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Abstract This paper presents an algorithm that combines modular synthesis for
extended finite-state machines (EFSM) with abstraction of variables by symbolic
manipulation, in order to compute least restrictive controllable supervisors. Given
a modular EFSM system consisting of several components, the proposed algorithm
synthesises a separate supervisor for each specification component. To synthesise
each supervisor, the algorithm iteratively selects components (plants and variables)
from a synchronous composition until a least restrictive controllable solution is ob-
tained. This improves on previous results of the authors where abstraction is only
performed by the selection of components and not variables. The paper explains
the theory of EFSM synthesis and abstraction and its algorithms. An example of
a flexible manufacturing system illustrates how the proposed algorithm works to
compute a modular supervisor.

Keywords Supervisory control, Discrete event systems, Extended finite-state
machines.

1 Introduction

Supervisory Control Theory [4,19] provides a general framework for the synthesis of
reactive control functions. Given a model of the system, the plant, to be controlled,
and a specification of the desired behaviour, it is possible to automatically com-
pute, i.e. synthesise, a supervisor that restricts the plant behaviour while satisfying
the specification. Originally, the theory is grounded on the Finite-state Machines

formalism and several approaches have been developed to make synthesis more
efficient [1, 15, 27, 29].
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In recent years, Supervisory Control Theory has been generalised for Extended

Finite-state Machines (EFSM) [5, 16, 25, 28], which include variables and improve
modelling capabilities for systems with data dependency or software. Variables
are more general than approaches with similar purpose [9, 18], including event

distinguishers [6, 20, 27], and can simplify the modelling task for various discrete
event systems. However, they require more sophisticated tools and methods for
synthesis. Several synthesis algorithms for EFSMs have been proposed [10, 14, 17,
28], which explore the full system state space, including all possible combinations
of variable values. The resulting complexity can be avoided to some extent using
symbolic representation [14] or abstraction [22, 23, 28].

Recently, a modular approach for the synthesis of least restrictive and control-

lable supervisors from plants modelled with EFSMs has been proposed [12], which
generalises earlier work on modular synthesis without variables [1,2]. The approach
considers only prefix-closed behaviours, and the system model consists of several
interacting plant and specification components. In this case, synthesis can be per-
formed separately for each specification EFSM, and the results can be combined
to form a modular supervisor. For each specification, the algorithm [12] itera-
tively selects plant components to be included in synthesis until a least restrictive
controllable solution is found. The obtained modular supervisors, in combination,
achieve the least restrictive controllable behaviour for the entire system.

This paper extends the approach of [12] by including the idea of existential

abstraction [28] of variables. The algorithm of [12] performs abstraction only by
selecting EFSM components and always includes all variables of the selected com-
ponents. Existential abstraction improves on this, because it allows for abstractions
to be formed by selecting components and some of their variables. Other variables
are quantified out and do not contribute to the state space when synthesis is
performed.

In the following, Section 2 introduces the ideas of modular synthesis by pre-
senting an improved version of the modular synthesis algorithm [1] for ordinary
finite-state machines. Then Section 3 introduces EFSMs and outlines frameworks
for their synthesis and abstraction. Afterwards, Section 4 presents the algorithms
for modular synthesis with abstraction in the EFSM framework. The proposed
method is illustrated by an example in Section 5, and finally Section 6 adds con-
cluding remarks. Formal proofs of the technical results can be found in [13].

2 Finite-State Machines

2.1 Definitions

A finite-state machine (FSM) is a tuple F = 〈Σ,Q,Q◦,→〉, where Σ is a finite
set of events, Q is a finite set of states, Q◦ ⊆ Q is the set of initial states, and
→ ⊆ Q ×Σ ×Q is the transition relation.

The transition relation is written in infix notation, where x
σ
→ y means the

existence of a transition from state x ∈ Q to y ∈ Q with event σ ∈ Σ. This
notation is extended to traces s ∈ Σ∗ in the standard way. Furthermore, given
state sets X,Y ⊆ Q, the notation X

s
→ Y means x

s
→ y for some states x ∈ X

and y ∈ Y , and X → Y means X
s
→ Y for some s ∈ Σ∗, and X

s
→ means X

s
→ Y

for some Y , and F
s
→ X means Q◦ s

→ X. A trace s ∈ Σ∗ is accepted by the FSM
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if F
s
→, and the language or behaviour of F is the set of all traces it accepts,

L(F ) = { s ∈ Σ∗ | F
s
→}.

In this paper, FSMs do not have accepting states, because termination or the
nonblocking property are not considered. As a result, all languages are prefix-
closed: trace s ∈ Σ∗ is a prefix of t ∈ Σ∗ if t = su for some u ∈ Σ∗, and a language
L ⊆ Σ∗ is prefix-closed, if all prefixes of traces t ∈ L are contained in L.

FSMs executing in parallel are synchronised in lock-step [7]. The synchronous

composition of two FSMs F1 = 〈Σ,Q1, Q
◦
1,→1〉 and F2 = 〈Σ,Q2, Q

◦
2,→2〉 with the

same event set Σ is

F1 ‖ F2 = 〈Σ,Q1 ×Q2, Q
◦
1 ×Q◦

2,→〉 , (1)

where (x1, x2)
σ
→ (y1, y2) if and only if x1

σ
→ x2 and y1

σ
→ y2. FSMs with different

event sets can be composed after adding selfloop transitions x
σ
→ x with the missing

events to all states of an FSM; this is not considered in this section for the sake of
brevity, and all FSMs are assumed to have the same event set Σ. In this case, it
is clear that synchronous composition of FSMs results in the intersection of their
languages, L(F1 ‖ F2) = L(F1) ∩ L(F2).

For the purpose of control, the event set is partitioned into the sets Σc of
controllable events and Σu of uncontrollable events. Controllable events can be dis-
abled by a controlling agent, while uncontrollable events cannot be prevented from
occurring. A prefix-closed specification language K ⊆ Σ∗ is Σu-controllable with
respect to (w.r.t.) a prefix-closed plant language L ⊆ Σ∗ if KΣu ∩ L ⊆ K, i.e., if
every uncontrollable event continuation possible in L is also possible in K [19].

If a language K is not controllable, the task of synthesis is to find a controllable
sublanguage K′ ⊆ K. It is a classical result of supervisory control theory [19] that
the union of controllable languages is again controllable, and there exists a unique
supremal controllable sublanguage of any given language,

supC(L,K,Σu) =
⋃

{K′ ⊆ L ∩K | K′ is Σu-controllable w.r.t. L } . (2)

It is common to require that the result of synthesis is contained in the plant
language L, which is enforced by the intersection L ∩ K in (2). If the plant and
specification are given by FSMs G and E, a standard algorithm [19] with time
complexity polynomial in the number of transitions of G‖E can construct an FSM
that accepts the supremal controllable sublanguage supC(L,K,Σu). This FSM is
denoted supC(G,E,Σu). It can be used as a so-called supervisor, which restricts the
plant through synchronous composition, enforcing the specification by disabling
only controllable events in the least restrictive way possible.

2.2 Modular Synthesis Algorithm

In the following, it is assumed that the plant is given by several FSMs, G =
G1 ‖ · · · ‖ Gn, and the specification is given by a single FSM E. In this case, the
time complexity to compute supC(G,E,Σu) is in the worst case exponential in the
number n of plant components because the number of states in the synchronous
composition could be exponential. It has been proposed [1, 2] to mitigate this
complexity by identifying an appropriate subset of the plants to perform synthesis
with.
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Algorithm 1: Modular FSM synthesis

Input: plants G = {G1, . . . , Gm}; specification E; uncontrollable events Σu;
Output: Least restrictive supervisor Sk;

1 G0 ← ∅;

2 S0 ← E;

3 Σ0
u ← ∅;

4 i← 0;

5 while L(Si) is not Σu-controllable w.r.t. L(
∥

∥(Gi)) do

6 Σi+1
u ← Σi

u ∪ {µ ∈ Σu |
∥

∥(Gi) ‖ Si → (xG, xS) and xG
µ
→ and xS 6

µ
→};

7 Gi+1 ← {G′ ∈ G | G′ → xG 6
µ
→ for some µ ∈ Σi+1

u };

8 Si+1 ← supC(
∥

∥(Gi+1), E,Σi+1
u );

9 i← i+ 1;

10 end

11 return Si;

Algorithm 1 shows such an approach. This algorithm is the basis for the ex-
tended finite-state machine synthesis algorithm in the following section. Here, for
a set G of FSMs,

∥

∥(G) denotes the synchronous composition of all elements of G,
and

∥

∥(∅) = 〈Σ, {x◦}, {x◦}, {x◦} ×Σ × {x◦}〉 is the neutral element of synchronous
composition, a state machine that accepts all events without state change.

The idea of Algorithm 1 is to gradually increase the set of plants and uncon-
trollable events considered in synthesis. At the beginning, the algorithm starts
without plants, G0 = ∅. Then the loop entry condition on line 5 checks whether
the specification S0 = E is controllable by itself, in which case E is returned as
the least restrictive solution. This may succeed if, for example, E has only control-
lable events. Otherwise the loop is entered and performs synthesis w.r.t. selected
subsets Gi+1 of plants and Σi+1

u of uncontrollable events (line 8). Inside the loop,
line 5 ensures that the current result Si is not controllable w.r.t. the full set Σu

of uncontrollable events. Thus, Si disables some event µ ∈ Σu \ Σ
i
u, which really

is uncontrollable but was assumed controllable in synthesis. By including these
events in Σi+1

u , they are treated as uncontrollable in the next iteration (line 6).
To ensure the least restrictive result, all plants that in some state may disable one
of these uncontrollable events are also included (line 7).

The procedure continues until a Σu-controllable solution is found. Termination
is guaranteed, because the set Σi

u of included uncontrollable events increases with
every iteration and is bounded by the finite set Σu. As the result is Σu-control-
lable w.r.t. a subset of plants, it is also Σu-controllable w.r.t. the full plant [2].
The approach [1] ensures least restrictiveness by including all plants that share
an uncontrollable event with the specification, or with a plant already included.
Algorithm 1 improves on this on line 6, by considering only uncontrollable events
that cause a controllability problem, and on line 7, by only adding plants that
disable an uncontrollable event, as opposed to plants that have it in their event
set.

Prop. 1 confirms that the result Si of Algorithm 1 implements the least restric-
tive supervisor. As synthesis within the loop includes only a part of the plant, the
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remaining plants have to be composed with the result to get the exact supremal
controllable sublanguage.

