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Abstract

Time-of-flight range imaging cameras obtain range by producing amplitude

modulated light and measuring the time taken for light to travel to the scene

and back to the camera. Time-of-flight cameras require at least three raw mea-

surements to calculate range. Raw frames are captured sequentially, and as

such, motion in scenes during capture leads to inconsistent raw frame measure-

ments and erroneous range calculations. Motion error constrains Time-of-flight

cameras to non-dynamic scenes and limits their potential applications. The

Time-of-flight bidirectional Kalman filter method is a state-of-the-art method

known to reduce error due to transverse motion in cameras operating with a

single modulation frequency. The method works by treating raw frames as a

noisy time series and running the Kalman filter on it to produce a range esti-

mation at every raw frame. The Kalman filter is then reapplied to the data in

reverse to produce another set of range estimations, and a composite range is

selected from the two set of range estimations. A number of commercial time-

of-flight cameras, such as the Microsoft Kinect V2, use multiple modulation

frequencies. In this thesis, we adapt the bidirectional Kalman filter method

to multi-frequency operated cameras by having the prediction component of

the Kalman filter take into account the change in amplitude and phase shift

caused by the change in frequency. The amplitude component of the prediction

is performed linearly by multiplication, while the phase shift component of the

prediction is performed using the ratio of the modulation frequencies. The

phase shift prediction across modulation frequencies requires the phase to be

unwrapped. The unwrapping is performed between modulation frequencies by

selecting the number of phase wraps that best predicts the two following raw

frames. Finally, to ensure correct composite phase selection, an alternative

method for selecting the composite phase is proposed for the adapted bidi-

rectional Kalman filter. We perform quantitative and qualitative experiments

to test the proposed method. In the quantitative experiment, the proposed

method produces less error than the classical Discrete Fourier Transform ap-

proach in 70% of tested instances. The qualitative experiment shows that the

proposed method significantly reduces motion blur.
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Chapter 1

Introduction

Full-field range imaging cameras provide depth measurements of the imaged

scene. Several range imaging techniques exist. Stereoscopic imaging, for exam-

ple, uses a triangulation technique similar to that of the human visual system.

Two sensors, separated by a known distance, are used to image a scene. Range

is then calculated using the offset of objects observed between the two sensors.

Structured light is another range imaging technique. The scene is illuminated

by infrared light comprised of many dots and an algorithm uses the disparity

of the imaged dots to calculate depth. Time-of-flight range imaging cameras,

unlike other range imaging techniques, are able to provide accurate depth

measurements without the need for large amounts of computational power.

Time-of-flight range imaging cameras use a light source to illuminate a scene.

The light then backscatters into the camera, and the time taken for the light

to travel to the scene and back to the camera is used to calculate the distance

traveled by the light. Time-of-flight cameras have become a vital instrument

in many fields such as robotics, where depth information is needed for accurate

navigation, and in gaming, where human skeletal information is recognised and

tracked. The potential uses of time-of-flight cameras, however, are limited by

errors inherent to them. A significant source of error that affects time-of-flight

cameras is motion. Motion during capture is especially significant in time-of-

flight because, unlike other imaging techniques, time-of-flight requires multi-
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ple sequential measurements to obtain a single range image. As such, motion

during capture leads to inconsistent measurements, and thus erroneous range

calculations. However, in recent years, several methods have been developed

to reduce motion error and provide more accurate range measurements. Other

forms of error exist in time-of-flight imaging, such as multi-path interference

and phase wrapping. The effect of these errors on range imaging is mitigated

by techniques involving the use of multiple modulation frequencies.

1.1 Objective

Although a vast number of commercial time-of-flight range imaging cameras

use multi-frequency operation to obtain range, none of the motion error re-

duction techniques developed are designed to work with or have been adapted

to work with multi-modulation frequency operated cameras. The objective of

this thesis is to adapt a recently developed state-of-the-art motion reduction

technique called the time-of-flight bidirectional Kalman filter. The adapta-

tion to multi-frequency operation requires an understanding of the changes

that occur to the data across frequencies and how they affect the time-of-flight

bidirectional Kalman filter. The question which this thesis attempts to answer

is: how do we adapt the time-of-flight bidirectional Kalman filter method to a

multi-modulation frequency time-of-flight camera?

1.2 Thesis structure

In chapter two, we first revise the time-of-flight theory. We then introduce

the sources of error in time-of-flight and the methods used to reduce them.

The types of motion error are introduced, and a literature review of motion

error reduction techniques is presented. Finally, a thorough review of the

time-of-flight bidirectional Kalman filter method is provided.

In chapter three, we adapt the bidirectional Kalman filter to the time-of-

flight multi-frequency operation in static scenes. The adaptation is performed
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by taking into account the changes that occur to the data between modulation

frequencies and performing the changes necessary for an accurate bidirectional

Kalman filter phase estimation. The change that occurs to phase shift and am-

plitude caused by the change in modulation frequency is discussed, and the

adapted method is proposed. Experiments are performed to test the proposed

adapted method for the amplitude and phase shift across modulation frequen-

cies as well as the overall performance of the proposed adapted bidirectional

Kalman filter on static scenes. The results of these experiments are then pre-

sented and discussed.

In chapter four, we test the adapted bidirectional Kalman filter proposed

in the previous chapter on dynamic scenes and changes are made to the model

to enable transverse motion error reduction in dynamic scenes. We propose an

alternative method for selecting the composite phase shift and perform a quan-

titative experiment to test whether the proposed composite phase selection

method improves accuracy. Finally, we conduct qualitative and quantitative

experiments to test the overall effectivness of the proposed adapted bidirec-

tional Kalman filter method on dynamic scenes. The results are compared to

the unadapted method and the traditionally used discrete Fourier transform

method.

In chapter five, we conclude the thesis and present an overview of the

proposed method and the results. Limitations of the proposed method is

discussed and possible future work is presented.

1.3 Publication arising from this thesis

The work presented in this thesis has resulted in the following publication:

A. N. Alqassab, L. Streeter, M. J. Cree, C. A. Lickfold, V. Farrow, and S.

H. Lim. Adaptation of Bidirectional Kalman Filter to Multi-Frequency Time-

of-Flight Range Imaging. In: Image and Vision Computing New Zealand

(IVCNZ 19). IEEE (2019).



Chapter 2

Background

2.1 Time-of-Flight Principle

Time-of-flight cameras contain a light source that illuminates the scene with

infrared light. The time taken for light to travel from the source to the scene

and back again is used to measure range. There are two methods for measuring

the time-of-flight: the pulsed direct time-of-flight method, and the amplitude

modulated continuous wave (AMCW) method. Pulsed time-of-flight cameras

calculate range by measuring the time taken for the pulse to go to the scene

and return back to the camera. In the AMCW method, which is the method

most commonly used by commercial time-of-flight cameras (Grzegorzek et al.

(2013)), the camera illuminates the scene with modulated light. The travel

time causes a phase shift in the reflected signal which is used to calculate

range. The light produced by the AMCW camera is modeled by

s (t) = cos (2πfmt) , (2.1)

where fm is the light modulation frequency. The infrared light backscatters

from objects in the scene to the camera and is captured by a sensor with a

high-speed modulated shutter. At the receiving end, as shown in Fig. 2.1, the

reflected signal undergoes an additional phase shift φ.
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Figure 2.1: Time-of-flight phase shift.

The phase shift induced depends on the distance travelled, specifically,

φ =
4πfmd

c
, (2.2)

and the reflected signal is given by,

g (t) = A cos (2πfmt+ φ) +B, (2.3)

where φ is the phase shift, B is the DC offset, A is the amplitude, and c is the

speed of light.

