

J∑︂
j=1

γj∥β(j)∥2 + λ1∥β∥1

}︄
, (5)

and
R̂T (β) =

1

#ZT

∑︂
(y(i),x(i))∈ZT

[︂
log(1 + exp{η(β̂T )})− y(i)η(β̂T )

]︂
, (6)

with # denoting the cardinal of a set. Therefore, the problem of finding the optimal parameter λ
can be formulated as,

minλ∈R2
+
R̂V (λ)

s.t. β̂T (λ) = argminβ∈Rp+1

{︂
R̂T (β) + λ2

∑︁J
j=1 γj∥β(j)∥2 + λ1∥β∥1

}︂
.

(7)

Algorithm 1 describes the two-parameter ITERATIVE SPARSE-GROUP LASSO (iSGL0), a gradient-
free coordinate descent method to tune the parameter λ from the sparse-group lasso (3), which
performs well under different scenarios while drastically reducing the number of operations re-
quired to find optimal penalty weight parameters that minimize the validation error in (4). The
iSGL0 iteratively performs a univariate minimization over one of the coordinates of λ, while the
other coordinate is fixed.

Algorithm 1: TWO-PARAMETER ITERATIVE SPARSE-GROUP LASSO (iSGL0)
/* Data for training/validation */
Function isgl(ZT ,ZV ):

Initialize λ i← 1
while λ not stationary do

λi← argminλ∈R+
R̂V (λ|λi = λ); // minimize over coordinate i of λ

i← i mod 2 + 1; // Next coordinate
end
return β̂T (λ)
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Laria et al. (2019) provide detailed information about Algorithm 1 in their paper. As mentioned
before, a very useful property of the sparse-group lasso as a variable selection method, is the
ability to remove entire groups from the model (sending to zero the components of the β̂ vector
relative to those groups), as is the case with group lasso. However, this means that a grouping
among the variables under consideration must be specified. This does not entail a challenge if
there are natural groupings among the variables, for example, if the variables are dummies related
to different levels of the same original categorical variable. However, in our study most of the
variables are transcriptomes, for which there are no established groupings in the literature. To
overcome this problem, we suggest an empirical variable grouping approach, based on the principal
component analysis of the data matrix.

2.3 Grouping variables using principal component analysis

Principal component analysis (PCA) is a dimension reduction technique, very effective in reduc-
ing a large number of variables related to each other to a few latent variables, trying to lose the
minimum amount of information. The new latent variables obtained (the principal components),
which are a linear transformation of the original variables, are uncorrelated and ordered in such a
way that the first components capture most of the variation present in all the original variables.

Given the data matrix X ∈ RN×p, PCA computes the rotation matrix W ∈ Rp×G, where
G ≤ min(N, p) is the number of principal component to retain. The transformed data matrix
(the principal component matrix) is T = XW. This rotation matrix W suggest a natural grouping
on the columns of X, given by

group(Xj) = argmax
i
|Wji|, j = 1, 2, . . . , p. (8)

This strategy will provide at most G groups on the columns of X.

Figure 1: Simulated sample from three random variables, that illustrate the grouping based on
PCA.

X1

X
2

X1

X
3

X2

X
3

The following example illustrates our approach on a simulated data set. Suppose that we want to
cluster variables X1, X2 and X3 using two groups. There are 300 observations (Fig. 1) and they
are simulated such that corr(X1, X2) = 0.75, corr(X1, X3) = 0.1 and corr(X2, X3) = −0.25. The
principal component’s rotation matrix W is given by,

PC1 PC2
X1 -0.67 0.40
X2 -0.70 -0.08
X3 0.23 0.91
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In this example, X1 and X2 would be grouped together, whereas X3 would be in the other group.
Apparently, this method is placing highly correlated variables in the same group.

2.4 Mining influent variables under a cross-validation approach

In this section, we focus on the problem of variable selection in models where the ratio p/N is
in the order of 102. In these scenarios, even state-of-the-art methods such as SGL find it hard to
select an appropriate set of variables related to the response term. We propose a cross-validation
approach to fit and evaluate many different models using only a sample size of N observations
initially given.