Proposition 1 [11] Algorithm 1 terminates, and upon termination it holds that

L(
∥

∥(G) ‖ Si) = supC(L(
∥

∥(G)),L(E), Σu) . (3)

3 Extended Finite-State Machines

Extended finite-state machines (EFSMs) add to FSMs variables and the ability to
read and update these variables on the occurrence of transitions [5, 16]. In this
section, the concept of update formulas is introduced, followed by a formal defini-
tion of EFSMs. Then the FSM concepts of synchronous composition, behavioural
inclusion, and synthesis are generalised to the EFSM setting. Finally, notions of
EFSM abstraction are introduced.

3.1 Variables and Updates

An update is a first-order logic formula [8] constructed from variables, integer
constants, Boolean literals, the existential and universal quantifiers (∃ and ∀), and
the usual arithmetic and logical operators. Variables can be bound to quantifiers or
occur free in an update. For example, in the update ∃y x > y+2, the variable y is
bound to the existential quantifier, while x is a free variable. The set of all update
formulas is denoted by Π.

In this paper, formulas are interpreted over finite domains. This is a common
assumption in supervisory control, as synthesis algorithms are not guaranteed to
terminate for infinite state spaces. Nevertheless, finiteness is not essential for the
results on abstraction. The results in this paper can also be proven for infinite
domains, but the algorithms may fail to terminate if the underlying synthesis
algorithms without abstraction do not terminate.

Thus, every variable z is associated with a finite discrete domain dom(z) and
an initial value z◦ ∈ dom(z). Let V = {z0, . . . , zn} be the set of variables with
combined domain dom(V ) = dom(z0)× · · · × dom(zn). An element v̂ of dom(V ) is
also considered as a valuation that assigns to each variable z ∈ V a value v̂(z) ∈
dom(z), and by extension a truth value to each update. The initial valuation is
V ◦ ∈ dom(V ) with V ◦(z) = z◦ for each z ∈ V .

A second set of variables, called next-state variables and denoted V ′ = { z′ |
z ∈ V } is used to describe the values of the variables after a transition. Variables
in V are also referred to as current-state variables to differentiate them from the
next-state variables in V ′. The next-state variable z′ has the same domain as its
current-state variable z. Given v̂ ∈ dom(V ), the valuation v̂′ ∈ dom(V ′) is defined
by v̂′(z′) = v̂(z) for all z ∈ V . For an update p ∈ Π, the term vars(p) denotes the
set of all variables with a free occurrence as current-state or next-state variable
in p, and vars′(p) denotes the set of all variables whose corresponding next-state
variables have a free occurrence in p. For example, if p ≡ ∃z x′ = y + z + 1, then
vars(p) = {x, y} and vars′(p) = {x}. Here and in the following, the relation ≡
denotes syntactic identity of updates to avoid ambiguity when an update contains
the equality symbol =.
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α : z = 1

α : z = 2

β : z′ = z + 1

α : z′ = 3

Fig. 1 An EFSM with a variable z, where dom(z) = {0, . . . , 5} and z◦ = 0.

An update p ∈ Π is satisfiable if it is true for at least one valuation of its
variables, i.e., if there is a valuation v̂ ∈ dom(V ∪ V ′) such that v̂(p) = true.
Otherwise the update p is unsatisfiable. An update p is valid if it is true for all
valuations of its variables, i.e., if v̂(p) = true for every valuation v̂. The restriction

of a valuation v̂ ∈ dom(V ) to W ⊆ V is v̂↾W ∈ dom(W ) with v̂↾W (z) = v̂(z)
for all z ∈ W . Two valuations v̂ ∈ dom(V ) and ŵ ∈ dom(W ) can be combined
by functional override to give v̂ ⊳− ŵ ∈ dom(V ∪W ) where (v̂ ⊳− ŵ)(z) = v̂(z) for
z ∈ V \W and (v̂ ⊳− ŵ)(z) = ŵ(z) for z ∈W .

3.2 EFSM Definition

Definition 1 An Extended finite-state machine (EFSM) is a tuple F = 〈Σ,Q,Q◦,

→〉, where Σ is a finite set of events, Q is a finite set of locations, Q◦ ⊆ Q is the
set of initial locations, and → ⊆ Q ×Σ ×Π ×Q is the extended transition relation.

A transition between locations x, y ∈ Q with event σ ∈ Σ and update p ∈ Π

is written x
σ:p
−−→ y. The behaviour of an EFSM does not only involve changes of

locations, but the EFSM also maintains a current valuation of all the variables that

appear on its transitions, starting from their initial values. A transition x
σ:p
−−→ y

can occur if the EFSM is in location x and the update p evaluates to true under
the current valuation. When it occurs, the EFSM changes its location to y and
the variables in vars′(p) are updated in accordance with p, while variables not

in vars′(p) remain unchanged. More precisely, the transition x
σ:p
−−→ y can occur if

there exists a valuation of the variables in vars′(p) such that p becomes true for
these next-state values in combination with the current values of the current-state
variables in p. Any such valuation of the variables in vars′(p), extended with the
current-state values of the unchanged variables gives a possible new valuation after
execution of the transition.

When an EFSM is part of a larger system, the transition relation is concep-
tually extended for events not in the event set of the EFSM, i.e., for σ /∈ Σ, by

defining x
σ:true
−−−−→ x for all locations x ∈ Q. That is, events not in the event set can

occur at any time without any location or variable changes.

Example 1 Consider the EFSM F in Fig. 1, which has only one variable z with
domain dom(z) = {0, . . . , 5} and initial value z◦ = 0. The update z′ = z+1 of the
β-transition changes the variable z by adding z to its current value, if it currently
is less than 5. Otherwise (if z = 5) the transition is disabled. The update z = 2
disables its transition unless z = 2 currently, and the value of z after the transition
is unchanged if the transition is taken. Differently, the update z′ = 3 always enables
its transition, and the value of z after the transition is forced to be 3.
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Given an EFSM F = 〈Σ,Q,Q◦,→〉 and event σ ∈ Σ, the referenced variable set

is vars(F, σ) =
⋃

{ vars(p) | x
σ:p
−−→ y }. Furthermore, vars(F,Σ′) =

⋃

σ∈Σ′ vars(F, σ)
for a set of events Σ′ ⊆ Σ, and then vars(F ) = vars(F,Σ) is the set of all variables
in F . Furthermore, for a set F of EFSMs, vars(F , σ) =

⋃

F ′∈F vars(F ′, σ) and
vars(F ) =

⋃

F ′∈F vars(F ′). Analogous notation is defined for vars′.
This paper imposes some restrictions on system models, which are needed for

the modularity results.

Definition 2 [12] Let F = 〈Σ,Q,Q◦,→〉 be an EFSM.

(i) F is next-state variable normalised (vars′-normalised for short) if, for any two

transitions x1
σ:p1

−−−→ y1 and x2
σ:p2

−−−→ y2 with the same event σ ∈ Σ, it holds
that vars′(p1) = vars′(p2).

(ii) F is pure if vars′(F ) = ∅.

(iii) F is location-deterministic if |Q◦| ≤ 1, and for all transitions x
σ:p1

−−−→ y1 and

x
σ:p2

−−−→ y2 such that p1 ∧ p2 is satisfiable, it holds that y1 = y2.

In a next-state variable normalised EFSM, if an event is associated with differ-
ent updates on different transitions, the set of variables changed by these updates
is always the same. This assumption helps to identify the implicitly unchanged
variables after synchronous composition. Next-state variable normalisation is a
weaker property than normalisation [16], which requires transitions with the same
event to have identical updates. Still, a process similar to normalisation [16] can
be used to transform every EFSM into a vars′-normalised EFSM that is equivalent
up to the renaming of some events.

A pure EFSM does not include any next-state variables in its updates. It cannot
assign any variables and only restricts events. This is a stronger condition than
normalisation: every pure EFSM is also vars′-normalised.

There are different notions of determinism that can be applied to EFSMs,
e.g., in [25] it is required that all locations and variable values after a transition
are uniquely determined for a given event and valuation of variables. Location-
determinism is a weaker condition that only ensures that the target locations are
uniquely determined from the source location, event, and valuation. This condition
is sufficient for supervisors to track the location of the plant by the observation of
events and variable values.

Example 2 Consider again the EFSM F in Fig. 1. This EFSM is not vars′-
normalised, because it has α-transitions with updates z = 1 and z′ = 3, and
vars′(z = 1) = ∅ 6= {z} = vars′(z′ = 3). That is, some α-transitions explicitly
change z while others leave z implicitly unchanged. The EFSM F is also not pure,
for example vars′(z′ = 3) 6= ∅.

On the other hand, F is location-deterministic: although there are two α-tran-
sitions with different targets originating from the initial location, the dependence
of the guards on the value of z ensures that these transitions cannot be enabled at
the same time. The conjunction z = 1 ∧ z = 2 is unsatisfiable as z can never have
both the values 1 and 2.

In this paper, plants are modelled by vars′-normalised location-deterministic
EFSMs, while specifications are pure location-deterministic EFSMs. The synthe-
sised supervisor is also vars′-normalised and location-deterministic but, unlike the
specification, not necessarily pure so that it can restrict variables.
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An EFSM F = 〈Σ,Q,Q◦,→〉 can be unfolded [16,28] and interpreted as an FSM
with state set Q × dom(vars(F )). The states (x, v̂) consist of a location x ∈ Q and
a valuation v̂ ∈ dom(vars(F )). More specifically, the unfolded transition relation
is defined as follows.

Definition 3 Let F = 〈Σ,Q,Q◦,→〉 be an EFSM, and let V ⊇ vars(F ). The
unfolded transition relation → ⊆ (Q × dom(V ))×Σ × (Q × dom(V )) is defined such

that (x, v̂)
σ
→ (y, ŵ) if and only if there exists a transition x

σ:p
−−→ y in F such that

(v̂ ⊳− ŵ′)(p) is true and v̂(z) = ŵ(z) for all variables z ∈ V \ vars′(p).

Thus, an unfolded transition between two states (x, v̂)
σ
→ (y, ŵ) exists if F

contains a transition x
σ:p
−−→ y such that the update p is true, if the current-state

variables are interpreted according to v̂ and the next-state variables according
to ŵ, and all variables that do not appear as next-state variables in the update p

are unchanged between v̂ and ŵ. This transition relation is extended to events
not in the EFSM’s event set Σ, which are always enabled without changing the
EFSM’s location or any variables.