Amplitude

Phase Shift

DC Offset

Figure 2.2: Time-of-flight amplitude, phase Shift and DC offset.
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The sensor is shuttered in homodyne with the light source, demodulating

the returned light. The demodulated signal is integrated with a programmed

phase offset, θ, between the light source and sensor. The correlation of the

reflected signal and the shuttered signal occurs on chip with the two signals

mixed, and is modelled by,

I (θ) = lim
T→∞

∫ T
2

−T
2

s (t+ θ) g (t) dt. (2.4)

Trigonometric expansion and evaluation of the integral above is simplified

by Lange and Seitz (2001) to the equation

I (θ) =
A

2
cos (θ + φ) +B. (2.5)

At least three measurements at different phase offsets are required to solve for

the phase shift, DC offset, and amplitude. Fixing θ = θn, a measurement In

at a particular phase offset is referred to as a raw frame,

In =
A

2
cos (θn + φ) +B. (2.6)

The phase offsets are equally spaced values from 0 to 2π. Taking the discrete

Fourier transform (DFT) of the raw frames, the phase shift φ is found from

the the first Fourier bin (Streeter (2018)). The DFT is the traditional method

used to calculate the phase shift from the raw frames.

2.2 Sources of Time-of-Flight Error

AMCW time-of-flight cameras are affected by a variety of errors which lead

to inaccurate range measurements. Some of these errors are caused by exter-

nal factors from the environment, while others are intrinsic to the cameras.

Several papers exist which review these errors and the methods used to re-

duce them. Foix et al. (2011) review some of these time-of-flight errors as well

as early calibration methods. He and Chen (2019) review more recent meth-

ods that reduce time-of-flight errors. The paper, however, does not discuss

more recent methods in motion error reduction, such as the stochastic cal-

culus method (Streeter (2017b)), and the bidirectional Kalman filter method
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(Streeter (2018)), which will be discussed in further detail below. Streeter

and Kuang (2019) also review the time-of-flight errors, as well as older and

more recent methods that reduce them. Below, we review some of the errors

that affect time-of-flight cameras and some of the methods proposed to reduce

them.

2.2.1 Harmonic error

Harmonic error, sometimes referred to as the wiggling error, is a systematic

error that occurs because the equations used to determine the phase shift are

based on idealised sinusoidal waves. In reality, the light source and the sensor

shutter signals are produced by digital electronics using square waves, and the

actual signals result in a triangular correlation signal containing odd order

harmonics. Error due to aliasing can occur when sampling at a frequency

less than twice that of the highest harmonic in the correlation signal. The

harmonic error is distance dependant, which results in a depth measurement

which oscillates around the true depth. One way to solve this is by using

Figure 2.3: Time-of-flight harmonic error.

equations that take into account the higher harmonics. This solution, however,

demands a greater number of sampling points and more calculations from the



8

time-of-flight cameras (Dorrington et al. (2008)). A simpler approach is to use

a calibration method to estimate and subtract the harmonic error (Grzegorzek

et al. (2013)). A different approach to reducing the harmonic error involves

changing the process of acquisition to reduce the error induced by the third

harmonic, which contributes the most to the harmonic error (Streeter and

Dorrington (2015)),(Payne et al. (2008)).

2.2.2 Multi-Path Interference Error

In an ideal scenario, each pixel in the time-of-flight sensor receives an ampli-

tude modulated sinusoidal light wave reflected from a single point in the scene.

When the light reaches the pixel from multiple locations, it results in what is

known as multiple return error. This error can be categorised into two types.

The first type is known as mixed pixel error, which occurs when imaging the

edge of an object, and light arriving to the pixel is made up of both the object

and the background, as shown in Fig. 2.4.

Figure 2.4: Time-of-flight mixed pixel error.
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The second type of error is known as the multi-path interference error,

and it occurs when light travels multiple paths to reach a pixel. One form of

multi-path interference is scene based, as shown in Fig. 2.5, where, by reflect-

ing off objects within the scene, the light travels along multiple paths before

it is received by the pixel.

Figure 2.5: Time-of-flight multi-path interference error.

A second, camera intrinsic, source of multi-path interference is internal scat-

tering. The scattering occurs when a portion of the incident light reflects back

and forth between the sensor and lens. These internal reflections cause the

pixels to receive light not only from the object, but also from other pixels that

receive light from different areas in the scene, as shown in Fig. 2.6. The signal

at the pixel, therefore, becomes a sum of the phase vectors of those various sig-

nals. This is why the effect of the error on the measurement is more prominent

when the object in the foreground is more reflective than the background, and

if the object is much closer to the camera than the background (Karel et al.

(2012)).
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Figure 2.6: Time-of-flight internal scattering.

In an idealised scenario, wherein light travels along a single path from the

light source to the scene and back to the camera, it can be expressed as a

complex phasor.

η = Ae(jφ) (2.7)

where A is the amplitude and φ is the phase shift. When the pixel receives

multiple returns of light originating from different parts of the scene, the re-

turn that is meant to be received by the pixel, which usually has the highest

amplitude, is called the primary return. Any other return that arrives to the

pixel is a secondary return.

Since the pixel receives multiple signals, the pixel measurement is expressed

as a summation of N returns, as shown in Eqn. 2.8,

ξ =
N∑
n=1

ηn =
N∑
n=1

Ane
(jφn) (2.8)

where N is the total number of returns, ηn is the phasor of return n. There

are multiple ways of reducing the multi-path error. Fuchs (2010) attempts
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Figure 2.7: Multiple returns in multi-path interference.

to reduce the impact of interference by creating a model which assumes that

light in a scene perfectly diffuses (lambertian reflectance), the model is then

used to estimate and correct the error from multi-path interference. Godbaz

et al. (2012) reduce the multi-path error by taking four measurements with

a different modulation frequency for each measurement. The results are then

used to solve for two returns.

2.2.3 Phase ambiguity due to Wrapping

We measure range based on the phase shift of a sinusoidal wave. The maximum

phase shift that can be measured is 2π. The distance that corresponds to this

maximum phase shift is referred to as the maximum ambiguity distance. The

maximum ambiguity distance, L, is dependent on the modulation frequency,

and can be calculated using the following equation ((Grzegorzek et al., 2013,

pp. 5-6)):

L =
c

2fm
. (2.9)

An object beyond the maximum ambiguity distance causes the phase shift

to wrap around, making it appear closer than it actually is. Due to this

phenomenon, a measured phase shift could correspond to several distances de-

pending on the number of times the phase shift has wrapped, as shown in the

Fig. 2.8.
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Figure 2.8: Phase ambiguity due to wrapping.

Since phase wrapping occurs beyond the maximum ambiguity range, the un-

ambiguous range of the camera is maximized by reducing the modulation fre-

quency of the time-of-flight camera. However, a lower modulation frequency

is more vulnerable to random noise and results in measurements with lower

accuracy (Lange (2000)).

A different solution to this problem is to capture range images using mul-

tiple modulation frequencies, as seen in Fig. 2.9, each image provides a set of

possible range values (Bamji et al. (2015)). The value that is present in both

modulation frequencies is chosen to be the true range.

This method does not get rid of all ambiguity, but extends its range according

to Eqn. 2.10.

L =
c

2|fm1 − fm2|
. (2.10)

where L is the maximum ambiguity distance, c is the speed of light, fm1 and

fm2 are the modulation frequencies.
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Figure 2.9: Phase unwrapping using multiple modulation frequencies.

2.2.4 Motion Error

The motion of objects during the range measurements of time-of-flight cameras

causes inaccurate range calculations. This error is different to that of motion

blur in regular two dimensional imaging cameras, where, between background

and foreground, a smoothing of colour occurs. Instead, time-of-flight motion

error causes an underestimation or an overestimation of the range measure-

ment. Motion error occurs in time-of-flight because multiple raw frames are

required to obtain a single range image, and since the process of obtaining

multiple frames does not occur simultaneously, any motion that occurs be-

tween raw frames results in raw frame measurements corresponding to differ-

ent amplitudes, phase shifts and DC offsets. Since each raw frame has its own

integration time, motion that occurs during the integration time causes what

is known as intra-frame motion error, while error due to motion between raw

frames is known as inter-frame motion error. Time-of-flight error due to mo-

tion is categorised into two types: error due to transverse motion, and error

due to radial motion. Transverse motion occurs when objects move in a direc-
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tion perpendicular to the field of view of the camera. In this type of motion,

an object that passes over the field of view of a pixel causes it to measure

raw frames of the background and then of the foreground object as it passes

over the pixel’s view. Transverse motion also results in a pixel viewing the

foreground object and then the background to incur error. As such, the error

mostly occurs at the edges of objects.

