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Abstract  

New Zealand has several severe insect pasture pests which cause 

economic losses of between $1.7 B and $2.3 B annually in the dairy, and 

‘sheep and beef’ industries. Research on grass species defence provides 

insights into methods to reduce this economic impact. Epichloë endophytes 

and silicon accumulation are two well-studied mechanisms of reducing 

phytophagous insect damage in grass species, but their potential synergies 

have not been investigated. Previous research has hypothesised that plants 

infected with endophyte may accumulate more silicon than their 

non-endophyte infected counterparts, suggesting multi-tiered defences. Of 

specific interest to this thesis is the potential impact of silicon 

supplementation on the alkaloid profiles of novel grass-endophyte 

associations. This research aimed to investigate changes to silicon 

concentration over time, endophyte growth and alkaloid concentration in two 

cool-season grass species from the sub-family Pooideae and subsequent 

effects of these variables on major New Zealand insect pests. This 

interaction was investigated through the use of whole plant glasshouse trials, 

excised root bioassays, and artificial diet experiments using a range of 

above- and below-ground phytophagous pasture pests (Listronotus 

bonariensis, Wiseana copularis and Costelytra giveni) as well as a 

generalist herbivore model study organism (Epiphyas postvittana). The two 

grass species included; Lolium perenne infected with a novel association 

with an endophyte naturally found in Festuca arundinacea (Epichloë 

coenophiala), and Festuca pratensis infected with its naturally occurring 

endophyte (Epichloë unicatum).  

Results from this research do not indicate that, in the grass-endophyte 

associations studied, endophyte infection is linked to an increase in plant 

silicon content. There is evidence to suggest that the herbage material of 

L. perenne endophyte-infected plants has less silicon than endophyte-free 

plants. There were no direct correlations between plant silicon content and 

the production of bioactive secondary metabolite alkaloids (lolines) or 

endophytic mycelial mass in F. pratensis and L. perenne. Although silicon 

supplementation was not linked to a direct increase in plant silicon content, 
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there was an increase in loline production in the herbage of L. perenne, 

indicating a potential role of silicon in either modulating the soil environment 

or influencing plant biochemical reactions potentially leading to a change in 

production of lolines. This study also found negative effects of endophyte 

alkaloids on insect performance and feeding which correlate to previous 

literature but was not able to accept nor reject the initial hypothesis of 

synergistic effects of the two defences studied. Interestingly, results 

suggested differential allocation of silicon between plant species and lolines 

within individual plant tissues. Silicon was higher in the root material of 

L. perenne than F. pratensis and the opposite was true for the herbage 

material. Also, the proportion of each loline in the root and herbage of 

F. pratensis differed. In summary, this research has provided insights into 

the temporal interactions between silicon and endophyte infection. However, 

further research is required to investigate the multi-tiered effects of these 

two plant defences on economically important phytophagous insects.   
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1. Introduction 

 

Grass species are of economic importance to the New Zealand pastoral 

sector, which contributes to a significant portion of the annual gross 

domestic product (GDP) (Ferguson et al., 2019).  It has been estimated that 

ryegrasses, the primary plant species in our pasture systems, are worth 

$14.6 B to the economy and insect herbivores have a significant negative 

impact on this value. Ferguson et al. (2019) estimates that the most 

common pasture insect pests cause losses of between $1.7 and $2.3 B per 

annum through herbivorous feeding and subsequent production loss. 

Recent changes to public acceptance and regulations of pesticide use 

highlights the need for increased research into utilising naturally occurring 

plant defences to reduce the economic impact of insect pests (Ricciardi et 

al., 2017). 

Silicon accumulation and Epichloë endophyte infection are two plant 

defences against insect herbivore feeding that are commonly found in grass 

species. Although a non-essential element in plants, silicon uptake by plants 

is known to protect from a range of biotic and abiotic stresses (Ma & Yamaji, 

2008) and silicon is often present in quantities more than that of other 

essential elements (Epstein, 1999). In some species, known as hyper-

accumulators, silicon content can be up to 10% of the dry weight of the plant. 

Plant silicon research commonly focusses on grasses from the Poaceae 

family (a common hyper-accumulator) and the consequences silicon has on 

the feeding of agricultural insect pests. Recent research has shown an 

association between elevated plant silicon and negative effects on a range 

of insects (Garbuzov et al., 2011; Hunt et al., 2008; Massey & Hartley, 2009; 

Ryalls et al., 2017), including a below-ground herbivore (Frew et al., 2017a; 

Frew et al., 2016).  

Grasses within the Poaceae family commonly form symbiotic relationships 

with endophytic fungi from the genus Epichloë (Schardl et al., 1997). The 

production of bioactive alkaloids by the endophyte provides another line of 

defence from insect herbivores either through anti-feedant or toxic 
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properties (Clay, 1987; Johnson et al., 2013). The defensive interactions 

between these two defences (silicon accumulation and endophyte infection) 

are poorly understood (Huitu et al., 2014) and will be the focus of this thesis. 

This work focussed on the herbivory of common New Zealand pasture pests; 

particularly the below-ground feeding scarab beetle larva, Costelytra giveni 

(grass grub). Previous work indicated that plants infected with endophyte 

accumulated 16% more silicon, suggesting multi-tiered defences in grass 

species (Huitu et al., 2014).  

This thesis will investigate the synergistic defensive properties of endophyte 

infection and silicon supplementation in two grass species, Lolium perenne 

and Festuca pratensis. The L. perenne (perennial ryegrass; breedling line 

GPT12011) cultivar used in this study was infected with a loline-producing 

endophyte (E. coenophiala) that naturally occurs in Festuca arundinacea 

(tall fescue). The F. pratensis (meadow fescue; breeding line M1S9) cultivar 

was infected with a naturally-occurring loline-producing endophyte 

(E. uncinata). The first part of this thesis will examine whether the two 

defences have synergistic negative effects on a range of New Zealand 

pasture pests, including Listronotus bonariensis (Argentine Stem Weevil; 

ASW), Wiseana copularis (porina) and a specific focus on grass grub larvae. 

This information will provide insights into the potential use of a combination 

of the defences to improve current methods of control of insect pests, the 

cause of large economic losses in the New Zealand agricultural industry 

(Ferguson et al., 2019). The second part of this thesis will explore the 

relationship between endophytes and silicon in grass species, investigating 

temporal changes in silicon concentration, endophyte growth, and alkaloid 

production. These results will provide insight into the interaction between 

the two defences over time and potential effects on insect herbivores.  
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1.1 Plant defences 

 

Anti-herbivore plant defences are generally categorised into three classes; 

chemical, physical, and mutualistic (Vicari & Bazely, 1993). The resource 

availability hypothesis states that the defence strategies adopted by plants 

are determined by their growth rate (Massey et al., 2007a). This hypothesis 

suggests that fast-growing plants typically invest in minimal anti-herbivore 

mechanisms whereas slow-growing plants, that would struggle to recover 

after herbivore damage, invest heavily in pest-resistant defences to prevent 

damage from occurring (Massey et al., 2007a; Vicari & Bazely, 1993). Plant 

defences can be defined as being inducible or constitutive, the latter being 

beneficial in environments where the chance of attack by herbivores is high 

(van Dam, 2009). It was previously thought that grass species, which are 

adapted to grazing, rely on properties such as basal meristems and tillering 

that allow them to regrow and recover following herbivore damage, rather 

than investing in energetically demanding defence mechanisms (Huitu et al., 

2014).  

Vicari and Bazely (1993) however, discuss a range of defences that grass 

species are known to employ. These defences are from all the plant defence 

categories and include silicon deposition, production of alkaloids, phenolics 

and hydroxamic acids, and interactions with endophytic fungi. Massey et al. 

(2007a) studied the defence mechanisms of 18 grass species. They found 

that different species allocated energy to different defence strategies, 

including silicon, phenolics and plant toughness. Of the plant species 

studied, silicon content was determined as the best predictor for feeding 

preference of Microtus agretis (voles), a mammalian herbivore. This study 

determined that cumulative defence scores were negatively correlated to 

plant relative growth rates, supporting the resource availability hypothesis 

(Massey et al., 2007a).  
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1.1.1  Plant-herbivore interactions in a changing climate 

Half of the described insect species in the world are phytophagous (Price et 

al., 2011), and consequently plant-herbivore interactions are an important 

aspect of agriculture. It is estimated that worldwide production loss in the 

agricultural industry from insect feeding is equivalent to production required 

to feed more than 1 billion people (Birch et al., 2011). Climate change is 

expected to alter insect pest feeding, increasing the damage they cause and 

consequent production losses. Changes to average temperatures, carbon 

dioxide levels (CO2), and weather patterns are all expected to change plant-

herbivore interactions (Riegler, 2018). 

Deutsch et al. (2018) discuss two characteristics of insect pests that are 

relevant in a warming climate; metabolic rate and population growth. 

Increases in temperature cause an increase in metabolic rates of insects 

and hence an increase in consumption, as well as an increase in population 

growth. These characteristics are expected to have a more pronounced 

effect on insects present in temperate regions than those in tropical regions 

(Deutsch et al., 2018). Other experiments show enhanced CO2 typically 

alters the carbon to nitrogen ratio of plant material (Frew et al., 2017a). This 

causes plants to be of lower nutritional quality to insects due to the dilution 

of nitrogen and consequently increases herbivory. Anticipated rises in CO2 

levels are predicted to cause a 40% increase in feeding per herbivore (Coley, 

1998).  Increased herbivory, alongside reductions in pesticide use, and a 

rapidly growing human population will collectively exacerbate the 

challenges associated with achieving global food security and sustainable 

agriculture (Riegler, 2018). These factors influence a need for increased 

insect pest research, investigating solutions for continued and improved 

productive, sustainable agriculture in a changing climate (Birch et al., 2011; 

Coley, 1998; Gregory et al., 2009; Thomas et al., 2019).  
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1.2 Silicon 

 

Silicon is the second most abundant element in the Earth’s crust (Epstein, 

1994). Within the plant kingdom, there is variability in silicon content 

(between species as well as within species) ranging from 0.1% to 10% dry 

weight of plants. Epstein (1999) notes that even values as low as 0.1% are 

comparable to values of other essential plant nutrients such as sulfur, 

phosphorus and magnesium. Except for diatoms and plants in the order 

Equisetales (horsetails), however, silicon is not regarded as an essential 

nutrient (Epstein, 1994). This is based on the guidelines of plant nutrient 

essentiality described in Arnon and Stout (1939). One of the three 

guidelines is that the nutrient is involved in plant metabolism (Arnon & Stout, 

1939), for which there is currently no evidence with silicon (Ma, 2004). 

Epstein (1994) argues that it is not possible to determine if silicon is 

essential because silicon is difficult to remove completely from nutrient 

solutions. There is, however, a large amount of research demonstrating the 

benefits of increased silicon uptake (Coskun et al., 2018; Epstein, 1994; 

Frew et al., 2018; Ma, 2004). Epstein (1994) defined silicon as a ‘quasi-

essential’ element.  

Plants are commonly categorised into three broad groups based on their 

silicon content. Plants with silicon concentrations above 1% are considered 

accumulators, below 0.5% silicon content are categorised as non-

accumulators and those in between are grouped as intermediates (Guntzer 

et al., 2012). Differences do arise among genotypes of the same species 

(Deren, 2001; Epstein, 1999) and the availability of silicon in the soil 

determines the quantity absorbed by the plant (Henriet et al., 2006). Silicon 

has been associated with protection from several biotic and abiotic stresses 

including drought, heat stress, salt stress, heavy metal toxicity, radiation 

damage, pathogens, and both mammalian and invertebrate herbivores 

(Epstein, 1994; Frew et al., 2017b; Guntzer et al., 2012; Ma, 2004). Silicon’s 

role in providing plants with improved resistance from insect herbivores is a 

key feature of this thesis. 
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1.2.1   The silicon cycle 

The global silicon cycle is an interaction of biological, chemical and 

geological processes. Silicates make up 90% of the Earth’s crust and silicon 

is second only to oxygen in abundance (Epstein, 1994; Struyf et al., 2009). 

Plants play a major role in the cycling of silicon, through both the uptake and 

storage of amorphous silica and the subsequent release into the soil from 

plant decomposition, and the weathering of silicate rock (Raven, 2003). 

Biological movement of CO2 from the bulk atmosphere into the soil 

atmosphere during photosynthesis increases the soil’s CO2 concentration. 

The elevated concentration of CO2 increases the rate that silicate rock is 

weathered and silicic acid (Si(OH)4; the form in which plants are able to take 

up silicon) is then solubilised into the soil environment (Raven, 2003; Struyf 

et al., 2009). Si(OH)4 can either be absorbed by terrestrial plants or 

ultimately reach the ocean through transport in the soil water solution. In the 

ocean and other water bodies, silicon sustains the growth of diatoms, which 

use it to build their cell walls.  

The silicon cycle is an important component in aquatic primary production 

as silicon concentrations determine the proportion of diatoms and 

phytoplankton (Struyf et al., 2009). It was previously thought that the 

terrestrial silicon cycle was minimal compared with the oceanic. Conley 

(2002), however,  estimated the global average uptake of silicon by 

terrestrial plant species (60-200 Tmol Si yr-1) as potentially in the range of 

the global oceanic/diatom cycle (~240 Tmol Si yr-1). 

 

1.2.2   Uptake and storage of silicon in plants 

Silicon is absorbed from the soil by plants in the form of Si(OH)4 (Kumar et 

al., 2017). Even though silicon is abundant in soils, it is commonly not in the 

soluble form required for plants to absorb it (Richmond & Sussman, 2003). 

The amount of Si(OH)4 in soil is dependent on several factors including soil 

type, age, parent rock, pH, soil biota, and climate. Typical concentrations of 

Si(OH)4 are between 0.1 and 0.6 mM in soil solution (Cornelis & Delvaux, 

2016; Epstein, 1994). Once absorbed, silicon is deposited irreversibly 
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throughout all plant organs as amorphous silica (in the form of phytoliths) 

(see Fig. 1.1), including within cell walls (Richmond & Sussman, 2003).  

 

 

 

 

 

 

 

 

 

 

 

Kumar et al. (2017) determined that the most intensely silicified parts of 

grass species were the leaf epidermis, root endodermis, and the abaxial 

endodermis of inflorescence bracts. The morphology of silica bodies is 

highly variable throughout plant taxa (Prychid & Rudall, 2003), and the 

functional significance of these differences is not yet understood (Cooke & 

Leishman, 2011; Garbuzov et al., 2011). Passive silicon deposition is often 

linked to transpiration (Trembath-Reichert et al., 2015). Silicon deposition 

can also be linked to biological factors such as herbivore damage which 

elicits an active uptake of silicon (Guntzer et al., 2012; Massey et al., 2007b). 

Kumar et al. (2017) theorise that, in grass species, there is likely a 

combination of active and passive silicification, dependent on cell type. 

The mechanisms of silicon uptake have primarily been studied in Oryza 

sativa (rice: a hyper-accumulator). Si(OH)4 can move into the plant through 

both active and passive transport (Guntzer et al., 2012). Deshmukh and 

Belanger (2016) discuss two key silicon transporters found in rice plants. 

The first is Lsi1 which belongs to a subfamily of aquaporins known as 

Figure 1.1: Variety of silica bodies found in the epidermal cells of 
Poaceae (Prychid & Rudall, 2003). A, B, C, D and F bar = 10 µm, E and 
G bar = 20 µm. 



8 
 

nodulin-26-like proteins (NIPs) (Ma et al., 2006) and secondly Lsi2, a 

transmembrane efflux transporter (Ma et al., 2007). Lsi1 passively 

transports Si(OH)4 whereas Lsi2 actively transports it, driven by a proton 

gradient. These transporters are found in the exodermis and endodermis of 

rice roots. Lsi1 transporters are on the distal side and Lsi2 on the proximal. 

The coupling of the two transporters within the same cell allows for the 

transport of Si(OH)4 across the casparian strip and either into the cortex 

apoplast or the stele (see Fig. 1.2) (Ma & Yamaji, 2008). Once within the 

xylem of the stele, Si(OH)4 can be transported throughout the rest of the 

plant (Deshmukh & Belanger, 2016; Ma & Yamaji, 2008; Ma et al., 2007). 