The solution in terms of β̂(λ) provided by Algorithm 1 strongly depends on the partition ZT ,ZV .
As a consequence, if we run Algorithm 1 for different partitions ZT ,ZV of the same data Z , it will
probably result in different coefficient estimates β̂(λ). Therefore, the indicator function of variable
Xj included in the model, I(β̂j(λ) ̸= 0), will take different values depending on the partition
ZT ,ZV . In order to avoid this dependency on the sample data partition, we propose Algorithm
2, which computes many different solutions β̂(λ) of Algorithm 1, for different partitions of the
original data sample Z . The goal of this algorithm is to be able to fit and evaluate many models
using the same data. Since the sample size is small compared to the number of covariates, the
variable selection will greatly depend on the train/validate partition. We denote by R the total
number of models that will be fitted using different partitions from the original sample. Algorithm
2 stores the information of the fitting β̂ of each model and the correct classification rate in the
validation sample (ccrV ) in each case.

Algorithm 2:
/* sample data Z, # of runs R */
Function isgl(Z , R):

for r in 1, 2 . . . R do
ZT ,ZV ← random partition of Z
β(r)← ISGL(ZT , ZV )
ccr

(r)
V ← Correct classification rate of β(r) in ZV

end
return β, ccrV

2.5 Selection of the best model

Our objective is to select one of those R models computed in Algorithm 2 to be our final model.
We believe that a selection only based on the maximization of ccrV could lead to overfit in the
training sample data Z . To overcome this problem, we define two indexes: the importance index
of a variable, and the power of a model. These indexes are fundamental to choosing a final model
that is not overfitting the data.

We consider the importance index Ij of variable Xj defined as,

Ij =
R∑︂

r=1

|β(r)
j | · (ccr

(r)
V − δ)/max

j

{︄
R∑︂

r=1

|β(r)
j | · (ccr

(r)
V − δ)

}︄
, (9)

where β(r) and ccr
(r)
V are those returned by Algorithm 2 on the data Z . With the objective of

penalizing those models that had a bad performance on the validation set, the term δ has been
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introduced, which is the maximum between ȳ and 1− ȳ, i.e., the null model correct classification
rate.

The importance index weights differently each variable X1 . . . Xp depending on the correct clas-
sification rate of those models in which each variable was present. The larger Ij , the greater the
chances of Xj being present in the underlying model that generated the data Z .

Figure 2 illustrates the importance index, computed on a simulated data set, with N = 100 obser-
vations and p = 400 variables. Notice that the highest three variables in importance are actually in
the generating model, and there is a clear gap in Fig. 2 between them and the rest of the variables.

Figure 2: Sorted importance index obtained from Algorithm 2, with R = 150, and a simulated
data sample with N = 100 observations and p = 400 variables.
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Based on the maximization of the importance index, an appropriate subset is selected from the
original p variables. Although the true number of variables involved in the model is unknown,
we can focus our attention on a predefined number of important variables K, which depends only
on the sample data Z . We empirically found K = ⌈

√︁
N/2⌉ to achieve good results. Using the

important index of the best K variables, we define the power of a model as,

Pr =
1∑︁K

k=1 I(k)

∑︂
j:Ij≤I(K)

Ij|β(r)
j |/∥β(r)∥1, r = 1, 2 . . . R, (10)

where I(k) denotes the k−th greatest importance index, e.g., I(1) = maxj Ij . The power index P
weights each model, depending on the importance of its included variables.

The selection of the final model is based on the criterion,

β̂ = β(r∗), where r∗ = max
r

{︂
Pr + ccr

(r)
V

}︂
. (11)

Equation (11), Algorithm 2, and the framework that supports them, is the main contribution of this
paper from a methodological point of view. Equation (11) is based on the correct classification
rates of R different fitted models, two indexes defined in this paper, and the iterative sparse-group
lasso, which is a novel algorithm.

3 A simulation study

In this section, we illustrate the performance of Algorithm 2 using synthetic data. To generate ob-
servations, we have followed simulation designs from Simon et al. (2013) (uncorrelated features),
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Tibshirani (1996), Zou and Hastie (2005) and Azevedo Costa et al. (2017) (correlated features).
Since our objective was to evaluate Algorithm 2 in binary classification problems, we used a logis-
tic regression model for the response term using the simulated design matrices in each case. We
simulated data from the true model,

η = Xβ,

with logistic response y given by

yi ∼ Ber(pi), pi = (1 + exp(−ηi))−1, i = 1, 2 . . . N. (12)

Five scenarios for β and X were simulated. In each example, our simulated data consisted of a
training set of N = 100 observations and p variables, and an independent test set of 5000 observa-
tions and p variables. Models were fitted using training data only. Here are the details of the five
scenarios.

