
This is a postprint version of the following published document:

J.C. González, F. Fernández, A. García-Olaya, R.
Fuentetaja. (2017). On the Application of Classical
Planning to Real Social Robotic Tasks. In PlanRob
2017 Proceedings of the 5th Workshop on Planning
and Robotics (ICAPS 2017)(pp. 38-47)

© 2018, Association for the Advancement of Artificial Intelligence

Universidad
uc3m Carlos Ill

de Madrid
0 -Archivo

https://doi.org/10.1016/j.is.2017.09.002
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

On the Application of Classical Planning
to Real Social Robotic Tasks

José Carlos González, Fernando Fernández, Ángel Garcı́a-Olaya and Raquel Fuentetaja
Planning and Learning Group, Department of Computer Science

Universidad Carlos III de Madrid, Leganés 28911 - Madrid, Spain
{josgonza, ffernand, agolaya, rfuentet}@inf.uc3m.es

Abstract

Automated Planning is now a mature area offering several
techniques and search heuristics extremely useful to solve
problems in realistic domains. However, its application to real
and dynamic environments as Social Robotics requires much
work focused, not only in the efficiency of the planners, but
also in tractable task modeling and efficient execution and
monitoring of the plan into the robotic control architecture.
This paper identifies the main issues that must be taken into
account while using classical Automated Planning for the
control of a social robot and contributes some practical so-
lutions to overcome such inherent difficulties. Some of them
are the discrimination between predicates for internal control
and external sensing, the concept of predicted nominal behav-
ior with corrective actions or plans, the continuous monitor-
ing of the plan execution and the handling of action interrup-
tions. This manuscript highlights the dependencies between
all the design and deployment activities involved: task model-
ing, plan generation, and action execution and monitoring. A
task of Comprehensive Geriatric Assessment (CGA) is used
as an illustrative example that can be easily generalized to any
other interactive task.

Introduction
Simple or very specialized robots can work just with reactive
behaviors, but autonomous robots that must take decisions
and change their behavior according to the context, as social
robots do, must have a deliberation process at some point.
Automated Planning (Ghallab, Nau, and Traverso 2004) is
very useful to manage this deliberation and, in particular,
classical planning is able to exploit many of the latest con-
tributions and advancements of the field. Classical planning
already has impressive results finding plans very fast in mul-
tiple domains, but it still has a low deployment in real life
applications. This manuscript tries to bring classical Auto-
mated Planning techniques closer to real social robotic sce-
narios.

Social robots (Leite, Martinho, and Paiva 2013) has to
deal autonomously with people, requiring the monitoring
of highly dynamic environments with a lot of uncertainty.
Therefore, executing a plan of actions with real social robots
is not straightforward because an action can fail or maybe
the plan can become unfeasible due to some change in the
environment. Joining planning and execution is not deeply

studied in the literature although the need has already been
pointed out (Ghallab, Nau, and Traverso 2014).

The execution must be controlled to change the plan de-
pending on the evolution of the environment. Interruptions
in the execution of the plan can interfere with a coherent so-
cial interaction, so the modeling of the domain has to take
this matter into account. This environment can be composed
of low-level information from the sensors that needs to be
abstracted to high-level data.

In this work we apply classical planning interleaved with
execution. Classical planning has several advantages over
other automated planning models as hierarchical or prob-
abilistic. It allows much more compatibility with existing
planners which can be used as black boxes. Also, the newest
heuristics are made for classical planning, so we can take
advantage of them. Uncertainty is not represented explic-
itly, but it can be controlled with existing planning architec-
tures based on replanning techniques. Regarding the repre-
sentation language we use PDDL (Edelkamp and Hoffmann
2004; Fox and Long 2003), the standard language devel-
oped by the academic community. Specifically, our model
requires types, negative preconditions and numeric fluents.
PDDL facilitates the modeling of the knowledge in our do-
main.

The main objective of this manuscript is to highlight the
issues that arise when joining classical planning and execu-
tion into a social robot.

Challenges of Social Robotics
Social Robotics is focused on all those robots that must inter-
act socially with humans. Achieving a natural and fluent in-
teraction is currently a huge challenge and an active research
topic (Tapus, Matarić, and Scasselati 2007). Human commu-
nication includes many verbal and non-verbal elements and
it is in the act of talking when this interaction becomes more
sophisticated. A social robot will be useful only if it can in-
teract socially and efficiently, so a social robot should have
many of the characteristics of conversational agents.

In general, every social interaction involves some sort of
transmission of information that can be driven by the struc-
ture of a conversation. If this structure is altered, then the
communicative act could be incoherent or difficult to fol-
low. The characteristics that a natural communication should
have are also studied by fields as Pragmatics (Warren 2006)

1

and, depending on the objective, it has different phases that
must be performed in order.

Apart from microphones and speakers to allow verbal
communication, social robots can have non-verbal commu-
nication mechanisms as faces shown in a screen, robotic
faces, lights, etc. Elements as touchscreens can also be used
to circumvent current limitations of audio and image recog-
nition, for instance. A mechanism to coordinate all these el-
ements to achieve the most coherent and natural interaction
as possible is essential in Social Robotics.

Additionally, these robots must function in very dynamic
environments. In other words, they must respond coherently
to a great amount of unexpected situations which can cause
interruptions in the standard behavior. If after an interruption
the robot resumes the conversation abruptly, if the response
time is too high or if the robot does not respond to evident
stimuli, the interaction will be negatively affected and the
user will not consider it as something natural.

Apparently subtle problems can undermine this interac-
tion and make it annoying or boring. To add more difficulty,
details of all these elements as silences, interpersonal dis-
tances, the gaze direction or the forms of address can have
very different meanings depending on the language, the cul-
ture, the sex or the specific person (Stivers et al. 2009).