Silicon is unloaded from the xylem through Lsi6 transporters, but the exact 

mechanisms for further transportation and deposition are not known (Ma & 

Yamaji, 2015).  

 

 

1.2.3   Silicon’s role in the alleviation of abiotic and biotic stress 

Silicon has been associated with the alleviation of both biotic and abiotic 

stresses in many plant species (Coskun et al., 2018; Frew et al., 2018; 

Figure 1.2: Model of silicic acid transporters in rice (Ma and Yamaji, 2008) 
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Guntzer et al., 2012; Ma, 2004). Coskun et al. (2018) discuss the apoplastic 

obstruction hypothesis, a mechanism for how silicon alters plant resistance 

to multiple stress sources. This hypothesis theorises that the deposition of 

amorphous silica in plant material leads to the suppression and promotion 

of numerous biological processes, leading to beneficial impacts. Biotic 

stresses include attack from fungal and bacterial pathogens, viruses, 

nematodes, parasites, and insect and mammalian herbivores. The physical 

barrier formed by phytolith deposition affects the ability of pathogens to 

invade plant tissues (Frew et al., 2018).  

However, research suggests that the physical deposition of silicon does not 

fully explain this mechanism of protection (Coskun et al., 2018).  Silicon may 

also affect the ability of effector molecules from pathogens and herbivores 

to reach their targets and subsequently affect plant chemical defences 

and/or the ability of the pathogenic organism to recognise the plant as a 

suitable host (Coskun et al., 2018; Frew et al., 2018). Some research shows 

that silicon acts as a signal to increase other plant defences, for example 

phenolics and jasmonic acid (Ma, 2004). Additionally, silicon can alleviate 

the severity of abiotic stresses including drought, salinity, radiation, extreme 

temperatures, metal toxicity and nutrient imbalances (Coskun et al., 2018). 

The presence and production of reactive oxygen species is a key indicator 

of stress in plants (Ma, 2004). Studies have found an increase in antioxidant 

enzymes in plants supplemented with silicon, reducing the damage caused 

by stress-induced reactive oxygen species (Guntzer et al., 2012).  

The role of silicon in unstressed plants is under debate. It has previously 

been hypothesised that silicon does not affect plant metabolism in stress-

free conditions (Ma, 2004). Brunings et al. (2009) however, investigated 

changes in gene expression of unstressed silicon-supplemented rice plants. 

The study found that silicon supplemented plants differentially expressed 

221 genes compared to control plants. Of these 221 genes, 28 were 

involved in plant defence or stress pathways. The remainder were involved 

in primary metabolism, indicating that silicon is involved in more than just a 

stress response in rice (Brunings et al., 2009). Frew et al. (2018) argue that 

stress-free environments for plants are uncommon and ‘stress’ is often 
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associated with basic metabolic processes. For example, reactive oxygen 

species are produced as a by-product during respiration and photosynthesis, 

indicating that silicon may have a role in basic metabolic functions (Frew et 

al., 2018).  

 

1.2.4   Silicon herbivore defence 

A well-documented benefit of elevated plant silicon is improved protection 

from mammalian and invertebrate herbivores. Previous studies, as 

discussed below, have demonstrated this effect on a range of plant and 

herbivore species. Silicon was first suspected to be responsible for 

increased pest resistance in 1923 when authors hypothesised that wheat 

plants were resistant to the Hessian fly due to an accumulation of silicon 

(McColloch & Salmon, 1923). In recent years, there has been an increase 

in silicon defence research. Silica phytoliths are a hard material and elevate 

the abrasiveness of plant tissue, affecting the palatability to herbivores and 

having the potential to damage the mandibles, reducing their ability to 

continue feeding (Deren, 2001). However, in some insect species where the 

mandibles are replaced with each moult, damage to mouthparts cannot fully 

explain the negative impact that silicon has on their performance (Massey 

& Hartley, 2009). Sanson et al. (2007) found that silica phytoliths in grass 

species were softer than tooth enamel, rejecting the previously postulated 

hypothesis that silica bodies damage the teeth of grazing mammals.  

The digestibility of plant material is affected by silicon, altering herbivores’ 

ability to acquire essential nutrients and affecting the overall performance of 

the insect (Massey & Hartley, 2006). Nitrogen is often the limiting nutrient in 

insect diets and multiple studies have determined that silicon further 

reduces the availability of nitrogen for absorption by herbivores (Massey & 

Hartley, 2006, 2009). Massey et al., (2009) found that insects acquired 34% 

less nitrogen when fed high-silicon diets. This study also demonstrated that 

the effects of a high silicon diet on an armyworm larva (Spodoptera exempta) 

were progressive and irreversible, even when the larvae were changed to a 

low silicon diet. Barker (1989) found that feeding by ASW was reduced in 
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two ryegrass cultivars as the silicon content increased. Deposition of silicon 

also negatively impacted the ability of female weevils to oviposit in leaf 

sheaths (Barker, 1989). Silicon can also affect the behaviour of insects’ 

natural enemies. Kvedaras et al. (2010) demonstrated through olfactometer 

and field studies that natural enemies of Helicoverpa armigera were more 

attracted to high silicon supplemented plants previously infested by 

H. armigera than non-silicon supplemented infested plants.  

Similar silicon concentrations in different species can result in varying 

herbivore deterrence properties. Garbuzov et al. (2011) studied feeding of 

a locust insect on two grass species. The authors found that silicon addition 

altered the consumption of Poa annua and L. perenne by a desert locust. In 

non-silicon supplemented plants, herbivory was higher on L. perenne than 

P. annua. The reverse was true when plants were supplemented with silicon, 

which resulted in a 4-fold increase in silicon for both species, even though 

silicon levels were similar between the species under the two treatments. 

The authors hypothesised that the form in which phytoliths are present in 

plants may contribute to the differences in herbivore resistance and more 

research is required to determine the functional importance of these 

differences (Cooke & Leishman, 2011; Garbuzov et al., 2011).  

Silicon accumulation is not just a passive process but an inducible plant 

defence that is upregulated following above-ground herbivore damage 

(Hartley & DeGabriel, 2016; Massey et al., 2007b; Massey & Hartley, 2006). 

This suggests that silicon accumulation has an energetic cost to plants 

(Massey et al., 2007a). Results from Massey et al., (2007b) showed that 

high silicon accumulators increased active transport in response to foliage 

damage. Induction was dependent on not only the type of damage but also 

the severity. Plants with continued damage every 3 to 4 weeks over the 

period of a year (16 damage events in total) had higher silicon 

concentrations than plants only treated with one damage event over the 

same period (Massey et al., 2007b). In another study, Power et al. (2016) 

demonstrated that root-herbivory induced silicon accumulation. A limitation 

of this study was that only foliage silicon concentrations were recorded and 

not root concentrations. It has been observed several times that mechanical 
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damage does not induce the same silicon accumulation response as 

herbivore damage (Hartley & DeGabriel, 2016; Massey et al., 2007b).  

 

1.2.5   Evolution of silicon defences 

Silicon accumulation is a cheaper alternative for structural support in plants 

compared to carbon-based components, such as lignin (Cooke & Leishman, 

2011). Raven (1983) estimated that assimilation of carbon into lignin was 

ten to twenty times more energetically expensive than accumulation and 

deposition of silicon. It has been hypothesised that silicon accumulation 

evolved as an alternative to carbon during periods of low atmospheric CO2 

(for example during the Miocene) (Cooke & Leishman, 2011). 

Silicon-accumulating plants had a competitive advantage for structural 

support over non-accumulating plants which rely on carbon-based 

mechanisms. Stromberg et al. (2016) analysed published plant silicon 

records through comparative phylogenetic methods and found that all major 

clades of vascular plants contained taxa which were hyper-accumulators of 

silicon. The authors concluded that silicon accumulation has evolved 

independently in different lineages.  

Stromberg et al. (2016) also determined that there is no evidence for grass-

grazer co-evolution during the Cenozoic era (Cooke et al., 2016; Stromberg 

et al., 2016), contrary to discussions by McNaughton and Tarrants (1983). 

It was during the Cenozoic that high accumulators such as grasses came to 

ecological prominence (Trembath-Reichert et al., 2015). The phytolith 

diversity seen in grasses today is theorised to be an adaptation to insect 

herbivores rather than mammalian grazers (Stromberg et al., 2016).  These 

authors also suggest that to understand differences in silicon accumulation 

and functional significance, phylogeny, as well as ecological information, 

and phytolith morphology/distribution need to be considered. The exact 

evolutionary history of silicon accumulation in plants is still unclear. 
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1.3 Epichloë Endophytes 

 

Endophyte is the generic name for an organism living within a plant (Clay & 

Shardl, 2002). Fungal species of the genus Epichloë form endophytic 

symbiotic relationships with grasses from the Poaceae family, including 

perennial ryegrass, tall fescue and meadow fescue (Esqueda et al., 2017; 

Sampson, 1933). The relationship is mutually beneficial for the two 

organisms through the exploitation of the partner (Saikkonen et al., 2004). 

The endophyte gains nutrients, a habitat, and a mode of reproduction, while 

the plant benefits through increased growth, reproduction, and resistance to 

a range of abiotic and biotic factors (Saikkonen et al., 2004). Specifically, 

resistance to herbivory is associated with the production of fungal alkaloids 

(Malinowski & Belesky, 2019). This is beneficial in the control of insect pests, 

although there are also potential health implications for grazing animals.  

 

1.3.1  Growth and lifecycle  

Epichloë endophytes grow intercellularly, parallel to plant cells in the leaf 

and stem tissue of the host (Clay, 1987; Easton, 2007). As the leaf grows 

and extends from the leaf primordia, the fungal hyphae also extend. There 

are two distinct life cycles of Epichloë endophytes, sexual and asexual 

(Bush et al., 1997; Johnson et al., 2013) (see Fig. 1.3). Species of 

endophytic Epichloë fungi were previously classified separately based on 

their reproductive strategy. Those that reproduce sexually were classified 

under Epichloë and asexual species under Neotyphodium. Recent changes 

to fungal nomenclature have classified all species under a single genus, 

Epichloë (Leuchtmann et al., 2014). The asexual life cycle results in the 

transmission of the endophyte to the seed and the subsequent seedlings 

are infected with endophyte. The sexual lifecycle relies on the production of 

spores on a stroma which arrests development of the inflorescence on the 

affected tiller. This is often referred to as ‘choke disease’. There are some 

incidences where the endophyte utilises a mixture of both reproductive 

strategies (Bush et al., 1997; Clay & Shardl, 2002). Epichloë endophytes, 

both sexual and asexual, are not able to survive without the host plant 
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(Easton, 2007). The endophyte strains used in this research reproduce 

asexually.  

 

1.3.2  Alkaloids 

Alkaloids are nitrogenous secondary metabolites. There are several known 

bioactive alkaloid groups produced in grass-Epichloë associations, which 

have detrimental effects on the herbivory of both invertebrates and 

vertebrates (Malinowski & Belesky, 2019). These include ergot, loline, 

pyrrolizidine, and diterpene alkaloids (see Fig. 1.4) (Bush et al., 1997; 

Johnson et al., 2013). Synthesis of these secondary metabolites is 

controlled by the fungal genome. The complete profile of alkaloids produced 

is determined by the endophyte strain and host plant genotype association 

(Bush et al., 1997). The alkaloid composition produced is controlled by the 

strain of endophyte, and the concentrations are determined by the host plant 

genotype, hypha concentration, and environmental conditions (Malinowski 

& Belesky, 2019). As well as effects on invertebrates, some alkaloids are 

associated with stock health issues; for example, ergovaline is associated 

with tall fescue toxicosis and lolitrems, specifically lolitrem B, cause 

ryegrass staggers (Bush et al., 1997; Fletcher, 1999). Lolines and peramine 

(pyrrolizidine alkaloid) have not been associated with mammalian toxicity 

Figure 1.3: Diagram of Epichloë endophyte sexual and asexual  lifecycles (Johnson et al., 2013) 
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but protect from insect feeding (Bush et al., 1997; Cooper, 1996; Johnson 

et al., 2013). 

 

1.3.3  Loline alkaloids 

Loline alkaloids (see Fig. 1.5) are the alkaloid group of interest in this thesis 

and are associated with reduced insect herbivory in grasses (Popay & 

Tapper, 2007; Riedell et al., 1991). Meadow fescue and tall fescue, infected 

with the endophyte strains Epichloë uncinata (formerly Neotyphodium 

uncinatum) and Epichloë coenophiala (formerly N. coenophialum) 

respectively, are known to produce loline alkaloids that protect from insect 

feeding (Malinowski & Belesky, 2019), including against grass grub 

(Patchett et al., 2011b). Typically, there are four loline alkaloids produced; 

N-formyl loline, N-acetyl loline, N-acetyl norloline and N-methyl loline. 

Lolines are present not only in the foliage but are also transported to the 

roots, although concentrations are much lower in roots than herbage 

(Barker et al., 2015; Bush et al., 1997). Previous research has shown that 

plants differ in their loline concentrations and this appears to be dependent 

on the plant-endophyte combination (Patchett et al., 2011b). Loline alkaloids 

are of interest to the pastoral industry of New Zealand because they are not 

toxic to livestock and have broad-spectrum activity on pests, particularly 

root-feeders for which there is a current lack of effective control. The 

Figure 1.4: Representative alkaloid structures of each group (Bush et 
al., 1997). N-formylloline (loline), ergovaline (ergot), lolitrem B 

(diterpene), and peramine (pyrrolizidine). 
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presence of lolines in root tissue has the potential to improve control of 

economically important pests such as grass grub. Patchett et al., (2008) 

reported that loline concentrations in roots increased after feeding by grass 

grub, indicating that lolines are an inducible defence and are transported to 

the area of the plant under attack (Patchett et al., 2008b).  

 

 

 

 

 

 

 

 

 

1.3.4  History of endophytes in New Zealand 

New Zealand pastures are primarily made up of ryegrasses (Lolium spp.) 

and clover species (Trifolium spp.) (Charlton & Stewart, 1999; Ferguson et 

al., 2019). Perennial ryegrass (L. perenne) is the most widely used grass 

within New Zealand and grows well in a range of fertile, moist conditions but 

it does not perform well in drought (Charlton & Stewart, 1999). It was 

estimated by Nixon (2016) that ryegrasses contribute $14.6 billion to New 

Zealand’s GDP annually and provide 75% of the nutritional needs for 

livestock in the agricultural industry. Hence, interactions with fungal 

endophytes are an important component when considering ryegrasses for 

pasture due to the effects on stock health and pest insect feeding (Johnson 

et al., 2013; Rowan, 1993; Tapper & Latch, 1999). 

Historically, stock health issues such as ryegrass staggers and heat stress 

(Easton et al., 1996; Fletcher et al., 1999) caused by the naturalised 

wildtype endophyte (also known as Standard or Common toxic endophyte) 

Figure 1.5: Basic chemical structure of loline alkaloids 
(Schardl et al., 1997) 
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in perennial ryegrass led farmers to plant pasture with seed containing no 

endophyte (Johnson et al., 2013; Latch & Christensen, 1982). It was quickly 

apparent that pastures were failing, due to pressure from insect pests. The 

alkaloids produced in endophyte associations responsible for activity 

against insects were identified in the 1980s (Clay, 1987; Rowan, 1993; 

Siegel et al., 1987). Research began to find endophyte strains with reduced 

mammalian toxicity effects while retaining the pest-resistant properties.  