SFHT_1) This example is adapted from the sparse-group lasso paper (Simon et al., 2013). We set

β = (1, 2, 3, 4, 5, 0, . . . , 0⏞ ⏟⏟ ⏞
p−5

)

and Xi are i.i.d N(0, 1), for 1 ≤ i ≤ p.

SFHT_2) In this example, β is generated as in SFHT_1, but the rows of the model matrix X are i.i.d.
generated from a multivariate gaussian distribution with cov(Xi, Xj) = 0.5|i−j|, 1 ≤ j ≤
i ≤ p.

Tibs_1) This example is adapted from the original lasso paper (Tibshirani, 1996), also found in
other simulation studies (Zou and Hastie, 2005; Azevedo Costa et al., 2017). We set

β = (3, 1.5, 0, 0, 2, 0, . . . , 0⏞ ⏟⏟ ⏞
p−5

),

and the rows of X are i.i.d. generated from a multivariate gaussian distribution with
cov(Xi, Xj) = 0.5|i−j|, 1 ≤ j ≤ i ≤ p.

Tibs_4) This example is also adapted from the original lasso paper (Tibshirani, 1996), and found in
other simulation studies as well (Zou and Hastie, 2005; Azevedo Costa et al., 2017). We
set

β = (0, . . . , 0⏞ ⏟⏟ ⏞
10

, 2, . . . , 2⏞ ⏟⏟ ⏞
10

, 0, . . . , 0⏞ ⏟⏟ ⏞
10

, 2, . . . , 2⏞ ⏟⏟ ⏞
10

, 0, . . . , 0⏞ ⏟⏟ ⏞
p−40

)

and the rows of X are i.i.d. generated from a multivariate gaussian distribution with
cov(Xi, Xj) = 0.5, and var(Xi) = 1, 1 ≤ j < i ≤ p.

ZH_d) This example is adapted from the elastic net paper (Zou and Hastie, 2005). We chose

β = (3, . . . , 3⏞ ⏟⏟ ⏞
15

, 0, . . . , 0⏞ ⏟⏟ ⏞
p−15

)

and the rows of X were generated as follows,

Xi = Z1 + ϵxi , Z1 ∼ N(0, 1), i = 1, . . . , 5,

11
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Xi = Z2 + ϵxi , Z2 ∼ N(0, 1), i = 6, . . . , 10,

Xi = Z3 + ϵxi , Z3 ∼ N(0, 1), i = 11, . . . , 15,

Xi ∼ N(0, 1), Xi i.i.d. for i = 16, . . . , p,

where ϵxi are i.i.d. N(0, 0.01), for 1 ≤ i ≤ 15.

We aimed to investigate the robustness of our methodology in each example, regarding several
measures, as the number of noisy variables (not in the generating model) increased. The criteria
we used to evaluate the models in each case were the correct classifications rate in the test sample
(ccr), the correct classifications rate in the training sample Et(ccr), and the specificity (spec.) and
sensitivity (sens.) concerning variable selection. Let β̂ be the final estimated coefficient vector
and β the true generating coefficient vector, then the sensitivity was measured as

sens. =

p∑︂
j=1

I(β̂j ̸= 0) · I(βj ̸= 0)/

p∑︂
j=1

I(β̂j ̸= 0)

Analogously, the specificity was defined as

spec. =

p∑︂
j=1

I(β̂j = 0) · I(βj = 0)/

p∑︂
j=1

I(β̂j = 0).

Table 1 describes the performance of the final model selected under our methodology in the sce-
narios described above. We have conducted 30 experiments in each case, as we varied the number
of variables in the model (p). Standard deviations are given in parenthesis. Table 1 reveals that for
all the configurations (except, perhaps SFHT_1) the methodology is very robust with respect to an
increase in the number of variables p. In fact, for most of them, the ccr does not vary much from
p = 400 to p = 4000. Intuitively, the grouping strategy introduced in Section 2.3 places highly
correlated variables in the same groups, producing better results when there is correlation between
the variables in the model. That is why the simulation scheme SFHT_1 produces the poorest re-
sults. In SFHT_1, all the simulated variables are independent and therefore, there is not any clear
way to group the variables.