Figure 2.10: Transverse motion error. The figure shows a background object

and a foreground object moving in transverse fashion illustrating that when

transverse motion occurs, regions around the edges of the moving object are

more prone to transverse motion error.

In radial motion, the object moves directly towards or away from the pixel.

This leads to range images calculated from raw frames that reflect different

phases shifts. As shown in Fig. 2.11, when an object moves in radial fashion,

radial motion effects all the pixels viewing the object, not just the boundaries.
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Figure 2.11: Radial motion error. The figure shows an object moving in ra-

dially, illustrating that when radial motion occurs, the inconsistencies in the

raw frame images effects range measurement of the entire moving object.

Reducing the integration time (time required for the sensor to photo-

charge), or reducing the number of raw frames required to compute a range

image is known to reduce the motion artefacts (Streeter (2017a)). A number

of other methods have been developed to detect and reduce motion error.

Some early methods used to reduce motion error in time-of-flight imaging

include combining a colour camera and time-of-flight camera. Since 2D images

only require one frame, they are less prone to motion error than time-of-flight

imaging (Lottner et al. (2007)). Time-of-flight pixels with motion error are

identified by performing an edge detection algorithm on a 2D image and finding

the corresponding pixels in the time-of-flight image (Lottner et al. (2007)).

Lindner and Kolb (2009) model time-of-flight motion blur using optical

flow analysis of the raw images for transverse motion and radial motion. The

optical flow method enables the range image computation in a pixel to use raw

frames from surrounding pixels to decrease motion error artefacts. In order to

achieve this, the brightness of corresponding surfaces are assumed to be the

same as the preceding images. This method also assumes pixel homogeneity

by performing an intensity-value standardisation calibration. The optical flow

method, however, is computationally intensive. The performance of the optical
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flow method was later improved by Lefloch et al. (2013), where, instead of

computing three optical flows, the method only estimates two and derives a

third optical flow from them.

Streeter and Dorrington (2014) also built upon the optical flow method

by combining it with coded exposure. The method allowed for the correction

motion within each raw frame as well as between the frames.

Jimenez et al. (2014) developed a method which utilises the fact that a

range image should be calculated from consistent raw frames. The method

first performs a calibration which enables the detection of inconsistencies in

the raw frames. Once an inconsistency event is detected, it is characterised as

either a falling or rising depth transition. Finally, neighbouring pixels are used

to replace the inconsistent data affected by the transverse motion. Instead of

reducing the effect of radial motion by reducing the number of raw frames

or the integration time, Streeter (2017a) developed methods which treat the

impact of motion on the data as a desirable trait that enables the measurement

of linear radial velocity. Two different methods were developed to estimate

velocity: the Pseudo-Quadrature Signal Analysis method, which enables low

velocity estimations, and a correlation analysis method, which performs better

at higher velocities. Both methods enable the correction of the error due to

radial motion.

Streeter (2017b) also used stochastic calculus to analyse time-of-flight data

to develop linear radial estimation methods. One method uses the maximum

likelihood estimation of a distribution obtained from stochastic calculus. An-

other method, named ratio of amplitude, provides a closed-form and more

efficient solution.

Another method developed by Streeter (2018) is the bidirectional Kalman

filter method, where the raw frames from the camera are treated as noisy time

series. The Kalman filter is applied such that an amplitude, phase shift, and

DC offset are predicted for every raw frame. The Kalman filter is reapplied

to the raw frames in reverse order to provide a second set of predictions. The
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final range is chosen from the set that provides the least prediction error. The

bidirectional Kalman filter method was proven to reduce transverse motion

error in 80% of pixels without requiring additional computational hardware.

None of the methods mentioned above were adapted or designed to work

on a multi-modulation frequency time-of-flight operation. Many off-the-shelf

time-of-flight cameras, such as the Microsoft Kinect V2, support a multi-

frequency operation and are still affected by motion error. This makes it

important to adapt a state-of-the art method to a multi-frequency time-of-

flight camera. To adapt the time-of-flight bidirectional Kalman filter method

to a multi-modulation frequency time-of-flight camera, a detailed study of the

bidirectional Kalman filter method is required.

2.2.5 Bidirectional Kalman Filter method

The Kalman filter is a well known statistical analysis filter developed by Rudolf

Kalman in 1960. It is widely used in control applications to provide accurate

estimations given a noisy time series set of measurements. The Kalman filter

is a recursive process, where at each iteration, a posteriori is estimated based

on the measurement and a priori estimation. The Kalman gain, which is

calculated using the covariance matrix of the a priori and the variance of the

measurements, is used to determine whether the model places more weight on

the measurements or the a priori when estimating the a posteriori.

To apply the Kalman filter to time-of-flight data, a time-of-flight linear

system is required. The running time-of-flight method is a known time-of-flight

linear system that is used as an alternative to the discrete Fourier transform

method. Running time-of-flight enables range to be estimated using any three

consecutive raw frames. Running time-of-flight is derived by performing a

trigonometric expansion on Eqn. 2.6 and the raw frame rewritten as (Streeter

et al. (2013)),
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In = A (cos (θn) cos (φ)− sin (θn) sin (φ)) +B (2.11)

=

[
cos (θn) − sin (θn) 1

]
A cos (φ)

A sin (φ)

B

 = HnXn (2.12)

where Hn =
[
cos (θn) − sin (θn) 1

]
, and Xn =

[
A cos (φ) A sin (φ) B

]T
. In this

form, Xn is calculated from a series of consecutive raw frames, while phase,

amplitude, and DC offset is determined from Xn.

The time-of-flight Kalman filter is a recursive time series process that at-

tempts to estimate a more accurate value of Xn (Kalman (1960)). At each

iteration, the filter first predicts the state matrix Xn and the process covari-

ance matrix Pn. Assuming a static scene, the amplitude, phase shift, and DC

offset are expected to be the same. As such, the a priori prediction of Xn is

simply the previously predicted Xn with process noise εn

X−n = Xn−1 + εn−1, (2.13)

From this we can also estimate the raw frame measurement In at any given

phase step, including sensor noise γn, can be found.

In = HnXn + γn, (2.14)

The predicted a priori covariance P−n is calculated as

P−n = Pn−1 +Q, (2.15)

where Q is the process noise covariance matrix.

The next step in the Kalman filter is to calculate the Kalman gain, which

is

Kn =
P−n H

T
n

Hn P−n HT
n + rn

, (2.16)

where rn is the sensor noise variance. The a posteriori Xn is then updated

using

Xn = X−n +Kn

(
In −HnX

−
n

)
(2.17)
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where In is the raw frame. The a posteriori error covariance is then updated

via,

Pn = (Id −KnHn)P−n (2.18)

where Id is a 3 x 3 identity matrix. Xn contains three unknowns: amplitude,

phase shift, and DC offset. A raw frame measurement is a one dimensional

value, as such, at least three measurements are required to estimate phase using

linear algebra. Constraints set in Q enable the Kalman filter to reduce the

number of raw frames required to determine the phase shift (Streeter (2018)).

The first constraint requires that Q be a diagonal matrix due to independence.

