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Abstract Resource allocation is one of the most relevant problems in the
area of Mechanism Design for computing systems. Devising algorithms capa-
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research efforts. Usually, the mechanisms they propose deal with selfishness
by introducing utility transfers or payments. Since using payments is undesir-
able in some contexts, a family of mechanisms without payments is proposed
in this paper. These mechanisms extend the Linking Mechanism of Jackson
and Sonnenschein introducing a generic concept of fairness with correlated
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mechanisms, that could be used in practical computing environments.

Keywords Resource Allocation, Task Allocation, Linking Mechanism,
Fairness, Player Correlation

Agust́ın Santos
(Corresponding author) Institute IMDEA Networks, Madrid, Spain. E-mail:
agustin.santos@imdea.org, Ph: +34 91 481 6979, Fax: Fax: +34 91 481 6965

Antonio Fernández Anta
Institute IMDEA Networks, Madrid, Spain. E-mail: antonio.fernandez@imdea.org
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1 Introduction

1.1 Motivation

The success of the Internet has made the problem of resource allocation to
emerge in many versions like, for example, deciding which peer must receive
bandwidth or disk in a file sharing P2P system [19], determining what access
point shall offer its capabilities to a given user in a shared coverage area [9,
37], or deciding to which computational task some CPU is assigned in a col-
laborative distributed environment [1]. The problem may also appear with a
negative formulation (i.e., instead of deciding who shall receive a resource, the
problem is deciding who shall not receive it). For example, a paradigmatic
example of this negative resource allocation that has been widely analyzed in
distributed computing is the problem of computational task allocation [13,34,
6]. In this problem, a system composed of heterogeneous nodes1 is assumed.
Those nodes cooperate pursuing some common goal, which requires the exe-
cution of a collection of computational tasks. Whenever a new task appears,
it is assigned for execution to the most suitable node. Given the popularity
and simplicity of this problem, we will use task allocation as a reference.

In all these scenarios, it is very important to devise mechanisms that
achieve efficient and fair resource allocation even when players present selfish
or non-rational behavior. With that purpose, a number of interesting protocols
and mechanisms based on Game Theory concepts [3,37] have been proposed.
In such works, it is often assumed that players can transfer their utilities (i.e.,
use payments). However, there are many systems in which this assumption
is not realistic. In particular, in many distributed Internet systems (e.g., all
kind of free services), payments are not used or make little sense. For instance,
there are no payments in most peer to peer systems, like BitTorrent (and this
leads to free riding [19]).

Recently, some mechanisms without payments have been proposed, like
those of Procaccia and Tennenholtz [28], or the seminal work of Jackson and
Sonnenschein [17,18] in which a new type of mechanism (called linking mech-
anism) is proposed. A linking mechanism, instead of offering incentives or
payments to players, limits the spectrum of players’ responses to a probability
distribution known by the game designer. One of the objectives of this paper
is to explore and extend linking mechanisms, introducing a wide spectrum of
fairness concepts, while preserving all the original properties. For this, we as-
sume that the game is based on a sequence of single-unit (resource) allocations
and that each player has a specific preference for being assigned the resource
at a given single-unit allocation. We accept that preferences vary over time
and with the type of resource. For example, when dealing with task alloca-
tions, at a given time, a node may have free bandwidth but full utilization of
its CPU, while its situation could be the opposite at another time. Hence, at a
particular instant, a node may have greater ability to perform tasks involving

1 We will use the terms node, user, and player interchangeably.
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communication, while at a later time its state may lead it to prefer tasks more
intensive in CPU computation.

In other words, we define the preference as some kind of metric measuring
the opportunity of receiving a particular resource at a given time. In the case
of task allocations, the preference can be seen as some type of execution cost.
In Game Theory, closely related to costs and preferences, there is the notion
of utility. Hence, the utility may be defined as the cost savings associated with
a work not done. In other works, a player gets more utility whenever it avoids
running tasks (by having other nodes running them).

When trying to formalize a model based on these principles, a number of
problems arise. First, a player’s preferences are only known by the player her-
self. To illustrate this with our previous example, note that in a distributed
computational system it would be difficult to audit or check if a given partic-
ular node has more or less CPU capacity. This concept is usually known as
private information. To obtain the private information of a player, the basic
mechanism is to directly ask for it and expect the player to declare the value
honestly. Following this, we assume that each player can alter her behavior for
her own benefit. She may try to maximize her own payoff without concern for
others; in other words, she could be selfish. One way to maximize her benefit is
declaring false information trying to avoid undesirable results (i.e., she can be
untruthful). This behavior is one of the factors that may distort the internal
workings of the game. (The loss of performance produced by selfish players is
called the price of anarchy [23,31].) In this work, we assume that the users
are selfish and potentially untruthful.

In the same way, providing a notion of fairness also presents challenges.
Fairness is, in general, an elusive concept that can be seen from many different
perspectives. In our case, fairness refers to some kind of compensations to
players in exchange for sacrificing their utility. In game theory, this type of
compensation usually takes the form of payments. However, in this work, we
do not allow payments. Hence, the implementation of our notion of fairness
needs to be based on other assumptions, and in particular, we base it here in
repeated games2. In a repeated game, fairness can be provided by compensating
current sacrifices in future iterations. Following this, and coming back to the
task allocation example, we could implement fairness by guaranteeing that all
players execute, on average, the same number of tasks; or that they invest, on
average, the same effort (i.e., cost) on their executions. In this work we assume
infinitely repeated games, which by definition have no known end.

Previous work in the area of mechanism design for distributed systems
[33] has already faced these problems dealing with tasks allocations in the
presence of selfish or irrational independent player. However, when players are
dependent (i.e., the distribution of their declared preferences are correlated)
those solutions cannot guarantee the desired properties in terms of fairness and

2 By repeated games we refer to a scenario in which players interact by playing a similar
(stage) game several times. Unlike a game played once, a repeated game allows for new
strategies to be contingent on past moves, thus allowing for reputation and retribution
effects.
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efficiency. Therefore, this paper develops a mechanism that achieves fairness
and efficiency in the presence of selfish players with correlation.