The → notation is extended to traces, state sets, and EFSMs in the same way
as for FSMs. For example, a transition sequence

(x0, v̂0)
σ1→ (x1, v̂1)

σ2→ · · ·
σn→ (xn, v̂n) (4)

is written (x0, v̂0)
s
→ (xn, v̂n) for s = σ1 · · ·σn. This transition sequence is a path

in F if it starts in an initial location of F and with initial variable values, i.e., if
x0 ∈ Q◦ and v̂0 = V ◦, which is also written as F

s
→ (xn, v̂n). Based on this, the

set of accessible states of an EFSM F is

Qacc(F ) = { (x, v̂) ∈ Q × dom(vars(F )) | F
s
→ (x, v̂) for some s ∈ Σ∗ } . (5)

For the control of an EFSM, it is of interest to restrict its behaviour to a subset
X ⊆ Q× dom(V ) of its unfolded states.

Definition 4 Let F = 〈Σ,Q,Q◦,→〉 be an EFSM with V = vars(F ), and let

X ⊆ Q × dom(V ). The valuations to restrict a transition x
σ:p
−−→ y to X are:

RX [x
σ:p
−−→ y] = { (v̂, ŵ) ∈ dom(V ) × dom(V ) | (v̂ ⊳− ŵ′)(p) = true and

v̂↾V \vars′(p) = ŵ↾V \vars′(p) and (y, ŵ) ∈ X } .
(6)

The restriction relation contains pairs of valuations v̂ before the transition and
ŵ after the transition, which are consistent with the unfolded transition relation,
(x, v̂)

σ
→ (y, ŵ), and where the system satisfies the constraints imposed by X after

the transition. By converting this relation to an update formula, a restricted EFSM
can be constructed symbolically.

Definition 5 Let F = 〈Σ,Q,Q◦,→〉 be an EFSM with V = vars(F ), and let
X ⊆ Q × dom(V ). The symbolic restriction of F to X is an EFSM F ↾ X =
〈Σ,Q|X , Q◦

|X ,→|X〉, where

Q|X = {x ∈ Q | (x, v̂) ∈ X for some v̂ ∈ dom(V ) } ; (7)

Q◦
|X = {x◦ ∈ Q◦ | (x◦, V ◦) ∈ X } ; (8)
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and x
σ:R
−−−→|X y, if x, y ∈ Q|X and x

σ:p
−−→ y, and R ∈ Π is an update with vars(R) ⊆

V and vars′(R) ⊆ vars′(p) such that (v̂ ⊳− ŵ′)(R) = true if and only if (v̂, ŵ) ∈

RX [x
σ:p
−−→ y] for all valuations v̂, ŵ ∈ dom(V ).

Example 3 Consider an EFSM with variables y and z, both with domain {0, 1, 2},
and a transition

a
σ:z′=z−1
−−−−−−−→ b . (9)

Assume the EFSM is to be restricted to ensure y = z = 0 whenever the system is
in location b. This restriction is defined by the set X ⊆ Q× dom(y)× dom(z) with
X = {(b, 0, 0)} ∪ ((Q \ {b})× dom(y)× dom(z)). As y = z = 0 must hold after the
transition (9), which leaves y unchanged, it is clear that y = 0 and z = 1 before
the transition. Based on (6), there is only one pair of valuations allowed for the
restricted transition,

RX [a
σ:z′=z−1
−−−−−−−→ b] = {((0, 1), (0, 0))} . (10)

If an EFSM representing the restriction to X is to be constructed, the set of
valuations (10) is written as an update formula using only primed variables that
appear in (9). As an example, this transition can be replaced by

a
σ:y=0∧z=1∧z′=0
−−−−−−−−−−−−→|X b . (11)

The transition (11) can only be taken when y = 0 and z = 1, thus ensuring
y = z = 0 when the system enters location b.

Although not unique, it is always possible to construct a formula R that

matches RX [x
σ:p
−−→ y], e.g., conjunctive normal form [8]. In the following it is as-

sumed that the symbolic restriction is obtained deterministically by an appropriate
algorithm.

3.3 Synchronous Composition

EFSMs are composed using lock-step synchronisation on shared events, like ordi-
nary FSMs, but in addition the updates are combined by conjunction.

Definition 6 The synchronous composition of two EFSMs F1 = 〈Σ1, Q1, Q
◦
1,→1〉

and F2 = 〈Σ2, Q2, Q
◦
2,→2〉 is

F1 ‖ F2 = 〈Σ1 ∪Σ2, Q1 ×Q2, Q
◦
1 ×Q◦

2,→〉 , (12)

where (x1, x2)
σ:p1∧p2

−−−−−→ (y1, y2) if x1
σ:p1

−−−→1 y1 and x2
σ:p2

−−−→2 y2.

This definition captures EFSMs with different event sets through the extended

definition of the transition relation. For example, if x1
σ:p
−−→1 y1 in F1 and F2 does

not synchronise on this event, σ /∈ Σ2, then the extended transition relation of F2

includes x2
σ:true
−−−−→2 x2 for every location x2 ∈ Q2. This results in synchronised

transitions (x1, x2)
σ:p∧true
−−−−−−→ (y1, x2), or equivalently (x1, x2)

σ:p
−−→ (y1, x2), in F1 ‖

F2.
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As a result of the conjunctive combination of updates, they may cancel each

other out. For example, if x1
σ:z′=0
−−−−−→1 y1 in F1 and x2

σ:z′=1
−−−−−→2 y2 in F2, then

the conjunction z′ = 0 ∧ z′ = 1 is unsatisfiable, or equivalently there is no such
transition in the final composed system. Synchronous composition can override

the assumption of implicitly unchanged variables in an EFSM. If x1
σ:z=0
−−−−→1 y1

and x2
σ:z′=z+1
−−−−−−−→2 y2, e.g., then (x1, x2)

σ:z=0∧z′=z+1
−−−−−−−−−−−→ (y1, y2). So the value of z

changes from 0 to 1 in F1 ‖ F2 although implicitly unchanged in F1.

EFSM synchronous composition is associative and commutative, apart from
the renaming of locations and rewriting of updates into equivalent formulas. Syn-
chronous composition is not idempotent as F ‖ F = F does not generally hold
for non-deterministic state machines. If F is a location-deterministic EFSM, then
F ‖F = F holds up to isomorphism, after deletion of transitions with unsatisfiable
updates and inaccessible locations.

This paper considers systems modelled as the synchronous composition of sev-
eral EFSMs. Then the model consists of a set of EFSMs, F = {F1, . . . , Fn}, and the
notation

∥

∥(F) = F1 ‖ · · · ‖ Fn denotes their synchronous composition. As a special
case,

∥

∥(∅) = 〈∅, {x◦}, {x◦}, ∅〉 is the neutral element of synchronous composition.
This is a one-location EFSM without events, which by definition accepts all events
without changing its location or assigning any variables.

The following lemma describes a criterion to determine the presence of a tran-
sition in the unfolded transition relation of a synchronous composition. Such a
transition exists if each of the composed EFSMs has a transition whose update
evaluates to true, and the variables that do not appear as next-state variables in
any of these updates are unchanged.

Lemma 2 Let F1, . . . , Fn be EFSMs, V ⊇ vars(F1) ∪ · · · ∪ vars(Fn), and v̂, ŵ ∈

dom(V ). Then

(x1, . . . , xn, v̂)
σ
→ (y1, . . . , yn, ŵ) in F1 ‖ · · · ‖ Fn (13)

if and only if xi
σ:pi

−−−→ yi in each Fi, with (v̂⊳− ŵ′)(pi) = true and v̂↾U = ŵ↾U where
U = V \ (vars′(p1) ∪ · · · ∪ vars

′(pn)).

The proof of this lemma is immediate from Defs. 3 and 6 as the EFSM F1 ‖

· · · ‖ Fn must contain a transition (x1, . . . , xn, v̂)
σ:p1∧···∧pn

−−−−−−−−→ (y1, . . . , yn, ŵ), with
the variables not appearing primed in the updates remaining unchanged. Under
the assumption of vars′-normalisation, the set U of unchanged variables can also
be written as U = V \ (vars′(F1, σ) ∪ · · · ∪ vars

′(Fn, σ)). Note that if the event σ is

not in the event set of some Fi, then by definition xi
σ:true
−−−−→ xi.

3.4 Behavioural Inclusion

When comparing EFSMs, variables must be considered in addition to events, so
the following notion of behavioural inclusion replaces language inclusion as used
for FSMs.
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Definition 7 An EFSM F1 is behaviourally included in another EFSM F2, written
F1 ⊆v F2, if for every path

(x0, v̂0)
σ1→ (x1, v̂1)

σ2→ · · ·
σn→ (xn, v̂n) in F1 (14)

with v̂i ∈ dom(vars(F1) ∪ vars(F2)), there exists a path

(y0, v̂0)
σ1→ (y1, v̂1)

σ2→ · · ·
σn→ (yn, v̂n) in F2 . (15)

If F1 is behaviourally included in F2 then every path in F1 corresponds to a
path in F2 with the same events and valuations of variables. Variables not present
in F1 remain unchanged by F1 according to Def. 3, and as a consequence must
also be unchanged in F2. This semantics of implicitly unchanged variables makes
behavioural inclusion of EFSMs different from language inclusion of FSMs, and
several intuitively expected properties do not hold. The properties of behavioural
inclusion as defined above are investigated in [13]. Most importantly, the relation
is reflexive and transitive.

Lemma 3 [13] Let A, B, and C be EFSMs. Then the following properties hold.

(i) A ⊆v A.
(ii) If A ⊆v B and B ⊆v C then A ⊆v C.

3.5 Controllability and Synthesis

For the supervisory control of EFSM systems, this paper assumes that the vari-
ables are part of the plant [12]. The plant is modelled by a set of vars′-normalised
EFSMs that represent the possible system behaviour including all possible variable
changes. The specification is modelled by one or more pure EFSMs, which only
restrict the occurrence of events. The supervisor can also restrict variable changes
associated with controllable events. The following definition of controllability cov-
ers specifications and supervisors.

Definition 8 [12] Let G = 〈ΣG, QG, Q◦
G,→G〉 and E = 〈ΣE , QE , Q◦

E ,→E〉 be
two EFSMs, and let Σu be a set of events. E is Σu-controllable w.r.t. G, if for all
valuations v̂, ŵ ∈ dom(vars(G)∪ vars(E)), all states (xG, xE , v̂) ∈ Qacc(G ‖E), and

all transitions (xG, v̂)
µ
→ (yG, ŵ) in G such that µ ∈ Σu, there exists a location yE

of E such that (xG, xE , v̂)
µ
→ (yG, yE , ŵ) in G ‖ E.