The introduction of two new E. festucae var. lolii strains of endophyte, AR1 

and AR37, in ryegrass that are less toxic than the wildtype contributes $200 

million to the New Zealand economy each year (Johnson et al., 2013). AR1 

produces only peramine, but not the two mammalian toxins, ergovaline and 

lolitrem B,  and was quickly adopted after its release in 2001. By 2007 80% 

of perennial ryegrass seed sold was infected with AR1 endophyte. It soon 

became apparent that AR1 was not persisting throughout the country, 

namely the northern North Island, due to pests such as the African black 

beetle (Heteronychus arator) and root aphid (Aploneura lentisci). Another 

strain, AR37, was discovered and provided resistance from ASW, black 

beetle, root aphid, pasture mealybug (Balanococcus poae) and porina but 

occasionally resulted in ryegrass staggers. The staggers were less severe 

and did not last as long as those caused by wildtype endophyte (Popay & 

Hume, 2013; Thom et al., 2012). The only identified bioactive compounds 

present in AR37 are epoxy-janthitrems. Due to the need for a strain that 

provided more resistance than AR1, AR37 was commercially released in 

2007 (Johnson et al., 2013). It is now the endophyte species most 

commonly planted in ryegrass cultivars by farmers. There is continued 

research to develop novel plant-endophyte combinations to provide broad-

spectrum insect control with no effects on livestock (Easton, 2007; Gundel 

et al., 2013). Meadow fescue, the other species of interest in this thesis, is 

not commonly used as a pasture grass as it performs poorly in many New 

Zealand agricultural systems (Cooper, 1996). Meadow fescue, however, 

forms a symbiotic relationship with the fungal endophytic strain E. uncinata, 

resulting in the production of loline alkaloids, and negative effects on insect 

herbivores investigated in this thesis (Jensen et al., 2009; Patchett et al., 
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2008a; Popay et al., 2003). These effects include below-ground activity 

which is not found in L. perenne associations. 

 

1.3.5  Novel loline-producing endophyte-grass associations 

Endophyte research frequently focusses on the discovery of 

endophyte/grass associations which have little to no production of harmful 

alkaloids, while retaining insect deterrence properties (Malinowski & 

Belesky, 2019). These are referred to as novel associates or symbiotically 

modified organisms (SMOs) (Gundel et al., 2013). Gundel et al. (2013) 

provide a meta-analysis of the literature on novel associations. The authors 

concluded that an improved understanding of these associations is required  

in order to fully exploit their beneficial use in agricultural systems (Gundel et 

al., 2013).  

Novel endophyte-grass associations (between grass species and fungi that 

do not naturally occur) typically have lower concentrations of beneficial 

alkaloids compared to native associations (Gundel et al., 2013; Malinowski 

& Belesky, 2019). Ball and Tapper (1999) experimented with ryegrass 

inoculated with E. coenophiala (which naturally occurs in tall fescue). They 

found that only one of the loline alkaloids, N-formyl loline (NFL), was 

produced and it was present in lower concentrations than typically found in 

meadow fescue and tall fescue in the field (Ball & Tapper, 1999). Another 

study found that loline concentrations in these novel associations were 

approximately one-third of what would be expected to be found in tall fescue 

plants at the same time of year (Easton et al., 2007). Continued research is 

required to identify novel-associations beneficial to the New Zealand 

agricultural industry.  

This thesis investigates two grass species; meadow fescue (breeding line 

M1S9) and perennial ryegrass (breeding line GPT12011). The meadow 

fescue was infected with its naturally occurring endophyte (E. uncinata) and 

the ryegrass had been infected by an endophyte that is typically found in tall 

fescue plants (E. coenophiala; AR501); both produced loline alkaloids. 

Studies on loline alkaloids in meadow fescue have found that NFL is 
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consistently present in the highest concentrations of all the loline alkaloids 

(Patchett et al., 2011c). The authors observed an increase in root loline 

concentration coupled with a decrease in shoot concentration, indicating 

that plants can mobilise and relocate loline alkaloids (Patchett et al., 2011c). 

Meadow fescue infected with endophyte is known to be deterrent to the 

range of insect pests studied in this thesis (Jensen et al., 2009; Patchett et 

al., 2008b; Patchett et al., 2011b; Popay & Lane, 2000), hence is used as a 

reference to compare against the novel association with ryegrass.  

 

1.4 Invertebrate New Zealand pasture pests 

 

The pastoral agricultural sector is of high economic importance in New 

Zealand. In 2011, it was estimated that the sector had a gross annual 

production value of $19.6 B and in 2016 accounted for 4% of the country’s 

GDP (Anon, 2016; Ferguson et al., 2019). The productivity of the industry is 

determined by a range of abiotic and biotic factors. One of the key influences 

is the damage caused by invertebrate pasture pests.  It is estimated by 

Ferguson et al. (2019) that in an average year, these pests cause damage 

equivalent to between $1.7 B and $2.3 B. The majority occurs on dairy farms 

($1.4 B) and the remainder on sheep and beef farms ($0.9 B). Included in 

this estimate is the impact of three major pests researched in this thesis; 

grass grub, ASW, and porina. Grass grub, a native scarab, is estimated to 

cause damage worth $140-380 M on dairy farms and $75-205 M on sheep 

and beef farms. This is New Zealand’s most economically damaging 

pastoral pest. Porina is estimated to cause losses of $84 M and $88 M 

respectively. ASW, an exotic pest, results in damage of up to $200 M per 

annum total for both dairy and sheep and beef farms. Other pests included 

in the Ferguson et al. (2019) analysis are manuka beetle and  black  beetle, 

Tasmanian grass grub, clover root weevil, slugs, and parasitic root 

nematodes. Both black beetle and manuka beetle larvae are root feeders 

like grass grub.  All contribute to economic losses in New Zealand’s pastoral 

industry.  
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1.5 Thesis aims 

 

The overall aims of this thesis are to:  

(a) explore potential synergistic plant defensive effects of endophyte and 

silicon supplementation on New Zealand pasture pests;  

(b) investigate temporal changes in silicon concentrations, endophyte 

growth, and alkaloid production.  

Epichloë endophyte infection (Johnson et al., 2013; Malinowski & Belesky, 

2019) and silicon accumulation (Coskun et al., 2018; Frew et al., 2018) are 

two well-studied means of defence against insect herbivores in grass 

species. There is limited research investigating the potential synergies 

between them. Huitu et al. (2014) found that meadow fescue plants infected 

with endophyte had 16% higher silicon than those without endophyte. This 

study investigated the feeding of a mammalian herbivore (field vole) but did 

not specifically investigate the effects of silicon and endophyte in a 

multifactorial study design.  

The first part of this thesis aims to investigate the synergistic interactions of 

endophyte and silicon on three major pasture pests in New Zealand; ASW, 

porina, and grass grub and specifically, the relationship with loline alkaloid 

producing endophytes.  

Grass grub is the most economically damaging pasture pest in New Zealand 

and there is currently a lack of effective long-term control (Barratt et al., 

1990; Ferguson et al., 2019). Loline alkaloids are known to have negative 

effects on grass grub larvae (Patchett et al., 2011b). In some novel 

ryegrass-endophyte associations lolines are present in the roots but in low 

concentrations and therefore do not affect larval feeding. A current area of 

research is the association of tall fescue endophytes inoculated into 

perennial ryegrass cultivars with the goal of distributing lolines into the root 

tissue. The first part of this thesis will investigate the effect of these 

associations, in conjunction with silicon supplementation, on grass grub root 

feeding.  
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The second part of this thesis aims to investigate temporal changes in 

endophyte growth, loline alkaloid concentration, and silicon concentration. 

It is hypothesised that there is an interaction between endophytes and 

silicon in grass species, although very little is known about the relationship 

(Huitu et al., 2014). This study aims to investigate how changes to both 

endophyte growth (mycelial mass) and silicon accumulation interact with the 

production of loline alkaloids in foliage and roots.  

The hypotheses for this thesis are: 

• Silicon and endophyte will have synergistic negative effects on the 

herbivory and performance of insect pasture pests; 

• Silicon concentration will increase in root and foliage tissue over time, 

alongside an increase in endophyte mycelial mass, leading to the 

increased concentration of loline alkaloids in root tissue. 
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2. General Methods and Materials 

 

Materials and methods described in this chapter are common to all 

experiments in this thesis.  

 

2.1   Plant Maintenance  

 

2.1.1  Soil  

Top soil as the potting medium was purchased from Complete Landscape 

Supplies in Hamilton, New Zealand on 06/08/2018. A sub-sample of the soil 

was sent to Hill Laboratories for a basic soil test on 30/08/2018. For results 

refer to Appendix 8.1.  

 

2.1.2  Accelerated ageing to produce endophyte free seed 

Seed for each grass species (breeding lines GPT12011 and M1S9), 

containing their respective endophytes was set up for accelerated aging, a 

process which kills the endophyte within the seed, rendering it a ‘nil’ or 

endophyte free (EF) seed and thus the subsequent seedling will not be 

infected with endophyte (Card et al., 2014). This allows plants of the same 

cultivars with (E+) and without (EF) endophyte to be utilised in experiments. 

Seeds were placed into labelled 60 mm Petri dishes, with the lid removed, 

and placed in a glass desiccator. The bottom of the desiccator contained a 

solution of glycerol and water (40:60) to maintain humidity at approximately 

80% (Phil Rolston pers.comm). The desiccator was incubated at 40°C for 

10 days. (see Fig. 2.1). 
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2.1.3  Seed germination 

Seeds, for each cultivar and endophyte status, were set up for germination 

in 90 mm Petri dishes on a piece of filter paper dampened with 1 mL of 

distilled water (see Fig. 2.2). Each Petri dish contained approximately fifty 

seeds and was sealed with Parafilm, then placed in a sealed container in a 

20°C controlled environment room. Seeds were left to germinate for seven 

days, during which time they were monitored for moisture. Additional water 

was applied if the filter paper appeared to be drying out. 

Figure 2.1: Seed set up (in 60 mm Petri dish) in 
desiccator containing glycerol and water for accelerated 
aging  

Figure 2.2: 90 mm Petri dishes set up with seed for germination. ~50 seeds 
in each dish 
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2.1.4  Establishment of plants from seed  

After germination, seedlings were transferred to polystyrene trays filled with 

top soil (see 2.1.1) in numbered positions. Each tray contained fifty plants 

and were left in a glasshouse to establish. Plants were watered, trimmed, 

and fertilised (see section 2.1.9) as required to maintain strong plant growth.  

 

2.1.5  Immunoblotting  

Once plants had established and had several tillers (between 6 and 8 weeks 

of growth), they were tested for endophyte infection through a tissue print-

immunoblot assay (Gwinn et al., 1991; Simpson et al., 2012). One tiller per 

plant was excised at the base of the plant, where fungal mycelium is 

concentrated. Any necrotic material was removed, and the moist freshly cut 

end of the tiller was pressed against a nitrocellulose membrane paper, 

leaving a circular mark. Immunoblots were developed by Jan Sprosen at 

AgResearch Ruakura using a method adapted from Simpson et al. (2012). 

The presence of mycelium is indicated by a bright pink result, while a light 

pink indicates that the blotted tiller is not infected with endophyte (see 

Fig. 2.3). These results were used to assign plants to treatments in 

subsequent experiments.  

Figure 2.3: Developed immunoblot nitrocellulose paper. Dark 
pink and light pink results indicate presence and absence of 
endophyte in blotted tiller respectively 
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2.1.6  Cloning and potting of plants  

Plants were split into two or three individual plants (cloned) to create plants 

with the same genotype either across or within experiments. Plants for 

cloning were selected based on immunoblot results and number of tillers (at 

least 10). Each clonal plant was of equal size and root mass, trimmed to 5 

cm and potted into individual square pots (height – 180 mm, width – 90 mm) 

filled with soil, leaving a gap of 1 cm between the top of the pot and the soil 

surface. Plants were appropriately labelled with cultivar, endophyte status, 

and experimental assignment and placed in a screenhouse to establish (see 

Fig. 2.4). Temperatures were recorded with a data logger over the course 

of all experiments. Plants were watered, trimmed, and fertilised as required 

(see section 2.1.9).  

 

2.1.7  Treatments  

There were eight treatments across all experiments (see Table 2.1). 

However, exact treatments in each insect trial varied slightly and are 

detailed in the corresponding chapter methods.  

 

Figure 2.4: Recently cloned potted plants. Coloured tags indicate plants to be 

supplemented with silicon  
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Table 2.1: List of plant treatments utilised throughout this project in two-way factorial design 
experiments. E+ = endophyte infected plants, EF = plants not infected with endophyte 

Species Endophyte Silicon Supplementation 

Ryegrass 

E+ 
Y 

N 

EF 
Y 

N 

Meadow Fescue 

E+ 
Y 

N 

EF 
Y 

N 

 

2.1.8  Silicon application 

Silicon was applied to assigned plants three times weekly for 4-10 weeks, 

dependent on the experiment. Sodium metasilicate nonahydrate 

(Na2SiO3ꞏ9H20) was purchased from Sigma-Aldrich and was combined with 

tap water to make a solution of 500 mgL-1. As required, 10 g of 

Na2SiO3ꞏ9H20 was weighed on an analytical balance (wearing safety 

glasses, a lab coat, gloves and a respiratory mask) and placed in a 20 L 

container which was then filled with tap water. Tap water likely already 

contained some silicon (Tulagi, 2011). Each plant that required silicon 

supplementation had 50 mL of this solution added to the soil surface three 

times weekly. All other plants (no additional silicon) had 50 mL of tap water, 

from the same source, added to the soil surface in the same intervals.  

 

2.1.9  General maintenance 

Plants were regularly trimmed, at least every 4 weeks, to 5 cm with scissors. 

Between plants, scissors were dipped in 70% ethanol to prevent the spread 

of any fungal or bacterial pathogens. Plants were also fertilised as required 

with 50 mL of solution containing Thrive™ fertiliser (9.4 g) and urea (9.8 g) 

dissolved in 9 L of tap water, added to the soil surface. Trimming and 

fertilising generally occurred on the same day. In the screenhouse, 
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automatic overhead watering occurred three times weekly. Plants were 

observed for any dry patches and watered additionally as required.   

2.2 Harvest and preparation of plant material  

 

2.2.1  Harvesting plant material  

This section outlines the method used for harvesting plant material for 

further analyses (see section 2.3) in experiments throughout this thesis. 

Tillers were severed from the base of the plant and necrotic tissue was 

removed. Pseudostems were separated from leaf material (see Fig. 2.5) 

and placed in separate labelled plastic bags. Root material was extracted 

from the soil and rinsed under cold tap water to remove excess soil. 

Samples were squeezed and patted dry with paper towels to remove excess 

moisture before being placed in a labelled plastic bag. All samples were 

stored in a -20°C freezer to await further processing. 

2.2.2  Preparation of plant material 

Pre-frozen samples were freeze dried (John Morris Scientific Alpha-1-2-

LDplus) over a period of 2-3 days until all moisture was removed. Samples 

were later ground into a fine powder using a ball mill (Retsch MM400) (see 

Fig. 2.6), for 60 seconds (27.5 Hz). If samples were not adequately ground, 

they were placed in the ball mill for an additional 30 seconds (27.5 Hz). 

A B C 

Figure 2.5: Grass plant split into; A) necrotic tissue, B) pseudostems and C) 

leaves 
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Freeze-dried and ground samples were stored in individual labelled plastic 

bags in a -20°C freezer until required for analysis. 

 

2.3 Analysis of plant material  

After plant material was ground into a fine powder, several analyses were 

performed, dependent on the sample type and experiment. The general 

methods for these analyses are outlined below. Analyses were performed 

on ground tissue of roots and pseudostems.  

 

2.3.1  Silicon analysis  

Silicon analysis was performed on both root and herbage material of bulked 

endophyte infected and endophyte free plants. All measurements were 

carried out using a PANalytical Epsilon 3 EDXRF spectrometer. The silicon 

standard used was a certified reference material from China National 

Analysis Centre for Iron and Steel (NCS ZC73018 – Citrus leaves), which 

has a silicon content of 0.41% ± 0.08. For the full output of the XRF analysis, 

refer to Appendix 8.2. Each XRF run had a silicon standard and nine 

samples (see Fig. 2.7). Plant material was placed in the small mass holder 

and evenly spread across the bottom surface, then pressed down with a 

small metal spatula. Care was taken to ensure that the entire bottom surface 

A 

D 

C 

B 

Figure 2.6: Procedure for grinding plant material. A) Ball mill, B) Root material 
prior to grinding, C) Pseudostems prior to grinding and D) Pseudostems post 
grinding 
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was covered in plant material. Hiltpold et al. (2016) describes the method 

used.  

 

2.3.2  Mycelial Mass 

A subset of samples (herbage infected with endophyte) was analysed for 

mycelial mass by Jan Sprosen at AgResearch Ruakura.  Initially, 20 mg of 

sample was extracted in a glass tube with 10 mL of phosphate buffered 

saline with tween (1%), samples were inverted to mix and incubated for 

three hours at 37°C. Test tubes were stored in the fridge overnight (4°C). 