1.2 State of the Art

Mechanism Design has been gaining increasing popularity in distributed com-
puting during the last few years (see, e.g., [27,16,15]). Even though the mech-
anisms proposed in these works are interesting, they are usually based on
payment systems. Deploying such payment systems in practice is often dif-
ficult as noted by Schummer and Vohra [26, Chapter 10]3. When it applies
to computational settings, the payments are simply too difficult to enforce,
mainly due to security problems or banking issues. For this reason, mech-
anisms without payments have also been proposed. Related literature could
be found in economics on cooperation [21,7] or similar problems in P2P sys-
tems such as reputation [20] and artificial currencies [12]. The work closest to
our own, and in which we have based our proposal, is the linking mechanism
proposed by Jackson and Sonnenschein [17,18]. Related to this work, Engel-
mann and Grimm [8] presents experimental research on linking mechanisms.
An algorithm called QPQ (Quid Pro Quo) [33] has been proposed as an appli-
cation of this kind of mechanisms to distribute task executions fairly among
independent players.

QPQ reflects the main idea behind the concept of linking mechanism: when
a game consists of multiple instances of the same basic decision problem (e.g.,
saying yes or no, choosing among a number of discrete options), it is possible
to define selfishness-resistant algorithms by restricting the players’ responses
to a given distribution. Hence, in that case, the frequency with which a player
declares a particular decision is established beforehand. Based on this, QPQ
presents quite relevant features as the fact of not requiring payments, the
flexibility on the definitions of the utility functions of the players, its applica-
bility in repeated games, the lack of central control authority, etc. While QPQ
presents some very interesting properties, it only guarantees fairness and effi-
ciency when users behave independently on each other. Nevertheless, this does
not need to be the case in real environments, where users may have correlated
preferences. The problem of fairness among players has been widely analyzed
in the game theoretical literature and a wide range of fairness concept has been
proposed, but, as far as we know, there is no fair linking mechanisms when
players have correlated preferences. This motivates the research proposed in
this paper.

3 Schummer and Vohra note that “ there are many important environments where money
cannot be used as a medium of compensation. This constraint can arise from ethical and/or
institutional considerations: many political decisions must be made without monetary trans-
fers; organ donations can be arranged by ‘trade’ involving multiple needy patients and their
relatives, yet monetary compensation is illegal.”
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1.3 Contributions

Our contributions are twofold. On the one hand, we have extended the idea
of linking mechanism introducing fairness and correlation between players,
while preserving desirable properties, like efficiency, truthful reporting, incen-
tive compatibility, etc. On the other hand, we propose an algorithm based on
these mechanisms that we expect to be used in practical scenarios.

As mentioned, in [33] we have proposed a mechanism that we called Quid
Pro Quo (QPQ) Mechanism . QPQ presents several interesting properties in
relation to the efficiency in presence of selfish or rationally-limited players.
However, those properties only hold when players are independent. In this
paper, we extend the linking mechanism framework (and therefore QPQ) by
introducing a novel scheme providing fair and optimal resource allocation even
when players’ preferences are correlated.

In our model, fairness is a key element introduced to compensate current
sacrifices in future iterations. Due to the large number of notions of fairness
that could be defined, it is difficult to find a general model that encompasses
any approach. In this work we have proposed a generic fairness definitions,
which we hope will serve as a reference to wider models. Hence, our contri-
bution is clear: to the best of our knowledge, no other previous research work
has offered a linking mechanism providing fair and efficient decision.

In addition, from a theoretical perspective, we contribute to the progress
of the state-of-the-art by proposing a mathematical framework suitable for
proving all claimed algorithmic properties. This framework is inspired on pre-
vious work on theoretical economics but, as far as we know, it has never been
adapted to the specific peculiarities of distributed computing (at least not
to solve the resource allocation problem). This technique has proven to be
extremely powerful for our specific problem, but it can be re-used in other
scenarios with similar assumptions.

Based on the theoretical results, we propose a realization of the mecha-
nism suitable for being implemented as a repeated game in real distributed
environments. Unlike in the original linking mechanism, this algorithm does
not need to know the probability distribution of the players’ responses. We
show that this realization does not require central entities and that its com-
putational cost is affordable for current state of the art networks and devices.
In addition, through simulations, we confirm the stability of the algorithm
demonstrating that few iterations on a repeated game are enough for making
the mechanism to converge to a fair resource allocation even when the players’
distributions are strongly correlated.

1.4 Structure

The rest of the paper is structured as follows. First, in Section 2 we define the
basic mathematical concepts derived from mechanism design that are required
for the understanding of our work. Then, in Section 3 we present two especial
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cases of the problem at hand, to illustrate it and provide intuition on how it is
solved. After that, in Section 4 we present the generic QPQ mechanism. In this
section we use calculus of variations to prove that a this generic QPQ mech-
anism can be used to performing efficient task allocation even when players
have correlated preferences and behave in selfish or non-rational ways. Based
on the generic QPQ mechanism, we propose in Section 5 a practical imple-
mentable algorithm suitable to be used in real-live scenarios with tractable
computational and communication complexity. In Section 6 we show through
simulations that this practical algorithm converges in few iterations and main-
tains the analytical properties of the generic QPQ mechanism. The conclusions
of the paper are presented in Section 7.

2 Model and Definitions

We start by presenting the usual mathematical framework for mechanism de-
sign and then we formally define the specific problem we face in this paper.

2.1 Mechanism Design Concepts

The following provides the usual theoretic framework that will be later applied
to our problem. We assume that there are n players. The set of players is
N = {1, 2, . . . , n}. Players are risk-neutral. The alternative or outcome set of
the game played is D. In a general setting, D could be defined over ∆(N) 4,
but in this paper we define D = N so that the outcome d ∈ D is the player to
whom the resource will be allocated.

Prior to making the collective choice in the game, each player privately
observes her preferences over the alternatives in D. This is modeled by assum-
ing that player i privately observes a parameter or signal θi that determines
her preferences. (For instance, in resource allocation, θi could represent the
value player i assigns to the resource.) For a given player i, we say that θi
is the player type. The set of possible types of player i is Θi. We denote by
θ = (θ1, θ2, . . . , θn) the vector of player types. The set of all possible vectors
is Θ = Θ1 × Θ2 × . . . Θn. We denote by θ−i the vector obtained by removing
θi from θ.

We denote by Π = ∆(Θ) the set of all probability distributions over Θ. It is
assumed that there is a common prior distribution π ∈ Π that is shared by all
the players. We denote by πi ∈ ∆(Θi) the marginal probability of θi. We define
βi(θ−i|θi) as the conditional probability distribution of θ−i given θi. That is,
for any possible type θi ∈ Θi , βi(·|θi) specifies a probability distribution over
the set Θ−i representing what player i would believe about the types of the
other players if her own type were θi. Beliefs (βi)i∈N are consistent, since
individual belief functions βi can all be derived from the common prior π.
This implies that π(θ−i|θi) = βi(θ−i|θi).