Σu-controllability means that, from any accessible state in the synchronous
composition of the plant G and specification E, if an uncontrollable event µ ∈ Σu

is eligible in the plant, then it is also eligible in the specification. In addition,
any valuation of next-state variables allowed by the plant must remain possible,
either by a pure specification following the plant, or by a supervisor making only

consistent changes. The condition (xG, xE , v̂)
µ
→ (yG, yE , ŵ) is applied to the syn-

chronous composition G‖E, so it requires the plant and specification to be able to
take the transition together. This allows a pure specification to follow the plant’s
valuation of next-state variables.

In the case that an uncontrollable event is not mentioned in the plant, µ /∈

ΣG, based on the extended definition of the transition relation, the transition
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is always possible in the plant and does not change variables. In order to be
controllable, the specification must always enable µ without changing any variables
on its occurrence.

Remark 1 Given a plant G and pure specification E, it can be assumed without
loss of generality that vars(E) ⊆ vars(G). This is because any variable z that ap-
pears only in E and not in G, cannot appear as next-state variable in G or E

as vars′(E) = ∅. This variable z remains unchanged on all transitions of the syn-
chronous composition G ‖ E, so all its occurrences can be replaced by a constant
representing its initial value z◦, resulting in an EFSM system with equivalent
behaviour.

If a specification is not controllable, synthesis is used to find a supervisor. Unlike
the specification, the supervisor may include next-state variables on its updates.
Thus, the supervisor can disable (controllable) events completely or under cer-
tain circumstances, and it can restrict the possible values of variables after a
controllable transition.

Definition 9 Let G and E be two EFSMs, and let Σu be a set of events. A supremal

supervisor for E w.r.t. G and Σu is an EFSM S such that

(i) G ‖ S ⊆v G ‖ E;

(ii) S is Σu-controllable w.r.t. G;

(iii) For any EFSM S′ that satisfies (i) and (ii), it holds that G ‖ S′ ⊆v G ‖ S.

Def. 9 characterises the possible synthesis results for a plant G and specifica-
tion E. A correct supervisor must satisfy the specification through behavioural
inclusion after composition with the plant (i), and it must be controllable (ii).
It also must be least restrictive or supremal, i.e., any other controllable supervisor
for the specification has less possible behaviour, again in composition with the
plant (iii).

A supervisor satisfying these three conditions can be computed by means of a
standard fixpoint iteration on the unfolded state set of G ‖ E, using the following
operator.

Definition 10 [11] Let G = 〈ΣG, QG, Q◦
G,→G〉 and E = 〈ΣE , QE , Q◦

E ,→E〉 be
two EFSMs, let V = vars(G)∪vars(E), and let Σu be a set of events. The extended

synthesis step operator ΘG,E,Σu
: 2QG×QE×dom(V ) → 2QG×QE×dom(V ) w.r.t. G, E,

and Σu is defined as

ΘG,E,Σu
(X) = { (xG, xE , v̂) ∈ QG×QE×dom(V ) | if (xG, v̂)

µ
→ (yG, ŵ) for

some µ ∈ Σu and ŵ ∈ dom(V ), then there exists yE ∈ QE

such that (xG, xE , v̂)
µ
→ (yG, yE , ŵ) ∈ X } .

(16)

For a set X of combinations of locations and valuations of variables, the op-
erator ΘG,E,Σu

removes from X any uncontrollable states, i.e., states where the
plant enables some uncontrollable transition not enabled by the specification, and
any states from where the system could uncontrollably reach some combination
of location and valuation not contained in X. The operator ΘG,E,Σu

is monotonic
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and has a greatest fixpoint Θ̂G,E,Σu
according to the Knaster-Tarski theorem [26].

In the finite-state case, this fixpoint is calculated as the limit of the iteration

X0 = QQ ×QE × dom(V ) ; (17)

Xj+1 = ΘG,E,Σu
(Xj) . (18)

The result of EFSM synthesis is then obtained by restricting the system to this
fixpoint.

Definition 11 [11] Let G and E be two EFSMs, and let Σu be a set of events.
The supremal Σu-controllable sub-EFSM of G and E is

supC(G,E,Σu) = (G ‖ E) ↾ Θ̂G,E,Σu
, (19)

where Θ̂G,E,Σu
is the greatest fixpoint of the operator ΘG,E,Σu

from Def. 10.

It is shown in [11,13] that this operation indeed gives a correct synthesis result
according to Def. 9. Care must be taken, as the definition compares the supervisors
after composition with the plant, and this requires location-determinism and vars′-
normalisation to ensure synchrony of the states. The correctness result is stated
as follows.

Proposition 4 [11, 13] Let G and E be location-deterministic EFSMs such that
G is vars′-normalised, and let Σu be a set of events. Then supC(G,E,Σu) is a
supremal supervisor for E w.r.t. G and Σu.

Given this result, the iteration defined by (17) and (18) can be used to compute
the largest set of states Θ̂G,E,Σu

that can be allowed by any controllable super-
visor, and from there the supervisor can be constructed. Although the definitions
are based on explicit state sets, the locations and valuations can be encoded sym-
bolically, e.g. using BDDs [3], to avoid the overhead of explicit state enumeration.

3.6 Chaos Abstraction

This paper is concerned with methods to modify or rewrite EFSMs or systems of
composed EFSMs to simplify them and make synthesis procedures more efficient.
Ordinary FSMs have useful modularity properties, according to which synchronous
composition of a state machine with another only ever restricts the behaviour [2].
This makes it possible, for example, to remove components from a synchronous
composition while preserving safety properties such as controllability, i.e., the con-
trollability w.r.t. a part of the plant implies controllability w.r.t. the entire plant.

EFSMs do not have this property. When they are combined in synchronous
composition, new next-state variables can be added to transitions, possibly chang-
ing variables that were implicitly unchanged. To obtain modularity properties
similar to those known for FSMs, one solution [12] is to replace the parts of the
system not considered in a synthesis attempt by an abstraction that includes all
possible variable changes. This abstraction is called chaos EFSM.

Definition 12 [12] Given an event σ and a variable z, the chaos EFSM for σ and z

is
chaos(σ, z) = 〈{σ}, {c}, {c}, {(c, σ, z′ = ∗, c)}〉 . (20)
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c σ : z′ = ∗

Fig. 2 The EFSM chaos(σ, z).

The EFSM chaos(σ, z) is shown in Fig. 2. The update z′ = ∗ means that the
variable z can assume any value from its domain in the next state. Formally, this
update is true for all valuations, but it includes the next-state variable z′ so that
z is no longer implicitly unchanged.

In the synchronous composition F1‖F2 of two EFSMs, some variables in F1 may
be changed by transitions in F2. A variable z can be changed after composition of a
transition in F1 that does not mention z′ with a transition in F2 that mentions z′;
or by a transition with an event that only appears in F2. By inspection of the
next-state variables on the transitions of F2, it can be determined that certain
variables are not changed in F2, or are only changed on the occurrence of certain
events. The following Lemma 5 shows how to identify the specific chaos EFSMs
to capture possible variable changes in another EFSM.

Lemma 5 [12] Let F1 = 〈Σ1, Q1, Q
◦
1,→1〉 and F2 = 〈Σ2, Q2, Q

◦
2,→2〉 be two

EFSMs, and let

C =
∥

∥({ chaos(σ, z) | z ∈ vars(F1) ∩ vars
′(F2, σ) }) . (21)

If (x1, x2, v̂)
σ
→ (y1, y2, ŵ) in F1 ‖ F2 then (x1, c, v̂↾vars(F1))

σ
→ (y1, c, ŵ↾vars(F1)) in

F1 ‖ C, where c is the single location of C.

In a synchronous composition F1 ‖ F2, the chaos abstraction of F2 as defined
by (21) is the composition of chaos EFSMs for variables in F1 and events with tran-
sitions assigning to these variables in F2. The condition z ∈ vars(F1)∩ vars

′(F2, σ)
in (21) can only hold for variables shared between F1 and F2 and for events of F2,
so that the construction can be restricted to σ ∈ Σ2. The composition C of these
chaos EFSMs is a one-state EFSM with selfloop transitions σ : z′ = ∗ for all events
σ ∈ Σ2 and variables z ∈ vars(F1)∩vars

′(F2, σ). Lemma 5 allows F2 to be replaced
by this chaos EFSM C, such that all transitions in the composition F1 ‖ F2 are
also possible in the abstraction F1 ‖ C.

3.7 Existential Abstraction

An important feature of the results in this paper is the ability to simplify EFSMs
through variable abstraction [28] using the existential quantifier. If p ∈ Π is an
update and z is a variable, then ∃z p is an update that is true if and only if p can
be made true by choosing some value for the variable z from its domain. That is,
the range of quantification is always limited to the defined domain of the quantified
variable.

In this paper, quantification is generalised to sets of variables as follows. For
W = {z0, z1, . . . , zn}, it is defined that

∃W p ≡ ∃z0∃z
′
0∃z1∃z

′
1 · · · ∃zn∃z

′
n p ; (22)

∃W ′ p ≡ ∃z′0∃z
′
1 · · · ∃z

′
n p . (23)
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σ : y = 0σ : y = 1

σ : y′ = 1 ∧ z′ = yσ : y′ = 0 ∧ z′ = y

Fig. 3 Example of always enabled and unconstrained events, where dom(y) = dom(z) = {0, 1}
and y◦ = z◦ = 0.

That is, an update is quantified over variable set W by quantifying over both the
current-state and next-state variables of W . Differently, quantification over W ′

means to quantify over the next-state variables only. The same notation is intro-
duced for the universal quantifier, so ∀W p is true if and only if p is true for all
possible values of the current and next-state variables of W .

An EFSM is abstracted by existentially quantifying the updates on all the
transitions.

Definition 13 [28] Let F = 〈Σ,Q,Q◦,→〉 be an EFSM, and let W be a set of
variables. The existential abstraction of F with respect to W is the EFSM ∃W F =

〈Σ,Q,Q◦,→∃〉 where x
σ:∃W p
−−−−−→∃ y in ∃W F if and only if x

σ:p
−−→ y in F .

The existential abstraction of a set F = {F1, . . . , Fn} of EFSMs is the set
∃W F = {∃W F1, . . . , ∃W Fn} of the abstractions of the individual EFSMs.