4 Application to Biomedical Data

In this section, we evaluate the methodology described in Algorithm 2 with the model selection cri-
terion given by (11) on a real case study. A sample of TNBC patients from a previously published
clinical trial (Sharma et al., 2016) was used to analyze relations between cancer cells transcrip-
tome and the response of patients to the given medical treatment (docetaxel plus carboplatin). The
dataset was composed of 93 observations (patients) and 16616 variables (genetic transcripts and
clinical variables).

Figure 3 shows the highest 30 importance indexes out of a total of 16616 variables. The criterion
to measure the importance of the variables is given in (9). Algorithm 2 was run with R = 200, and
the cutoff value was set to K = ⌈

√︁
N/2⌉ = 7, as described in Section 2.5. With this importance

index, the power of each model was computed using (10) and the best model was chosen according
to (11), as highlighted in Fig. 4.

The selected model included 843 out of 16616 variables. The grouping strategy commented in
Section 2.3 found a total of 82 groups, from which 18 were included in the final model.
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Table 1: Average correct classification rate (ccr) of the final model in the test data set (5000
observations), in 30 experiments for each configuration. Et(ccr) denotes the estimated correct
classification rate from the training sample. The mean sensitivity (sens.) and the specificity (spec.)
with respect to variable selection are also given. Standard deviations are given in parenthesis.
Algorithm 2 was run with R = 200, and N = 100 observations in the training sample.

Number of variables in the model (p)
Case 40 100 400 1000 4000

SFHT_1

ccr 0.84 (0.03) 0.80 (0.04) 0.76 (0.04) 0.73 (0.05) 0.66 (0.06)
Et(ccr) 0.90 (0.04) 0.87 (0.05) 0.86 (0.05) 0.81 (0.04) 0.80 (0.05)
sens. 0.83 (0.16) 0.71 (0.24) 0.65 (0.18) 0.59 (0.18) 0.47 (0.17)
spec. 0.66 (0.14) 0.83 (0.09) 0.93 (0.04) 0.96 (0.03) 0.98 (0.02)

SFHT_2

ccr 0.87 (0.02) 0.86 (0.02) 0.84 (0.04) 0.83 (0.04) 0.82 (0.04)
Et(ccr) 0.93 (0.04) 0.94 (0.04) 0.92 (0.04) 0.91 (0.04) 0.90 (0.05)
sens. 0.83 (0.18) 0.78 (0.16) 0.74 (0.16) 0.71 (0.16) 0.61 (0.19)
spec. 0.68 (0.17) 0.80 (0.10) 0.92 (0.04) 0.96 (0.03) 0.99 (0.01)

Tibs_1

ccr 0.82 (0.02) 0.81 (0.04) 0.79 (0.04) 0.77 (0.04) 0.76 (0.04)
Et(ccr) 0.90 (0.03) 0.90 (0.04) 0.88 (0.05) 0.87 (0.05) 0.85 (0.05)
sens. 0.99 (0.06) 0.98 (0.08) 0.92 (0.14) 0.90 (0.18) 0.81 (0.19)
spec. 0.68 (0.14) 0.82 (0.08) 0.92 (0.04) 0.96 (0.02) 0.99 (0.01)

Tibs_4

ccr 0.91 (0.03) 0.90 (0.02) 0.89 (0.01) 0.90 (0.02) 0.91 (0.01)
Et(ccr) 0.97 (0.02) 0.96 (0.03) 0.95 (0.03) 0.87 (0.05) 0.97 (0.02)
sens. 0.71 (0.17) 0.43 (0.15) 0.26 (0.11) 0.18 (0.09) 0.17 (0.23)
spec. 0.74 (0.11) 0.77 (0.09) 0.84 (0.04) 0.85 (0.05) 0.83 (0.21)

ZH_d

ccr 0.91 (0.02) 0.90 (0.02) 0.89 (0.03) 0.88 (0.03) 0.85 (0.03)
Et(ccr) 0.98 (0.02) 0.96 (0.02) 0.97 (0.02) 0.97 (0.02) 0.94 (0.03)
sens. 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.01)
spec. 0.67 (0.09) 0.70 (0.08) 0.82 (0.07) 0.84 (0.06) 0.93 (0.03)

Figure 5 displays the distribution of the number of non-zero coefficients for each group that was
included in the final model, which is revealing in several ways. Firstly, it indicates that PCA finds
groups of similar lengths, and secondly, the selected model is sparse at both the group and the
variable levels.