4 We denote by ∆(S) the set of all probability distribution over some set S.
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Individual players have preferences over outcomes, which are represented
by a utility function ui(d, θi) ∈ R defined over all d ∈ D and θi ∈ Θi.

The set of outcomes D, the set of players N , the type sets in Θ, the common
prior distribution π ∈ Π, and the payoff functions ui, i ∈ N are assumed to
be common knowledge among all the players. The game rules defined by a
specific mechanism are also common knowledge. However, the specific value
θi observed by player i is private information of player i.

A strategy for the player i is any map σi : Θi → ∆(Θi), where σi(θ̂i|θi) is

the conditional probability that the player reports θ̂i when her true type is θi.
A reporting strategy σi is truthful if for every pair (θ̂i, θi), the probability is

concentrated at θ̂i = θi. As usual, we will use θ̂i to denote the reported type
and θi the actual type.

Given that the prior distribution π is known, player i can not change it.
Hence, we say that a player i has a limited strategy space, since her strategy
can not change the beliefs of other players. Intuitively, player i has a limited
strategy space if beliefs over reports are the same as actual beliefs.

As stated before, we consider games with private information; those games
are also called Bayesian [14]. In such games, players have limited informa-
tion about certain aspects of the game (e.g. payoff functions). However, each
player has a subjective probability distribution over this information. Bayesian
mechanism design governs the design and analysis of these game [16]. Bayesian
Equilibrium is the fundamental solution concept for Bayesian games [25]. In-
formally, a Bayesian equilibrium is a set of strategies, and beliefs, so that no
player has a profitable deviation. We say that a mechanism is Bayesian incen-
tive compatible when, truthfully revealing private information is a Bayesian
equilibrium.

In this work we design Bayesian mechanisms. For a given Bayesian mech-
anism 〈Θ, g〉 we shall write qi(·|θi) for player i’s interim probability density
function on D conditional on player i’s type being θi.

In this paper, we are looking for a mechanism 〈Θ, g〉, where g(·) is the deci-
sion function, without utility transfers (payments) and that implements some
social choice function f under equilibrium when the induced game is Bayesian.
In addition, we introduce fairness as a key tool to compensate or reward play-
ers. We call this kind of mechanisms Quid Pro Quo (QPQ) Mechanisms.

2.2 Fairness

In our model, we use fairness as a very abstract concept. For us, fairness is the
property of balancing in expectation some game parameters (modelled with
a real function) among all players. Our model was originally built with two
examples in mind: fairness in utility (“players have same expected utility”)
and fairness in assignment (“same expected number of assignments”). But
these two examples are just special cases of our model. Additionally, we have
contemplated the possibility that some scenarios require allocations other than
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equiproportional; or that the game must be constrained to several fairness con-
cepts at the same time. All this is modelled by introducing a set of functions
ηi,l : θ → R and ratios δi,l, all defined for each player i ∈ N and for each fair-
ness concept l = 1, . . . ,m (m is the number of fairness concepts). The function
ηi,l represents a fairness concept. For instance, for fairness in assignment this
function could be defined as ηi,l(θ) = 1. Similarly, fairness in utility is applied
when ηi,l(θ) = θi. On the other hand, δi,l is the ratio for player i when fairness
l is applied. Typically, this ratio is δi,l = 1

n . Then, formally, our concept of
fairness is defined as follows.

Definition 1 (Fairness) Given functions ηi,l : Θ → R, and values δi,l, we
say that a mechanism 〈Θ, g〉 is fair (or η-fair) when, for all i ∈ N and l =
1, . . . ,m, ∫

Θ

ηi,l(θ)qi(θ) dπ(θ) = δi,l
∑
j∈N

∫
Θ

ηj,l(θ)qj(θ) dπ(θ) (1)

In this paper, we deal mathematically with this general concept of fairness,
but for the algorithm and simulations we used a particular concept of fairness,
where players will have equal number of allocated resources (in expectation).

2.3 Resource Allocation Problem

We now formally define the problem we study in this work. Intuitively, the
problem is like a repeated game where the stage game is in fact a single-unit
auction [24], and the mechanism that decides how to allocate the resource
in each auction is a QPQ mechanism. Hence there are no payments and the
allocation must satisfy a notion of fairness.

The problem of resource allocation is a tuple 〈R,N,Θ〉 where, N and Θ
are as defined above, and R = {r1, r2, . . .} is the ordered set of resources that
have to be allocated by the system over time. Resources are received by the
system in their order in R, they are independent among them, and the system
must allocate resource rk to a single player before receiving resource rk+1. R
is assumed to be infinite.

As mentioned previously, in this problem the outcome set is D = N , where
an outcome of d ∈ D for resource rk means that rk is allocated to player d. In
[33], we have proposed a QPQ algorithm that implements this function when
the type of players follow mutually independent distributions. As in that work,
we assume here that the type of each player is normalized using a Probability
Integral Transform (PIT, see Section 5), so that it takes real values in the
interval [0, 1] and follows a uniform distribution within that support. Hence,
we assume that Θi = [0, 1]. Finally, as mentioned, we assume that players have
a limited space strategy (i.e., π is known a priori and cannot be changed by
the players).

The social choice function (scf) g(·) we are looking for is one that optimizes
the social utility restricted by fairness conditions. The social choice function
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(scf) is represented by the assigment qi(θ) that maximizes the functional,

F [q] ≡
∑
i∈N

∫
Θ
ui(d(θ), θi) qi(θ) dπ(θ) (2)

s.t.∫
Θ
ηi,l(θ)qi(θ) dπ(θ) = δi,l

∑
j∈N

∫
Θ
ηj,l(θ)qj(θ) dπ(θ), l = 1, . . . ,m, ∀i ∈ N.

(3)

In this functional, (2) is the expected social utility, which is simply the
sum of the expected utilities of the players. On its hand, (3) are the fairness
restrictions to be satisfied. In this formulation there are m such restrictions.
Each restriction l and player i has its own fairness functions ηi,l(·), and a
parameter δi,l that defines the proportion of the total fairness that must be
“assigned” to a player i. In order to find the assignment function qi(θ) that
maximizes this functional, calculus of variations can be used.