The second constraint requires the Q component relating to the signal offset

B to be set at a small nonzero value; based on the assumption that only

small variations in B occur due to the differential measurement design of the

pixels (Bamji et al. (2015); Streeter (2018)). When transverse motion occurs,

the Kalman filter adapts to the change in phase within fewer raw frames. This

results in a range image with fewer motion affected pixels, because the pixels

that have observed a transverse motion event during earlier raw frames can

compute a correct range. However, pixels that observe a transverse motion

event immediately before this raw frame do not have sufficient raw frames to

compute range correctly. A simulation of phase estimation using Kalman filter

and running time-of-flight is shown in Fig. 2.12, which shows that at the fifth

raw frame, the correct range is obtained using the Kalman filter method due

to its ability to adapt to change more rapidly, while the running time-of-flight

method cannot. It can also be seen that at the fourth raw frame, neither

method has sufficient raw frames to obtain the correct range. In order to

obtain a correct range computation for pixels with a recent transverse motion

event, the Kalman filter is applied to the raw frames in reverse order. The raw

frame which we want to compute a range for will, therefore, have two possible

Xn values: one from the forward pass, and one from the reverse pass. The Xn

with the lower prediction error is chosen, where the error is calculated as

en = |In −HnXn| . (2.19)
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Figure 2.12: Simulation of phase estimation using Kalman and Running Time-

of-Flight. The transverse motion event occurs between the fourth and fifth raw

frames.

The flow chart in Fig. 2.13 summarises the time-of-flight Kalman filter run

over the raw frames in a single direction.

Figure 2.13: Time-of-Flight Kalman Filter Flowchart.

Running a Kalman filter on data forwards and backwards is referred to as a

bidirectional Kalman filter (Hu et al. (2007); Goh et al. (2015)) Fig. 2.14 shows

that although at the fifth raw frame, the forward Kalman is unable to obtain

a correct phase estimation, the backward Kalman does, and will therefore be

used when computing a range image.
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Chapter 3

Adaptation of The Kalman

Filter to Multi-Frequency

Operation in Static Scenes

3.1 Introduction

The bidirectional Kalman filter described in chapter two operates on the as-

sumption that if a scene is static, the best prediction of Xn is its previous value,

because the amplitude, phase shift, and DC offset are not expected to change.

Some commercial cameras operate over multiple modulation frequencies, en-

abling extended distance measurement, as well as detection and removal of

data that may be corrupted by significant error. In multi-frequency opera-

tion, if the amplitude or phase shift changes between modulation frequencies

in static scenes, then the assumption on which the time-of-flight Kalman fil-

ter depends is violated. In order to adapt the bidirectional Kalman filter to

multi-frequency time-of-flight operation, such changes need to be investigated

and taken into account. Since the bidirectional Kalman filter method relies

on the Kalman filter running on the raw frames in forward and reverse order,

in a multi-frequency operation, expected changes in the amplitude and phase

shift need to be applied between modulation frequencies in both the forward
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and backward Kalman filter operations.

The Microsoft Kinect V2 is a time-of-flight camera that uses three different

modulation frequencies 80MHz, 16 MHz and 120 MHz. The camera captures

nine raw frames in succession with three raw frames per modulation frequency

at phase offsets 0, 2π/3, and 4π/3. As shown in Fig. 3.1, to obtain a range

image corresponding to the fifth raw frame, expected changes in amplitude

and phase are applied between the 80 MHz and the 16 MHz modulation fre-

quencies for the forward Kalman filter, while for the backward Kalman filter,

the changes in amplitude and phase are taken into account between 120 MHz

and 16 MHz.

Figure 3.1: Adapted bidirectional Kalman filter flowchart

3.1.1 Amplitude

When capturing raw frames using different modulation frequencies of a static

scene and calculating amplitudes from them, we find subtle differences in am-

plitudes that depend on the modulation frequency where higher modulation

frequencies result in lower amplitude values. To demonstrate this, the Mi-

crosoft Kinect V2 is used to obtain raw frames using three modulation fre-

quencies 80MHz, 16MHz and 120MHz. The DFT is applied to the the three

sets to obtain an amplitude measurement for each frequency.
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(a) 16 MHz amplitude image

(b) 80MHz amplitude image

(c) 120MHz amplitude image

Figure 3.2: Amplitudes obtained using different modulation frequencies
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The differing amplitudes at different modulation frequencies result from

the slew rate of the light sensor as well as the slew rate of the light source.

As shown in Fig. 3.3, in order to observe the slew rate of the light source

at different modulation frequencies and its impact on the light produced, the

light source of a Microsoft Kinect V2 is placed in front of a collection lens.

The collected light is measured by a photo detector, and the output voltage is

measured by an oscilloscope. The result of the experiment shown in Fig. 3.4

shows that due to the slew rate, the proportion of the square wave at maximum

amplitude changes depending on the modulation frequencies. At higher fre-

quencies the proportion of the wave at maximum amplitude is lower. As such,

the modulated light captured by the camera has high amplitudes at low mod-

ulation frequencies, and low amplitudes at high modulation frequencies. The

change in amplitude due to the change in modulation frequency is expressed

as

Afm2 = k Afm1 , (3.1)

where, Afm1 and Afm2 are amplitudes obtained using two different modulation

frequencies, and k > 0 is some constant dependent on the time-of-flight camera

hardware.

Figure 3.3: Slew rate of time-of-flight light source experiment
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(c) Light at 120MHz modulation frequency

Figure 3.4: Light source slew rate experiment result
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3.1.2 Phase Shift

The phase shift is also dependent on modulation frequency, as shown in Eqn. 2.2.

As such, phase shifts obtained using different modulation have different values.
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(c) 120 MHz phase shift image

Figure 3.5: Phase shifts obtained using different modulation frequencies
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If the camera is operating on a scene that is within the maximum ambiguity

range of the modulation frequency fm1, we can predict the phase at modulation

frequency fm2 using the equation

φfm2 =
fm2

fm1

(φfm1) + s, (3.2)

where φfm1 is the phase shift measured using modulation frequency fm1, φfm2

is the predicted phase shift at modulation frequency fm2, and s is an extra

phase shift due to signal travel through the electronic hardware.

Eqn. 3.2 assumes that the camera is operating within the ambiguity range of

the highest modulation frequency. In a scenario where this is not true, phases

beyond 2π appear smaller due to phase wrapping. Operating the time-of-flight

Kalman filter across multiple frequencies on phase wrapped data incurs non-

linear error not accounted for by the Kalman filter model. Shifting the phase

by an integer multiple of 2π removes this error, but creates a new ambiguity

as the number of multiples of 2π must be accounted for, which is a priori -

unknown. Predicting the phase shift across frequencies in a scene where phase

wrapping could occur is performed according to

φfm2 =
fm2

fm1

(φfm1 + 2πN) + s, (3.3)

where s is an extra phase shift due to signal travel through the electronic hard-

ware, and the integer N represents the number of phase ambiguity intervals

in φfm1 . The multiplier N can be any integer from 0 to Nmax, where,

Nmax =
f1

GCF (fm1 , fm2)
− 1, (3.4)

and GCF is the greatest common factor.

In multi-frequency time-of-flight Kalman filtering, Xn cannot be predicted to

be the same as its previous value when the modulation frequency changes.

When there is a change in modulation frequency Xn is recalculated with the
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expected amplitude and phase shift.


kA cos(fm2

fm1
(φ+ 2πN) + s)

kA sin(fm2

fm1
(φ+ 2πN) + s)

B

 (3.5)

Xn is calculated for every possible N value. This produces multiple Xn can-

didates. The Xn candidate that produces the smallest absolute residual in

predicting the next two raw measurements is used as the a priori prediction.

EN = |In −HnXn| + |In+1 −Hn+1Xn| (3.6)

The error for each candidate is calculated using two measurements because

when a single measurement is used, multiple candidates can produce the same

error.

For example, as shown in Fig. 3.6, an 80 MHz modulation frequency phase

shift measurement of π results in 5 candidate phase shift values at 16 MHz.