An aliquot of 150 µL was taken for mycelial mass analysis through an 

indirect ELISA. Duplicate samples were run for a subset of the samples, and 

each sample had two dilutions analysed. The ELISA is a quantification of 

mycelium in the plant tissue and indicates endophytic growth (Ball et al., 

1995; Faville et al., 2015).  

 

2.3.3  Loline alkaloid analysis  

A subset of samples (root and herbage infected with endophyte) were 

analysed by Wade Mace at AgResearch Grasslands for loline alkaloids 

through gas chromatography (GC-FID). The method for loline analysis is 

outlined in Bastias et al. (2018).  

 

1 

2 

10 

Figure 2.7: XRF sample holder. Position 1 - silicon standard, 
Positions 2-10 - herbage samples 
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3. Initial screening of insect feeding on 

silicon-supplemented grasses using two above-ground 

herbivores 

3.1  Introduction  

Porina and Argentine Stem Weevil (ASW) are both above-ground 

herbivores that are economically important in the New Zealand pastoral 

industry. Collectively they are estimated to cause $372 M in lost production 

annually (Ferguson et al., 2019). They both feed on pastoral plants, 

including perennial ryegrass (Goldson, 1982; Harris, 1969; Prestidge et al., 

1991) and are affected by the presence of loline alkaloids (Jensen et al., 

2009; Popay & Lane, 2000). 

 

3.1.1 Porina  

Porina is the common name given to a group of endemic moths from the 

genus Wiseana that are present in New Zealand pastures (Jensen & Popay, 

2004). They are most prevalent in the South Island and lower North Island 

(Barratt et al., 1990) (see Fig. 3.1), but their presence at damaging 

population levels is sporadic. The group consists of seven species; Wiseana 

cervinata, W. copularis, W. fuliginea, W. jocosa, W.mimica, W. umbraculata, 

and W. signata. Differentiation between the species on a morphological 

basis is difficult and instead is often based on molecular techniques (Brown 

A B 

Figure 3.1: Porina A) Male and female adult W. copularis (Barratt et al., 1990). B) Large porina larva 
reared in colony at AgResearch Ruakura  
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et al., 1999; Richards et al., 2017). The most abundant and damaging 

species are W. cervinata and W. copularis (Jensen & Popay, 2004); the 

latter is used in this experiment. The developmental biology of the various 

Wiseana species is similar (see Fig. 3.2), but they differ in phenology 

(Ferguson et al., 2019). Therefore, the time of year that populations reach 

damaging levels is dependent on the specific species present (Barlow et al., 

1986). 

Porina caterpillars are grazers at low densities (less than 40/m2), but at high 

densities (more than 40/m2) over-grazing results in plant death or ‘denuding’ 

(complete removal of plant cover so that soil is exposed). This further 

exacerbates production loss and the bare soil is susceptible to weed 

establishment. Ferguson et al. (2019) estimated the economic cost of 

porina/m2 for dairy, and sheep and beef farms based on population density 

(see Fig. 3.3).  

 

 

 

 

 

 

Figure 3.2: Diagram of general Wiseana spp. lifecycle (Barratt et al.,1990) 
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Figure 3.3: The cost of porina to sheep and beef, and dairy farms (based on 2012 prices). Change in slope between 20 and 40 porina/m2 represents change from grazing 
to denuding (Ferguson et al., 2019). 
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3.1.1.1 General lifecycle 

The Wiseana spp. life cycle takes one year to complete (see Fig. 3.2). Adult 

moths are present during spring, and summer depending on the species. 

The adult stage does not feed and is short lived, during which time they 

mate and females are able to disperse over 3,000 eggs through pasture 

(Barlow et al., 1986; Ferguson et al., 2019). Larvae hatch 4 to 6 weeks later 

and are present on the soil surface for several weeks in silk webbing 

(Stewart, 2001). The larvae then burrow into the soil to a depth of 10 to 30 

cm, where they remain for the rest of their lifecycle, growing to a length of 

between 70 to 100 mm before pupation. During the damaging larval stage, 

each caterpillar will moult between 6 and 10 times over 7 to 8 months. 

Larvae feed at night by severing tillers at the base of the plant and dragging 

them back into their burrows to consume (Barlow et al., 1986).   

 

3.1.1.2 Methods of control 

The main methods used to reduce damage caused by porina larvae are 

outlined below. Methods include use of fungal endophytes, naturally 

occurring pathogens, knowledge and disruption of species phenology, and 

insecticide application.  

Porina larvae are affected by several bioactive compounds produced in 

grass-endophyte symbioses. Popay and Lane (2000) experimented with 

crude loline extracts incorporated into artificial diets. They found that loline 

concentrations of 500 and 1000 µg/g significantly increased larval mortality. 

Larvae also fed significantly less on loline containing diets than controls 

(Popay & Lane, 2000). The ryegrass endophyte AR37 was commercially 

released in 2007. The bio-actives in AR37 are known as epoxy-janthitrems 

and are also effective against porina larvae (Hennessy et al., 2016; Jensen 

& Popay, 2004; Popay et al., 2012).  

There are naturally occurring pathogens, mostly viruses, which regulate 

porina populations. Host-pathogen interactions are disrupted by cultivation 

or sudden decreases in larval populations (Ferguson et al., 2019). Young 
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pastures (2 to 4 years) are most susceptible to outbreak populations of 

porina when there is little control from natural pathogens.  

Alternative methods of control require knowledge of the porina lifecycle as 

well as the Wiseana species present. For example, high pasture cover at 

the time of egg laying influences larval survival. When there is low cover, 

the eggs and newly-hatched larvae are prone to desiccation (Stewart, 2001). 

High stocking rates while young larvae are on the soil surface can also 

reduce populations. Knowledge of when larvae are likely to be present allow 

farmers to plan grazing schedules and reduce populations in particularly 

vulnerable pastures (Ferguson et al., 2019).  

Another common method of control is the use of insecticides. Diflubenzuron 

is a mimic insect hormone that prevents the caterpillars from moulting. 

Application is most effective in early stages because caterpillars moult more 

frequently (Ferguson, 2000).  Diflubenzuron is a cost effective and relatively 

safe method but requires knowledge of insect life cycles to be most efficient. 

Because of this, farmers often use broad-spectrum organophosphate 

insecticides, which have larger safety risks, environmental consequences, 

and a higher cost (Ferguson et al., 2019).  

 

3.1.2 Argentine stem weevil  

Argentine stem weevil (ASW) was introduced to New Zealand from South 

America in the early nineteenth century and is now present in pastures 

throughout the country (Prestidge et al., 1991). It was not until the 1950s 

that the damage caused by ASW in pastures was recognised (Goldson et 

al., 2005).  The adult weevil feeds on the leaves of grasses (see Fig. 3.4A) 

but the larval stage is the most damaging. Larvae mine the central part of 

the grass stem (see Fig. 3.4B) often resulting in death of the tiller (Ferguson 

et al., 2019). Newly sown seedlings in pasture are the most susceptible to 

damage by existing populations of ASW (Prestidge et al., 1991).  
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3.1.2.1 Lifecycle  

Adult ASW are present in pastures throughout the year but overwinter in a 

state of reproductive diapause (Barker & Pottinger, 1986; Goldson, 1981). 

The number of generations that the weevil completes each year depends 

on the region. In the warmer northern North Island the weevil can complete 

three generations, but this is reduced to two in Canterbury and Otago due 

to lower average temperatures (Ferguson et al., 2019). The number of 

generations completed influences the pest status of ASW in specific regions, 

because more generations result in more damage. Female adults lay eggs 

under the leaf sheath on grass tillers (see Fig. 3.5) and the emerging larvae 

A B 

Figure 3.4: A) Windowing damage on ryegrass tillers caused by adult ASW. B) Ryegrass stem 
mined by ASW larva. Larva pictured below stem 

Figure 3.5: ASW eggs under leaf sheath. Photo 
credit: L. M. Hennessy 
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mines through the tiller, often causing damage to the basal meristem 

resulting in no regrowth of the tiller. A larva completes four instars and is 

capable of destroying 3 to 8 tillers before pupation (Ferguson et al., 2019).  

Interestingly, Barker (1989) found that the number of eggs laid by ASW was 

negatively correlated to the number of silica deposits per mm2 in two 

cultivars of Lolium multiflorim. 

 

3.1.2.2 Methods of control  

Control of ASW in New Zealand is an example of integrated pest 

management (IPM). There are two biocontrol agents currently utilised, 

endophyte-infected grass species and a parasitic wasp (Microctonus 

hyperodae) (Ferguson, 2000), albeit in some areas ASW continues to be an 

economically important pest (Popay et al., 2011).  

The use of novel endophyte strains in ryegrass and their associated 

alkaloids aid in the control of ASW in New Zealand. Peramine concentration 

has a significant negative relationship (as peramine increases, feeding 

decreases) with adult feeding. There is also a less pronounced effect on 

reducing larval damage (Popay & Wyatt, 1995). AR37, which produces 

epoxy-janthitrems, is not active against adults but has a strong effect on 

larvae. Loline alkaloids reduce larval damage and adult oviposition but have 

little effect on adult feeding (Jensen et al., 2009; Popay et al., 2009). 

The biocontrol agent M. hyperodae was successfully introduced to New 

Zealand to control ASW in 1991 (Goldson et al., 1994). The adult wasp 

attacks the adult weevil, laying an egg within the weevil. The parasitoid larva 

develops inside the weevil and eventually kills the weevil host when it 

emerges (Loan & Lloyd, 1974; Popay et al., 2011). In areas where ASW 

were previously most damaging, the release of M. hyperodae significantly 

reduced egg and larval populations quickly after release. Barker and 

Addison (2006) reported parasitism rates between 75 and 90% in 

overwintering adults in the North Island three years after release of the 

parasitoid. Establishment was slower in other areas such as Canterbury 

(Goldson et al., 1998). The stability of the parasitoid-stem weevil association 
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is currently under question as parasitism rates across the country have 

declined (Goldson & Tomasetto, 2016; Goldson et al., 2014a; Goldson et 

al., 2014b; Tomasetto et al., 2017).  

Another major concern with ASW is that populations cause severe damage 

to newly-sown pastures. To combat this insecticides are often coated on to 

seed which helps to supress populations during initial pasture development 

(Ferguson et al., 2019). This method increases the cost of re-sowing 

pastures and there is an ongoing decline in the public acceptance of 

insecticide use which may limit the use of this method in the future (Ricciardi 

et al., 2017).  

 

3.2  Methods 

Leaf material for both experiments was collected from plants that had been 

supplemented with silicon for a period of four weeks (see section 2.1.8). The 

first application was on 11/02/2019 and the final on 08/03/2019, totalling 12 

silicon applications. Both ryegrass and meadow fescue treatments were 

used in the porina bioassay and only ryegrass treatments in the ASW 

experiment (see Table 2.1).  

 

3.2.1 Porina artificial diet bioassay  

3.2.1.1 Porina larvae collection and sorting 

Porina larvae were collected from a colony maintained at AgResearch 

Ruakura (see Fig 3.1B). Adult female moths were caught near Mosgiel in 

Otago and identified as W. copularis by Colin Ferguson (AgResearch, 

Invermay). Eggs were collected and transported to Ruakura where they 

were surface sterilised (Carpenter, 1983) and set up in 90 mm Petri dishes 

with damp filter paper to hatch at 20°C (08/11/2018). Once hatched 

(23/11/2018), first instar larvae were placed in plastic containers half filled 

with bark and fed a semi-artificial diet which was replaced weekly (Popay, 

2001). Containers were kept in a 15°C controlled environment room until 

late February when they were transferred to a 10°C incubator to slow the 

growth of larvae.  
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On 26/03/2019, 150 larvae were removed from colony containers and 

individually placed in 30 mL specimen containers. These were covered in a 

damp paper towel to maintain humidity and stored in a cool box for 24 hours 

in a 10°C incubator. The following day larvae were weighed individually on 

an analytical balance (Mettler Toledo XS204). Any soil or frass was 

removed prior to weighing. Larvae weighed between 114 and 511 mg. 

Larvae were assigned to treatments and replicates based on weight. They 

were allocated so that all treatments in a replicate had larvae of a similar 

weight. The larvae within a replicate were then randomly assigned to a 

treatment to ensure that the lightest larvae were not always in the same 

treatment. There were 15 replicates for each treatment, including a negative 

control group of larvae that were subjected to the same conditions but 

received no diet throughout the experiment. Once assigned to a treatment, 

larvae were placed into a corresponding labelled 70 mL specimen vials ¾ 

filled with bark (Bloom Decor Bark, Grade: Fine) (see Fig. 3.6). The vials 

were arranged by treatment and stored in polystyrene trays at 10°C for the 

remainder of the experiment.  

 

 

Figure 3.6: Example 70 mL specimen vial 3/4 

filled with bark 
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3.2.1.2 Diet Preparation 

Herbage was collected on 12/03/2019 from a set of 10 plants for each 

treatment and freeze-dried and ground (see section 2.2). Samples for each 

treatment were separated into two vials containing 3 g each and stored in a 

-20°C freezer until required for diet preparation.  

A semi-synthetic diet like that described in Popay (2001) was made and fed 

to the porina larvae over a period of two weeks. Fresh carrot (250 g) was 

chopped into small cubes and blended with 500 mL Milli-Q water until the 

mixture was homogenous. This was then strained using a sieve and 375 mL 

of ‘carrot water’ was obtained, to which 6.25 g agar was added and heated 

in a microwave to boiling point in a 1 L beaker. The diet was left to cool to 

70°C, stirring occasionally.   

Diet was weighed (27 g) into 100 mL beakers labelled for each treatment. 

Beakers had been warmed on a hot plate to ensure the agar did not set too 

quickly. To this, 3 g of the corresponding herbage was added and 

thoroughly mixed before being evenly spread into a 90 mm Petri dish. Diets 

were stored in a cool box until plugs of diet were taken using a 1 cm cork 

borer, weighed, and placed in the 70 mL specimen vials with porina larvae. 

Remaining diet was sealed with Parafilm, wrapped in tinfoil and placed in a 

refrigerator (4°C). A set of three diet replicates for each treatment, without 

larvae, was set up to look at moisture gain/loss of the diet in the bark and 

vial environment. Diet was made fresh for each week, on 27/03/2019 and 

03/04/2019 and was enough for a diet change mid-way through the week. 

Once the larvae and diet were both in the 70 mL vial, the polystyrene trays 

were covered in dark cloth to block out light and placed in a 10°C incubator. 

 

3.2.1.3 Experiment Assessment 

During the experiment there were four assessment dates (31/03/2019, 

03/04/2019, 06/04/2019 and 10/04/2019). On each assessment day any 

remaining diet was cleaned of debris and weighed to determine how much 

the larvae had fed. Fresh diet (either from the fridge or made that day) was 

weighed and added to the vial, except on the final assessment (10/04/2019). 
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For this, remnant diet was weighed, specimen vials were emptied, and the 

larvae were returned to the vial for 24 hours in the 10°C incubator and 

subsequently weighed on 11/04/2019. Samples of fresh and remnant diet 

were collected and stored in -20°C freezer for potential loline analysis during 

each assessment. The vials containing larvae and no diet were checked for 

survival at each assessment. All weights for this experiment were done on 

an analytical balance (Mettler Toledo XS204). 

 

3.2.2 ASW leaf blade experiment 

3.2.2.1 ASW collection and sorting 

ASW adults were collected, using a modified blower-vac with a mesh 

collection bag inserted in the pipe, from Ruakura Research farm on 

06/03/2019. A total of 60 weevils were collected from the suction sample 

and were placed into individual 30 mL containers with no food. Weevils were 

kept in a cool box for 24 hours in a 20°C controlled environment room and 

then weighed using an analytical balance on 07/03/2019 (Mettler 

AT20 FACT). 

Due to the small number of weevils obtained from suction samples, a limited 

number of treatments and replicates (n=10) were set up. Those selected 

included all four treatments for ryegrass (see Table 2.1) and a negative 

control to assess change in weevil weight with no plant material. ASW were 

assigned to replicates and treatments based on weight. The lightest were in 

replicate one and the heaviest in replicate 10. The weevils within each 

replicate were then randomised across treatments to ensure that the lightest 

of that replicate was not always assigned to the same treatment.  