As an example, we study the fairness concept where each player i will
receive a proportional number of resources δi. Hence, we obtain that the scf
is the assigment of qi(θ) that maximizes the functional

F [q] ≡
∑
i∈N

∫
Θ
ui(d, θi) qi(θ) dπ(θ), (4)

s.t. ∫
Θ
qi(θ) dπ(θ) = δi,∀i ∈ N. (5)

Another fairness concept that we study as an instance of this framework is
players with proportional utility. Under this fairness concept every player will
obtain a proportional expected utility. The equations are similar in this case.

F [q] ≡
∑
i∈N

∫
Θ
ui(d, θi) qi(θ) dπ(θ), (6)

s.t. ∫
Θ
ui(d, θi) qi(θ) dπ(θ) = δi

∑
j∈N

∫
Θ
uj(d, θj) qj(θ) dπ(θ),∀i ∈ N. (7)

Without loss of generality, we can define the utility of a player i as follows,

ui(d, θi) =

{
θi if d = i,

0 otherwise.
(8)

In this paper, we are interested in dynamic mechanisms where truth-telling
is a Bayesian equilibrium of the static QPQ mechanism. In that case we call
the QPQ mechanism Bayesian incentive compatible. That means that a player
obtains a higher utility when reporting truthfully.
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3 Simple Resource Allocation Examples

In order to illustrate the problem we face in this paper, and the techniques
used to solve it, we believe that it is useful to provide simpler versions of the
problem first. These examples of the resource allocation problem are simpler
than the general case in two aspects: they consider only two players and they
consider the specific versions of fairness mentioned above. Although simpler,
the resulting problems have similar structures as the general one, and the
lessons that are extracted from them suggest the general treatment.

3.1 Same Number of Resources

We consider first the problem of distributing a large (infinite) number of re-
sources between two players so that both players get the same proportion of
resources, and the aggregate utility is maximized. The players have utilities for
each possible decision and these valuations may be correlated. Suppose that
we choose as decision function for every resource the assignment that maxi-
mizes the sum of the utilities. The difficulty is that this social choice function
is not fair. In Figure 1 we show four examples of possible joint distribution of
the two players (shown as density and contour plots). If we assign resources
using as decision function arg max

i∈N
(θ), the result may be clearly unfair.

So the idea is to find a new decision function that takes into account
the joint distribution π and assigns resources optimally and fairly. For the
moment, we will assume that this decision function is deterministic and it
could be represented by a line. This line divides the square into two areas:
the area where resources are assigned to player 1 and the area for player 2.
At this moment, the shape of this line is unknown, but suppose that this
decision function looks somewhat like the line presented in Figure 2 (left).
Note that the decision function can be expressed as arg max

1,2
(ψ(θ1), θ2), where

ψ is a transformation function obtained from the line in Figure 2 and the joint
distribution π. With all this in mind, the problem we aim to solve is to find
the function ψ that maximizes:

∫ 1

0
θ1

∫ ψ(θ1)
0

π(θ1, θ2)dθ2dθ1 +
∫ 1

0
θ2

∫ ψ−1(θ2)

0
π(θ1, θ2)dθ1dθ2, (9)

s.t.

∫ 1

0

∫ ψ(θ1)
0

π(θ1, θ2)dθ2dθ1 = 1
2 . (10)

Note that the left term of (9) is the utility of Player 1, which corresponds
to the blue areas in the sample assignments presented in Figure 2. Similarly,
the right term of (9) is the utility of Player 2, and corresponds to the white
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Fig. 1 Example of join distributions π for two correlated players. The preferences are
normalized in [0, 1]. Colors represent density.
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Fig. 2 (Left) Posible decision function for two players. (Right) Example of a decision func-
tion ψ for two players and same number of resources fairness. Colors represent different
areas assigned to each player.

areas. In addition, if the objective is to minimize utility (for instance, costs)
the problem has a similar formulation:∫ 1

0
θ1

∫ 1

ψ(θ1)
π(θ1, θ2)dθ2dθ1 +

∫ 1

0
θ2

∫ 1

ψ−1(θ2)
π(θ1, θ2)dθ1dθ2, (11)
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s.t. ∫ 1

0

∫ 1

ψ(θ1)
π(θ1, θ2)dθ2dθ1 = 1

2 . (12)

In this case the left term of (11) corresponds to the white areas in Figure 2 and
the right term to the blue areas. Observe that both formulations can be solved
using calculus of variations. Moreover, they both reach the same solution ψ(x)
(see Appendix A), only the decision function is different (max versus min).
Solving the system with respect to ψ(x) (see Appendix A), we obtain the
solution of this system as

ψ(θ1) = θ1 + λ, (13)

for some suitable constant λ. This confirms that the decision function is based
on a straight line. The right plot in Figure 2 represents this idea.

3.2 Proportional Utility

In the second special case we present, the fairness criterion to be satisfied is
assigning resources with “proportional expected utility” for each player. In
particular, we want both players to get the same expected utility. In that case,
the functional to optimize (for the minimization case) becomes

min
ψ

(
∫ 1

0
θ1

∫ 1

ψ(θ1)
π(θ1, θ2)dθ2dθ1 +

∫ 1

0
θ2

∫ 1

ψ−1(θ2)
π(θ1, θ2)dθ1dθ2)

(14)

s.t.

∫ 1

0
θ1

∫ 1

ψ(θ1)
π(θ1, θ2)dθ2dθ1 =

∫ 1

0
θ2

∫ 1

ψ−1(θ2)
π(θ1, θ2)dθ1dθ2 (15)

Finding the solution involves using similar mathematical techniques as in
the previous case. The function ψ(x) obtained is,

ψ(θ1) = λθ1, (16)

for a suitable constant λ.
Note that in the two examples we have obtained a separatrix with the form

of a straight line. In fact, this will hold also for the general case presented in
the next section.

4 The Fair Quid Pro Quo Mechanism

We now derive the general QPQ Mechanisms that implement the social choice
functions given by Eqs. 4 and 6 under equilibrium, as special cases of the
solution to Eq. 2.
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Theorem 1 The QPQ Mechanism that implements the social function of
Eq. 2 with η-fairness is a set of functions ψ = (ψ1, · · ·ψn) that defines a
line y = ψi(x) for each player i with deterministic assignment d = gψ(θ) =
arg max
i∈N

(ψi(θ)) (except at some points where the decision is indifferent).