Fig. 3.6a shows that at π, two of these candidate phase shifts, at N = 1 and at

N= 3, result in matching raw frame predictions at the zero phase step. How-

ever, as shown in Fig. 3.6b, the raw measurement prediction at the 2π
3

phase

offset does not result in matching measurements at N = 1 and at N=3. As

such, using two raw measurement predictions to calculate the error for each

candidate phase shift removes the ambiguity and narrows the candidates to

one. The process of the adapted time-of-flight bidirectional Kalman filter de-

scribed above is summarised by the flow chart in Fig. 3.7.
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Figure 3.6: Raw frame predictions at two different phase offsets.
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Figure 3.7: The adapted Kalman filter flow chart

3.2 Method

We test the performance of the adapted Kalman method using a Microsoft

Kinect V2 time-of-flight camera. To obtain raw frames from the camera we

use Libfreenect (Blake et al. (2016)), a user-space driver for the Microsoft

Kinect. The CPU depth packet processor component within Libfreenect is

edited to obtain raw frames before they are affected by any filters. All other

data processing is performed using custom software written in Matlab R2017a

and executed on a Windows 10 operating system. As stated previously, the

Kinect uses three different modulation frequencies (80 MHz, 16 MHz and 120

MHz) and captures nine raw frames in succession with three raw frames per

modulation frequency at phase offsets {0, 2π/3, 4π/3}.
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3.2.1 Amplitude

To run the adapted Kalman filter method on the raw frames, the k parameter

from Eqn. 3.1 must first be determined. This is done by capturing raw frame

measurements of a static scene using the different modulation frequencies.

The amplitude is calculated for each modulation frequency by performing the

DFT over the corresponding raw frames. We solve for k for both the forward

and backward Kalman frequency transitions by substituting the calculated

amplitude in Eqn. 3.1.

We test the performance of the amplitude prediction across modulation

frequencies by capturing amplitude images of a different static scene and us-

ing the 80MHz and 120MHz amplitude measurements to predict the 16 MHz

amplitude measurement. We calculate the root mean squared error (RMSE)

for the amplitude prediction using the calculated k values for both the forward

and backward Kalman modulation frequency transitions and compare it to the

RMSE of predicting the same amplitude (k=1).

3.2.2 Phase Shift

To run the adapted Kalman method, we also need to determine the s value in

equation. 3.3. This is done by taking raw frame measurements of a static scene

within the the maximum ambiguity range of the highest modulation frequency

(120 MHz). We solve for s at each frequency transition by substituting the

calculated phases in Eqn. 3.2. To test the performance of the phase prediction

component of the adapted Kalman filter across modulation frequencies, we

capture raw frames of a different scene, which is not constrained by the maxi-

mum ambiguity of 120MHz. The 16 MHz raw frames are used to calculate a

reference phase image, while the 80MHz and 120 MHz raw frames are used as

the preceding phase images. Eqn. 3.3 is used on the 80MHz and the 120 MHz

phase images to predict all possible 16MHz phase candidates for the forward

and backward frequency transitions, and Eqn. 3.6 is used to determine the

predicted phase from the predicted candidates. We compare the phase predic-



33

tion using the proposed model to the phase prediction without the model by

calculating the error in phase and the RMSE. The error in phase is calculated

using

φE = Angle
(
ei(φR−φP )

)
, (3.7)

where φR is the reference phase, φP is the predicted phase, and Angle(z) is a

function that returns phase angles for each element of complex array Z.

3.2.3 The Bidirectional Kalman Filter

For all the Kalman filter experiments, the Kalman filter parameters are set to

the following:

P0 = Id, r = 0.1, Q =


0.5 0 0

0 0.5 0

0 0 0.01

 (3.8)

We also perform an experiment to test the performance of the of adapted

bidirectional Kalman filter and compare it to the performance of the un-

adapted bidirectional Kalman method and the DFT method. To perform the

unadapted bidirectional Kalman filter on a 16 MHz operation, nine raw frames

at 16MHz are obtained. To create this, three sets of nine multi-frequency raw

frames measurements are captured, the 16MHz raw frames within each mea-

surement is used to simulate the 16 MHz data. The DFT is performed on 4th,

5th and 6th raw frames at 16 MHz to to create a reference phase image. We

apply the unadapted bidirectional Kalman filter to both the multi-frequency

operation and the simulated 16MHz single-frequency operation. The adapted

Kalman filter method is performed on the multi-frequency data. The phase

shift images corresponding to the 5th raw frame are calculated and compared,

and Eqn. 3.7 is used to calculate the error and RMSE.

To investigate the effect of multi-path interference on the performance of the

adapted bidirectional Kalman, we capture raw frames of a scene with expected

multi-path interference. We then reduce the multi-path interference in the
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same scene by covering the ground with a black sheet and capturing another

set of raw frames. For both sets, we obtain a reference phase images for the

16MHz data using the DFT. we then use the adapted bidirectional Kalman

filter to estimate the phase corresponding to the 5th raw frame. The error in

phase, as well as the RMSE, is calculated for both predictions.

(a) Scene with multi-path (b) Scene with reduced multi-path

Figure 3.8: Experiment performed to evaluate adapted bidirectional Kalman

filter at varying multi-path interference

3.3 Result

3.3.1 Amplitude

The k values for both the forward Kalman filter (from 80MHz to 16MHz)

and reverse Kalman fiter (from 120MHz to 16MHz) were calculated for the

Microsoft Kinect by measuring amplitudes using the different modulation fre-

quencies and solving for k. It was found that over the average of 217088

amplitude measurements, that Af16 = 1.24Af80 and Af16 = 1.53Af120 . The ac-

curacy of predictions is evaluated using a different static scene. The amplitude

prediction from 80MHz to 16MHz is shown in Fig. 3.9, while the amplitude

prediction from 120MHz to 16MHz is shown in Fig. 3.10
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(a) Reference 16MHz amplitude

(b) Predicted amplitude

(without model)

(c) Predicted amplitude error

(without model)

(d) Predicted amplitude

(with model)

(e) Predicted amplitude error

(with model)

Figure 3.9: The figures are obtained to evaluate the amplitude prediction from

80MHz to 16MHz. (a) is the 16MHz reference amplitude image. (b) is the

amplitude calculated using the DFT of the 80MHz data. (d) is the 16MHZ

amplitude predicted from the 80MHz using k = 1.24. (c) and (e) are the

absolute error images of (b) and (d), calculated using the reference image.
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(a) Reference 16MHz amplitude

(b) Predicted amplitude

(without model)

(c) Predicted amplitude error

(without model)

(d) Predicted amplitude

(with model)

(e) Predicted amplitude error

(with model)

Figure 3.10: The figures are obtained to evaluate the amplitude prediction

from 120MHz to 16MHz. (a) is the 16MHz reference amplitude image. (b)

is the amplitude calculated using the DFT of the 120MHz data. (d) is the

16MHZ amplitude predicted from the 120MHz using k = 1.53. (c) and (e) are

the absolute error images of (b) and (d) calculated using the reference image.
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Table 3.1: RMSE of amplitude predictions with and without model

Amplitude RMSE

without Model

Amplitude RMSE

with Model

80 MHz to 16 MHz 0.069 0.023

120 MHz to 16 MHz 0.095 0.025

The reduction in error seen in Fig. 3.9 and Fig. 3.10, as well as the reduction

in RMSE shown in Table. 3.1, shows that amplitude can be predicted more

accurately using the model. In Fig, 3.9e and Fig, 3.10e, the error in amplitude

appears more significant in high amplitude regions of the scene.

However, the error relative to the actual amplitude is more indicative of

how the amplitude prediction will effect the performance of the time-of-flight

Kalman Filter. The equation below is therefore used to calculate the relative

amplitude errors.

Relative Error =
|Ap − Am|

max (Ap, Am)
(3.9)

The relative error images in Fig. 3.11 indicate that the accuracy of the

amplitude prediction is highly dependent on the magnitude of the signal re-

ceived. This is attributed to the signal to noise ratio, where the lower the

signal received, the larger the impact noise has on the prediction. The result,

however, indicates that the adapted Kalman’s filter performance is expected

to be lower at low amplitudes.