Among all challenges with social robotics, this
manuscript focuses specifically in planning the behav-
ior of the robot at each moment. Since it is a social robot,
the interaction through conversation is of capital impor-
tance. The needed deliberative process to make the robot
behave coherently in one way or another depending on
the situation can be solved with techniques as classical
Automated Planning (Petrick and Foster 2013), avoiding to
create and maintain huge finite-state machines or scripts.
This manuscript also describes a real example of a social
robot which uses Automated Planning and the complexity
that these considerations can reach.

Related Work
Deciding the appropriate behavior of a social robot in
stochastic, highly dynamic environments is a task that can be
accomplished in several ways, some more convenient than
others depending on the final objective. The two main as-
pects to consider include the way knowledge about the envi-
ronment and capabilities of the robot is represented and how
the reasoning using this knowledge is performed.

Knowledge Representation
Some aspects of the environment have to be represented
somehow to reason about it. Humans gather information
from the senses and store it in the brain in a subsymbolic
way, within a neuronal network. There are robots that use
this kind of knowledge representation (Baxter, de Greeff,
and Belpaeme 2013; Prenzel, Feuser, and Gräser 2005).
However, subsymbolic models are difficult to be reused for
other solutions because they cannot be directly understand-
able by humans or machines, and usually they require a pre-
vious training process.

More commonly, the information to reason about the en-
vironment has been represented in a symbolic way. A direct

way to work with it is through finite-state machines (Suárez-
Mejı́as et al. 2013). In them, each state corresponds to a cer-
tain situation in which the robot can be during its execution,
depending on the previous actions and the information per-
ceived by its sensors. Each state is a combination of the mod-
eled parameters of the environment and has a set of applica-
ble actions. Depending on which one is executed, the robot
will transit to some states or others. For simple robots this is
a very fast mechanism to implement, but in more sophisti-
cated robots it can be very hard to identify and specify cor-
rectly all possible states that could appear. Moreover, adding
or modifying functionality afterwards can be very hard given
that all behavior is heavily hardcoded.

When there are too many states to be maintained, there
are techniques to delegate the selection of actions to an al-
gorithm, which can be used as a black box. Automated Plan-
ning techniques are useful here. They use the description of
the possible actions and the description of the initial envi-
ronment to generate a plan of actions that makes the robot to
accomplish some goals.

Classical Automated Planning
Automated Planning (Ghallab, Nau, and Traverso 2004),
in particular action-based planning, uses two different con-
cepts: actions and states. The execution of an action allows
the transition from a certain state to another state. The ob-
jective of this technique is to find a sequence of actions to
transit from an initial state to a final state in which a cer-
tain set of goals is fulfilled. A convenient way to represent
this knowledge is through the domain and the problem. On
one hand, the domain includes the catalog of possible action
schemes, each one with preconditions that must be fulfilled
in the state of the world (the modeled environment) to allow
its execution and the effects in that state after its execution.
On the other hand, the problem includes the description of
the initial state of the world and a set of goals that must
be accomplished in the final state to consider that the task is
done. The domain and the problem are introduced into an au-
tomated planner that will try to find a plan of valid actions to
transit from the initial state to the final state. There are many
domain-independent automated planners available, most of
them relying on advanced heuristic search techniques, that
can be used as a black box to find a suitable plan as fast
as possible. This allows the developers to focus on a higher
level of abstraction; just the possible actions of the robot
and the facts characterizing a state must be modeled using a
symbolic language as the Planning Domain Definition Lan-
guage (PDDL) (Fox and Long 2003). As a drawback, this
technique is slower than domain specific techniques, like
finite-state machines, so the design of the domain must be
performed with care to be suitable for the fast response time
required for social robots.

There are recent examples of Automated Planning for lan-
guage generation and dialogue control (Steedman and Pet-
rick 2007; Brenner and Kruijff-Korbayová 2008). Classical
planning is deterministic and when interleaved with execu-
tion it requires mechanisms to recover from unexpected sit-
uations. Therefore, this work uses the planning and mon-
itoring architecture PELEA (Alcázar et al. 2010) to con-

2

trol the deliberation according to the results of the execu-
tion. PELEA could be versatile enough to allow the use of
learning techniques for Social Robotics (Arora et al. 2016)
and plan repairing strategies (Fox et al. 2006). This kind
of architecture also allows other improvements to minimize
the response time of the robot by planning the first actions
with precision and continue refining the final parts of the
plan while the previous actions are being executed (Martı́nez
2016).

Much of the current research about Social Robotics relies
on classical planning and replanning approaches (González,
Pulido, and Fernández 2017; Chen, Yang, and Chen 2016;
Vaquero et al. 2015; Rosenthal, Biswas, and Veloso 2010),
as is discussed in this manuscript. There are also works
about modeling social aspects of human-robot interaction
for Automated Planning (Carlucci et al. 2015). However, to
the best of our knowledge, none of them describes system-
atically the specific considerations that they had to follow
while joining planning and execution to develop a compe-
tent social robot.

Every social robotic domain is hierarchical because it can
be decomposed in subtasks, probabilistic because predic-
tions of the future are needed in order to generate a plan and
temporal because each action has a duration along it could
be interrupted. The following subsections discuss hierarchi-
cal, probabilistic and temporal planning models and moti-
vates the use of classical planning for Social Robotics.

Hierarchical Planning
In general terms, any complex enough activity has a hier-
archic structure that is composed of a set of tasks that can
be subdivided into more specific ones (Ghallab, Nau, and
Traverso 2014). For instance, a social robot could have to
do a questionnaire to a user. It will have to ask him several
questions, each question will need to be read (through a text-
to-speech mechanism) and then the answer will be heard. To
read it is needed to find what to say and then play it trough
speakers, etc. There are phases in the questionnaire and in
the whole conversation that must be accomplished in order
to finish the task correctly.

If the granularity of the deliberation is high enough then a
hierarchical planner can be used directly (Nau et al. 2003).
These planners use more domain knowledge to plan, some-
times improving planning times, but at the expenses of a
less generic solution. Hierarchical planning also does not
consider the probabilities nor the temporal aspects of Social
Robotics domains.