Proof The problem we aim to solve is to find the decision function g that
maximizes ∫

Θ

∑
i∈N

θi qi(θ) dπ(θ), (17)

under the constraints given in eqn. 2. Using Lagrange multipliers, this is tan-
tamount to maximizing the functional

F [q] ≡
∫
Θ

∑
i∈N

θi qi(θ) dπ(θ)+

∑
k∈N

m∑
l=1

λk,l

∫
Θ

ηk,l(θ)qk(θ)− δk,l
∑
j∈N

ηj,l(θ) qj(θ)

 dπ(θ), (18)

which can be rewritten as

F [q] =

∫
Θ

∑
i∈N

ψi(θ)qi(θ) dπ(θ), (19)

where

ψi(θ) ≡ θi +

m∑
l=1

λi,l ηi,l(θ)−
∑
k∈N

m∑
l=1

λk,l δk,l ηi,l(θ). (20)

Let d = arg max
i∈N

(ψi(θ)). Since 0 ≤ qi(θ) ≤ 1 and
∑
i∈N qi(θ) = 1 for all θ ∈ Θ,

then for each θ ∈ Θ, ∑
i∈N

ψi(θ)qi(θ) ≤ ψd(θ) (21)

The upper bound is reached if, and only if, for that value of θ we have qd(θ) = 1
and qk(θ) = 0 for all k 6= d. This proves the theorem for the case when the
largest value among the ψi(θ) is unique.

Let us consider, on the other hand, that there are several such largest
values, i.e., d1, . . . , dr are such that ψd1(θ) = · · · = ψdr (θ) > ψk(θ) for all
k 6= d1, . . . , dr. Then the upper bound is ψd1(θ), but this time is reached for
any choice of the functions qi(θ) such that qd1(θ)+· · ·+qdr (θ) = 1 and qk(θ) = 0
for all k 6= d1, . . . , dr. Hence, any decision among d1, . . . , dr is indifferent. ut

For convenience, we build the decision function of our mechanism introducing
a transformation function ψ : Θ → Rn that returns a vector of n real values.
The decision function is then obtained as d = g(θ) = gψ = arg max

i∈N
(ψi(θ)). We

say that ψ determines the “decision rule” or “decision function”. Our main
theorem gives us insight into what we can expect about the set of functions ψ.
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Given our definition of ψi(θ) we can derive some intuition about the decision
function. The theorem tells us that we can restrict our attention to determinis-
tic solutions except when ψi(θ) = ψj(θ), i, j ∈ N . At these points, the decision
is indifferent. The above theorem also gives us an optimality result.

Corollary 2 Assume that all players follow a truthful reporting strategy, mech-
anism M defined using the decision function d = arg max

i∈N
(ψi(θ)) maximizes

the utility of the system subject to fairness constraints.

Finally, when fairness is symmetric in the sense that each player has the
same fairness function, then each ψi depends only on the player’s profile θi
and therefore ψi(θi, θ−i) could be reduced to ψi(θi). This last aspect allows us
to state the following corollary.

Corollary 3 When fairness is symmetric in the sense of ηi(θ) = η(θi) ∀i ∈
N , and players have limited space strategy, then the probability qi depends only
on the player’s value, that is qi(θ) = qi(θi).

Proof The proof follows from the definition of ψi(θ) and therefore the deci-
sion function could be reduced to d = arg max

i∈N
(ψi(θi)). As beliefs can not be

changed by the strategy of others players, the probability qi(θ) is only defined
as a function of θi. ut

Revisiting our particular cases of fairness defined as equal-number of re-
sources (Eq. 4) and equal utility (Eq. 6) we can check that the solutions for
ψ are in both cases straight lines. When fairness is defined as equal-number of
resources (Eq. 4), ψi(θ) becomes (see Eq. 20)

ψi(θ) ≡ θi + λi −
∑n
k=1 λkδk, (22)

and therefore ψ(θi) = θi + λi −
∑n
k=1 λkδk.

This solution has a very nice property that was already observed in our
original work (QPQ with independent players [33]). The mechanism designer
could aggregate players when studying a single player. The mechanism designer
can see the game as player i against the system formed by all other players
(j ∈ N, j 6= i). In this case, player i has to compute just two values for λ,
her own value λi and the aggregate value λj =

∑n
k=1 λkδk. That is, ψ(θi) =

θi + λi − λj , or even simpler, ψ(θi) = θi + λ. if we redefine λ as a new single
real parameter that represents λi−

∑n
k=1 λkδk. This confirms that the decision

function is a straight line where the parameter λ determines the point at which
the line crosses the y-axis. And this is true for all players. (See Figure 2 in
Section 3.)

On the other hand, when fairness is defined as a function of utility (Eq. 6),
our ψ function is given by using

ψi(θ) ≡ θi (1 + λi −
∑n
k=1 λkδk), (23)

and therefore ψ(θi) = θi (1 + λi−
∑n
k=1 λkδk). Again, the decision function is

a straight line where λ determines the slope. Aggregating players, the above
solution could be reduced to ψ(θi) = θi (1 + λi − 1

nλj), or ψ(θi) = λ θi.
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Properties. The Fair QPQ Mechanism with Correlated players (Mfair) has the
following properties:

1. Mfair is (ex-ante) individual-rational. This means that the expected util-
ity of a player is at least its expected outside utility.

2. Mfair is not allocative-efficient, but assigns resources efficiently subject
to some fairness conditions. This property is a clear conclusion from Corol-
lary 2.

3. There is no incentive for any of the players to lie about or hide their pri-
vate information from the other players. Players will report truthfully in a
Bayesian equilibrium. We said that Mfair is Bayesian incentive compatible.

The two first properties are quite evident. The last property follows from
the next theorem.

Theorem 4 When players have limited space strategy, and fairness is sym-
metric in the sense that ηi(θ) = η(θi) ∀i ∈ N , then Mfair is Bayesian incentive
compatible.

Proof For the sake of contradiction, let us suppose this proposition is false.
Hence, there is some set of assignments for which, if i does not follow a truthful
reporting strategy, she will obtain more utility in expectation.

From Corollary 3, this holds for any strategy of the aggregate player j, and
in particular when all her players follow a truthful reporting strategy. Hence,
we can consider in the rest of the proof that the rest of n− 1 players follow a
truthful reporting strategy.