In an attempt to discover the biological and genetic meaning in the model selected by our method-
ology, we ran DAVID (Huang et al., 2008b,a) to detect enriched functional-related gene groups.
The clustering and functional annotation was performed using the default analysis options, and the
role of the potential multiple testing effect was considered using the false discovery rate (FDR).

We observed just two remarkable families of pathways after the gene enrichment analysis: the
homeobox-related and the oxidative phosphorylation pathways. They are both involved in the
mechanism of action of docetaxel and carboplatin in response to the provided treatment.
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Figure 3: Sorted Importance indexes, according to the criterion given in (9), and after running
Algorithm 2 with R = 200. The cutoff value was set to K = ⌈

√︁
N/2⌉ = 7, as described in

Section 2.5.
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Figure 4: Power index (10), measured in R = 200 models, in decreasing order, with the corre-
sponding correct classification rate (ccr) of each model in the validation sample.
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The homeobox genes have been proposed to be involved in mechanisms of resistance to taxane-
based oncologic treatments in ovarian and prostate cancer (Li et al., 2014; Hanrahan et al., 2017;
Marín-Aguilera et al., 2014; Puhr et al., 2012). Docetaxel hyper-stabilizes the microtube structure,
irreversibly blocking the cytoskeleton function in the mitotic process and intracellular transport. In
addition, this drug induces programmed cell death (Wishart et al., 2017).

On the other hand, carboplatin attaches alkyl groups to DNA bases resulting in fragmentation by
repair enzymes when trying to repair it. It also inducts to mutations due to nucleotide despairing
and generates DNA cross-links that affects the transcription process (Wishart et al., 2017). The de-
velopment of resistance to platinum-based schemes of chemotherapy is a common feature. Several
studies demonstrate that dysfunctions in mitochondrial processes, in conjunction with the men-
tioned mechanism of action, can contribute to develop the phenotypes associated with resistance
(Matassa et al., 2016; Dai et al., 2010; Chappell et al., 2012; Marrache et al., 2014; Belotte et al.,
2014; McAdam et al., 2016).
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Figure 5: Number of included variables in the final model, by groups (top) and total (bottom).
There were included 18 out of 82 groups.
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5 Conclusions

The present study introduces a methodology to deal with the variable selection problem in the high
dimensional set-up. It can be seen as an extension of the sparse-group lasso regularization method,
without the dependencies on both the hyper-parameters and the groups. There are several critical
components in this approach,

• A clustering on the variables, based on PCA, makes it possible to work with an arbitrarily
large number of variables, without specifying groups apriori.

• The iterative sparse group lasso removes the dependence on the hyper-parameters of the
sparse group lasso, but it is sensible to the train/validate sample partitions. This problem
has been solved running the algorithm for a large number of different train/validate sample
partitions (Algorithm 2).

• The correct classification rate of each model in its respective validation sample is stored.
Notice that this is an overestimation of the true correct classification rate on future obser-
vations, and the highest validation rate does not imply the best model.

• The importance index weights the variables, based on the correct classification rate of the
models that include them.

• The power index weights the models, based on the importance of the variables they include.

This methodology was tested on a sample of TNBC patients, trying to reveal the genetic profile
associated with resistance to the treatment of interest. The literature studies mentioned in Section 4
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provide a rationale supporting the potential predictive value of the two gene pathways identified in
our study (the homeobox-related and the oxidative phosphorylation pathways). In order to validate
these results, we are testing the model in a new cohort of TNBC patients from the same clinical
trial.

Future studies should examine other strategies to group the variables, as discussed in Section 2.3,
based on supervised algorithms as well as unsupervised ones.
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