Often, it is not needed to take deliberation to such fine-
grain level and it is enough to plan at a higher level. The
low level actions can be performed reactively. Depending
on the robotic architecture, a component, or a reactor, could
receive an action and execute it without more deliberation,
like moving a robot from one point to another (Bandera et al.
2016). This has the advantage of distributing the robotic ar-
chitecture into several specialized components (or reactors)
for some complex reactive tasks, without having to delib-
erate with too much specific knowledge. This manuscript
also describes a real example which uses reactors to dele-
gate low-level actions.

Probabilistic Planning
Other planning techniques take directly into account the
stochastic nature of the dynamic environments (Little and
Thiébaux 2007) present in Social Robotics. A probabilis-
tic contingent planner can plan a set of different contingent
plans to be used in case that the standard plan cannot be
executed due to more or less probable unforeseen events.
The first drawback of these techniques in comparison to
classical planning is that they can be much slower. Since
the reaction time of these robots must be very fast, classi-
cal planning reaches faster planning times at the expense
of a higher number of replannings. Moreover, the biggest
advances in heuristics for planning are within the classical
planning area, so probabilistic techniques cannot take full
advantage of them.

In Social Robotics its impossible to know the exact prob-
abilities of each effect of the action. Learning them could
help to generate better plans, but at the end each person re-
acts in a particular way, and unpredictable interruptions can
appear in any moment (as the the user leaving the room) that
must be considered.

Thanks to the use of planning architectures as PELEA, it
is possible to use deterministic techniques as classical plan-
ning into stochastic environments.

Temporal Planning
Temporal planning (Fox and Long 2003) uses durative ac-
tions to generate plans with concurrent actions which apply
effects at the beginning or at the end of the action. Although
in a social domain, as in a conversation, it is impossible to
determine the duration of an action such as speak and the in-
teraction is made in sequential steps which normally do not
overlap among them, there are interesting features that can
be taken from temporal planning. In particular, durative ac-
tions consider three types of conditions: “at start”, “over all”
and “at end”. These conditions must be held along differ-
ent moments of the execution of the action. These reasoning
is needed to interrupt an action in the middle of its execu-
tion or at the end. It can be taken into account in PELEA
by using specific labels directly in the PDDL code, avoiding
incompatibilities between durative actions and many auto-
mated planners.

In essence, classical planning can be used along with a
planning architecture as PELEA to control the hierarchi-
cal, probabilistic and temporal nature of these domains and
also taking advantage of the ease of modeling of PDDL, ad-
vanced heuristics and high planner compatibility.

The Clarc Use Case
For the rest of this manuscript, the Clarc social robot (Ban-
dera et al. 2016) is used as an example to illustrate the con-
tributions. This section explains one of the use cases of this
robot. It uses classical planning and the monitoring architec-
ture PELEA to deliberate about its behavior.

The Clarc robot is part of an European ECHORD++ re-
search project1. Its main goal is to save clinicians’ time

1http://www.clarc-echord.eu

3

by assisting elder people while performing Comprehen-
sive Geriatric Assessment (CGA) tests to measure their
general health, habits of their daily life and the ability to
perform some activities without help. Many of these are
questionnaire-based tests which usually are held in hospit
with the assistance of a clinician. There are many differe
tests to evaluate different aspects of the patients, but to b
ter explain the social task, this section is focused on on
two CGA tests.

Clarc 1 has a touchscreen, speakers, a microphone and
3D sensor. CGA tests are very long and heavily based
speech, so the conversational requirements of this robo
platform are very demanding. The text-to-speech and spee
recognition mechanisms are implemented in internal co
ponents of the robotic architecture, so they are out of t
scope of this manuscript. Their capabilities are enough
reproduce the text of each question and to recognize t
needed answers. The physical embodiment of the robot c
also be used to improve the interaction, but the current pro
type is specially focused on the development of the conv
sation for the tests. All the robot behavior has to be model
within a PDDL domain.

Figure 1: The current Clarc robot prototype with a patient.

When the patient is sat in front of the robot, the clinician
selects a test and the robot starts working autonomously.
An easy test to introduce the basics of the use case is the
Barthel (Mahoney and Barthel 1965) one. It measures the
patient’s autonomy in his daily life. The flow is very straight-
forward, every question has fixed answers that must be an-
swered to finish correctly and return a final score. Figure 2
shows an extract of a possible initial plan of a Barthel test.
As it can be seen, after configuring some elements of the
test that is going to be executed, the robot introduces itself.
The first parameter is a label which identifies the speech to
be played through the speakers. All parameters starting with
“p ” indicate the amount of time to wait until starting the
next action. After introducing the test with some basic in-
structions, it starts reading the statement of each question
slowly. The parameter “first” indicates that it is the first time
that this question is read. Then it waits 10 seconds at most
(as indicated by the last parameter “dur 10s”) to receive the

patient’s answer. The executed flow of actions become more
complex when the patient does not answer some questions
or the robot cannot understand the answers. After a number
of failed trials, the robot has to repeat the question in an al-

configure-test barthel
introduce-robot robot_pres1 p_0s
introduce-test intro1 p_1s
introduce-test intro2 p_0s
introduce-test intro3 p_0s
start-question q1_s1 p_0s
show-question-option q1_o1 first p_1s
show-question-option q1_o2 first p_1s
show-question-option q1_o3 first p_2s
finish-question q1_e1 p_0s
ask-for-answer q1_a1
receive-answer q1_a1 dur_15s
finish-ask-answer-success q1
make-question-transition q1_t p_1s
(…)
finish-ask-answer-success q10
finish-test end1

Pr
es

en
ta

tio
n

R
ea

d
qu

es
tio

n
R

ec
ei

ve
an

sw
er

Q
uestion

Figure 2: Example plan of a Barthel test.

All this process is executed assuming that the environ-
ment is suitable for the test. For instance, that the patient is in
front of the robot, the test is not paused, there is enough bat-
tery, etc. If any of these variables change, then the execution
may be interrupted and the robot must perform some cor-
rective behavior accordingly to the detected situation. The
structure of the conversation is controlled with the precondi-
tions of the actions. For instance: after resuming the test, the
robot must continue from a point which guarantees a coher-
ent interaction with the patient, repeating some previously
executed actions if needed. The timing of the conversation
is controlled with the pauses and the maximum duration in-
dicated in the parameters.