Existential abstraction results in an EFSM that is independent of the quantified
variables, i.e., vars(∃W F ) ∩W = ∅. A transition in the abstraction is possible if
there exist values for the quantified variables to make the update in the original
EFSM F true. It is clear that existential abstraction preserves the EFSM properties
of vars′-normalisation and purity. Location-determinism is not preserved, however,
so it has to be required explicitly that an abstraction is location-deterministic in
order for it to be used in synthesis.

Another concept related to existential quantification is that of always enabled
events. An event in an ordinary FSM is always enabled if it has a transition from
every state. Algorithm 1 uses this idea to avoid plants that never disable the
uncontrollable events in question. With EFSMs, it may additionally be of interest
that the event is enabled for all values of variables. The following definition requires
an event that is enabled for all current-state values and some next-state values of
the variables, while the next-state values for other variables only need to exist.

Definition 14 [12] Let F = 〈Σ,Q,Q◦,→〉 be an EFSM, and let W ⊆ vars(F ).
An event σ ∈ Σ is always enabled in F w.r.t. W if for all locations x ∈ Q with
σ-transitions

x
σ:p1

−−−→ y1 · · · x
σ:pn

−−−→ yn (24)

the formula
∃W ′ (p1 ∨ · · · ∨ pn) (25)

is valid. An event set Σ′ ⊆ Σ is always enabled in F w.r.t. W if every event σ ∈ Σ′

has this property.

Example 4 Consider the EFSM F in Fig. 3 with dom(y) = dom(z) = {0, 1}.
Event σ is always enabled in F w.r.t. W1 = {y, z}, because independently of the
current value of the variables y and z, it is always possible to choose values for y
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and z such that some other location can be reached. But σ is not always enabled
w.r.t. W2 = {y}, because the update y′ = 0 ∧ z′ = y is not possible when the
next value of z is constrained to be different from the current value of y through
synchronisation with some other component. Formally, ∃y′ (y′ = 0 ∧ z′ = y) is not
valid because, if y = 1 and z′ = 0 then it can never be that z′ = y.

The following definition introduces the related but slightly different condition
of unconstrained events, whose enablement does not depend on certain variables.

Definition 15 Let F = 〈Σ,Q,Q◦,→〉 be an EFSM, and let W ⊆ vars(F ). An

event σ ∈ Σ is unconstrained in F w.r.t. W if, for all transitions x
σ:p
−−→ y in F the

formula

∃Wp⇒ ∀W∃W ′p (26)

is valid. An event set Σ′ ⊆ Σ is unconstrained in F w.r.t. W if every event σ ∈ Σ′

has this property.

The symbol ⇒ in (26) denotes logical implication [8]. By convention (22) the
quantification ∃W and ∀W is over both current-state and next-state variables, but
in ∀W∃W ′ the universal quantification of the next-state variables is immediately
overridden by ∃W ′.

An update is unconstrained by a variable z if, in all cases where the update
formula is true for some value of z, then it is also true for all other values of z in
the current state, but possibly with different values of z′ in the next state. While
an always enabled event is enabled in every location, an unconstrained event, if it
is enabled, is enabled independently of given variables.

Example 5 Consider again the EFSM F in Fig. 3. The event σ is not uncon-
strained w.r.t. W1 = {y}, because the update y = 1 is possible when y = 1, so
∃y∃y′ y = 1 or equivalently ∃y y = 1 is true, but not for all other values of y,
namely ∀y∃y′ y = 1 or equivalently ∀y y = 1 is not true. But σ is unconstrained
w.r.t. W2 = {z}, because all the transitions are enabled independently of the cur-
rent value of z. That is, if a transition is enabled for some current-state value
of z, then the transition can also be taken for all other values of z, possibly with
different values for z′ in the next state.

4 Abstraction of EFSMs in Modular Synthesis

This section proposes modular synthesis algorithms for composed EFSM systems.
In general, the plant and specification consist of several EFSMs each, and the
goal is to compute a least restrictive supervisor for the composed specification
E = E1 ‖ · · · ‖ Ek w.r.t. the composed plant G = G1 ‖ · · · ‖ Gm. As indicated in
Section 3.2, all the EFSMs are assumed to be location-deterministic and vars′-
normalised, and the specifications are in addition assumed to be pure.

To simplify the synthesis task, it is of interest to simplify both the plant and
specification by reducing the number of components and by simplifying individual
components through abstraction. It is known from modularity results for FSMs [2]
and EFSMs [12] that the synthesis problem can be simplified by considering only
one specification at a time, and the opportunities for simplification and abstraction
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can be investigated separately for the plant and specification. Consequently, the
following Section 4.1 starts by considering abstraction of the plant under the as-
sumption that the specification consists of only one component. Later, Section 4.2
shows how a single specification can be simplified by abstraction, and finally Sec-
tion 4.3 combines and generalises the results for synthesis with multiple specifica-
tions.

4.1 Abstracting the Plant

This section considers the possibilities of abstraction of the plant. It is assumed
that the plant is defined as the synchronous composition of a set G = {G1, . . . , Gm}

of vars′-normalised location-deterministic EFSMs, and the specification is given by
a single pure location-deterministic EFSM E.

The idea of modular synthesis for FSMs as proposed in Algorithm 1 is to
simplify the plant G = {G1, . . . , Gm} by selecting some of its components, and
discarding the others, in such a way that the result is equivalent to that of synthesis
w.r.t. the complete plant. In the EFSM setting, this is now generalised to the
selection of plant components and variables. Algorithm 2 is further developed
from Algorithm 1 for modular FSM synthesis by considering EFSMs, and also
from the modular EFSM synthesis algorithm [12], in that it considers existential
abstraction of variables in addition to component selection and chaos abstraction.

Similarly to Algorithm 1, the idea is to gradually increase the sets of plants Gi,
variables V i, and uncontrollable events Σi

u, until it is guaranteed that the optimal
result has been found. At each iteration, the algorithm considers sets of plants Gi ⊆
G and variables V i ⊆ vars(G) ∪ vars(E), and also uncontrollable events Σi

u ⊆ Σu.
Throughout the algorithm, Ḡi and V̄ i are always the complements of Gi and V i.

Initially, Algorithm 2 performs synthesis using only the specification E and its
variables, as G0 = ∅ (line 3) and V 0 = vars(E) (line 4). Following Lemma 5, the
plants Ḡ0 = G are replaced by chaos EFSMs C0 for the included variables (line 5).
The set of uncontrollable events Σ0

u is initially empty (line 2), i.e., synthesis is
first performed under the pretence that all events are controllable. In this case,
the synthesis result S0 is equal to the specification E (line 6).

Therefore, on entering the loop for the first time, the loop entry condition on
line 8 checks whether the specification S0 = E is controllable with respect to only
the chaos EFSM C0 (recall that G0 = ∅), based on the full set Σu of uncontrollable
events. This may succeed if, for example, the specification has only controllable
events, in which case S0 = E is returned as the least restrictive solution. Otherwise
the loop is entered and synthesis is performed w.r.t. increased subsets of plants,
variables, and uncontrollable events, which are computed as follows.

First, line 9 calculates a new set Σi+1
u of uncontrollable events. As the current

supervisor Si is not controllable by the loop entry condition, there must be some
uncontrollable event that is possible in the plant but not in the specification. These
events are called the causes of uncontrollability, as per the following definition.

17



Algorithm 2: Modular abstracting EFSM synthesis for a single specification

Input: vars′-normalised location-deterministic plants G = {G1, . . . , Gm};
pure location-deterministic specification E;
uncontrollable events Σu.

Output: supremal supervisor Sk for
∥

∥(G) w.r.t. E and Σu.

1 V ← vars(G) ∪ vars(E);

2 Σ0
u ← ∅;

3 G0 ← ∅; Ḡ0 ← G ;

4 V 0 ← vars(E); V̄ 0 ← V \ V 0;

5 C0 ← { chaos(σ, v) | v ∈ V 0 ∩ vars′(Ḡ0, σ) };

6 S0 ← E;
7 i← 0;

8 while Si is not Σu-controllable w.r.t.
∥

∥(∃V̄ i Gi) ‖
∥

∥(Ci) do

9 Σi+1
u ← Σi

u ∪ uncont(
∥

∥(∃V̄ i Gi) ‖
∥

∥(Ci), Si, Σu);

10 Choose Gi+1 ⊆ G , V i+1 ⊆ V , Ḡi+1 = G \ Gi+1, and V̄ i+1 = V \ V i+1

such that vars(E) ⊆ V i+1 ⊆ vars(Gi+1) ∪ vars(E)
and Σi+1

u is always enabled in Ḡi+1 w.r.t. V̄ i+1

and Σi+1
u is unconstrained in Gi+1 w.r.t. V̄ i+1

and vars′(Gi+1, µ) ∩ vars′(Ḡi+1, µ) ∩ V̄ i+1 = ∅ for each µ ∈ Σi+1
u

and ∃V̄ i+1 Gi+1 is location-deterministic;
11 Ci+1 ← { chaos(σ, z) | z ∈ V i+1 ∩ vars′(Ḡi+1, σ) };

12 Si+1 ← supC
( ∥

∥(∃V̄ i+1 Gi+1) ‖
∥

∥(Ci+1), E,Σi+1
u

)

;

13 i← i+ 1;

14 end

15 return Si;

Definition 16 Let G and E be two EFSMs, and let Σu be a set of events. The set
of causes of Σu-uncontrollability of E w.r.t. G is the set of events

uncont(G,E,Σu) = {µ ∈ Σu | there exist (xG, xE , v̂) ∈ Qacc(G ‖E) and

(xG, v̂)
µ
→ (xG, ŵ) in G, and there is no location

yE in E such that (xG, xE , v̂)
µ
→ (yG, yE , ŵ) } .

(27)

It follows from Def. 8 that the set of causes of uncontrollability is empty,
uncont(G,E,Σu) = ∅, if and only if G is Σu-controllable w.r.t. E . As the loop
entry condition has found the supervisor Si to be not Σi

u-controllable w.r.t. the
plant abstraction

∥

∥(∃V̄ i Gi) ‖
∥

∥(Ci), there exist some causes of uncontrollability,

which are included in the next set Σi+1
u of uncontrollable events on line 9. This

ensures that they are treated as uncontrollable for the next synthesis attempt. For
other uncontrollable events, the algorithm will continue to pretend that they are
controllable.