Additionally, using the same corollary, we know that every player, j 6= i ∈
N , will obtain the same expected utility (regardeless of whether i lies or not),∫

Θ

uj(d, θj) qj(θ) dπ(θ) =

∫
Θ

uj(d, θj) q̂j(θ) dπ̂(θ)

Now we can define a new mechanismM that assigns a task to player i (when
i declares θi) with the same probability as the original QPQ assigns the task

to the player i when she declares a false value θ̂i. Then, qi(θi) = q̂i(θ̂). Note
this new mechanism conserves the same fairness constraints as the original
one. However, if the above were true, QPQ would not be optimal, since a
mechanism that reproduces the same decisions under i lying (in presence of
players that follow a truthful reporting strategy) would have different (lower)
utility. Clearly, this is in contradiction of optimality of QPQ. Therefore, the
best strategy for a player (the one optimizing her normalized utility) is to
follow a truthful reporting strategy. ut

5 Practical QPQ Algorithm

After describing the different ingredients of our solution, we are able to propose
an application of our mechanism. To demonstrate the usability of our mech-
anism, we discuss an algorithm for a specific case. We propose an algorithm
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where the resource allocation achieves fairness in the number of resources allo-
cated to each player. This algorithm could be easily extended to other fairness
concepts. The details can be observed in Algorithm 1.

Algorithm 1 QPQ Correlated mechanism (code for node i)
1: Estimate the preference θi
2: Publish the normalized value θ̄i = PIT (θi)
3: Wait to receive the normalized values θ̄j from the other players
4: for all j ∈ N do
5: if not GoF Test(θ̄j ,Historic) then
6: θ̄j ← Random(θ̄−j ,Historic)
7: end if
8: end for
9: Historic ← Historic ∪ {θ̄}

10: Let d = arg max
j∈N

{ψj(θ̄j)}

11: if d = i then
12: Resource is assigned to node i
13: end if
14: Update λj , ∀j ∈ N : λk+1,j = λk,j + εk(Tk,j − 1/n).

In the algorithm, Tk,j denotes the fraction of decisions assigned to player
j, computed at round k. As it can be observed, for each round, each player
estimates her own value and publishes it. Publication means broadcasting a
message with the value to all players (although any other means of distribution,
like shared memory, can be used). By assumption, a player sends its value
before it receives any of the others (concurrency, which implies that they do
not depend from each other), and all the values are correctly received at each
player (reliability). Then, the algorithm assigns the resource to the player that
publishes the highest value modified by a particular ψk.

5.1 Preference Normalization

To normalize the players’ preferences we use a transformation called Probability
Integral Transformation (PIT). Our idea is to use the known fact that any
cumulative probability distribution function has in itself a uniform distribution
[2]. More formally, the PIT is defined as

Definition 2 (Probability Integral Transformation) Let X be a contin-
uous random variable with a Cumulative Distribution Function (CDF) F ; that
is X ∼ F . Then, the probability integral transformation defines a new random
variable Y as: Y = F (X).

As mentioned above, our interest in the PIT is due to the following lemma.

Lemma 5 (PIT follows a uniform distribution) Let X be a continuous
random variable with CDF F , then F follows a uniform distribution on in-
terval [0, 1]. That is, the random variable Y defined by the probability integral
transformation Y = F (X) is a normalized uniform distribution.
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Note that X does not need to be a continuous random variable. In the
case that the player’s costs follow a discrete distribution, it is still possible to
perform a similar transformation called Generalized Distributional Transform
[10], whose properties are equivalent to those of the PIT.

Definition 3 (Generalized Distributional Transform) Let X be a ran-
dom variable (not necessarily continuous) with a cumulative distribution prob-
ability F and let V ∼ U(0, 1) be a random variable with uniform distribution in
[0, 1] independent of X. The modified distribution function F (x, λ) is defined
as F (x, λ) = (1 − λ)Pr(X < x) + λPr(X ≤ x). From this, we can define the
general distributional transform of X as Y = F (X,V ), which can be proved to
be a uniform distribution on the unit interval.

Proofs of these properties can be found in [10]. Many studies in economics use
this definition and its properties, such [5] or [32]. In our case, to simplify the
notation, we just call PIT to both transformations independently on whether
the base distribution is continuous or discrete.

5.2 Acceptance Test

We are assuming that players are reporting values using a uniform [0, 1] dis-
tribution. If their original distribution is not the uniform, we apply here the
same normalization transformation proposed in [33] based on the Probability
Integral Transform (PIT). Given the properties of the PIT, the idea is that
any player applying correctly the PIT on her real type distribution, must gen-
erate a uniform distribution on the unit interval on her published normalized
values. Hence, from the point of view of the mechanism designer, the prob-
lem amounts to determining whether these published values follow or not that
uniform distribution. There are a wide range of tests that allow checking that.
These tests are called Goodness-of-Fit or GoF tests.

Continuing with this argument, we propose to implement the acceptance
test of our algorithm by using some GoF test on the declared transformed
sequence of values published by the player. Whenever a player declares the
values by applying the PIT transformation on her own distribution, these
values will be uniformly distributed in the unit interval. In that case (with
high probability) the GoF tests will accept the samples. More importantly,
this process has an error which tends to zero when the number of samples
(rounds) increases for any reasonable value of the threshold. For the study of
our analytical results, we assume that GoF tests are perfect and this error is
zero.

A tremendous amount of GoF tests have been proposed in the scientific
literature. Some of them may be applied over discrete distributions and others
over continuous ones. The Kolmogorov-Smirnov (KS) test [22,36] is probably
the best-known test when dealing with continuous distributions, basically due
to its simplicity. Hence, we propose to use this test as the GoF test of QPQ.
However, in contrast to our previous work with independent players, in this
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case it is necessary to add a second test. The goal for this new test is to
check if a player is trying to modify the joint distribution. In this aspect,
Copulae has proved to be a very useful tool in the analysis of dependency
structures. The concept of copulae was introduced by Sklar [35] and several
copula GOF approaches have been proposed in literature [29,4,11]. For our
work, we have used some GoF tests implemented as R-Cran packages. We note
that no approach is always the best.

5.3 Punishment

In the case that a dishonest player tried to lie, one possible strategy is to gen-
erate increasing (or decreasing) θ̂ values, so that the PIT transformed values
are close to one. However, this type of behavior is quickly detected by the test.
In that case, the question is how to establish a punishment. Inspired on previ-
ous works on linking mechanisms, the proposal is to reject the value declared
by the player and generate a new random value according to the joint prior
distribution. At a first sight, this strategy may seem a very poor punishment,
given that there is always a chance that the player emerges victorious in her
lie. However, this is not only enough to discourage dishonest players, but also
a crucial ingredient to guarantee that our mechanism has the right properties,
as formally shown in [18,33] for similar scenarios, and in the simulations below
(see Section 6).