 

3.2.2.2 Experiment set-up and assessment 

ASW were placed into labelled plastic vials (height: 5 cm, diameter: 1.5 cm) 

along with two sections of leaf (4 cm in length) of the appropriate treatment 

(see Fig. 3.7). Leaf sections were taken from second oldest leaf (first being 

the outermost) and from the middle of the length of the leaf. All vials were 

placed in a larger plastic container in a randomised block design, covered 
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in tinfoil to prevent light penetration and kept in a 20°C controlled 

environment room for the course of the experiment.  

There were two assessments of this experiment. The first assessment after 

4 days (11/03/2019) involved removing leaf sections from vials and visually 

scoring them for damage by counting the number of leaf scars. Preliminary 

studies compared the use of scanning leaves and assessing leaf area 

damaged on computer software, and visual scoring. This experiment 

determined that the two methods were significantly correlated (R2 = 0.934) 

(Popay & van Amsterdam; unpublished, 2018). Therefore, the application of 

visual scoring is a valid and accurate method. The plant material was 

replaced with fresh material from the same plant and any excess moisture 

in the vial was wiped away with a tissue. Negative control tubes were 

opened, and any moisture was removed for consistency across treatments. 

The same method for scoring damage was repeated on 14/03/2019, no 

fresh material was added and the ASW were left in the empty vials, covered 

in tinfoil, for 24 hours in a 20°C controlled environment room. ASW were 

then reweighed on 15/03/2019 using the same analytical balance. 

Preliminary studies found significant differences in ASW weight change 

when fed leaves with and without endophyte (Popay & van Amsterdam; 

unpublished, 2018).  

Figure 3.7: ASW adult pictured in plastic vial with two 4 cm 
ryegrass leaf segments 
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3.2.3 Silicon and alkaloid analysis 

Plant material for both experiments was sourced from the same plants. 

Pseudostem material from these plants was analysed for silicon and loline 

concentrations (see section 2.3). Plant material was bulked together (n=3) 

to allow for enough material for analysis.  

 

3.2.4 Statistical analyses 

Data were analysed using GenStat (v.19). Consumption (porina), feeding 

scars (ASW), insect weight change and silicon concentrations were 

analysed by general ANOVA and treatment blocked by species, endophyte 

status, and silicon supplementation. Data for insects that died during the 

experiments were removed from analysis.  

 

  



43 
 

3.3  Results  

 

3.3.1 Porina artificial diet bioassay  

Larval survival throughout the experiment was relatively equal across 

treatments (see Table. 3.1). There did not appear to be a toxicity effect of 

any of the treatments. Data from larvae that died during the experiment was 

removed before analysis. There was no significant difference between 

moisture loss/gain of control diets between treatments (P = 0.871). 

 

Table 3.1: Number of dead porina larvae per treatment out of 15 larvae per treatment  

Species Endophyte 
Silicon 

Supplementation 

Number of dead 

larvae 

Ryegrass 

E+ 
Y 2 

N 1 

EF 
Y 0 

N 0 

Meadow Fescue 

E+ 
Y 1 

N 3 

EF 
Y 1 

N 2 

Negative control   2 

 

There was no interactive effect of endophyte infection and silicon 

supplementation on the total diet consumption of porina larvae. Additionally, 

there was no effect of silicon supplementation on diet consumption 

(see Table 3.2). There were significant differences between species and 

endophyte status. Larvae fed the least on endophyte-infected (E+) meadow 

fescue and the most on endophyte-free (EF) meadow fescue, 397 mg and 

982 mg respectively, with feeding on perennial ryegrass with and without 

endophyte not significantly different from EF meadow fescue. There was no 

significant difference between average consumption for larvae fed E+ and 

EF ryegrass diets (see Fig. 3.8).  
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Table 3.2: ANOVA results for average total diet consumption by porina larvae. Significant values in 
bold, residual degrees of freedom = 87. 

Source of Variation F-statistic P-value 

Species 6.32 0.014 

Endophyte 17.56 <0.001 

Silicon 0.05 0.825 

Species.Endophyte 7.64 0.007 

Species.Silicon 0.02 0.875 

Endophyte.Silicon 1.63 0.204 

Species.Endophyte.Silicon 0.67 0.416 

 

At every assessment larvae fed significantly less on meadow fescue E+ 

than the EF (P < 0.05) whereas there was no difference between the 

feeding on E+ and EF ryegrass at any assessment point (P > 0.05). There 

was no effect of silicon in all assessments and treatments (P > 0.05). 
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Figure 3.8: Average total consumption (mg) of semi-artificial diet by porina larvae. Bars with different 

letters above differ in Fishers unprotected test (P < 0.05). Error bars are SE. 
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Consumption was generally highest during the first assessment and 

remained relatively stable throughout the remainder of the experiment 

across treatments (see Fig. 3.9). 

 

Differences in diet consumption between treatments were not reflected in 

the change in weight of porina larvae (see Fig. 3.10). Larvae fed meadow 

fescue E+ gained less weight than those meadow fescue EF, but this was 

not statistically different.  There was a significant difference between the two 

species, with those fed meadow fescue and ryegrass gaining 61.6 mg and 

84.0 mg (P = 0.035) respectively on average (see Table 3.3). There was 

also an overall effect of endophyte, larvae fed E+ diets gained 60.2 mg 

compared to those fed EF diets which gained 85.4 mg on average 

(P = 0.018). Larvae that were in the starved group on average lost 28.4 mg. 

This was significantly different from all other treatments (see Fig. 3.10). 
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Figure 3.9: Percentage of the total amount of diet consumed for each treatment that was eaten at each 
assessment (1-4), represented as average feeding per day of each assessment. Each colour represents 
different assessment. 
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Table 3.3: ANOVA results for average weight change of porina larvae. Significant values in bold, 
residual degrees of freedom = 87. 

Source of Variation F-statistic P-value 

Species 4.58 0.035 

Endophyte 5.82 0.018 

Silicon 0.05 0.830 

Species.Endophyte 0.66 0.420 

Species.Silicon 0.29 0.594 

Endophyte.Silicon 0.05 0.816 

Species.Endophyte.Silicon 1.69 0.198 
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Figure 3.10: Average change in porina larvae weights from start of experiment to end. Bars with 
different letters above differ in Fishers unprotected test (P < 0.05). Error bars are SE 
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3.3.2 ASW ryegrass leaf blade experiment 

There was no interaction between silicon supplementation and endophyte 

status on the total number of ASW feeding scars and no effect of silicon 

supplementation (see Table 3.4). There was a significant effect of 

endophyte infection on number of leaf scars for assessment 1 (P = 0.023), 

assessment 2 (P = 0.002), and overall (P = 0.004) (see Fig. 3.11). Total 

average number of feeding scars for E+ plants was 15.8 and 40.4 for EF 

plants. A total of 3 weevils died in the duration of the experiment and were 

excluded from analysis. One replicate was removed due to suspicion of 

incorrect initial weight recorded.  

Table 3.4: ANOVA results for total number of ASW leaf scars. Significant values in bold, residual 

degrees of freedom = 23. 

Source of Variation F-statistic P-value 

Endophyte 10.34 0.004 

Silicon 0.01 0.923 

Endophyte.Silicon 1.3 0.266 

 

 

a

a

b

b

0

5

10

15

20

25

30

1 2

A
ve

rg
ae

 n
u

m
b

er
 o

f 
fe

e
d

in
g 

sc
ar

s

Assessment

E+

EF

Figure 3.11: Average number of feeding scars (n = 9) for each assessment based on endophyte status. Bars 
with different letters above differ in Fishers unprotected test (P < 0.05). Error bars are SE. 
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There was a significant difference in change of weevil weights dependent 

on treatment (P < 0.001) (see Fig 3.12). Weevils in the negative control 

group on average lost 15.8% of their original body weight. There was a 

significant overall effect of endophyte on weevil weight change. Those fed 

E+ lost 0.0048 mg on average and those fed EF plant material gained 

0.0351 mg (P = 0.027). There was no overall effect of silicon or an 

interaction between endophyte infection and silicon supplementation on 

changes to weevil weights (see Table 3.5).  

 

Table 3.5: ANOVA results for percentage weight change of ASW adults. Significant values in bold, 
residual degrees of freedom = 23. 

Source of Variation F-statistic P-value 

Endophyte 5.55 0.027 

Silicon 0.07 0.800 

Endophyte.Silicon 0.00 0.964 
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Figure 3.12: Average weight change of ASW adults (n = 9) from start to finish of leaf blade experiment. 
Bars with different letters above differ in Fishers unprotected test (P < 0.05) Error bars are SE  
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3.3.3 Post-hoc analysis of plant material for silicon 

Post-hoc analysis of the pseudostem material from plants used in these 

experiments revealed that there was no significant difference in the silicon 

concentrations between treatments, based on silicon supplementation 

(P = 0.099). There was a significant interaction between species and 

endophyte infection, indicating that ryegrass EF plants had higher herbage 

silicon concentrations than E+ ryegrass. There was no significant difference 

in meadow fescue silicon content based on endophyte infection 

(see Fig. 3.13).  

 

3.3.4 Post-hoc analysis of plant material for lolines 

Analysis of pseudostem material from plants used in both the porina and 

ASW (just ryegrass) experiment revealed that meadow fescue had 

significantly higher total lolines than ryegrass (P < 0.001). There were no 

significant differences between the total loline concentrations for either 

species, based on silicon supplementation (see Fig. 3.14). Results were the 

same for NFL and NANL. In comparison, there was an interactive effect of 

plant species and silicon supplementation on the production of NAL 
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Figure 3.13: Silicon concentrations (%) of pseudostem plant material (n = 3) after four weeks of 
silicon supplementation. Leaf material (as well as pseudostems) from these plants used in ASW 
and Porina experiments. Bars with different letters above differ in Fishers unprotected test 

(P < 0.05), within species. Error bars are SE. 
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(P = 0.002). Ryegrass supplemented with silicon produced significantly 

more NAL (78.9 µg/g) than ryegrass not supplemented with silicon 

(P = 0.027), which had nil detection of NAL in any samples. The opposite 

was true for meadow fescue; silicon supplemented plants produced 

significantly less NAL than non-silicon supplemented (P = 0.005). Meadow 

fescue had significantly more NAL, whether or not silicon supplemented, 

than ryegrass treatments (P < 0.001). 
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Figure 3.14: Total loline concentration of plant pseudostems (n = 3) after four weeks of silicon 
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3.4  Discussion 

Feeding of both ASW adults and porina larvae was, to some extent, affected 

by the presence of endophytes in this study but not silicon supplementation. 

Endophyte in meadow fescue but not perennial ryegrass significantly 

reduced the feeding of porina larvae. In contrast, endophyte-infected 

ryegrass significantly reduced the number of feeding scars from ASW adults. 

These endophyte results correlate with previously published work.  

 

3.4.1 Porina larvae bioassay 

Popay and Lane (2000) conducted an artificial diet bioassay with porina 

larvae, like the one reported in this chapter, using crude loline extracts which 

contained NAL and NFL. The results indicated that porina feeding was 

reduced at a loline concentration of 250 µg/g through to 1000 µg/g. This 

indicates that the total lolines present in the meadow fescue treatment, and 

perhaps the ryegrass, in this study were an effective concentration to reduce 

feeding. Porina larvae are not affected by the alkaloid peramine (Jensen & 

Popay, 2004), thus production of peramine in the ryegrass treatment is not 

expected to have influenced results in this experiment.  Popay and Lane 

(2000) also observed increased mortality in treatments with 500 µg/g and 

1000 µg/g total lolines compared to their respective controls. There was no 

mortality effect observed in this study, but this experiment was run for a 

week less than that in Popay and Lane (2000) because of a shortage of 

plant material. The continuation of the experiment may have resulted in 

increased mortality due to longer exposure to loline alkaloids. Porina 

feeding was significantly reduced in meadow fescue E+ compared to EF, 

but not in ryegrass treatments. Those fed E+ diets gained less weight than 

the respective EF treatments in both species, but these were not significant 

differences. The bioassay could only be run for a period of two weeks, which 

may have altered the ability to detect differences in larval weight change.  

The silicon concentration of EF ryegrass plants was higher than E+ plants, 

but this difference was lower than differences previously reported to alter 

herbivore feeding (Massey et al., 2006; Massey et al., 2007a).  Massey et 
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al. (2006) reported increases in perennial ryegrass silicon concentration 

from 0.54% to 4.68% (a 766% increase) with supplementation and this 

difference influenced the feeding of two folivorous insects. In contrast, the 

difference in silicon concentrations of  EF and E+ perennial ryegrass in this 

study are 1.08% and 1.32% (a 22% difference) respectively. These 

differences are marginal in comparison (Massey et al., 2006), although the 

authors did not mention the endophyte status of plants in this study. 

Therefore, there is no strong evidence that the silicon concentrations 

reported here would have influenced the feeding of porina in either EF or 

E+ plants.  

Due to the lack of difference in plant silicon based on supplementation, 

further experiments are required to determine if there is a synergistic effect 

of silicon and endophyte on the feeding of porina larvae. Potentially, this 

could involve hydroponics and longer-term silicon supplementation in two-

way factorial plant experiments. The use of hydroponics allows for 

increased differences in silicon because plants not supplemented with 

silicon only receive nutrient solution and water, meaning plants cannot 

absorb already available silicon in soil, as is likely to have occurred in this 

study. It is of note that water itself will contain a level of silicon (Tulagi, 2011) 

and this is difficult to remove completely (Epstein, 2009). Further studies on 

porina larvae could involve the assessment of mandible wear (Mir et al., 

2019), to assist in assessing the impact that silicon has on the performance 

of porina larvae. Mir et al. (2019) found progressively more microwear to 

mandibles of Oxya grandis (grasshopper) after feeding on Bromus 

catharticus (rescuegrass) with increasingly high levels of silicon.  

 

3.4.2 ASW leaf blade experiment 

Patchett et al. (2008a) determined, in field studies, that ASW adult feeding 

was consistently reduced when loline concentrations were above 400 µg/g. 

In contrast, Jensen et al. (2009), found that ASW adult feeding was not 

affected by the presence of two loline alkaloids, NFL and NANL, in separate 

artificial diets. Concentrations of lolines in the diets in Jensen et al. (2009) 
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experiments were in the range of what would be expected to be found in 

plants in the field (Justus et al., 1997). Jensen et al. (2009) also found 

increased mortality of ASW in these treatments but there was no mortality 

effect in the leaf blade experiment reported here. However, ASW were only 

exposed to loline alkaloids for a week, whereas the mortality effect in 

Jensen et al. (2009) did not become significant until after more than 20 days 

of exposure. The reduced feeding by ASW adults in this experiment is 

unlikely to be due to the presence of lolines in the ryegrass, but instead 

peramine, which is known to be an effective deterrent to ASW adult feeding 

(Johnson et al., 2013; Popay et al., 1990; Rowan et al., 1990). Samples are 

awaiting peramine analysis to determine how much peramine the insects 

were exposed to.  

ASW adults fed significantly less on the leaf material of E+ ryegrass plants, 

irrespective of silicon supplementation treatment. This shows that the 

alkaloid profile of this plant species and endophyte strain association is 

successful at reducing ASW adult feeding, but there was no influence of 

silicon supplementation. This difference in feeding was also reflected in 

changes to weevil weights. However, since the experiment, the accuracy of 

the analytical balance utilised for weevil weights in the study reported here 

has come into question. Previous results by Popay & van Amsterdam (2018; 

unpublished) found detectable differences in ASW weights dependent on 

the endophyte status of their diet in a leaf blade bioassay like the one 

conducted in this thesis.  

Like the porina experiment, differences in the silicon concentration of E+ 

and EF ryegrass are not likely to have altered the feeding of ASW adults 

based on the silicon levels required to change herbivore feeding reported in 

other studies (Massey et al., 2006).  

A limitation of this study is that the exact loline and silicon levels for 

individual leaves/plants fed to the ASW are unknown and these can be 

variable between tillers in individual plants (Hartley et al., 2015; Mace et al., 

2014; Soininen et al., 2012). Had this information been able to be obtained, 
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it would have provided more insight into the effects of both defences on 

ASW feeding.  