Next, line 10 chooses new plants Gi+1 and variables V i+1 to form an improved
approximation. First, all variables used in the specification are retained,

vars(E) ⊆ V i+1 . (28)
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In this section, variables that appear in the specification are not abstracted. Later,
in Section 4.2, it is shown how the amount of variables in the specification can be
reduced by specification abstraction before Algorithm 2 is invoked.

The main part of the logic in Algorithm 2 is the selection of plant components
and variables from them. To ensure a least restrictive synthesis result, all plant
components that can disable some uncontrollable event are included [1,12]. There-
fore it is required that the uncontrollable events must be always enabled by the
plants Ḡi+1 and variables V̄ i+1 not included in synthesis according to Def. 14,

Σi+1
u is always enabled in Ḡi+1 w.r.t. V̄ i+1. (29)

This condition ensures that any plant components that could ever cause disable-
ment of some uncontrollable event from Σi+1

u are included in the abstraction.
Furthermore, all variables that can constrain these uncontrollable events in the
selected plant components Gi+1 must also be included. This can be ensured by
including all variables that appear in the selected plants on transitions with the
selected uncontrollable events, or as weaker condition it is enough that the uncon-
trollable events are unconstrained by the other variables according to Def. 15,

Σi+1
u is unconstrained in Gi+1 w.r.t. V̄ i+1. (30)

In order to consider the conditions (29) and (30) separately for Gi+1 and Ḡi+1, it is
furthermore necessary that there are no conflicting values of the same abstracted
variable. Therefore it is required that Gi+1 and Ḡi+1 do not share these variables
in their primed form,

vars′(Gi+1, µ) ∩ vars′(Ḡi+1, µ) ∩ V̄ i+1 = ∅ for each µ ∈ Σi+1
u . (31)

This condition can be checked separately for each event µ considered as uncon-
trollable in the current iteration.

To summarise, in addition to including all variables from the specification (28),
the selected uncontrollable events must be always enabled (29) in the plants Ḡi+1

not included in the approximation and unconstrained (30) in the plants Gi+1 that
are included, and the two parts Gi+1 and Ḡi+1 of the plant must not use any of the
abstracted variables in their primed form with the same uncontrollable event (31).

The variables not included in V i+1, i.e., those in V̄ i+1, are removed by exis-
tential abstraction. In order for synthesis to be well-defined, the abstraction must
remain location-deterministic. This is ensured by the last condition,

∃V̄ i+1 Gi+1 is location-deterministic . (32)

After the plants and variables for the next step have been chosen, line 11
introduces chaos EFSMs Ci+1 to replace the plants Ḡi+1 that are not included,
such that any possible changes to the included variables V i+1 are reflected in the
abstraction [12].

Then line 12 performs synthesis for the plant abstraction
∥

∥(∃V̄ i+1 Gi+1) ‖
∥

∥(Ci+1) and the chosen set Σi+1
u of uncontrollable events. If the resulting supervi-

sor is controllable w.r.t. the full set Σu of uncontrollable events (line 8), then it is
returned as the result. Otherwise more uncontrollable events need to be included,
resulting in a new plant abstraction. The loop continues until a Σu-controllable
solution is found.
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Line 10 of Algorithm 2 may be difficult to implement as it is not specified how
the plant components Gi+1 and variables V i+1 can be chosen such that conditions
(28)–(32) are satisfied at the same time. A simple approach is to start with the
variables of the specification (28) and the plants that disable an uncontrollable
event from Σi

u in some location (29), and then gradually add more plants and
variables until all conditions are satisfied. The search may be simpler for well-
designed EFSM models in practice, such as the flexible manufacturing system
presented in Section 5 where not all conditions need to be considered.

A formal correctness proof of Algorithm 2 is given in [13]. It is clear that
termination is guaranteed because the set Σi

u of uncontrollable events increases
with every iteration, and it is bounded by the finite set Σu of all uncontrollable
events. In order to see that the algorithm returns a correct result, i.e., that the
supervisor Si returned from line 15 is indeed a supremal supervisor for E w.r.t. G
and Σu, it is first observed from line 12 that

Si = supC
( ∥

∥(∃V̄ i Gi) ‖
∥

∥(Ci), E,Σi
u

)

(33)

is a supremal supervisor for E w.r.t.
∥

∥(∃V̄ i Gi) ‖
∥

∥(Ci) and Σi
u. Then it can be

shown from the properties of the abstraction that, for all i,

Si is a supremal supervisor for E w.r.t. G and Σi
u . (34)

That is, the computed supervisor is supremal not only for the plant abstraction
but also for the original, unabstracted plant G. The controllability of Si and its
inclusion in the specification follow from the fact that this supervisor is computed
w.r.t. an over-approximation of the plant, i.e., because the original plant G is
behaviourally included in its abstraction. The least restrictiveness of Si is more
difficult to ensure, and it depends on the precise conditions (28)–(31) for the choice
of the abstraction.

Once (34) is established, the only difference between Si and the desired result
is the uncontrollable event set: Si is synthesised w.r.t. Σi

u ⊆ Σu. As Si uses fewer
uncontrollable events, it can be shown that it over-approximates the synthesis
result w.r.t. the full uncontrollable event set Σu,

supC(
∥

∥(G), E,Σu) ⊆v Si . (35)

On termination of the loop, Si is not only Σi
u-controllable but also Σu-controllable.

At this point, it follows from (34) and (35) that Si is a supremal supervisor for E

w.r.t. G and Σu.
These observations lead to the following correctness result of Algorithm 2.

Theorem 6 [13] Algorithm 2 terminates, and upon termination the result Si is
a supremal supervisor for E w.r.t.

∥

∥(G) and Σu.

To estimate the time complexity of Algorithm 2, it is first observed that each
iteration of the loop on line 8 must add at least one variable to V i+1 or one plant
component to Gi+1, so the size of the subsystem abstraction increases by at least
one component. Thus, the number of iterations is bounded by the number |G| of
plant components plus the number |V | of variables. In the loop, line 10 requires
several operations to identify and compute existential abstractions, but these can
be performed locally by analysing individual EFSM components rather than their
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synchronous composition. Therefore, the time complexity of the loop body is dom-
inated by the synthesis step on line 12, which is polynomial in the size of the state
space but exponential in the number of components included.

Then the worst-case time complexity of Algorithm 2 is obtained by multiply-
ing the exponential complexity of synthesis on line 12 with the number of plant
components plus variables, |G | + |V |. In the worst case, Algorithm 2 is slower
than ordinary synthesis based on Prop. 4 by a linear factor. However, this worst
case only arises if all the variables and plant components are needed to synthesise
the supervisor. It is more likely that the loop terminates early, in which case the
synthesis is performed with a smaller number of components, resulting in an ex-
ponential reduction of the number of states and the runtime, while multiplying it
by only a linear factor in the number of components and variables. This behaviour
has been observed experimentally for FSM verification [2], and it also occurs in
the example in Section 5 below.

4.2 Abstracting the Specification

This subsection considers the case of a single specification EFSM E, assumed to be
location-deterministic and pure, and a single vars′-normalised and location-deter-
ministic plant EFSM G. The developed results can be combined with Section 4.1
above to perform synthesis for a plant that consists of several EFSM components.
The concern here is whether any variables can be existentially abstracted from the
specification E.

As noted in Remark 1 on page 12, variables that appear only in the pure spec-
ification and not in the plant, can be removed by replacing them with a constant
representing their initial value. This trivial case is not considered further. The
question then is whether any variables shared between the plant and specification
can be existentially abstracted from the specification.

By closely inspecting the synthesis process, it can be observed that only the
updates of the uncontrollable events are relevant for the removal of states. This
suggests the existential quantification of variables that only appear on transitions
with controllable events in the specification. That is, if a set of variables V̄ ⊆

vars(E) does not contain any variables used with uncontrollable events in E,

V̄ ∩ vars(E,Σu) = ∅ , (36)

then it is enough to synthesise for the abstracted specification ∃V̄ E instead of E.
Such synthesis only makes sense for a location-deterministic abstraction, so a sec-
ond assumption is made that

∃V̄ E is location-deterministic . (37)

Then synthesis will ensure that all constraints associated with uncontrollable
events in E are enforced by a controllable supervisor. However, the constraints as-
sociated with controllable events are not properly included in the abstraction ∃V̄ E

and may not be carried forward in the synthesis result. Fortunately, controllable
constraints can easily be enforced in a supervisor without the need for synthesis—
it is enough to use the updates on the controllable transitions in E on the cor-
responding transitions in the synthesis result. Under the assumption of location-

21



determinism, this can be achieved by composing the synthesis result for the ab-
stracted specification with the original specification.

Therefore, to compute a supervisor for a specification E, it is possible to first
find an abstraction ∃V̄ E subject to (36) and (37), and then compute a supervisor
S∃ = supC(G, ∃V̄ E,Σu) for the abstraction, e.g., using Algorithm 2. Then a super-
visor for the original specification is obtained by composing the result S∃ obtained
with the abstraction with the original specification E, i.e.,

S∃ ‖ E is a supremal supervisor for E w.r.t. G and Σu . (38)

The following main result for specification abstraction states that (38) holds under
the assumptions (36) and (37) for every supremal supervisor S∃ for ∃V̄ E w.r.t. G
and Σu.

Theorem 7 [13] Let G and E be EFSMs such that E is pure, let Σu be a set
of events, and let V̄ ⊆ vars(G) ∩ vars(E) such that V̄ ∩ vars(E,Σu) = ∅ and ∃V̄ E

is location-deterministic. If S∃ is a supremal supervisor for ∃V̄ E w.r.t. G and Σu,
then S∃ ‖ E is a supremal supervisor for E w.r.t. G and Σu.

The proof of this result is given in [13]. Inclusion in the specification is clear
because the proposed supervisor S∃ ‖ E includes the specification, and least re-
strictiveness follows because synthesis is done w.r.t. the more liberal specification
∃V̄ E. The crucial issue here is controllability, which depends on the condition (36)
to ensure that the updates associated with uncontrollable events are completely
retained in the abstraction.

To use Theorem 7 for synthesis, one has to find a set V̄ of variables satis-
fying (36) and (37) and compute the abstraction ∃V̄ E. While the variables sat-
isfying (36) are easily found by removing the variables used on transitions with
uncontrollable events in the specification, the requirement (37) of location-deter-
minism is more difficult to ensure algorithmically. A simple solution is to start
with all variables used only on transitions with controllable events in the specifi-
cation, V̄ = vars(E)\vars(E,Σu), and gradually remove variables that cause failure
of ∃V̄ E being location-deterministic, until (37) is satisfied. Once an appropriate
set V̄ of variables for abstraction is found, Algorithm 2 can be used to compute
a synthesis result for supC(G, ∃V̄ E,Σu), which then can be combined with the
specification E to obtain a correct supervisor for the original synthesis problem.