5.4 Practical Computation of λ

The above solution reduces the problem to finding the value of λ that adjusts
the tasks performed by players. In principle, we can ask the players to declare
the joint distribution and calculate that parameter accordingly. But in general,
we should not expect to find an analytic equation. That is, it is possible that
π does not have an analytical expression, or even if it exists, players must
estimate it empirically. There are multiple methods for π estimation, both
parametric and nonparametric. The major difficulty with these systems is the
convergence speed, making it necessary a large number of samples. There is a
relationship between the dimension of the feature and the number of samples
needed. In our case, the dimension would be given by the number of players.
Fortunately, each player can compute the QPQ mechanism using just only two
dimensions (itself and the aggregate system).

However, players do not need to know the joint density function π, they
only need to know the function T (·) that indicates the (expected or empirical)
number of resources given a parameter λ. We denote by T (λ) the number of
resources that the player obtains when the decision value ψ is determined by
the parameter λ. Again, we can not expect an analytic form for T , but under
the right assumptions, we can approximate λ using stochastic approximation
methods. Due to the characteristics of the transformation function and noting
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Fig. 3 Evolution of the allocation ratio (ratio of resources allocated to a player) of the
different players without QPQ. The simulation has 2 correlated players and 1 independent
player. In this example, resources have a negative utility (task to be executed) but similar
conclusions apply to resources with positive utility (goods).

how it influences the number of tasks, we can expect the function T (λ) to
be continuous and decreasing (or increasing in the direction of λ). That is,
there is always a value of λ for each percentage of desired tasks. Our proposal
is to approximate λ by a sequence λ0, λ1, λ2, λ3, · · · → λ constructed using
a stochastic approximation method. The best known method, although not
the only one, is perhaps the Robbins-Monro method [30]. Then, our algorithm
must compute, for each iteration k,

λk+1 = λk + εk(Tk − 1/n). (24)

Where Tk is an estimation of the fraction number of tasks performed by
the player and where εk is a sequence of values that satisfies εk > 0, εk →
0,
∑
k εk = ∞. Note that, in order to estimate Tk we don’t need to store

previous samples and memory consumption is low.

6 Simulations

By performing simulations, we have checked various aspects of our practical
QPQ algorithm. First, we wanted to show that in fact a simple allocation
based on the preferences announced and using arg max

i∈N
(θi) to allocate the

resource would not be fair if the players were correlated. Figure 3 shows the
observed behavior of a simulation applying this technique in a scenario where
two players are correlated and the third is independent. As can be seen, the
correlated players get less resources. Something worth noticing in this figure
is that the distribution of resources gets very stable in only a few rounds.
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Fig. 4 Evolution of the allocation ratio of the different players with QPQ using εk = 1/k.
The simulation has 2 correlated players and 1 independent player.
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Fig. 5 Evolution of the allocation ratio of the different players with QPQ using εk = 1/
√
k.

The simulation has 2 correlated players and 1 independent player.

Hence, we have also evaluated the performance of the practical QPQ al-
gorithm presented. For instance, we wondered how Robbins-Monro algorithm
performs in time. We have simulated several alternatives for the generation
of the sequence of values εk, starting with the original proposal of Robbins-
Monro’s work, which was to use εk = 1/k. The good news is that the simu-
lations show that the allocation of resources is now fair in the scenario with
two correlated players described above, as can be seen in Figure 4. As alter-
native, we have simulated the same scenario using εk = 1/

√
k but the speed

of convergence is far from ideal and, as can be seen in Figures 6 and 7, there
are significant oscillations in the values of λ.
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Fig. 6 Evolution of the values of λ with QPQ using εk = 1/
√
k. The simulation has 2

correlated players and 1 independent player.
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Fig. 7 Evolution of the allocation ratio of the different players with QPQ using εk =
1

k+log k
. The simulation has 2 correlated players and 1 independent player.

Then, we have tried a third alternative, namely εk = 1
k+log k . This approach

gave much better results in the stability of the λ-values, the distribution of
resources, and the convergence time. This can be observed in Figures 7 and 8.

7 Conclusions and Future Work

In this paper we have created a novel scheme capable of providing efficient
resource allocation in distributed systems even in the presence of selfish cor-
related players. We have shown that, for a general notion of fairness, the
mechanism can be proved to perform efficiently and to maintain the incentive
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Fig. 8 Evolution of the values of λ with QPQ using εk = 1
k+log k

. The simulation has 2

correlated players and 1 independent player.

of players to participate. In addition, we have proposed a specific realization
of the mechanism as an algorithm implementable in real distributed environ-
ments with affordable computational and communication costs. This algorithm
is susceptible of being used in repeated task allocations given that our simula-
tions demonstrate its rapid convergence, which open new horizons for systems
based on open systems for distributed collaborative tasks execution.

Despite this, the authors consider necessary to extend the current research
is several directions. First, The algorithm proposed leads to an allocation of
equal number of resources to each player. It is left as future work to devise
algorithms that have other fairness objectives. Second, the model requires
knowledge on the number of players that participate. We may find scenarios
where this is not reasonable, e.g., scenarios in which several players “hide”
and play the game with a single identity, which may result in the mechanism
not achieving fairness. Third, it would be important to analyze the problem
when more flexible space strategies are possible. One of our main assumptions
has been to consider that correlations are fixed and that players are not able
to alter them through their strategies. This assumption is reasonable when
information is private and the mechanism is designed in such a way that players
cannot make their declared (true or false) values on an iteration dependent
on the values of others at the same iteration. However, there are many real-
life scenarios where players may be able to share their values making more
complex interdependent strategies possible. This would break the properties
of our proposed algorithm.
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5. Burgert, C., Rüschendorf, L.: On the optimal risk allocation problem. Statistics &
Decisions 24(1/2006), 153–171 (2006)

6. Camerer, C.: Behavioral game theory: Experiments in strategic interaction. Princeton
University Press (2011)

7. Ellison, G.: Cooperation in the prisoner’s dilemma with anonymous random matching.
The Review of Economic Studies 61(3), 567–588 (1994)

8. Engelmann, D., Grimm, V.: Mechanisms for Efficient Voting with Private Information
about Preferences. The Economic Journal 122(563), 1010–1041 (2012)

9. Fang, Z., Bensaou, B.: Fair bandwidth sharing algorithms based on game theory frame-
works for wireless ad-hoc networks. In: Proceedings of the Twenty-third Annual Joint
Conference of the IEEE Computer and Communications Societies, INFOCOM 2004,
vol. 2, pp. 1284–1295. IEEE (2004)

10. Ferguson, T.S.: Mathematical statistics: A decision theoretic approach. Academic press
(2014)

11. Fermanian, J.D.: An overview of the goodness-of-fit test problem for copulas. In: Cop-
ulae in Mathematical and Quantitative Finance, pp. 61–89. Springer (2013)

12. Friedman, E.J., Halpern, J.Y., Kash, I.: Efficiency and nash equilibria in a scrip system
for p2p networks. In: Proceedings of the 7th ACM conference on Electronic commerce,
pp. 140–149. ACM (2006)
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A Solution of the System with Same Number of Resources

We prove here the following theorem.