38

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
e

la
ti
v
e

 E
rr

o
r

(a) 80MHz relative amplitude error
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(b) 120MHz relative amplitude error

Figure 3.11: Relative error of amplitude predictions. (a) is the relative error

of the predicted 16MHz amplitude using the calculated 80MHz amplitude. (b)

is the relative error of the predicted 16MHz amplitude using the calculated

120MHz amplitude.
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3.3.2 Phase Shift

Phase shift prediction between modulation frequencies using Eqn. 3.3 requires

the s parameters to be determined. The s parameters for the 80MHz to 16MHz

phase shift prediction and the 120MHz to 16MHz phase shift prediction were

calculated by measuring the phase of a static scene using the three modulation

frequencies and solving for s using Eqn. 3.2. As shown in Table. 3.2, the s

parameters are found to be dependent on the location of the pixel in the

camera.

Table 3.2: Parameter result for the phase prediction across modulation fre-

quencies. Odd and even rows of camera pixels are represented by (Odd) and

(Even).

80MHz

To

16MHz

120MHz

To

16MHz

s (Odd) 0.75 0.3

s (Even) 0.13 0.9

We test the accuracy of the phase prediction using Eqn. 3.3 with the s

values above. We capture phase images of a static scene and use the 80MHz

and 120MHz phase measurements to predict the 16MHz phase measurement.

The phase shift prediction from 80MHz to 16MHz is shown in Fig. 3.12, while

the phase shift prediction from 120MHz to 16MHz is shown in Fig. 3.13. The

reduction in error seen in Fig. 3.12 and Fig. 3.13, as well as the reduction in

RMSE shown in Table. 3.3, show that we can predict the phase more accu-

rately using the model.
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(a) Reference 16MHz phase shift

(b) Predicted phase shift

(without model)

(c) Predicted phase error

(without model)

(d) Predicted phase shift

(with model)

(e) Predicted phase error

(with model)

Figure 3.12: The figures are obtained to evaluate the phase prediction from

80MHz to 16MHz. (a) is the 16MHz reference phase image. (b) is the phase

predicted directly from the DFT of the 80MHz data. (d) is the 16MHz phase

predicted from the 80MHz using Eqn. 3.3. (c) and (e) are the absolute error

images of (b) and (d) calculated using the reference image.
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(a) Reference 16MHz phase shift

(b) Predicted phase shift

(without model)

(c) Predicted phase error

(without model)

(d) Predicted phase shift

(with model)

(e) Predicted phase error

(with model)

Figure 3.13: The figures are obtained to evaluate the phase prediction from

120MHz to 16MHz. (a) is the 16MHz reference phase image. (b) is the phase

predicted directly from the DFT of the 120MHz data. (d) is the 16MHz phase

predicted from the 120MHz using Eqn. 3.3. (c) and (e) are the absolute error

images of (b) and (d) calculated using the reference image.
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Table 3.3: RMSE of phase predictions with and without model

Phase RMSE

without Model

Phase RMSE

With Model

80MHz to 16MHz 1.775 0.256

120MHz to 16MHz 2.244 0.269

3.3.3 Bidirectional Kalman Filter

The phase estimations using the unadapted bidirectional Kalman and the

adapted bidirectional Kalman are compared using the FFT reference image.

Table 3.4: RMSE for adapted and unadapted bidirectional Kalman for single

and multi-frequency operation in non dynamic scene.

RMSE

(Multi-Frequency)

Operation

RMSE

(Single-Frequency)

Operation

Unadapted Bidirectional

Kalman Filter
0.351 0.02

Adapted Bidirectional

Kalman Filter
0.23 NA

The error images in Fig. 3.14, as well as the RMSE shown in Table. 3.4,

show that in multi-frequency operation, the adapted bidirectional Kalman

filter performs better than the unadapted bidirectional Kalman filter. The

adapted Kalman filter in multi-frequency operation, however, does not match

the accuracy of the unadapted bidirectional Kalman in a single modulation

frequency operation. This is because in a non dynamic scene, the accuracy

of the unadapted bidirectional Kalman’s phase prediction is only dependent
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on the noise, whilst the accuracy of the prediction of the adapted Kalman is

highly dependent on the model’s accuracy between modulation frequencies, as

well as noise. The adapted Kalman filter model cannot perfectly predict the

phase because the model does not take in to account multi-path error, and

because multi-path error is modulation frequency dependent. If an increase or

decrease occurs in the phase measurement due to multi-path interference, the

adapted Kalman fails to take this into account in the prediction. The images

in Fig. 3.15 are of a scene with a large amount of multi-path interference.

Once the a black sheet is used to cover the floor, multi-path error is reduced

by removing the reflection of the floor. As Table. 3.5 shows, the accuracy of

the adapted bidirectional Kalman improves in low multi-path scenes.

Table 3.5: RMSE of adapted Kalman filter under high and low multi-path

interference

RMSE

Scene With High MPI 0.168

Scene With Low MPI 0.148
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(a) Unadapted Kalman phase

(multi-frequency)

(b) Unadapted Kalman phase error

(multi-frequency)

(c) Adapted Kalman phase

(multi-frequency)

(d) Adapted Kalman phase Error

(multi-frequency)

(e) Kalman phase estimation from

single frequency

(f) Kalman phase estimation error

from single frequency

Figure 3.14: Comparison of phase estimation between the adapted and un-

adapted bidirectional Kalman filters in non dynamic scene.
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(a) High multi-path scene

reference phase

(b) High multi-path scene

reference phase

(c) High multi-path scene

phase estimation

(d) Low multi-path scene

reference phase

(e) High multipath scene Phase

estimation error

(f) Low multi-path scene phase

estimation error

Figure 3.15: Comparison of phase estimation by adapted bidirectional Kalman

filter in varying multi-path scenes



Chapter 4

Motion Correction Using

Adapted Bidirectional Kalman

Filter

4.1 Introduction

The purpose of the time-of-flight bidirectional Kalman filter is to reduce the er-

ror caused by transverse motion. Although adapting the bidirectional Kalman

filter in non dynamic scenes to provide accurate phase estimations is necessary,

the adapted Kalman filter in multi-frequency operation remains ineffectual if

it cannot fulfill its purpose of reducing motion error in dynamic scenes. In this

Chapter, the adapted Kalman filter proposed in the previous chapter is tested

on dynamic scenes, and changes are made to the model to enable motion error

reduction.

When Xn is initialised, The Kalman filter needs at least three consistent

and consecutive raw frames to reach an accurate phase estimation. As such,

when a transverse motion event occurs between the initial three raw frames,

the phase estimated at the third raw frame by the Kalman filter becomes

incorrect. In single modulation frequency operation, as shown in the diagram

in Fig. 4.1, the unadapted bidirectional Kalman filter is still able to obtain
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a correct composite phase estimation by using the phase estimated by the

Kalman filter in the reverse direction. The bidirectional Kalman filter selects

the composite phase from the forward pass or the reverse pass depending on

how close they can predict the corresponding raw frame using Eqn. 2.19.

Figure 4.1: Unadapted bidirectional Kalman filter in single frequency opera-

tion flowchart. In represents the N raw frame. Xn highlighted in red represents

an incorrect Xn estimation due to a transverse motion event, and Xn high-

lighted in green represents a correct Xn estimation.

4.1.1 Further Adaptations of the Adapted Bidirectional

Kalman Filter

In multi-frequency operation, the adapted Kalman filter also fails to estimate

the correct phase when a transverse motion event occurs within the first three

raw frames after a zero initialisation of Xn. As in the unadapted Kalman filter,

a correct phase estimation is obtained for the corresponding raw frame using

the reverse pass. However, the phase shift prediction across modulation fre-

quencies causes an incorrect selection of the composite phase using Eqn. 2.19.

When an incorrect phase is estimated due to a transverse motion event,

the unwrapping component of the phase prediction method chooses the phase
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shift candidate that best predicts the next two raw frames using Eqn. 3.6. If

the number of possible phase candidates calculated using Eqn. 3.4 is high, the

incorrect phase prediction results in an accurate raw frame prediction even if

the predicted phase shift is incorrect. The unwrapping methodology used thus

guarantees a low error. As such, Eqn. 2.19 fails to identify the correct phase

estimation and leads to an incorrect composite phase selection.