4.3 Synthesis with Multiple Specifications

The results presented in the previous Sections 4.1 and 4.2 show how abstractions
can be used to compute a supervisor for a single specification. In general, the
specification is given in modular form, as a synchronous composition E1‖· · ·‖Ek of
several EFSMs. In this case, it is known [1,2] for ordinary FSMs that synthesis can
be performed separately for each specification, and the resulting supervisors can
be combined to form a least restrictive controllable supervisor for the combined
specification. Under the assumption of pure specifications, these results can be
generalised directly for EFSMs [11,12].

Algorithm 3 uses this idea to synthesise a modular supervisor for an EFSM
system composed of several plants G1 ‖ · · · ‖ Gm and specifications E1 ‖ · · · ‖ Ek,
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Algorithm 3: Modular abstracting EFSM synthesis for multiple specifications

Input: vars′-normalised location-deterministic plants G = {G1, . . . , Gm};
pure specifications E = {E1, . . . , Ek};
uncontrollable events Σu.

Output: collection S of supervisors such that
∥

∥(S) is a supremal supervisor
for

∥

∥(E) w.r.t.
∥

∥(G) and Σu.

1 S ← ∅;
2 foreach Ej ∈ E do

3 Choose V̄j ⊆ vars(Ej) \ vars(Ej , Σu)
such that ∃V̄j Ej is location-deterministic;

4 Calculate Sj using Algorithm 2 with E = ∃V̄j Ej ;
5 S ← S ∪ {Sj , Ej};

6 end

7 return S;

while incorporating the results from Sections 4.1 and 4.2. The loop on line 2
processes each specification Ej , by first abstracting it according to Section 4.2 and
then computing a supervisor using plant abstractions according to Section 4.1.
On line 3, the variables V̄j for abstraction of the specification Ej are chosen to
satisfy assumptions (36) and (37), and then line 4 invokes Algorithm 2 to compute
a supremal supervisor Sj for the specification abstraction ∃V̄j Ej . In this case,
Theorem 7 states that the composition Sj ‖ Ej of the supervisor computed using
the specification abstraction and the original specification is a supremal supervisor,
and therefore both EFSMs Sj and Ej are added to the modular supervisor S on
line 5.

The main argument for the correctness of Algorithm 3 is the observation that
synthesis for a modular specification can be performed separately for each speci-
fication. This known result for ordinary FSMs [1, 2] is easily lifted to EFSMs.

Proposition 8 [13] Let G be a vars′-normalised EFSM, let E1, . . . , Ek be pure
EFSMs for some k ≥ 0, let Σu be a set of events, and let Sj be a supremal
supervisor for Ej w.r.t. G and Σu for j = 1, . . . , k. Then S1 ‖ · · · ‖ Sk is a supremal
supervisor for E1 ‖ · · · ‖ Ek w.r.t. G and Σu.

A proof of this result first appears in [11], and a revised version based on the
modified definition of behavioural inclusion in this paper is given in [13].

The result from Prop. 8 about separate synthesis leads to the correctness of
Algorithm 3. Each iteration in the loop gives a supremal supervisor by Theorems
6 and 7, and then their combination also is a supremal supervisor by Prop. 8. It
is also clear that the algorithm terminates because the loop performs exactly one
iteration for each specification E1, . . . , Ek.

Theorem 9 [13] Algorithm 3 terminates, and upon termination the composition
∥

∥(S) of the results is a supremal supervisor for the composed specification
∥

∥(E)
w.r.t. the composed plant

∥

∥(G) and uncontrollable event set Σu.

To estimate the time complexity of Algorithm 3, it is noted that the loop
on line 2 performs one iteration per specification component, i.e., |E | iterations.
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Fig. 4 Flexible Manufacturing System Layout.

Within the loop, the operations to choose the variable set V̄j and compute the
existential quantification on line 3 only depend on a single component Ej , so
they are dominated by the complexity of executing Algorithm 2 on line 4, which is
exponential in the number of plant components plus variables, |G |+|V |. Multiplying
this by the number |E | of loop iterations, gives the result that the runtime of
Algorithm 3 is exponential in |G | + |V | and linear in |E |. This is an exponential
improvement over ordinary synthesis based on Prop. 4, which is exponential in the
number of components plus variables, i.e., exponential in |G |+ |E |+ |V |.

This completes the exposition of the modular abstraction-based synthesis al-
gorithm for EFSMs and its correctness. Algorithm 3 can be used to compute a
least restrictive supervisor for any combination of vars′-normalised location-deter-
ministic plant and pure location-deterministic specification EFSMs.

5 Flexible Manufacturing System Example

This section applies the proposed synthesis procedure from Algorithm 3 to com-
pute a modular least restrictive controllable supervisor for an EFSM model of a
flexible manufacturing system. This model is a further developed version of an
earlier example [24]. Fig. 4 shows the layout of the system.

Workpieces enter the system through one of two feeders (F1 or F2) and are
placed on the first conveyor (C1), which delivers them to the first production
line (L1). In L1, the workpieces may be processed by the first machine (M1) and
then put on the second conveyor (C2), or they may be put on C2 immediately
without processing. After passing conveyor C2 the workpieces may be processed
by a similar production line (L2) and machine (M2), and after that they are put
on the last conveyor (C3) before exiting the system.

The two feeders deliver two different types of workpieces: F1 delivers type 1
workpieces, and F2 delivers type 2 workpieces. The decision which feeder is used is
outside of the scope of the model. The objective is to control the system in such a
way that type 1 workpieces are only processed by machine M1, and likewise type 2
workpieces are only processed by M2.

The modelling of the different workpiece types is facilitated by the use of
EFSM variables, as demonstrated in the plant model in Fig. 5. The variables c1,
c2, c3, l1, and l2 represent the contents of the conveyors and production lines.
Their domain is {0, 1, 2, 1†, 2†}, where the initial value is 0 and means that the
corresponding conveyor or production line is empty. A value of 1 or 2 indicates the
presence of a raw workpiece of type 1 or 2, and a value of 1† or 2† indicates the
presence of a workpiece of type 1 or 2 that has been processed by its corresponding
machine M1 or M2.
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Fig. 5 Flexible Manufacturing System Plants.
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Fig. 6 Flexible Manufacturing System Specifications.

In the model, uncontrollable events are prefixed with an exclamation mark (!)
to distinguish them from the controllable events. The plant EFSM F1 shows that
feeder F1 can be started controllably with event sf1, then finishes uncontrollably
with event !ff1 and upon finishing puts a type 1 workpiece on conveyor C1 as
indicated by the update c′1 = 1. Plant F2 describes the analogous behaviour of
feeder F2. Similarly, conveyor C1 is started with sc1, and upon finishing with !fc1
its workpiece is put into the first production line, l′1 = c1, and removed from the
conveyor, c′1 = 0. Conveyors C2 and C3 are similar, but in addition remove a
workpiece from the production line in front of them when starting. Production
line L1 is requested to pick up a workpiece with controllable event sl1, and the
completion of the pick-up is indicated by uncontrollable event !wl1 after which the
workpiece is available for machine M1. Then the production line can be requested
to eject the workpiece (el1) and upon completion (!fl1) the workpiece again becomes
available for conveyor C2. Machine M1 can be requested to start processing (sm1),
and when it finishes (!fm1) it changes the workpiece in the production line, l′1 = 1†,
to indicate a processed workpiece of type 1. Production line L2 and machine M2

work in the same way.
Fig. 6 shows specification EFSMs that capture several control requirements for

the flexible manufacturing system. Specification EC1 controls the synchronisation
between the feeders and conveyor C1. Conveyor C1 can only start (sc1) after hav-
ing been loaded with a workpiece, i.e., after one of the feeders has completed (!ff1

or !ff2), and the feeders can only start again after the conveyor has finished (!fc1).
Through the guard c1 6= 0 it is also required that there must be a workpiece on
the conveyor when it finishes. Specification EL1a rules out overflow of production
line L1, because conveyor C1 is only allowed to deliver a workpiece (!fc1) when
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the line is empty, l1 = 0. Specification EL1b requires that only unprocessed type 1
workpiece may enter production line L1. Specifications EM1a and EM1b require
that machine M1 only starts (sm1) when there is a workpiece for it to process (!wl1),
and the workpiece is only ejected (el1) after being processed by the machine (!fm1).
Specification EC2 constrains the starting (sc2) of conveyor C2: conveyor C2 may
start when production line L1 contains a type 2 workpiece, l1 = 2, as these work-
pieces should bypass L1, or after production line L1 has returned a processed
workpiece (!fl1). Specifications EL2a, EL2b, EM2a, EM2b, and EC3 constrain the
behaviour of production line L2 and conveyor C3 in a similar way.

It is clear that the EFSM model satisfies the structural requirements outlined
for Algorithms 2 and 3. All the plants are vars′-normalised and all the specifications
are pure. Also, all the EFSMs are location-deterministic, and so are all possible
abstractions as no location has more than one outgoing transition for any given
event. Moreover, it can be seen in Fig. 5 that for any given event, no next-state
variable appears in more than one EFSM on transitions with that event, so that
condition (31) will be trivially satisfied for any abstraction considered. It is quite
typical for well-designed EFSM models to have such properties, particularly in the
manufacturing context.

To synthesise a least restrictive supervisor, Algorithm 3 processes each of the
specifications in Fig. 6. The order in which the specifications are processed is
not important, so the following explanation starts with the easiest cases. The
supervisors computed by Algorithm 2 are shown in Fig. 7.

– Specification EL1b has only one controllable event, sl1, so its variable l1 is only
used controllably and can be abstracted. Algorithm 3 forms the abstraction
∃l1EL1b, and as ∃l1 l1 = 1 is true, this simplifies to a one-state FSM with a
controllable selfloop, which is trivially controllable and returned unchanged by
Algorithm 2.
Then the abstraction ∃l1EL1b becomes the first supervisor collected by Algo-
rithm 3. It appears in Fig. 7 as SL1b. It performs no control as a supervisor.
Therefore Algorithm 3 also includes the original specification EL1b as a super-
visor, which ensures through the update l1 = 1 that production line L1 only
starts (sl1) when a workpiece of type 1 is available.