The Mini-mental test (Folstein, Folstein, and McHugh
1975) is much more complex than the Barthel one because
all questions have open answers that the robot has to de-
tect. The description provided here is to illustrate the extent
of the complexity of the required behavior. The most basic
questions are about the current day, month and season or
the current building, city and country. The robot can detect
a large set of possible answers that can be correct or incor-
rect. Sometimes an incorrect answer can be refined with an-
other question for clarification. The test continues with ques-
tions about numeric operations (taking into account possi-
ble errors carried from earlier operations), repeating a list
of words (altering the order is valid although not perfect),
writing a syntactically correct sentence, following written
commands as touching the nose and the right ear or closing
the eyes, saying tongue twisters and even drawing two inter-
secting pentagons in the touchscreen. All this is in one long
test, considering also all the corrective behaviors to manage

4

5

unexpected events.
As can be seen, each question has different interactive

procedures that must be modeled in the domain that can be
ruined by an unexpected interruption if it is not designed
carefully. Apart from the challenges in speech recognition,
computer vision and hardware coordination, the required be-
havior is too complex to model using finite-sate machines,
so Automated Planning is useful here. However, joining the
planning and the execution of the obtained plan together can
be challenging too. In Clare, the approach was to create a
generic POOL domain for questionnaire-based tests, gener-
alizing each question as much as possible, and adapting the
existing monitoring architecture PELEA to fit all communi-
cation requirements with the rest of the robotic architecture.

To design this kind of tasks properly, it is necessary to
know the different issues that every developer of social
robots with classical planning will need to face sooner or
later. This manuscript focuses on describing these issues and
their solutions.

Modeling
There are several challenges identified while modeling clas-
sical planning domains for Social Robotics. This section ex-
plains these points highlighting their impact on the interac-
tion.

Island Domains
The social behavior has several rules that must be followed
to achieve a coherent interaction. This usually implies plans
that contains several ordered phases. In Clare, for instance,
these actions are the salutation, then the introductions, then
the questions of the selected test and finally the farewell. We
refer to these kind of domains as "island domains" where
each phase constitutes a different isle.

From the planning perspective, every one of these phases
can be modeled by introducing intermediate subgoals or
landmarks and a mechanism to impose a total order among
them. Previous work on landmarks (Hoffmann, Porteous,
and Sebastia 2004) assumes that neither the landmarks nor
their order are known a priori. They should be determined
while planning. In "island domains" the challenge is how
to build good and efficient models given that both the land-
marks (phases) and their order are known.

Island domains would be very fast to plan because they
are very sequential. This is important when planning for so-
cial robots, in which high planning time could undermine
the interaction. However, depending on the size of problems
and on how they have been modeled, planners can spend too
much time on instantiation and preprocessing.

Nominal Behavior Prediction
While modeling a POOL domain (Ghallab, Nau, and
Traverso 2014) it is necessary to make some assumptions
or predictions about the effects of the actions. In a real en-
vironment, these effects are stochastic because the actions
can fail or an external event can change the environment To
deal with this uncertainty when planning, a "nominal behav-
ior" can be assumed in the effects of each action, as shown

in Figure 3. In the case of Clare, this is the behavior which
produces shorter plans because it is assumed that the patient
will answer correctly to every question at the first try.

Nominal behavior

Corrective configure-test .
actions introduce-robot

interrupt . . introduce-test .::i
restore-from .

start-question -.
show-question-option .::i .

finish-question .
ask-for-answer .
receive-answer .

finish-ask-answer-success .
make-quest!on-transition -

finish-test

Figure 3: Possible plan of actions with the nominal behavior
to perform a Barthel test in Clare.

While executing this plan, it is very probable that the pa-
tient will fail at some point to answer a question. However,
it is impossible to decide the amount of fails nor the precise
questions in which they will occur. The design of this nom-
inal behavior is at the developers' criteria They could, for
instance, to model a nominal behavior in which the patient
fails each and every question, but this is less probable than
answering correctly to all of them. As this is a design deci-
sion, developers could consider statistics, user preferences,
etc. to increase the quality of the prediction.

Some kind of predicted behavior is needed in order to gen-
erate a valid plan. The nominal behavior can be seen as a
guideline of the needed actions that are left to be executed
to reach the goals.

Obviously, if the previous plan is no longer valid, another
one must be generated, so replanning is considered part of
the whole deliberative process even while modeling the do-
main.

State Decomposition
The execution of a plan requires a certain control of the ex-
ternal environment to check if the actions are correctly exe-
cuted or not. When modeling the interaction it is important
to represent both the robot internal state and the state of the
environment. In Clare, this state includes also the results of
the interaction with the patient Changes in the current state
can be due to actions of the robot or to what is usually known
as external or exogenous events. These external predicates
can sometimes be predicted, but not always. We distinguish
three different types of predicates in the state:

Internal predicates: These are used to control the do-
main and to organize the plan of actions. They can appear
in the effects or preconditions of any action and will al-
ways have the expected value because they do not depend
on anything external depending on the course of the execu-
tion. Internal predicates can represent a piece of information

as the predicate (testIntroduction ?speech) that
indicates one of the speeches that has to be played during the
introduction of a test, or they can be control predicates that
denote the points of the interaction already planned (flags).
Internal predicates are never changed externally during the
execution.

Predicted predicates: Their value must be predicted in
the nominal behavior in order to generate a complete plan,
but the actual values depend only on external elements of the
environment. For instance, a predicate as validAnswer,
that represents the fact that the patient provided a valid an-
swer to a question, needs to be predicted in the effects of an
action like CheckAnswer to continue with the plan, fol-
lowing the nominal behavior. These predicates can be part
of the effects and preconditions of any action, although the
predicted values in the effects may differ from the actual
ones obtained through the sensors.