To solve this problem, Eqn. 4.1 below is used to determine the composite

phase shift instead of Eqn. 2.19. This is because the error calculated using

Eqn. 4.1 relies on the prediction of raw frames that are not used by the phase

unwrapping method. Fig. 4.2 shows that the use of Eqn. 4.1 rather than

Eqn. 2.19, results in a correct composite phase selection in multi-frequency

operation.

EN = 2 |In−1 −Hn−1Xn−1|+ 6 |In −HnXn| + 2 |In+1 −Hn+1Xn+1| (4.1)

Figure 4.2: Flowchart of adapted bidirectional Kalman filter in multi-frequency

operation. The flow chart shows two methods of calculating error for the

composite Xn. The flow chart indicates that the new method selects the

correct Xn
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4.2 Method

In this section, we perform two quantitative experiments and one qualitative

experiment.

The first quantitative experiment is used to compare the composite phase

shift determined using the suggested method using Eqn. 4.1 to the composite

phase shift determined using Eqn. 2.19. The experiment tests whether, the

suggested method can select the correct phase shift, where the previous method

is expected to fail. We perform the quantitative experiment by placing a board

1.3m away from the camera, as shown in Fig. 4.3. raw frames are captured

of the board at two different positions with 20 cm between the two positions

to mimic transverse motion. An artificial set containing nine raw frames is

created to simulate data from multi-frequency operation. To simulate motion

that occurs only between the 8th and the 9th raw frames, the first eight raw

frames are created from the board at the first position, while the 9th raw

frame is created from the measurement of the board at the second position.

The DFT is applied to the 16 MHz measurements taken at the first position

of the board to create a reference phase shift that is not affected by motion.

We perform the adapted bidirectional Kalman filter method on the data, and

create a composite phase image using Eqn. 4.1 and a composite phase image

using Eqn. 2.19 corresponding to the 5th raw frame. The error in phase is

calculated for both methods by using the reference image and Eqn. 3.7.

The second quantitative experiment is conducted to test the performance

of the adapted bidirectional Kalman method in dynamic scenes by comparing

it to the unadapted bidirectional Kalman filter method and the DFT method.

The experiment is performed by placing a board 1.3m away from the camera.

Raw frames are captured of the board at nine different positions with 5cm

between each position to mimic continuous transverse motion. The DFT is

applied to the 16 MHz measurements taken at the 5th position to create a ref-

erence phase image that is not affected by motion. Several artificial sets that

simulate the motion of the board are created using the raw measurements.
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Figure 4.3: Quantitative experiment setup

The first set mimics the camera operation, containing nine raw frames with

modulation frequencies of 80MHz, 16MHz and 120MHz. For this set, phase

images corresponding to the 5th raw frame are calculated using the adapted

bidirectional Kalman filter method, the unadapted bidirectional Kalman filter

method, and the DFT method. The phase error is calculated for each method

using the reference phase image. The process is repeated 5700 times using

pixels from regions with motion, and the RMSE is calculated. To compare

the performance of the adapted and unadapted bidirectional Kalman filter

methods, the percentage of instances with less error than the DFT method is

calculated. We also compare the performance of the unadapted bidirectional

Kalman filter method operating on a single modulation frequency to the per-

formance of the adapted bidirectional Kalman filter method operating on raw

frames with multiple modulation frequencies. We achieve this by creating a

second set consisting of nine raw frames that simulate continuous motion at a

modulation frequency of 16 MHz. Phase images corresponding to the 5th raw

frame are calculated using the unadapted bidirectional Kalman filter method.

The reference phase image is used to calculate the RMSE and the percentage of

instances the unadapted bidirectional Kalman filter method performed better

than the DFT method. To further test the proposed model, the quantitative
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Table 4.1: List of tested foreground and background distances.

Position 1 2 3 4 5 6

Background distance (m) 1.71 2.61 2.88 3.39 3.78 4.12

Foreground distance (m) 1.19 1.67 0.88 0.96 2.18 1.17

experiment is repeated at varying foreground and background distances shown

in table. 4.1. The distances are controlled by repositioning both the camera

and the board.

The qualitative experiment is carried out to test the performance of the

adapted bidirectional Kalman method in dynamic scenes containing both intra-

frame motion and inter-frame motion by comparing it to the performance of the

unadapted bidirectional Kalman method and of the DFT method. To perform

the qualitative experiment, nine raw frames are captured of a board that is

swung in a transverse fashion approximately 1m away from the camera. A

phase image corresponding to the 5th raw frame is calculated using the adapted

bidirectional Kalman filter method, the unadapted bidirectional Kalman filter

method, and the DFT method. To obtain the phase using the DFT method,

raw frames 4 to 6 are used. To obtain phase using the bidirectional Kalman

filter method, we use raw frames 1 to 6 for the forward pass and raw frames 4

to 9 for the reverse pass. Eqn. 4.1 is used to determine the composite phase

at the 5th raw frame.

4.3 Results

The first quantitative experiment is performed to evaluate the proposed com-

posite phase selection method, which was done by introducing motion between

the 8th and 9th raw frames, and testing both composite phase shift selection

methods at the 5th raw frame. As shown in Fig. 4.4, the phase shift images,

as well as the phase shift error images, show that the phase shift estimated

using the proposed method produces a more accurate phase shift estimation.
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(a) True phase shift

(b) Phase shift using

previous method

(c) Phase error using

previous method

(d) Phase shift using

proposed method

(e) Phase error using

proposed method

Figure 4.4: The previous method refers to the composite phase selection de-

termined using a single raw frame prediction using Eqn. 2.19. The proposed

method refers to the composite phase selection determined using three raw

frame predictions using Eqn. 4.1.
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A more in-depth analysis of the result is performed by plotting the phase

shift, amplitude, and raw frame estimates based on the Xn produced by the

adapted bidirectional Kalman filter at every raw frame. As expected, although

the phase shift estimated by the backward Kalman filter is incorrect at the 5th

raw frame, shown in Fig. 4.5a, its corresponding raw frame prediction shown in

Fig. 4.5b appears accurate. This is due to the fact that the unwrapping of the

phase shift between modulation frequencie of 120MHz and 16MHz produces

52 Xn candidates according to Eqn. 3.4. When the raw frame predictions at

the 5th raw frame alone are used to select a composite, an incorrect selection

occurs. However, taking the 4th, 5th and 6th raw frame predictions into

account leads to an accurate composite phase selection as shown in Fig. 4.6a

In the second quantitative experiment, where transverse motion occurs con-

tinuously between frames, we test the performance of the proposed adapted

bidirectional Kalman filter and compare it to the unadapted bidirectional

Kalman filter, as well as the traditionally used DFT method. In the exper-

iment, the phase shift image obtained using the DFT, as shown in Fig. 4.9,

incurs significant error to the left and right of the board, where the transition

between foreground and background occurs. The phase image obtained us-

ing the unadapted bidirectional Kalman filter shows an increase in error when

compared to the DFT. The increase in error is due to its incompatibility with

the multi-modulation operation, while the DFT range image is obtained using

raw frames belonging to a single modulation frequency. When the proposed

adapted bidirectional Kalman filter is used on the multi-frequency operation,

the error in the region of motion is significantly reduced. Some error remains

at the edges of the board; we believe the remaining error is due to mixed pixels.

It is also observed that errors increase in regions where multi-path is expected;

as discussed in Chapter three, these errors are due to the fact that multi-path

error is modulation frequency-dependent, and the model uses Eqn. 3.3 which

does not take multi-path into account when predicting phases.
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(a) Phase shift estimations using adapted bidirectional Kalman filter.

(b) Raw frame estimations using adapted bidirectional Kalman filter.

Figure 4.5: The charts are of phase shift, and raw frames estimates based

on the Xn produced by the adapted bidirectional Kalman filter at every raw

frame. The composite phase shift at the 5th raw frame is selected using a

single raw frame using Eqn. 3.6.
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(a) Raw frame estimations using adapted bidirectional Kalman filter.