– Specification EM1a has no variables, so Algorithm 3 passes it to Algorithm 2
unchanged. As EM1a disables the uncontrollable event !wl1, it is found not
controllable at the beginning of Algorithm 2, so the algorithm assigns Σ1

u =
{!wl1} and searches for plants that disable this cause of uncontrollability. This
yields L1, which also has no variables. Therefore Algorithm 2 chooses G1 =
{L1}, V

1 = ∅, and C1 = ∅. Synthesis results in the supervisor S1 = supC(L1,

EM1a, {!wl1}), which is also !fl1-controllable.
This supervisor is shown as SM1a in Fig. 7. It is returned from Algorithm 2
and collected by Algorithm 3. The supervisor SM1a ensures that machine M1

is only started (sm1) when a workpiece is available, i.e., after !wl1 has occurred,
and that the production line can only be started again after starting M1.

– Specification EM1b has no variables, so Algorithm 3 passes it to Algorithm 2
unchanged. As EM1b disables the uncontrollable event !fm1, it is found not con-
trollable at the beginning of Algorithm 2, so the algorithm assigns Σ1

u = {!fm1}

and searches for plants that disable this cause of uncontrollability. This yields
M1, which includes the variable l1. Yet on closer inspection !fm1 is uncon-
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Fig. 7 Synthesised supervisors for flexible manufacturing system.

strained in M1 w.r.t. l1 (note that ∀l1∃l
′
1 l′1 = 1 is true, which is enough to es-

tablish the validity of (26) in Def. 15). Therefore Algorithm 2 chooses the plant
abstraction G1 = {∃l1M1}, no variables, V 1 = ∅, and no chaos EFSMs, C1 = ∅.
Then synthesis results in the supervisor S1 = supC(∃l1M1, EM1b, {!fm1}), which
is controllable as no other uncontrollable events are involved.
This supervisor, shown as SM1b in Fig. 7, is returned from Algorithm 2 and
collected by Algorithm 3. It ensures that production line L1 only starts the
ejection (el1) of a workpiece after it has been processed (!fm1) by machine M1.

– Specification EC1 includes the variable c1, which is used uncontrollably with
event !fc1 and cannot be abstracted by Algorithm 3, so EC1 is passed to Algo-
rithm 2 unchanged. This specification is not controllable by itself as it disables
uncontrollable events !ff1, !ff2, and !fc1. In its first iteration, Algorithm 2 selects
Σ1

u = {!ff1, !ff2, !fc1}, which leads it to identify the plants F1, F2, and C1 and
the variable c1 that appears in EC1. Plant C1 also includes the variable l1, but
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Σ1
u is unconstrained in C1 w.r.t. l1, because for the !fc1-transition in C1 the

condition (26) in Def. 15 becomes

∃l1∃l
′
1(l

′
1 = c1 ∧ c′1 = 0)⇒ ∀l1∃l

′
1(l

′
1 = c1 ∧ c′1 = 0) , (39)

which can be simplified by removing the unused variable l1 from quantification
to give

∃l′1(l
′
1 = c1 ∧ c′1 = 0)⇒ ∃l′1(l

′
1 = c1 ∧ c′1 = 0) , (40)

and the latter is clearly valid. This shows that the transition is possible inde-
pendently of the current value of l1. Therefore Algorithm 2 replaces C1 by the
abstraction ∃l1C1, which amounts to changing the update of the !fc1-transition
to c′1 = 0. No chaos EFSMs are needed as c1 does not appear in any other
plant, so that G1 = {F1, F2, ∃l1C1}, V

1 = {c1}, and C
1 = ∅. Synthesis results

in S1 = supC(F1 ‖ F2 ‖ ∃l1C1, EC1, {!ff1, !ff2, !fc1}), which is controllable as no
other uncontrollable events are involved.
This supervisor, shown as SC1 in Fig. 7, is returned and collected by Algo-
rithm 3. Since the value of c1 is initially 0, and c1 only changes its value on
events sf1, sf2, and sc1, the supervisor SC1 ensures that the feeders only start
when conveyor C1 is empty, and this conveyor is only started after delivery of
a workpiece from a feeder.

– Specification EC2 includes the variable l1, but it is only used with the con-
trollable event sc2. Then Algorithm 3 passes ∃l1EC2 to Algorithm 2, which
amounts to deletion of the update from EC2. In Algorithm 2, the specification
is not controllable by itself as it disables the uncontrollable event !fl1. So the
algorithm sets Σ1

u = {!fl1} and finds that !fl1 is only disabled by plant L1,
which has no variables. Then G1 = {L1}, V

1 = ∅, C1 = ∅, and synthesis gives
S1 = supC(L1, ∃l1EC2, {!fl1}), which is also found to be !wl1-controllable
This supervisor, shown as SC2 in Fig. 7, is returned and collected by Algo-
rithm 3. Together with the original specification EC2, which also is collected
by Algorithm 3, it ensures that conveyor C2 only removes type 2 workpieces
that should not be processed by production line L1 or type 1 workpieces pro-
cessed by L1.

– Specification EL1a includes variable l1, which is used with the uncontrollable
event !fc1 and therefore cannot be abstracted. Thus Algorithm 3 passes EL1a

unchanged to Algorithm 2. At the beginning of Algorithm 2, chaos EFSMs
are constructed for all events that can change the variable l1 in some plant,
resulting in C0 = {chaos(!fc1, l1), chaos(!fm1, l1), chaos(sc2, l1)}. Then EL1 is not
controllable w.r.t.

∥

∥(C0) because l1 can uncontrollably change from its initial
value 0 by chaos(!fc1, l1), and afterwards !fc1 is possible with the specification’s
guard l1 = 0 being false.
The only uncontrollable event in the specification and cause of uncontrollability
is !fc1, so Σ1

u = {!fc1}. This uncontrollable event is disabled by plant C1, which
therefore is included in the plant abstraction. C1 also includes the variable c1,
which is not unconstrained, so that G1 = {C1} and V 1 = {c1, l1}. Apart from
the selected plant C1, the variable l1 is still assigned on event !fm1 in M1 and
on event sc2 in C2, and the variable c1 is assigned on event !ff1 in F1 and on
event !ff2 in F2. Therefore the chaos EFSMs C1 = {chaos(!ff1, c1), chaos(!ff2, c1),
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chaos(!fm1, l1), chaos(sc2, l1)} are included. Synthesis gives a supervisor

S1 = supC(C1 ‖ chaos(!ff1, c1) ‖ chaos(!ff2, c1) ‖ chaos(!fm1, l1) ‖
chaos(sc2, l1), EL1a, {!fc1}) ,

(41)

but it is not !fm1-controllable. This is because S1 is synthesised under the
pretence that !fm1 is controllable, and then S1 can constrain !fm1 to prevent
the system from entering states with l1 6= 0 where !fc1 is enabled. For example,
S1 allows sc1 when initially l1 = 0 and then disables !fm1 to prevent it from
changing l1 to a non-zero value before !fc1 occurs. But this is not acceptable
since !fm1 really is uncontrollable.
Therefore Algorithm 2 enters another iteration with Σ2

u = {!fc1, !fm1}. Now
plant M1 must also be included as it disables !fm1. There are no additional
variables in M1 so that G2 = {C1,M1} and V 2 = {c1, l1}. Outside of the
selected plants C1 and M1, the variable l1 is only assigned on sc2 in C2, so that
C2 = {chaos(!ff1, c1), chaos(!ff2, c1), chaos(sc2, l1)}. Then another supervisor is
synthesised,

S2 = supC(C1 ‖M1 ‖ chaos(!ff1, c1) ‖ chaos(!ff2, c1) ‖ chaos(sc2, l1),
EL1a, {!fc1, !fm1}) ,

(42)

and this supervisor is found to be controllable w.r.t. the remaining uncontrol-
lable events !ff1 and !ff2.
The supervisor, shown as SL1a in Fig. 7, is returned and collected by Algo-
rithm 3. It avoids overflow of production line L1, because it only allows the
conveyor C1 to start delivery of a new workpiece (sc1) when the production
line is empty, l1 = 0.

– The remaining specifications EL2b, EM2a, EM2b, EC3, and EL2a are processed
in a similar way as those above, resulting in further supervisors SL2b, SM2a,
SM2b, SC3, and SL2a.

On completion, Algorithm 3 returns the supervisors shown in Fig. 7 plus the
original specifications in Fig. 6, which together control the flexible manufactur-
ing system in the least restrictive controllable way. The largest supervisor EFSMs
have seven locations, and the largest state spaces encountered are 100 unfolded
states during synthesis of SL1a and SL2a. In comparison, a full monolithic synthe-
sis for all the plants and specifications together, explores a state space of 14580
unfolded states and results in a single supervisor EFSM with 464 locations and
1551 unfolded states.

6 Conclusions

This paper presents an algorithm that combines modular and abstraction-based
synthesis for extended finite-state machines (EFSM). The approach allows to cal-
culate supervisors that control a system in the least restrictive controllable way.
Through a combination of component selection and symbolic manipulation by
means of existential quantification, the method avoids the exploration of the full
state space as normally required in synthesis. The resulting supervisors are mod-
ular and can be presented as the composition of several small EFSMs, which
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also facilitates human readability. These results improve the authors’ previous
work [12, 28] in that they allow abstraction by both component and variable se-
lection.

In future work, the authors would like to implement the proposed synthesis
algorithm and provide tooling support for the synthesis of modular supervisors
with EFSMs. The best option is likely to be a symbolic implementation, e.g., using
BDDs [3], which reduces the overheads of finding and computing the existential
abstraction. Symbolic guard extraction techniques [14] can help to present the
computed supervisors as EFSMs.

Another important aspect of future research is the synthesis of supervisors that
are nonblocking in addition to being controllable and least restrictive. The problem
with the nonblocking property is that it does not admit the modularity results
this paper is based upon. If a system is blocking (or nonblocking) then it may
well be nonblocking (or blocking) after composition with some other component.
Therefore, the ideas of component selection and existential quantification cannot
be applied directly when the nonblocking property is considered.

Although the results of this work will help to compute supervisors that are
both controllable and nonblocking, additional concepts will be needed to handle
the nonblocking property. Compositional nonblocking verification of EFSMs can be
approached with conflict equivalence instead of behavioural inclusion [16]. Using
this for synthesis requires different abstractions again, which so far has only been
done for ordinary FSMs without variables [15]. Another idea could be to generalise
concepts such as observer projection [29] and local control consistency [21] to
EFSMs.
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