Unpredictable predicates: These will never be part of
the effects of the actions involved on the nominal behav-
ior, although they will in the preconditions. Predicates as
pauseActivated, representing the pause button was ac-
tivated, are completely unpredictable because there is not
any explicit action in the nominal behavior to change their
value. A change in the value of these predicates is only trig-
gered externally and in any moment of the execution.

This differentiation creates two types of world states, one
in which the values of its predicates will be always as ex-
pected and another in which their predicates can change in
any moment, invalidating the current plan in the middle of
its execution.

Corrective Actions
When the expected state of the world differs from the ac-
tual state, a replanning may be needed. The new plan must
contain some actions to correct the unexpected issue and to
return to the normal flow of the nominal behavior. These are
corrective actions which are never included in the initial plan
for the nominal behavior.

For instance, Clarc must interrupt the execution of the
plan if the patient leaves the test area. The new replanned
plan should start calling the patient and searching for him
before continuing with the rest of the test. After the execu-
tion of these corrective subplans, the nominal behavior can
continue.

Modeling these corrective actions is important because it
endows the system with much more responsiveness to the
environment and a more coherent interaction. There is no
need to increase the number of preconditions in the PDDL
actions of the nominal behavior to check every considered
issue. Only one unpredictable predicate in the preconditions
indicating if the situation requires a corrective subplan is
enough for most interactive applications. Then, the specific
corrective subplan will be planned depending on the precon-
ditions of the corrective actions.

Replanning in Interactive Steps
In any fluid social interaction there are several steps that
must be followed in order. This is ensured by the nominal
behavior, but when there are interruptions, the interaction

can be compromised. For instance, in the Barthel test, Clarc
must enumerate the options of a question to the patient im-
mediately after reading the statement.

Suppose that the robot finishes reading the second option
of a question and then, suddenly, there is an interruption that
requires a replanning. The nominal behavior flow is devi-
ated to fix the situation with a corrective subplan. After that,
the execution returns to the nominal behavior, but in which
point? Should the robot repeat the second option, none at all,
start again from the first option or directly from the state-
ment? Depending on the granularity of the actions, these de-
cisions must be made thinking only in terms of interaction.
Modeling them in the domain is somewhat special because
the corrective plan must reset the values of internal predi-
cates to repeat one or more previously executed actions to
achieve a coherent interaction.

The number of actions to execute again after a replanning
depends only in the moment in which the interruption oc-
curs, so the execution is divided in interactive steps of dif-
ferent number of actions. An interactive step must be com-
pletely finished or then it has to be repeated again from its
beginning. An example of these interactive steps can be seen
in the sets of actions of Figure 2 like presentation, read ques-
tion and receive answer.

Numerical Information

Socially interactive applications must be rich enough to be
believable by their users. For instance, repeating too many
times the same sentence can expose design problems in the
social robot. Randomizing sentences can be easily done in
a low level, but when the repetition involves a more com-
plex behavior it should be taken into account in the planning
domain.

Repetitions are only an example to illustrate the need of
counting in domains for social interaction and in many other
real world applications. In Clarc, especially for the Mini-
mental test, the domain contains many numeric fluents to
represent the order of the current question, the number of
attempts for a question, the consecutive and total number of
failed questions and so on. The use of numeric precondi-
tions also saves much preprocessing time and simplifies the
code of the domain. Modeling numbers or order relations
with predicates would increase preprocessing time in Clarc
to unbearable values, given that its current planning and re-
planning time is just below the limit for a fluid reaction in a
social robot.

Using numeric fluents in big, real world domains, is easier
to model, with less parameters in the actions (which implies
less preprocessing time and less memory used) and there is
no need to know the range of levels. Their downside is that
many planners are not yet compatible with them nor have
too many heuristics to ease the planning task.

For the modeling part, it is also important to note that the
value of a numeric fluent could not appear in the standard
output of the automated planner because it is not part of the
parameters of the actions. This can be relevant while execut-
ing the plan and it is discussed later in this manuscript.

6

Execution
There are several specific aspects that must be taken into ac-
count to execute the generated plans into a real and dynamic
environment. Some of these aspects have been already
pointed out in the literature (Ghallab, Nau, and Traverso
2014), but others are more specific to Social Robotics. In
fact, the application of Automated Planning in dynamic en-
vironments has not been studied that much, so the mecha-
nism to join planning and execution is up to each developer.
This section describes the main points that must be taken
into account while executing the generated plans of actions
in a social robot.

Continuous Monitoring
The first need that arises when executing plans in dynamic
environments like a social robot is the ability to replan when
something in the actual state of the world invalidates the
current plan. This can happen, for instance, when the ac-
tual state differs from the expected state during or after the
execution of each action. In fact, the model of the nominal
behavior and corrective actions must take replannings into
account, so monitoring is of capital importance.

Monitoring the execution continuously ensures that the
robot can react when something unexpected happens. For
this purpose, a mature planning framework as PELEA (Plan-
ning, Execution and Learning Architecture) (Alcázar et al.
2010) can be used. Figure 4 shows the main modules of this
architecture. In essence, the working flow of PELEA is as
follows. The Executive module has the domain and the prob-
lem with the initial internal state of the robot in PDDL. Then,
it completes the predicted and unpredictable predicates of
the state with the actual ones provided by the low-level sen-
sors of the robot (steps 1, 2 and 3). This complete high-level
state is sent to Monitoring (4) to check if it is compatible
with the expected state of the world. If it is the first plan
or if the previous plan is not valid anymore, Monitoring re-
trieves a plan from Decision Support which runs a certain
automated planner (5, 6). This plan is stored in Monitoring,
which returns the next action to Executive (7). If, in con-
trast, the actual state of the world is compatible with the ex-
pected one, then Monitoring just returns the next action of
the previously planned plan (skips steps 5 and 6). Finally,
Executive transform this high-level action into a set of low-
level actions (8, 9) and sends it to the robot (10). Then it
waits until the execution is finished. After that, it completes
the expected state with the information of the sensors and
the cycle starts again. In this scheme, the Executive has full
control of the execution, timing the maximum duration of an
action, pauses, etc. to control the pace of the interaction.