(b) Amplitude estimations using adapted bidirectional Kalman filter.

Figure 4.6: The charts are of result phase shift and amplitude estimates based

on the Xn produced by the adapted bidirectional Kalman filter at every raw

frame. The composite phase shift at the 5th raw frame is selected using three

raw frames using Eqn. 4.1



56

(a) DFT phase image (b) DFT error image

(c) Unadapted bidirectional

Kalman filter phase

(d) Unadapted bidirectional

Kalman filter error

(e) Adapted bidirectional

Kalman filter phase

(f) Adapted bidirectional

Kalman filter error

Figure 4.7: Comparison of phase and error images recovered from the multi-

frequency quantitative experiment. (a) and (b) are obtained using the tradi-

tional DFT method. (c) and (d) are obtained using unadapted bidirectional

Kalman filter method. (e) and (f) are from the proposed adapted bidirectional

Kalman filter method.



57

(a) DFT method

position(1)

(b) Proposed method

position(1)

(c) Unadapted method

position(1)

(d) DFT method

position(2)

(e) Proposed method

position(2)

(f) Unadapted method

position(2)

(g) DFT method

position(3)

(h) Proposed method

position(3)

(i) Unadapted method

position(3)

Figure 4.8: Quantitative experiment error images at positions 1, 2 and 3. The

positions refer to specified foreground and background distances in Table. 4.1.

(a), (d) and (g) are obtained using the traditional DFT method. (b), (e)

and (h) are obtained using the proposed adapted bidirectional Kalman filter

method. (c), (f) and (i) are obtained using the unadapted bidirectional Kalman

filter method.
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(a) DFT method

position(4)

(b) Proposed method

position(4)

(c) Unadapted method

position(4)

(d) DFT method

position(5)

(e) Proposed method

position(5)

(f) Unadapted method

position(5)

(g) DFT method

position(6)

(h) Proposed method

position(6)

(i) Unadapted method

position(6)

Figure 4.9: Quantitative experiment error images at positions 4, 5 and 6. The

positions refer to specified foreground and background distances in Table. 4.1.

(a), (d) and (g) are obtained using the traditional DFT method. (b), (e)

and (h) are obtained using the proposed adapted bidirectional Kalman filter

method. (c), (f) and (i) are obtained using unadapted bidirectional Kalman

filter method.
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The results show that in multi-frequency operation, the adapted bidirec-

tional Kalman filter method has the lowest RMSE. The proposed method

also performs better than the DFT method in 70% of instances, while the un-

adapted bidirectional Kalman filter method performs better in only 14% of the

instances. The adapted bidirectional Kalman filter running on multi-frequency

raw frames is not as performant as the unadapted bidirectional Kalman filter

running on single modulation frequency raw frames. The increased error in

multi-frequency operation is expected due to nonlinear effects such as aliasing

and multi-path interference

Table 4.2: Comparison of methods. RMSE in units of radians. % is the

proportion of pixels with less error than the DFT method.

Method % RMSE

Unadapted Bidirectional Kalman Filter (Multi-frequency) 13.57% 0.789

Adapted Bidirectional Kalman Filter (Multi-frequency) 70.35% 0.155

Unadapted Bidirectional Kalman Filter (16 MHz) 77.1% 0.083

Adapted Bidirectional Kalman Filter (16 MHz) 77.06% 0.085

DFT N/A 0.627

The qualitative experiment contains inter-frame motion, as it is not made

from the an artificial set of frames, as such, it is more indicative of the perfor-

mance of the proposed method in a real-time application. When comparing

the phase images produced from the qualitative experiment in Fig. 4.10, we

observe that the phase image produced by the adapted bidirectional Kalman

filter has the least motion blur of the tested methods.
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(a) Traditional DFT processing

(b) Unadapted bidirectional Kalman filter processing

(c) Proposed bidirectional Kalman filter processing

Figure 4.10: Qualitative comparison of phase images recovered from multi-

frequency time-of-flight data taken of a moving object. The proposed method

mitigates the motion artefacts visible in the earlier methods.



Chapter 5

Conclusion

Time-of-flight range imaging is especially affected by motion due to its need

for multiple raw frame measurements to construct a single range image. Dy-

namic scenes cause inconsistencies in the raw frame measurements and result

in erroneous range estimates. No method currently exists to reduce motion

error in multi-frequency operated Time-of-light cameras. The time-of-flight

bidirectional Kalman Filter is a state of the art method that reduces error

in range measurements due to transverse motion. The task which this thesis

attempted to achieve is the adaptation of the bidirectional Kalman filter for

use in time-of-flight cameras operating with multiple modulation frequencies.

A key component of the bidirectional Kalman filter is the prediction of the

signal between iterations. In single modulation frequency operation, this is

achieved by making a static scene assumption, which allows the prediction to

be equal to the previous estimation. However, predicting the same signal be-

tween raw frames in multi-modulation frequency operation is not valid even if

the assumption of a static scene made. The prediction is not valid because the

phase shift and the amplitude of the signal vary significantly between mod-

ulation frequencies. A successful prediction of the signal across modulation

frequencies is key to a successful adaptation of the bidirectional Kalman filter.

The rise time of pixel modulation is nonzero. As such, increasing modulation

frequency reduces the amplitude of the correlation waveform. The change in
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amplitude due to a change in modulation frequency is modelled linearly, and

the linear correlation coefficient is calculated and used to predict the ampli-

tudes across frequencies. The change in phase shift between two frequencies

is dependent on the ratio of the two frequencies; If the phase shift measured

using the first modulation frequency is beyond 2π, the phase shift appears

smaller due to phase wrapping. Operating the time-of-flight Kalman filter

across multiple frequencies on phase wrapped data, therefore, incurs nonlin-

ear error. Shifting the phase by an integer multiple of 2π removes this error,

but creates a new ambiguity as the number of multiples of 2π that must be

accounted for is a priori-unknown. The ambiguity due to phase wrapping is

solved by selecting the number of phase wraps that best predicts the next two

raw frames. An unintended consequence of the unwrapping method is that it

guarantees a low raw frame prediction even when the final predicted phase shift

is incorrect. The composite phase shift selection method is changed such that

it also bases its decision on raw frame predictions that are not minimised by

phase unwrapping methodology. When a qualitative experiment is performed

by swinging a board in front of a multi-frequency time-of-flight camera, the

traditional DFT method shows significant blurring at the sides of the board

where transverse motion is expected. When the bidirectional Kalman filter is

used without adapting it to the multi-frequency operation, the blurring be-

comes worse. However, when the adapted bidirectional Kalman filter is used,

the blur due to motion is reduced significantly. When a quantitative experi-

ment is performed by capturing raw frames of a board at multiple locations and

simulating motion, the unadapted bidirectional Kalman filter performed bet-

ter than the DFT method in only 13.6% of the motion-affected pixels, while

the proposed bidirectional Kalman filter performed better than the DFT in

70% of the motion affected pixels.
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5.1 Limitations and Future Work

Although the adapted bidirectional Kalman filter reduces error significantly in

dynamic scenes compared to the traditionally used DFT method, more accu-

rate phase estimations are calculated using the DFT in non-dynamic scenes.

The reduction in accuracy is believed to be caused by non-linear effects such

as multi-path interference between modulation frequencies which are not ac-

counted for by the adapted bidirectional Kalman filter. Future work could

reduce such error by expanding the phase shift prediction equation to take

multi-path into account. An alternative to reducing the error in pixels not af-

fected by multi-path is to detect the pixels affected by transverse motion in an

image and only apply the adapted bidirectional Kalman filter method to mo-

tion affected pixels, while pixels unaffected by transverse motion are processed

using the DFT method. Future work could also include an investigation of

what modulation frequencies are optimal for more accurate phase estimation

using the adapted bidirectional Kalman filter. Such recommendations could

be taken into account when manufacturing time-of-flight cameras operating

across multiple modulation frequencies.
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