Further experiments to determine the effects of both silicon and 

loline-producing endophytes, alone and in combination, on the feeding and 

weight change of ASW are required. Research investigating long term 

synergistic effects of silicon and endophyte on ASW populations would aid 

in the understanding of potential new methods of control to reduce the 

economic impact of this pest. Silicon, like lolines in Jensen et al. (2009), 

may have adverse effects on ASW populations over an extended period of 

time. For example, Massey et al. (2006) found reductions in pupal mass in 

response to elevated silicon. Reduced pupal mass adversely affects the 

dispersal and fecundity of emerging adults, thus having detrimental effects 

on the resulting populations. Another recommendation for future 

experiments is to quantify the different defences of individual plants, in order 

to best interpret the effects of each defence (silicon, alkaloids, phenolics 

etc). This is important because as reported in Massey et al. (2007a) there 

is large variability in the different defence mechanisms that grass 

plants/species allocate resources to and this influences the feeding of insect 

herbivores in experiments.  

 

3.4.3 Relationship of endophyte infection and silicon supplementation 

Overall, results indicate that there was no interactive effect of silicon 

supplementation and endophyte effect on above-ground herbivore feeding 

after four weeks of silicon supplementation. There was no effect of silicon 

supplementation treatments on the percentage silicon levels in both species 

of grass. Overall perennial ryegrass EF plants had significantly more silicon 

than E+ plants of the same species/cultivar, indicating that there may be a 

negative association between silicon accumulation and endophyte infection 

in perennial ryegrass. This is contrary to results reported in Huitu et al. (2014) 

who found a 16% greater silicon concentration of meadow fescue infected 

with endophyte compared to the EF. The meadow fescue used in this study 

did not have a similar pattern of silicon accumulation in relation to endophyte 
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infection. A limitation of this study is that a shortage of plant material meant 

plant replicates had to be bulked together (n=3) to allow enough material for 

analysis. This reduced the variability in the results and decreased the 

potential to identify differences in treatments. Levels of silicon in perennial 

ryegrass reported in other studies (Massey et al., 2006) are much lower than 

those found in this experiment. In contrast to this study Massey et al. (2006) 

also grew plants in an inert growth medium and supplemented with silicon 

for 12 to 15 weeks. Silicon accumulation in the present study may have 

been influenced by the short period of time that plants were supplemented 

for or the abiotic conditions they were grown in. Continued research is 

needed to investigate the synergistic effects of silicon and endophyte 

infection on insect herbivore performance.   
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4. Feeding of a below-ground herbivore, grass grub, in root 

bioassays and pot trials on silicon supplemented 

grasses 

 

4.1 Introduction 

 

4.1.1 Below-ground herbivores 

Root herbivores are severe pests in agriculture and are often difficult to 

detect and control (Brown & Gange, 1990; Johnson et al., 2016a; Moore & 

Johnson, 2017). Previous research shows that root-feeders have drastic 

effects on plant performance and physiology (Blossey & Hunt-Joshi, 2003; 

Meyer et al., 2009; van Dam, 2009). Damage has detrimental 

consequences on the functioning of roots, and this affects water and nutrient 

acquisition as well as transport, storage, and synthesis of secondary 

compounds. The consequences of root-herbivory can be so severe that in 

some cases root-herbivores have been introduced as a biological control for 

invasive weed species (Brown & Gange, 1990). Root damage typically 

occurs less frequently than foliage damage, however, root-herbivores 

remain within the environment and damage is ongoing. Damage to roots 

interacts with other stressors, such as drought, and results in increased 

negative effects of the drought compared to that for an undamaged plant. 

As a consequence, root-herbivory can have disastrous effects for plants 

(Johnson et al., 2016a; Moore & Johnson, 2017). Studies have shown that 

loss of biomass from the roots is more harmful to the plant than from the 

shoots (Hunter, 2001). One study found that plants with 25% of root-mass 

removed produced significantly less total biomass than plants that had 25% 

of foliage removed (Reichman & Smoth, 1991). Despite this, below-ground 

herbivory is often not prioritised in plant-insect interactions research (Brown 

& Gange, 1990; Hunter, 2001; van Dam, 2009). 

The presence of soil-dwelling herbivores often goes undetected until 

damage has already occurred (Moore & Johnson, 2017). The soil 

environment limits mobility and herbivores are unable to readily disperse 
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between host plants. This means that damage is less frequent but when it 

does occur, it is prolonged and severe without intervention (Johnson et al., 

2016b). In comparison to above-ground herbivores, those below-ground 

have a more complex and diverse habitat because of the heterogeneous 

soil environment. Challenges can include variable nutrient distribution and 

a wide range of microbial interactions (Johnson et al., 2016b). Below-ground 

herbivore populations also tend to take longer to reach damaging levels. For 

example, grass grub populations typically become damaging in pasture 2 to 

4 years after sowing (Popay & Thom, 2009; Zydenbos et al., 2011). The 

above factors contribute to the difficulty in studying and implementing 

controls against root-feeding insect pests.  

 

4.1.2 Silicon defence and root-herbivores 

Silicon research primarily focusses on plant resistance to aboveground 

herbivores (Hunter, 2001; Johnson et al., 2010). It is hypothesised that like 

foliage, the accumulation of silicon strengthens plant roots. Recently, Frew 

et al., (2017) demonstrated that increased root silicon negatively affected a 

root-feeding herbivore, greyback canegrub (Dermolepida albohirtum). This 

study reported a 65% reduction in overall feeding when the canegrubs were 

fed roots with a high silicon content and a negative correlation between 

canegrub change in mass and silicon content (Frew et al., 2017a). This 

suggests that silicon accumulation in grass roots has the potential to be 

effective at reducing feeding by other root feeding larvae. Studies have also 

observed that root-applied silicon can result in higher concentrations in the 

roots than in foliage (Moore & Johnson, 2017). This is important when 

considering pasture plant species because high silicon concentrations in the 

foliage has the potential to impact the digestibility of the plant material not 

only for insect herbivores but also grazing stock. Massey et al. (2009) found 

that increased silicon did not alter sheep feeding preferences, however this 

study did not look at long-term consumption and digestability of material.  
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4.1.3 Grass grub in New Zealand 

Grass grub, Costelytra giveni (formerly C. zealandica) (Coca-Abia & 

Romero-Samper, 2016), is a member of the scarab family and is endemic 

to New Zealand. The native habitat of this species is typically tussock 

grasslands. However, the larval stage has become a significant pest in 

introduced pasture plant systems (Barratt et al., 1990) (see Fig. 4.1). 

Recently, Ferguson et al. (2019) estimated that New Zealand’s most 

common pasture insect pests cause losses of between $1.7 B and $2.3 B 

during an average year. Of this, grass grub is responsible for $140-380 M 

on dairy farms and $75-205 M on sheep and beef farms. Thus, grass grub 

is the most economically important pasture pest in the agricultural industry 

(Ferguson et al., 2019).  

 

The establishment of native insects as invasive pests is a consequence of 

the replacement of native ecosystems with introduced agriculturally-

beneficial plant species (Jackson & Klein, 2006; Lefort, 2013). Lefort et al. 

(2015b) found that grass grub larvae performed better on white clover roots 

when the jasmonic acid pathway had been induced compared to control 

diets, whereas there was no such difference for a closely related species 

that had not invaded pastures. The authors proposed that the grass grub 

larvae were pre-adapted to overcome and benefit from defence pathways 

of an introduced host, contributing to their success and establishment as a 

Figure 4.1: 3rd instar grass grub larva in soil 
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pest species. Studies have also suggested that there is considerable 

genetic diversity among grass grub populations across regions (Richards et 

al., 1997). Lefort et al. (2015a) discusses the potential for differences 

between populations found in native tussock regions compared to those in 

intensive agriculture systems, and this potentially alters their performance 

in the two habitats.  

 

4.1.3.1 Life cycle  

In most areas of New Zealand, the grass grub lifecycle takes one year to 

complete (see Fig.4.2). Adults emerge from the soil in spring and live for 

four to six weeks, in which time they mate and lay eggs. Females typically 

lay eggs in a single clump of 20-30 eggs. After two to three weeks the eggs 

hatch and the first instar larvae emerge to feed on the fine roots of pasture 

plants. By autumn the larvae typically have reached the third instar and are 

at their most damaging stage. The larvae over-winter and pupation occurs 

in spring once the larvae have reached an appropriate size (Ferguson et al., 

2019). There are instances where the insect undergoes a two-year lifecycle. 

A biennial life cycle is more common in Otago and Southland and is normally 

Figure 4.2: Univoltine lifecycle of New Zealand grass grub. Note a biennial lifecycle often 
occurs in the south of the South Island. (Lefort, 2013). 
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associated with low temperatures or environmental stresses such as 

drought. Larval growth is reduced, and they are not an appropriate size to 

pupate in spring.  This means that larval damage to plant roots continues 

through spring and summer as well as the typical autumn period, affecting 

methods of control that can be used (Barratt et al., 1990). 

 

4.1.3.2 Impacts  

Grass grub adult beetles are often seen feeding on the foliage of trees and 

shrubs (Barratt et al., 1990). Due to the short life-span of the adult beetles, 

resulting damage to trees is minor compared caused to grass species by 

larval stages. First instar grubs tend to feed between 15 to 20 cm soil depth 

on the fine roots of white clover plants and grasses. By the time the larvae 

are third instar, they are typically found in the top 5 cm of the soil profile, 

feeding on the larger roots. At high grub densities, they will cause significant 

damage to pasture resulting in it being easily pulled by stock and rolled back 

(Barratt et al., 1990). van Toor and Dodds (1994) estimated that a density 

of 100 grubs/m2 results in 6% pasture loss.  

 

4.1.3.3 Methods of control  

Currently there is no long-term effective control for grass grub and there are 

limited options for reducing populations in the short term. These include 

natural pathogens, methods of early detection, and physical methods to 

disrupt populations.  

There are several naturally-occurring pathogenic organisms that have been 

isolated from grass grub which assist in population control (Jackson & Klein, 

2006). Two of these are milky disease and amber disease, both caused by 

bacteria (Barratt et al., 1990). Milky disease is the result of infection by 

Bacillus spp. (Steinkraus & Tashiro, 1967) which causes grubs to turn a 

milky white colour before death (Barratt et al., 1990). Amber disease is 

caused by two groups of Serratia spp. of bacteria living in the soil (Stucki et 

al., 1984). Infection causes cessation of feeding within 2 to 5 days and 

eventual death several weeks later (Barratt et al., 1990; Jackson et al., 
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1993). These bacteria have been utilised as a biopesticide under the name 

BioshieldTM (Glare et al., 2012; Glare & O'Callaghan, 2017). Despite grass 

grub being a major pest in New Zealand, the market for the product is small 

and this has affected its continued availability (Glare & O'Callaghan, 2017).  

Other methods rely on early detection and suppression of populations. One 

technique of early detection is to apply an insecticide to a plot in January. If 

surrounding pasture appears yellow in subsequent weeks it is an indication 

of a root-herbivore and sampling can confirm the presence of grass grub 

(Stewart et al., 1988). This technique allows farmers to recognise areas 

susceptible to damage in the coming months and account for it in their 

management plan. Another method of control is cultivation, which reduces 

larval populations but it also has adverse effects on natural disease levels, 

resulting in the reoccurrence of grass grub populations and is not effective 

when second instar biennial grubs are present (Barratt et al., 1990). Barratt 

et al., (1990) discuss the use of heavy rolling, which is effective short term. 

This method has the same issues with biennial populations and does not 

result in lower grub densities in the following year (Stewart & van Toor, 

1983). Some population regulation occurs as a result of ‘larval combat’ 

when grub densities are high but unfortunately at this point pasture has 

already been damaged (Barratt et al., 1990).  

 

4.1.3.4 Effects of Epichloë endophytes 

Loline alkaloids reduce grass grub larval feeding and hence damage to 

pasture is also reduced (Patchett et al., 2011b; Popay & Lane, 2000; Popay 

& Tapper, 2007). Lolines are produced in tall fescue and meadow fescue 

infected with their naturally-occurring endophytes but not in natural ryegrass 

associations with E. festucae variant lolii (formerly N. lolii). However, 

ryegrass is the most common pasture grass species used in New Zealand 

and inoculation of loline-producing endophytes into ryegrass has potential 

to aid in control of grass grub. One study found that these novel associations 

produce loline alkaloids but at much lower concentrations than the natural 

associations (Ball & Tapper, 1999).  
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Popay and Lane (2000) incorporated crude loline extracts into artificial diets 

and found that larvae fed diets with a loline concentration of 100 µg/g 

weighed significantly less than control diet larvae. Larval weight declined 

progressively as loline concentration increased through to 2000 µg/g. Popay 

and Tapper (2007) found that meadow fescue and tall fescue seed infected 

with loline producing endophytes was fed on less by third instar grass grub 

than their EF counterparts. There was a slight effect of AR37 infected 

perennial ryegrass at the beginning of the trial, but this was not significant 

overall. Another study found no differences in grass grub populations in a 

field trial with perennial ryegrass pastures with AR1, AR37, common toxic 

and EF (Popay & Thom, 2009), none of which produce loline alkaloids.  
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4.2 Methods 

 

This chapter reports the results of experiments investigating the effect of 

silicon on grass grub larval feeding and performance. Experiments include 

a whole plant pot trial and two bioassays with excised root material. Plants 

were germinated on 12/11/2018 and grown in polystyrene trays (see 

sections 2.1.3 and 2.1.4). Plants were split into three daughter plants (see 

section 2.1.6) between 05/02/2019 and 09/02/2019 and assigned to 

treatments based on results of immunoblots (see section 2.1.5). Genotype 

clones were used across the experiments in this chapter. Plants were 

watered, trimmed and fertilised as required and kept in a screenhouse for 

the duration of experiments (see section 2.1.9).  

All plants supplemented with silicon (see section 2.1.8) had silicon applied 

3 times per week for a period of ten weeks. The first application was on 

18/02/2019 and the final on 26/04/2019, totalling 30 applications. All eight 

treatments were used in the whole plant experiment and bioassay I, and 

only ryegrass treatments in bioassay II (see Table 2.1). Silicon 

concentration and loline analysis was performed on the remaining plant 

material from bioassay I. It was assumed that because plants in the other 

two experiments were genotypic clones of these plants and were treated 

and supplemented in the same way over the same period, silicon 

accumulation would be similar.  

 

4.2.1 Collection, storage, and sorting of grass grub larvae 

Grass grub larvae were collected from a dairy farm transitioning to organic 

status north of Taupo in the North Island of New Zealand on 08/05/2019. 

This farm had been converted from forestry ~5 years previously and grass 

grub populations had reached damaging levels in the last two years 

(see Fig. 4.3). Third instar larvae were collected as they are the most 

damaging stage of the life cycle and most suitable to use in experiments.   
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Larvae were stored in individual wells of a 24-well cell culture plate 

(see Fig. 4.4A) to prevent larval combat and covered in soil. Plates were 

wrapped in damp paper towels, placed in a cool box and transported back 

to AgResearch Ruakura. All larvae were stored within the cool box in a cool 

store (4°C) until required for experiments. A sub-sample of larvae were 

viewed under a microscope to confirm the correct species (C. giveni) were 

collected by looking at the raster (see Fig. 4.4B) (Lefort et al., 2013). 

 

Figure 4.3: Site of grass grub larvae collection. Bare 
patches in pasture indicate areas of high grub densities 

A B 

Figure 4.4:  A) Storage of larvae in 24-well cell culture plate. B). Raster of grass grub viewed under 
a microscope 
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As required, larvae were removed from the cool store and sorted into new 

labelled 24-well culture plates. Prior to all experiments, larvae were left for 

24 hours in an 18°C controlled environment room (whole plant and 

bioassay I) or a 15°C incubator (bioassay II). They were subsequently 

weighed on an analytical balance (Mettler Toledo XS204) and assigned to 

treatments and replicates based on weight. All treatments within a replicate 

had larvae of a similar weight and the larvae within a replicate were 

randomly assigned to treatments. This ensured that one treatment did not 

always receive the lowest weight larvae across replicates.  