The compatibility criteria of the actual and expected states
of the world depend on the developer or the application. Al-
ways replanning after a single change of a predicate could
lead to unnecessary replannings due to this change could not
affect to any precondition of the following actions. A more
relaxed comparison could be much more interesting in cases
when there is much information in the state and only a part
of it is relevant to interrupt the nominal behavior. For in-
stance, the criterion in Clarc is to check if the actual state of

Robot

High to Low

Low to High

Executive

Monitoring

Decision
Support

Low
Actions Set

Partial
Low State

1

2

3

4

5

6

7

8

9

10

Figure 4: Basic planning and monitoring scheme of the Clarc
robot with the PELEA architecture. Numbers indicate the
communication flow between each module.

the world fulfills the preconditions of the next action. This
criterion could not be suitable for other applications.

Also, as a side note, in these domains the goals should
not be unexpectedly accomplished before finishing the exe-
cution of the nominal behavior.

Interrupting Actions
A true interactive system must be responsive in any moment
of its execution. This is especially important while it is ex-
ecuting an action but it has not finished yet. A system that
simply waits for the action to finish and then checks the state
of the world is not realistic. For instance, if Clarc is execut-
ing a Say action, which involves a 20 seconds speech and
the patient leaves the room in the 5th second, the robot must
be able to interrupt the speech in the middle of its execution.
If not, Clarc would continue speaking to nobody during the
next 15 seconds before realizing that it has to call the patient
to return to the test area.

To do this, the robot sends asynchronously the actual state
of the world to Executive and then asks to Monitoring if the
actual state is compatible with the action that is currently
being executed. It is important to remark that the compati-
bility criteria after or during the execution of an action can
be different. Clarc interrupts the execution if the new state
violates any precondition of the action that is currently be-
ing executed. Tagging the parameters of each action in the
PDDL code could easily indicate to PELEA if the value of
a parameter must be the expected one only at the start of an
action or during its whole execution. This is similar as tem-
poral planning with its durative actions, but in Clarc these
conditions are directly managed by PELEA because it is not
needed to plan with overlapping actions.

All this indicates that it is important to pay attention to the
granularity of the actions. Plans have a hierarchical nature,
in which an action is later executed and refined by a compo-
nent or “reactor” of the robotic architecture. More granular-
ity of actions implies shorter ones and more autonomy for
these reactors, and vice versa. Moreover, with shorter ac-

7

tions the domain will be more complicated in order to main-
tain the coherence of the interactive steps between replan-
nings.

After the execution of an action, the robot must commu-
nicate to Executive that it has finished and that it is idle now.
Then, Executive retrieves the last received actual state of the
world and gives it to Monitoring to obtain the next previ-
ously planned or newly replanned action.

Planning Time Restrictions
Stochastic environments cause unpredictable situations that
must be managed in these interactive systems. This means
that replannings will appear, so it is very important to keep
replanning times as low as possible to achieve a fluid inter-
action. After an interruption, the robot is going to stop in the
middle of the interaction while it is replanning because it
does not know the next action until it has the new plan. This
means that in Social Robotics, planning must work in a way
that there are not any detectable delay in the interaction.

For Clarc, a replanning time of 3 seconds is the maximum
acceptable amount to achieve a fluid social interaction. In-
terestingly, almost all of its planning time is consumed on
instantiation and preprocessing due to the large amount of
different objects in the PDDL states of the world. Numeric
fluents are useful to reduce the total planning time by de-
creasing the branching factor because they do not appear in
the parameters of the actions.

Clarc, instead of stopping immediately after the triggering
of an interruption, waits until the replanning is done. The
previous action is interrupted only when Monitoring already
has the new plan with the next action. This method avoids
idle moments of the robot, allowing longer replanning times,
but at the cost of slower reactions. The idea behind this is to
keep the user engaged while planning proceeds.

Abstraction Levels in States and Actions
As it can be seen in Figure 4, actions and states are the main
elements of information in a monitoring system as PELEA.
But there are important differences in the abstraction level of
these elements because the robot only works at low level and
the planning system at high level. A conversion is needed to
translate these actions to the robot and states from the robot.
Figure 4 also shows the HighToLow and LowToHigh mod-
ules connected to Execution to manage this. This subsection
expands the previous explanations detailing these abstrac-
tions:

• High-level states: PELEA uses them to plan. The actual
state of the world is maintained by Execution and the ex-
pected state is maintained by Monitoring.

• Low-level state: The robot sends only a part of its low-
level state to the Executive. This state always contains the
latest information retrieved by the sensors and the robot.
Executive sends this partial low-level state to the LowTo-
High module, which abstracts this information into high-
level predicates to complete the actual high-level state.

• High-level actions: These are the actions returned di-
rectly by the automated planner of Decision Support.

Monitoring sends these high-level actions, one by one, to
Executive.

• Low-level actions: When Executive receives a high-level
action, it sends it to HighToLow to obtain a decomposi-
tion into a set of low-level actions. Then, Executive sends
this set to the robot to execute these low-level actions.
When all these actions are finished, the robot will com-
municate to Executive that it has finished the execution
of the last low-level action set. Clarc considers that every
low-level action in the set has to be executed in parallel,
instead of sequentially. Each high-level action is modeled
taking this into account because all of them have to be
decomposed into a parallel set of low-level actions.
The HighToLow and the LowToHigh modules are ad hoc

programmed for each domain because PDDL code cannot
handle these decompositions and transformations between
abstraction levels.

Retrieving the Value of Numeric Fluents
There are also some issues with the standard output of the
automated planners. Numeric fluents are useful to model or-
der relations. They do not appear in the parameters of the
PDDL actions, reducing the branching factor, but this causes
that their value is never shown through the output of the
planner.