Theorem 6 The function ψ that optimizes the assignment with equal expected number of
resources for two players defines a straight line ψ(θ1) = θ1 +λ. The decision function is an
assignment d = gψ(θ) = arg max

1,2
(ψ1(θ1), θ2) = arg max

1,2
(θ1 + λ, θ2) when the objective is to

maximize the utility, and d = gψ(θ) = arg min
1,2

(ψ1(θ1), θ2) = arg min
1,2

(θ1 + λ, θ2) when the

objective is to minimize.

Proof What we want to prove is that the solution to the following system is ψ1(x) = x+λ.

min
ψ

(
∫ 1
0 θ1

∫ 1
ψ(θ1)

π(θ1, θ2)dθ2dθ1 +
∫ 1
0 θ2

∫ 1
ψ−1(θ2)

π(θ1, θ2)dθ1dθ2),

s.t.∫ 1
0

∫ 1
ψ(θ1)

π(θ1, θ2)dθ2dθ1 = 1
2
.

(25)

In order to calculate the optimal decision function, we define

F1(θ1, w) =

∫ 1

w
π(θ1, θ2)dθ2, (26)

F2(θ2, w) =

∫ 1

w
π(θ1, θ2)dθ1. (27)

Inserting these expressions into the integral 25, we obtain

min
ψ

(
∫ 1
0 θ1 F1(θ1, ψ(θ1))dθ1 +

∫ 1
0 θ2 F2(θ2, ψ−1(θ2))dθ2),

s.t.∫ 1
0 F1(θ1, ψ(θ1))dθ1 = 1

2
.

(28)

Note that we are considering here the particular case of one independent variable (θ1), one
function ψ(θ1), and an integrand that depends at most on the first derivative of the function.
Using a Lagrange multiplier λ(θ1), this expression defines a functional that depends on ψ.
The Lagrange multipliers are, in general, functions of the independent variable. However,
as it can be easily seen from above equation, when the integrand and the constraint are
independent of θ1 themselves, then each Lagrange multiplier is a constant (denoted by λ).∫ 1

0
θ1 F1(θ1, ψ(θ1))dθ1 +

∫ 1

0
θ2 F2(θ2, ψ

−1(θ2))dθ2 + λ

∫ 1

0
F1(θ1, ψ(θ1))dθ1 (29)

Thus, (29) is equivalent to∫ 1
0 θ1 I(θ1, ψ, ψ

′
)dθ1,

where

I(θ1, ψ, ψ
′
) = (θ1 + λ)F1(θ1, ψ) + ψF2(ψ, θ1)ψ

′
.

(30)

The usual variational procedure with respect to the function ψ(θ1) is to use the Euler-
Lagrange equation

∂ψI(θ1, ψ, ψ
′
)−

d

dθ1
∂
ψ
′ I(θ1, ψ, ψ

′
) = 0. (31)
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That leads to the following Euler-Lagrange equation

∂ψI(θ1, ψ, ψ
′
) = (θ1 + λ)∂ψF1(θ1, ψ) + ψ

′
F2(ψ, θ1) + ψ

′
ψ∂ψF2(ψ, θ1) (32)

∂
ψ
′ I(θ1, ψ, ψ

′
) = ψF2(ψ, θ1), (33)

d

dθ1
∂
ψ
′ I(θ1, ψ, ψ

′
) =

d

dθ1
ψF2(ψ, θ1) = ψ

′
F2(ψ, θ1) + ψ∂ψF1(θ1, ψ) + ψ

′
ψ∂ψF2(ψ, θ1),

(34)

And,

(θ1 + λ)∂ψF1(θ1, ψ) + ψ
′
F2(ψ, θ1)+ (35)

ψ
′
ψ∂ψF2(ψ, θ1)−ψ

′
F2(ψ, θ1)− ψ∂θ1F2(ψ, θ1)− ψ

′
ψ∂ψF2(ψ, θ1) = . (36)

Solving,
(θ1 + λ)∂ψF1(θ1, ψ) = ψ∂θ1F2(ψ, θ1). (37)

Our next step will be trying to simplify this expression. Using the Leibniz integral rule we
have:

∂ψF1(θ1, ψ) =
∂

∂ψ

∫ 1

θ1

π(θ1, θ2) dθ1 = (38)∫ 1

θ1

∂

∂ψ
π(θ1, θ2) dθ1 + π(θ1, 1)

∂

∂ψ
1− π(θ1, ψ(θ1))

∂

∂ψ
ψ(θ1) = −π(θ1, ψ(θ1)), (39)

and

∂θ1F2(ψ, θ1) =
∂

∂θ1

∫ 1

θ1

f(x, y) dθ1 = (40)∫ 1

θ1

∂

∂θ1
π(θ1, θ2) dθ1 + π(1, θ2)

∂

∂θ1
1− π(θ1, θ2)

∂

∂θ1
θ1 = −π(θ1, ψ(θ1)). (41)

And then, (37) reduces to:

(x+ λ) · (−π(θ1, ψ(θ1))) = ψ · (−π(θ1, ψ(θ1))). (42)

Solving ψ(x), we finally obtain the solution as:

ψ(θ1) = θ1 + λ. (43)

Finally, note that arg min
i∈N

(ψi(θi)) = arg min
1,2

(θ1 + λ, θ2), given that,

arg min
1,2

(ψ1(θ1), ψ2(θ2)) = arg min
1,2

(θ1 + λ1, θ2 + λ2) = (44)

arg min
1,2

(θ1 + λ1 − λ2, θ2) = arg min
1,2

(θ1 + λ, θ2). (45)

Which completes the proof for the case of minimization. The proof for maximization is
essentially identical. Observe that both cases lead to the same value of λ. ut