 

4.2.2 Whole plant experiment 

Grass grub larvae were removed from the cool store on 13/05/2019, left for 

24 hours with no food, weighed and assigned to plants. Plants were 

arranged in a split-plot-block design in a screenhouse, based on silicon 

supplementation regime (i.e. pair of plants of each species and endophyte 

status one supplemented and one non-supplemented with silicon), with 20 

plants for each treatment. Each plant had three larvae added to the soil 

surface on 14/05/2019. Larvae on each plant were all near equal weight and 

collective grub weight on each plant across a replicate was similar. Initial 

weights of grubs were between 70 and 143 mg. Larvae were watched to 

ensure that they buried into the soil. Plants were trimmed and fertilised (see 

section 2.1.9) on 30/05/2019 and watered by automatic watering 3 times 

weekly in the screenhouse.  

The experiment was run for a period of five weeks. Plants were destructively 

harvested, and larvae retrieved over the course of a week (between 

17/06/2019 to 21/06/2019; due to time limitation). One tiller from each plant 

was immunoblotted to re-confirm endophyte status. Remaining root material 

was washed with cold water to remove soil. Herbage and roots were placed 

in paper bags and oven dried at 80°C for 48 hours and subsequently 

weighed. Grubs were re-weighed using the same analytical balance, noting 

any sick or dead grubs (data of which were removed from analysis). Grubs 

were determined to be sick if they were of a yellowish colouring. A score of 
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damage severity (‘sever score’) based on attachment of roots to the 

herbage was assigned to each plant. Those that were completely attached 

were recorded as zero, those which were half detached were scored a 1, 

and those that were completely severed were scored a 2.   

 

4.2.3 Root bioassay I 

There was a total of 20 replicates set up for each of the eight treatments. 

Set up was staggered across 16/05/2019, 17/05/2019, 19/05/2019 and 

20/05/2019, with five replicates set up each day, due to time constraints. 

Root material was removed from soil and washed under cold water the day 

before required. Roots were patted dry with a paper towel, placed in a 

labelled plastic bag and stored in the fridge (4°C) until the next day when a 

subset of roots (100 mg ± 5 mg) was weighed and placed in a labelled 60 

mm Petri dish, with the assigned larva (see section 4.2.1) (see Fig. 4.5). 

Each replicate had root material from a different plant. Root material was 

returned to the fridge until day four, when additional root material was added 

to each Petri dish. The remaining root material was freeze-dried and ground 

for further analyses (see section 2.3).  

 

All treatments for a replicate were wrapped in a damp paper towel together, 

placed in a sealed plastic container, and left in an 18°C controlled 

environment room. Containers were checked daily to ensure paper towels 

were remaining damp. Additional root (100 mg ± 5 mg)  was added on day 

four and grubs were weighed. All remaining root was weighed on day seven, 

A B

Figure 4.5: A) Grass grub larva in 60mm Petri dish with ~100 mg fresh 
root material for bioassay I. B) Remaining frass from grass grub 
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and grubs were placed into 24-well plates wrapped in damp paper towels 

and left for 24 hours at 18°C before being re-weighed. Any frass from these 

larvae was added to the original Petri dish. Frass was left in open Petri 

dishes to dry for 48 hours in a 25°C controlled environment room and then 

weighed.  

 

4.2.4 Root bioassay II 

Inconclusive results in bioassay I prompted slight alterations to methods in 

bioassay II. On 15/07/2019, larvae were removed from the cool store and 

any healthy/live grass grubs were placed individually in a 24-well plate well 

with a cube of fresh carrot (see Fig. 4.6A), to check if larvae were still 

actively feeding. Plates were wrapped in a damp paper towels in a sealed 

plastic container and left for 24 hours in a 15°C incubator. The following 

days grubs that had fed (see Fig. 4.6B) were kept and left with no food 

overnight. The grubs were weighed and assigned to treatments on 

17/07/2019 (see section 4.2.1). 

 

Roots were collected on 16/07/2019 using the same methods as bioassay I. 

Roots and larvae were placed in sealed plastic 30 mL specimen containers, 

arranged in a randomised block design in polystyrene trays and kept in a 

15°C incubator (see Fig. 4.7). On day three (20/07/2019) any remaining 

roots were removed and weighed, and fresh roots collected the day before 

were added. Each replicate did not have roots from an individual plant but 

BA

Figure 4.6: A) Grass grub larvae in 24-well plate with cubes of carrot. b) Evidence of grass 
grub larval feeding on cube of carrot 
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a subset from a bulk sample of root for each treatment. On day seven 

(24/07/2019), all grubs and any remaining roots were weighed, grubs were 

left overnight with no food and re-weighed the next day. Frass was left to 

dry for 48 hours in a 25°C controlled environment room and weighed. All 

weights were recorded on an analytical balance (Mettler Toledo XS204).  

 

There was a total of 25 replicates for each treatment. Only ryegrass 

treatments were used (see Table 4.1) with a starvation control (larva with 

no roots), totalling five treatments, due to limiting numbers of surviving and 

actively feeding larvae. Of the 25 replicates, five were weighed daily to track 

changes in larval weight across the entire experiment. There were also five 

replicates of root only controls for each of the treatments, to monitor 

moisture loss from roots. 

 

4.2.5 Statistical analyses 

Data were analysed using GenStat (v.19). Data were analysed by general 

ANOVA and treatment blocked by species, endophyte status, and silicon 

supplementation to investigate any potential interactions. Regression 

analysis of root consumption and frass production was carried out for both 

bioassays. Regression analysis was also performed to compare the start 

and finish weight of root only controls to investigate moisture loss 

throughout the experiment. Results from dead larvae and larvae determined 

as unwell were removed from analysis. 

Figure 4.7: Set up of grass grub bioassay II, arranged in a randomised block design 
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4.3 Results 

 

4.3.1 Whole plant experiment 

Of the larvae that were put on the plants initially, 81.7% were able to be 

recovered. Of those recovered 90.9% were healthy; this varied between 

individual treatments but there was not a significant difference (see Table 

4.1). There was a significant difference between plant species (P = 0.005), 

with 95.9% and 85.8% healthy recovered larvae in the perennial ryegrass 

and meadow fescue treatments respectively. Larvae that were not able to 

be recovered were assumed to have died during the experiment. 

Table 4.1: Total number and percentage of healthy grass grub larvae recovered from whole plant 
experiment 

 

There was a significant difference in the mean sever damage scores of 

plants based on endophyte, on average E+ plants had a score of 0.312 and 

EF had a score of 0.637 (P = 0.002) (see Table 4.2). However, this 

difference was not significant for ryegrass plants overall, whereas meadow 

fescue plants had a significant difference based on endophyte status. E+ 

and EF meadow fescue plants had an average score of 0.05 and 0.725 

respectively. There were no meadow fescue E+ plants with a sever score 

of 2 (see Fig. 4.8). There was no effect of silicon supplementation on the 

Species Endophyte 
Silicon 

Supplementation 

Number of 

recovered 

larvae 

Percentage 

healthy 

Meadow 

Fescue 

E+ 
Y 44 84.2 

N 44 81.7 

EF 
Y 50 93.3 

N 46 84.2 

Perennial 

Ryegrass 

E+ 
Y 49 97.5 

N 53 93.3 

EF 
Y 54 94.6 

N 52 98.3 
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sever score of plants, nor an interactive effect of silicon supplementation 

and endophyte status (see Table 4.2). 

 

Table 4.2: ANOVA results for sever score of plants in whole plant grass grub experiment. Significant 
values in bold. Residual degrees of freedom = 133. 

Source of Variation F-statistic P-value 

Species 2.97 0.087 

Endophyte 10.24 0.002 

Silicon 0.06 0.806 

Species.Endophyte 11.87 <0.001 

Species.Silicon 0.97 0.327 

Endophyte.Silicon 0.24 0.623 

Species.Endophyte.Silicon 2.97 0.087 
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completely attached, 1 = half detached and 2 = completely severed.  
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There was a significant interaction between plant species and endophyte 

on larval change in weight (P < 0.001).  Larvae in the meadow fescue E+ 

treatments gained significantly less weight compared to meadow fescue EF, 

1.15 mg and 7.24 mg respectively (see Fig. 4.9). The effect was the opposite 

for ryegrass E+ and EF (however, not a significant difference), 6.49 mg and 

3.72 mg respectively. There was no significant effect of silicon 

supplementation on larval weight gain, nor an interaction between 

endophyte and silicon (P > 0.05).  

 

Remaining biomass of both herbage and roots following grass grub larval 

feeding was not affected by silicon supplementation (P = 0.609 and 

P = 0.435 respectively) and there was no interactive effect of silicon 

supplementation and endophyte status (P = 0.520 and P = 0.983, 

respectively). However, there was a significant effect of endophyte 

(P < 0.001) (see Fig. 4.10). There were significant differences in the weight 

of remaining herbage and roots for E+ and EF meadow fescue plants. The 

biomass of EF ryegrass plants was less than that of E+, but this was not 

statistically significant.  
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Figure 4.9: Average weight increase of grass grub larvae in whole plant experiment based on 
average initial weights for the 3 larvae on each plant. Values are means ±SEM. Letters above bars 
denote significant differences between treatments (Fishers Unprotected test P < 0.05). 
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4.3.2 Root bioassay I 

Across the eight treatments and 20 replicates, there were eight larvae that 

died during the experiment (5%) and five (3.13%) which appeared to be 

unwell, but this was not influenced by treatment (P = 0.567).  Midway 

through the experiment grub weight gain ranged between 4.12% and 6.73% 

from their initial weight across all treatments and there were no significant 

differences between treatments (P = 0.813).  There was no effect or 

interactive effects of plant species, endophyte status, or silicon 

supplementation on grub weights at day four (P > 0.05). At the end of the 

experiment, larvae were starved for 24 hours prior to being weighed. In most 

treatments, on average larvae lost weight from their initial weight, except for 

ryegrass E+ non-silicon supplemented. These final weights had significant 

differences between treatments (P < 0.001) (see Fig.4.11) and there was 

an interactive effect of silicon supplementation and endophyte infection 

(P < 0.001). For both plant species grubs in the E+ silicon supplemented 

and the EF non-supplemented lost significantly more weight than those in 

the other two treatments (EF supplemented and E+ non-supplemented). 
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Figure 4.11: Average change in weight from initial weight of grass grub larvae from bioassay I for 
each treatment. Values are means ±SEM. Letters above bars denote significant differences 
between treatments (Fishers Unprotected test P < 0.05). 
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There was a significant difference in the consumption of roots based on 

plant species. On average, consumption in meadow fescue and ryegrass 

treatments was 114 mg and 98.4 mg respectively (P = 0.036). There were 

no significant differences between treatments within a plant species 

(P = 0.260) (see Fig. 4.12A). Production of frass was consistent with 

consumption results (see Fig. 4.12B), with no significant differences 

between treatments within a plant species (P = 0.405), nor an effect of plant 

species on frass production (P = 0.163). There was a strong linear 

relationship between root consumption and frass production (P < 0.001, 

R2 = 0.85, F-statistic = 53.88) (see Fig. 4.13).  
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Figure 4.12: A) Total consumption of roots (mg). B) total frass production (mg) for grass grub larvae 
bioassay I. Values are means ±SEM. Letters above bars denote significant differences between 
treatments (Fishers Unprotected test P < 0.05). 
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Figure 4.13: Regression analysis comparing total consumption of roots and production of frass in 

grass grub larvae bioassay I 

 

4.3.3 Post-hoc analysis of plant material – Bioassay I 

The remaining root material from Bioassay I was analysed for silicon, by 

bulking together groups of five replicates so that there was enough plant 

material (n = 4). There were significant differences between some 

treatments (P < 0.001) (see Fig. 4.14). EF silicon supplemented ryegrass 

roots had significantly more silicon than all other treatments except for E+ 

silicon supplemented ryegrass. An overall significant effect of species on 

silicon concentration was apparent with roots from meadow fescue having 

a lower silicon content of 2.38% compared with ryegrass at 3.63% silicon 

(P < 0.001). Overall plants supplemented with silicon had a higher silicon 

concentration than non-supplemented, 3.34% and 2.67% respectively 

(P = 0.012). There were no interactive effects between species, endophyte 

status or silicon supplementation (see Table 4.3). 
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Table 4.3: ANOVA results for silicon root content from grass grub larvae bioassay I. Significant values 
in bold. Residual degrees of freedom = 21 

Source of Variation F-statistic P-value 

Species 26.16 <0.001 

Endophyte 1.39 0.252 

Silicon 7.53 0.012 

Species.Endophyte 1.99 0.173 

Species.Silicon 2.01 0.171 

Endophyte.Silicon 0.54 0.469 

Species.Endophyte.Silicon 0.66 0.427 

 

The same root material samples were also analysed for loline alkaloid 

concentration. Meadow fescue roots had significantly more total lolines than 

ryegrass (P < 0.001), 248 µg/g and 9 µg/g respectively. Silicon 

supplementation did not significantly affect total lolines concentration in 

either species (see Fig. 4.15). There were no lolines detected in ryegrass 

root material except for NFL in plants that had not been supplemented with 

silicon. Lolines in meadow fescue silicon supplemented material were 
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higher than in non-supplemented but this was not a significant difference 

(P > 0.05), except for NANL which was not detected in non-supplemented 

plants (P = 0.049). 
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4.3.4 Root bioassay II 

Across the five treatments, 25 replicates in each, there was a total of 22 

larvae deemed as unwell at the end of the experiment (17.6%) and two had 

died (1.6%). There was no treatment effect on larval health (P = 0.524). 

There was no significant difference in the moisture lost from root only 

controls between treatments (P = 0.158) and there was a strong linear 

relationship between the initial weights of the roots and the final weight of 

root (P < 0.001, R2 = 0.93, F-statistic = 37.97). On average root only controls 

lost 25.88% of their initial weight.  

The five replicates that were checked daily for fluctuations in weight change 

all followed the same pattern across treatments (see Fig. 4.16A). Larvae in 
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of bioassay II; A) treatments containing root B) no root control 
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the root-free treatment lost more weight than those that were fed during the 

experiment (P < 0.001) (see Fig. 4.16B), however, there was no difference 

between the root treatments (P > 0.05). On day three of the experiment, all 

larvae were beginning to lose weight compared with the previous day. Roots 

were replaced in the pottles and the following day larval weights had 

increased again but then declined steadily over the remaining three days. 

On average at the end of the experiment larvae checked daily had lost 

weight from their initial weights (see Fig. 4.16).  

Analysis including all 25 replicates found that on average larvae did not lose 

weight from the initial weight (see Fig. 4.17), except in the no root control, 

where on average they lost 34.7% body weight. There was no interactive 

effect of endophyte and silicon supplementation, nor a significant effect of 

silicon on its own to changes in grub weights. There was, however, a 

significant effect of endophyte (P = 0.022). Larvae fed E+ and EF roots 

gained 3.07 and 1.21 mg respectively. 
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Root consumption did not differ between treatments (P = 0.327) 

(see Fig. 4.18A). There was also no effect of endophyte status or silicon 

supplementation alone on the feeding of larvae (P = 0.592 and P = 0.454 

respectively). Larvae which fed on E+ and silicon supplemented material 

produced significantly more frass than those fed EF also supplemented with 

silicon, and E+ not supplemented with silicon (see Fig. 4.18B). There was a 

strong linear relationship between root consumption and frass production 

(P < 0.001, R2 = 0.87, F- statistic = 536.53). 
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4.4 Discussion 

 

4.4.1 Whole plant experiment 

The feeding of grass grub larvae was influenced by the presence of 

endophyte in meadow fescue. Larvae placed on E+ plants gained 

significantly less weight than those on EF plants. Meadow fescue E+ plants 

had significantly more remaining root material than the EF counterparts and 

grew more herbage after plants were trimmed to 5 cm. These results 

suggest that the elevated root herbivory on EF meadow fescue plants was 

reducing the ability of plants to regrow above-ground. Previous studies have 

found that in the absence of stress there is no difference in the root mass of 

E+ and EF plants (Cheplick & Cho, 2003; Cheplick et al., 2000). Therefore, 

the differences in remaining root biomass are unlikely to have been 

influenced by an inherent difference in plants based on endophyte status 

but were due to the effects of endophyte on grass grub herbivory. The sever 

score of meadow fescue plants was reduced by endophyte. Collectively, out 

of the E+ plants, there were no plants that were completely severed, and 

only one out of the forty was partially severed. This aligns with previous 

studies which reported a defensive effect of endophytes in meadow fescue 

plants against grass grub larvae (Patchett et al., 2011b). 