In Clarc, numeric values like the question number or the
duration are needed when executing the actions and they are
only in the expected state of the world, as the internal predi-
cates. It uses the automated planners as black boxes, as PE-
LEA does, so its solution to retrieve these values is generic,
but inefficient. Its PDDL domain uses functions to relate the
discrete values of the needed numeric fluents to predicates,
inserting them into parameters in the actions to make them
appear in the output of the planner. This cancels the benefits
of using numeric fluents in such particular cases.

There are better solutions than increasing the number of
parameters in the actions. Tagging the effects of actions in
the PDDL code could be useful in this case too, and some-
what generic. It could be used to indicate that the value of
certain numeric fluents must be printed after the action di-
rectly in the output plan.

Another solution could be, given the expected state, the
domain and the plan, to recalculate the value of the needed
numeric fluents in polynomial time. This could be done eas-
ily by parsing the output of the VAL application (Howey and
Long 2003), which can be used to check the actual validity
of the generated plans.

Main Performance Results with Clarc
The first prototype of Clarc included all previously discussed
design considerations. The first evaluations were carried out
with 24 senior end users. The main result is that the Clarc
prototype finished 3 standard tests correctly, including the
Barthel and Mini-mental, and reacted very fast to several
unexpected events like calling the patient when he leaves
the test area, offering clarifications to the patient when he
suddenly asks for help or asking the patient to wait when the
battery is discharged to a critical level.

8

Planning times increase as the length of the plan becomes
longer. However, they are much lower than preprocessing
times, which always remain the same for any length of the
resulting plan. Figure 5 shows an example of the average
times that Pelea needs to send a new planned or replanned
action to Clarc. The average planning time is never higher
than 3 seconds, which makes it suitable for the fast deliber-
ations needed in this domain of Social Robotics. In the eval-
uation, all senior users interacted smoothly with Clarc and
declared that they did not felt apprehension or discomfort
with the robot.

0
0,3
0,6
0,9
1,2
1,5
1,8
2,1
2,4
2,7

0 15 30 45 60 75 90 105 120 135 150

Ti
m

e
(s

)

Remaining planned actions

Planned ac ion Replanned action Rep. regression

Figure 5: Average time to send a new planned or replanned
action to the Clarc robot.

The next steps in the Clarc project include adding more
than 10 standard geriatric tests and also customized ones
by the clinician. This will require to modify and expand
the Clarc domain taking the considerations described in this
manuscript and check how generalizable is this solution.

Conclusions
One of the reasons behind the low impact of classical plan-
ning in real applications is the need of more research joining
planning and execution. This manuscript contributes with
the list of important aspects that must be taken into account
while modeling a classical and deterministic PDDL domain
for Social Robotics and executing the resulting plan in their
highly dynamic and stochastic environments.

Constant monitoring of the execution and action interrup-
tions are needed to be able to react to unexpected events,
but fast replannings times are needed in order to achieve a
fluid interaction. Numeric fluents are very important in many
real problems with many objects to represent order relations
without unneeded increments of the branching factor and
preprocessing times.

As we have discussed here, planning, sensing and execu-
tion are interleaved tasks very dependent among them. All
of them must be considered in each task when developing a
complete social robotic platform.

References
[Alcázar et al. 2010] Alcázar, V.; Guzmán, C.; Prior, D.; Bor-
rajo, D.; Castillo, L.; and Onaindia, E. 2010. PELEA: Plan-
ning, Learning and Execution Architecture. In Proceedings
of the 28th Workshop of the UK Planning and Scheduling
Special Interest Group (PlanSIG).

[Arora et al. 2016] Arora, A.; Fiorino, H.; Pellier, D.; and
Pesty, S. 2016. A Review on Learning Planning Action
Models for Socio-Communicative HRI. In Proceedings of
the 7th Workshop on Artificial Companion, Affect and Inter-
action (WACAI).

[Bandera et al. 2016] Bandera, A.; Bandera, J.; Bustos, P.;
Calderita, L.; Dueñas, A.; Fernández, F.; Fuentetaja, R.;
Garcı́a-Olaya, A.; Garcı́a-Polo, F.; González, J.; Iglesias,
A.; Manso, L.; Marfil, R.; Pulido, J.; Reuther, C.; Romero-
Garcés, A.; and Suárez, C. 2016. CLARC: a Robotic Ar-
chitecture for Comprehensive Geriatric Assessment. In Pro-
ceedings of the 17th Workshop of Physical Agents (WAF),
1–8.

[Baxter, de Greeff, and Belpaeme 2013] Baxter, P. E.;
de Greeff, J.; and Belpaeme, T. 2013. Cognitive archi-
tecture for humanrobot interaction: Towards behavioural
alignment. Biologically Inspired Cognitive Architectures
6:30 – 39.

[Brenner and Kruijff-Korbayová 2008] Brenner, M., and
Kruijff-Korbayová, I. 2008. A continual multiagent
planning approach to situated dialogue. In In Proceedings
of the 12th Workshop on the Semantics and Pragmatics of
Dialogue (LONDIAL), 61–68.

[Carlucci et al. 2015] Carlucci, F. M.; Nardi, L.; Iocchi, L.;
and Nardi, D. 2015. Explicit Representation of Social
Norms for Social Robots. In Proceedings of the 28th In-
ternational Conference on Intelligent Robots and Systems
(IROS), 4191–4196.

[Chen, Yang, and Chen 2016] Chen, K.; Yang, F.; and Chen,
X. 2016. Planning with Task-Oriented Knowledge Acquisi-
tion for a Service Robot. In Proceedings of the 25th Inter-
national Joint Conference on Artificial Intelligence (IJCAI),
812–818.

[Edelkamp and Hoffmann 2004] Edelkamp, S., and Hoff-
mann, J. 2004. PDDL2.2: The language for the classic part
of the 4th International Planning Competition. Technical re-
port, Institut für Informatik, Freiburg, Germany.

[Folstein, Folstein, and McHugh 1975] Folstein, M.; Fol-
stein, S.; and McHugh, P. 1975. “Mini-mental state”.
A practical method for grading the cognitive state of
patients for the clinician. Journal of Psychiatric Research
12(3):189–198.

[Fox and Long 2003] Fox, M., and Long, D. 2003.
PDDL2.1: An Extension to PDDL for Expressing Tempo-
ral Planning Domains. Journal of Artificial Intelligence Re-
search (JAIR) 20(1):61–124.

[Fox et al. 2006] Fox, M.; Gerevini, A.; Long, D.; and Se-
rina, I. 2006. Plan Stability: Replanning versus Plan Repair.
In Proceedings of the 16th International Conference on Au-
tomated Planning and Scheduling (ICAPS).

9

[Ghallab, Nau, and Traverso 2004] Ghallab, M.; Nau, D.;
and Traverso, P. 2004. Automated Planning: Theory & Prac-
tice. Elsevier.

[Ghallab, Nau, and Traverso 2014] Ghallab, M.; Nau, D.;
and Traverso, P. 2014. The Actor’s View of Automated
Planning and Acting: A Position Paper. Artificial Intelli-
gence 208:1–17.

[González, Pulido, and Fernández 2017] González, J. C.;
Pulido, J. C.; and Fernández, F. 2017. A Three-layer
Planning Architecture for the Autonomous Control of
Rehabilitation Therapies Based on Social Robots. Cog-
nitive Systems Research. Advance online publication:
http://dx.doi.org/10.1016/j.cogsys.2016.09.003.

[Hoffmann, Porteous, and Sebastia 2004] Hoffmann, J.; Por-
teous, J.; and Sebastia, L. 2004. Ordered landmarks in
planning. Journal of Artificial Intelligence Research (JAIR)
22:215–278.

[Howey and Long 2003] Howey, R., and Long, D. 2003.
VAL’s Progress: The Automatic Validation Tool for
PDDL2.1 used in The International Planning Competition.
In Proceedings of the Workshop “The Competition: Impact,
Organization, Evaluation, Benchmarks”, ICAPS, 28–37.

[Leite, Martinho, and Paiva 2013] Leite, I.; Martinho, C.;
and Paiva, A. 2013. Social Robots for Long-Term Inter-
action: A Survey. International Journal of Social Robotics
5(2):291–308.

[Little and Thiébaux 2007] Little, I., and Thiébaux, S. 2007.
Probabilistic Planning vs Replanning. In Proceedings of
the Workshop “International Planning Competition: Past,
Present and Future”, ICAPS.

[Mahoney and Barthel 1965] Mahoney, F. I., and Barthel,
D. W. 1965. Functional evaluation: The Barthel index.
Maryland State Medical Journal 14:61–5.

[Martı́nez 2016] Martı́nez, M. 2016. Automated Planning
Through Abstractions in Dynamic and Stochastic Environ-
ments. Ph.D. Dissertation, Universidad Carlos III de Madrid,
Leganés, Spain.

[Nau et al. 2003] Nau, D.; Au, T.-C.; Ilghami, O.; Kuter, U.;
Murdock, J. W.; Wu, D.; and Yaman, F. 2003. SHOP2:
An HTN Planning System. Journal of Artificial Intelligence
Research (JAIR) 20:379–404.

[Petrick and Foster 2013] Petrick, R. P. A., and Foster, M. E.
2013. Planning for Social Interaction in a Robot Bartender
Domain. In Proceedings of the 23rd International Confer-

ence on Automated Planning and Scheduling (ICAPS), 389–
397.

[Prenzel, Feuser, and Gräser 2005] Prenzel, O.; Feuser, J.;
and Gräser, A. 2005. Rehabilitation Robot in Intelligent
Home Environment Software Architecture and Implementa-
tion of a Distributed System. In Proceedings of the 9th Inter-
national Conference on Rehabilitation Robotics (ICORR).

[Rosenthal, Biswas, and Veloso 2010] Rosenthal, S.;
Biswas, J.; and Veloso, M. M. 2010. An Effective Personal
Mobile Robot Agent Through Symbiotic Human-Robot
Interaction. In Proceedings of the 9th International Con-
ference on Autonomous Agents and Multiagent Systems
(AAMAS), 915–922.

[Steedman and Petrick 2007] Steedman, M., and Petrick, R.
P. A. 2007. Planning dialog actions. In In Proceedings of
the 8th Workshop on Discourse and Dialogue (SIGDIAL),
265–272.

[Stivers et al. 2009] Stivers, T.; Enfield, N.; Brown, P.; En-
glert, C.; Hayashi, M.; Heinemann, T.; Hoymann, G.;
Rossano, F.; de Ruiter, J.; Yoon, K.; and Levinson, S. 2009.
Universals and cultural variation in turn-taking in conversa-
tion. Proceedings of the National Academy of Sciences of
the United States of America 106(26):1058710592.

[Suárez-Mejı́as et al. 2013] Suárez-Mejı́as, C.; Echevarrı́a,
C.; Núñez, P.; Manso, L.; Bustos, P.; Leal, S.; and Parra,
C. 2013. Ursus: A Robotic Assistant for Training of Chil-
dren with Motor Impairments. In Converging Clinical and
Engineering Research on Neurorehabilitation, volume 1 of
Biosystems & Biorobotics. Springer Berlin Heidelberg. 249–
253.

[Tapus, Matarić, and Scasselati 2007] Tapus, A.; Matarić,
M. J.; and Scasselati, B. 2007. Socially assistive robotics
[Grand Challenges of Robotics]. IEEE Robotics & Automa-
tion Magazine 14(1):35–42.

[Vaquero et al. 2015] Vaquero, T. S.; Mohamed, S. C.; Nejat,
G.; and Beck, J. C. 2015. The Implementation of a Planning
and Scheduling Architecture for Multiple Robots Assisting
Multiple Users in a Retirement Home Setting. In Proceed-
ings of the Workshop on “Artificial Intelligence Applied to
Assistive Technologies and Smart Environments”, AAAI.

[Warren 2006] Warren, M. 2006. Features of Naturalness
in Conversation, volume 152 of Pragmatics & Beyond New
Series. John Benjamins.

10