There was also a significant difference in the larval percentage weight gain 

on the ryegrass plants. Unexpectedly, larvae on ryegrass E+ plants gained 

significantly more weight than those on EF.  It was initially anticipated that 

the endophyte would have negative effects on larval performance. However, 

the endophyte strain in this ryegrass cultivar is naturally found only in tall 

fescue plants. These plant-endophyte associations have previously been 

found to have lower alkaloid levels than in their natural tall fescue hosts (Ball 

& Tapper, 1999; Easton et al., 2007; Malinowski & Belesky, 2019). The 

loline levels found in the root material of genotypic clones of plants used in 

the whole plant experiment ranged from 0 to 37 µg/g total lolines. This is not 

a concentration which is known to be effective against grass grub larvae 

(Popay & Lane, 2000), suggesting that alkaloids would not have influenced 

grub weight change in this instance.  
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Although not significant, there was some evidence that EF ryegrass plants 

supplemented with silicon had higher root silicon concentrations than other 

ryegrass treatments. A higher concentration of silicon in the EF roots may 

have contributed to the reduced weight gain of the larvae (Frew et al., 

2017a), whereas the E+ roots lacked silicon in comparison and did not have 

high enough alkaloid levels to alter larvae performance. Previous studies 

such as Ryalls et al. (2017) reported an increase in silicon concentration of 

0.3% was sufficient to reduce herbivore damage. Additionally, Frew et al. 

(2017a) reported similar differences in root silicon which led to the reduced 

performance of a soil-dwelling root-feeding herbivore. This suggests that 

the difference in silicon reported here may have altered the performance of 

grass grub larvae in ryegrass treatments and not the presence of loline 

alkaloids. 

When plants were harvested, all remaining root material of the plant was 

collected. In retrospect, collection of only the roots still attached to the plant 

would have been a more appropriate method. Roots that have been 

detached from the plant no longer have an influence on the growth of the 

plant and therefore consumption of them by larvae is not relevant. For 

example, a plant may have had a sever score of 2, which would leave the 

plant severely damaged and chances of survival would be low but there may 

have been detached roots remaining in the soil. The method of root 

collection used may therefore have masked the true differences in relevant 

remaining root biomass between treatments.  

Another observation made in this experiment was that grubs were 

potentially able to move between plants. There were two plants out of the 

160 that contained four grubs rather than the original three upon 

assessment. A layer of weed mat was placed in the bottom of the pots, to 

prevent the movement of grubs through the holes in the bottom of the pots 

and into a new pot. However, plants were potted so that there was a 1 cm 

clearance between the top of the soil and the top of the pot so there was 

still potential for movement of grubs. Several larvae were noticed on the soil 

surface during the experiment. It is unusual that larvae come to the surface, 

but some patches of the trial set up were damper than others because of 



83 
 

the automatic watering. Damp soil has potentially influenced the behaviour 

of larvae in this whole plant experiment. Future experiments should aim to 

minimise saturation of pots and monitor automatic watering to ensure all 

plants are appropriately watered.   

 

4.4.2 Root bioassays 

Results from root bioassay I found no significant differences in root 

consumption between treatments, which may have been influenced by 

moisture loss from roots. Moisture loss from roots potentially altered the 

ability to detect differences in feeding. However, there was a drastic 

difference in changes to larval weights, most of which were negative. This 

bioassay was carried out using 60 mm Petri dishes, which are not airtight. 

Although a damp paper towel was wrapped around each of the replicates 

and checked daily that it was remaining damp, it is hypothesised that 

changes to larval weights were due to moisture loss. The extreme 

differences between treatments is puzzling and is potentially influenced by 

the position of each Petri dish. Petri dishes within a replicate were randomly 

stacked together in two stacks of four, but this was not a randomly 

generated design and bias has potentially been inadvertently introduced 

causing vast differences in moisture loss between treatments.  

Interestingly, there were significant differences in both silicon concentration 

and consumption between plant species in bioassay I (P < 0.001 and 

P = 0.036, respectively). Meadow fescue plants had lower silicon on 

average (2.38% compared to 3.63%) and higher consumption (114 mg 

compared to 98.4 mg) than ryegrass plants. These results suggest that a 

higher silicon concentration on average in ryegrass plants may have 

reduced the consumption of this plant material. This pattern was not 

reflected in frass results. Additionally, the treatment with the highest silicon 

concentration was ryegrass EF supplemented with silicon (4.64% compared 

to 3.00% as the overall average across all treatments) and this was also the 

treatment with the lowest consumption (82.2 mg compared to the overall 
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average of 106.2 mg). However, consumption in this treatment was not 

significantly different from the other treatments.  

The unclear results from bioassay I prompted alterations to methodology in 

a second bioassay. Instead of being contained in Petri dishes larvae were 

kept in 30 mL airtight specimen vials, and a subset were weighed daily to 

assess changes in weight over the course of the experiment. Overall, there 

was not a decrease in grub weights as seen in bioassay I. This further 

suggested issues with moisture loss in the previous experiment. Only 

ryegrass treatments were assessed in bioassay II and there was no 

significant interactive effect of silicon and endophyte infection on changes 

to larval weights. There was an effect of endophyte, with those fed E+ 

gaining significantly more weight than those fed EF. There was no 

significant differences in the quantity of root consumed and slight 

differences in the amount of frass produced. As mentioned above, there was 

some indication that EF roots contain more silicon than E+. Previous studies 

report changes in the ability of insect herbivores to convert food into 

biomass in relation to silicon content (Massey et al., 2006), this may be the 

case in this experiment. Thus, larvae fed EF roots were exposed to higher 

levels of silicon and did not gain as much weight as those fed E+ for the 

same consumption of root mass. As previously mentioned, the loline 

concentrations found in the root material used in this experiment were not 

sufficient to affect grass grub larval feeding. 

Of the larvae that were checked daily, all treatments had lost weight from 

their initial by the end of the experiment. There were no significant 

differences between treatments. These results suggest that increasing 

handling of larvae (i.e. daily) negatively affected them, leading to a reduced 

performance. In future experiments, handling of larvae should be minimised 

to ensure that this does not influence results, albeit, daily checking did 

provide some interesting results. It appears that with fresh roots larvae feed 

and gain weight but when roots aged after harvest and presumably their 

condition deteriorated, grass grub fed on them less and began to lose 

weight. With the addition of fresh roots, larvae gain weight again and then 

the same pattern reoccurs but to a greater extent in roots that had been 
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stored for a period. Bioassays carried out over a shorter period may be 

beneficial to detect differences between treatments without introducing the 

large variability that occurs in an artificial environment over an extended 

time period. For example, Frew et al. (2017a) detected feeding differences 

in a bioassay run over 24 hours.  

Another factor that potentially influenced the feeding results seen in 

bioassay II was the age of the larvae. At the time of the experiment the 

larvae had been kept in small containers of soil in a cool store without 

additional food for close to 10 weeks. Although only actively feeding larvae 

were used, storage likely affected the health of the grubs. This is reflected 

in the higher sickness/mortality rate in bioassay II compared to bioassay I. 

It is possible that this also affected their feeding and results may not be 

reflective of newly collected grubs from pasture.  

 

4.4.3 Further studies and recommendations 

This study was not able to successfully determine if there is an interactive 

effect of silicon and endophyte on the feeding of a below-ground herbivore 

(grass grub) in a pasture grass species. This was due to a number of factors 

including grass-endophyte associations studied, lack of silicon differences 

between supplemented and unsupplemented plants, and limitations of 

experimental design due to time restrictions and plant growth. However, 

these experiments have provided a basis for future studies in this area.  

Future experiments to assess the effect of silicon on the feeding of 

herbivores should make use of inert growth media (such as 

perlite/vermiculite) or hydroponics to grow plants (Massey & Hartley, 2006). 

It is likely that, in this study, there was already a high level of bioavailable 

silicon (Si(OH)4) in the soil which plants were grown in. This led to limited 

additional accumulation of silicon following supplementation. The variability 

seen in silicon concentrations in this study is likely to be more reflective of 

plant genotypes than it is silicon treatments. The use of inert growth media 

would result in meaningful differences in silicon concentrations between the 

different silicon treatments. Due to the variability in silicon accumulation 
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within a cultivar, experiments utilising cloned plants (one supplemented and 

one not) would further reduce this variability. 

Another limitation was the bulking of replicate plants together for silicon and 

loline analysis. This was done because plant growth was not as high as 

anticipated and there was not enough material for analysis from single 

plants. Also, both the preparation and analysis of these plant samples is 

very time consuming and would not have been possible for all the samples 

within the time available.  

It was originally hypothesised that the addition of silicon may alter the 

alkaloid production of endophytes, hence the use of a ryegrass-endophyte 

association which potentially does not produce high concentrations of 

lolines in the roots (Ball & Tapper, 1999). However, because of this selection, 

experiments conducted here did not detect an effect of endophyte infection 

on herbivore feeding in ryegrass treatments. It may be beneficial to examine 

the effects of silicon on grass-endophyte associations which are known to 

have efficient anti-insect herbivore properties, such as AR1 and AR37 

(Johnson et al., 2013). However, this could only be studied in above-ground 

herbivore interactions as alkaloids are not translocated to the roots in these 

associations.  

There was a high correlation between root consumption and frass 

production for both bioassay I and II (P < 0.001, R2 = 0.85 and P < 0.001, 

R2 = 0.87 respectively). This indicates that measurement of just one of these 

variables in future experiments may be sufficient. For example, 

incorporation of a soil environment in these bioassays would limit the ability 

to measure frass production but would still enable quantification of root 

consumption. Adapting the method in this way would be beneficial as it 

would reduce how artificial the environment is for soil-dwelling larvae. 

However, because silicon is known to influence digestibility of plant material 

and potentially influence frass production, for experiments incorporating 

silicon it would be best to measure both consumption and frass.  
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5. Temporal changes in grass-endophyte associations with 

silicon supplementation and effects on a generalist 

herbivore 

 

5.1 Introduction 

This chapter aims to assess the temporal interactions of silicon and 

endophyte through the measurement of endophytic mycelial mass, 

production of loline alkaloids and silicon in a two-way factorial design using 

two grass species. Known levels of silicon in spare root material from this 

initial experiment prompted the use of this material in an artificial diet to 

assess the development of a generalist herbivore moth larva, Epiphyas 

postvittana (Light brown apple moth or LBAM). It was hypothesised that the 

known levels of silicon would enable assessment of developmental 

differences due to silicon, which was not able to be achieved in previous 

experiments outlined in chapters three and four.  

 

5.1.1 Interactions of endophyte infections and silicon in grass species 

There are very limited studies investigating the interactions between silicon 

and Epichloë endophytes in pasture grass species. The investigation by 

Huitu et al. (2014) is the only known study to report differences in silicon 

content based on Epichloë endophyte infection. The authors investigated 

vole feeding preferences and measured silicon concentrations in response 

to endophyte infection in meadow fescue as well as different intensities of 

herbivore grazing. They found that silicon increased with grazing intensity 

and E+ plants had approximately 16% higher silicon than EF at all levels of 

grazing (Huitu et al., 2014). Several other recent publications mention both 

silicon and endophytes as defences in grass species but do not specifically 

investigate the potential synergies (Helander et al., 2016; Reynolds et al., 

2016; Saikkonen et al., 2016). This chapter outlines an experiment 

assessing the silicon concentrations, mycelial mass, and loline alkaloid 

concentration in plants supplemented with silicon for four, seven or ten 

weeks.  
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5.1.2 Seasonal interactions of endophyte growth and alkaloid production 

Studies have shown that endophytic alkaloid concentrations vary 

seasonally. For example, Patchett et al. (2011a) measured loline alkaloid 

concentrations in ten meadow fescue lines in a New Zealand field trial. The 

study found that total loline concentrations were highest in mid spring 

(October), followed by a sharp decline in late spring (November) and a 

further decline in autumn (March to May). There was a highly significant 

interaction between the meadow fescue breeding line and time of harvest. 

However, this study only measured herbage loline concentrations and not 

root concentrations. Another study has suggested that loline alkaloids are 

redistributed through the plant seasonally rather than a total change in 

concentration, specifically in response to herbivore attack (Patchett et al., 

2008b).  Other factors such as nutrient availability and water stress can also 

influence alkaloid production (Malinowski & Belesky, 2000). It is 

hypothesised that low temperature reduces endophytic growth and may 

contribute to seasonal changes in alkaloid production (Ju et al., 2006; 

Patchett et al., 2011a). di Menna and Waller (1986) visually assessed 

changes to mycelium levels in perennial ryegrass grown in New Zealand. 

The authors found that mycelium counts were greatest in summer and 

autumn and concluded that this was related to temperature (di Menna & 

Waller, 1986). However, there is some evidence to suggest that endophytic 

growth (mycelial mass) does not determine the alkaloid concentration and 

distribution in plants (Spiering, 2000).  

 

5.1.3 LBAM description and lifecycle 

LBAM is used by the Endophyte research team at AgResearch Ruakura as 

a model organism, due to easy accessibility year-round and the 

polyphagous feeding habits of the larvae. However, LBAM is not a current 

pest in pastures. LBAM is an Australian native which has been introduced 

to New Zealand as well as the United Kingdom, New Caledonia and Hawaii 

(Danthanarayana, 1975) and more recently the United States (Brown et al., 

2010). LBAM is a leafroller moth and is known to feed on more than 500 
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plant species from 121 plant families, including important crops such as 

apples and citrus (Brown et al., 2010; Mo et al., 2006).  

LBAM is able to complete two to four generations per year, dependent on 

both temperature and latitude (Brown et al., 2010). The optimal temperature 

for development is 20°C. In New Zealand, there are typically three 

generations annually but occasionally four (Collyer & van Geldermalsen, 

1975). Laboratory studies have found that the upper and lower thresholds 

of development are 31°C and 7.5°C respectively (Danthanarayana, 1975), 

indicating the LBAM has the potential to be widespread across New Zealand 

regions.  

Female moths deposit egg masses of between 2 and 150 eggs on the 

smooth surfaces of foliage including the leaves, stems and fruit. Females 

are able to produce up to 1500 eggs (Danthanarayana, 1983). First instar 

larvae are ~1.5 mm long with a dark coloured head and light body. The 

larvae go through five (male) to six (female) instars and growth continues 

through winter, albeit much slower. Early instar larvae feed on the abaxial 

side of leaves in self-made silk webs. However, later instars fold individual 

leaves, cluster leaves together or create a web of leaves which connect to 

fruit and larvae feed on the fruit surface. Pupation occurs within this nest 

over ~10 days and the adult moth emerges (Danthanarayana, 1975). Some 

control of populations occurs due to natural predators and pathogens, 

including larval parasitoids. Other methods of control include the application 

of insecticides, and sex pheromones which disrupt mating (Collyer & van 

Geldermalsen, 1975).  
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5.2 Methods 

 

5.2.1 Temporal changes to endophyte and silicon 

Plants were germinated on 02/08/2018 and grown in polystyrene trays (see 

sections 2.1.3 and 2.1.4). Plants were assigned to treatments based on 

immunoblot results (see section 2.1.5) conducted on 08/10/2018. All eight 

treatments were used in this experiment (see Table 2.1). There were 10 

plants per treatment and each plant was split into three even-sized daughter 

plants 10 weeks after germination (see section 2.1.6). Plants were 

supplemented with silicon for a period of either four, seven or ten weeks. 

One of each genotype clone was randomly assigned to each harvest time 

point (T1, T2 or T3). Silicon supplementation began on 11/02/2019. Plants 

were trimmed to 5 cm and fertilised (see section 2.1.9) on 18/02/2019, 

12/03/2019 and 02/04/2019. Plants were kept in a screenhouse for the 

duration of the experiment (see Fig. 2.4) arranged in a randomised split-

split-plot design.  Harvesting of the first set of plants (T1) took place between 

11/03/2019 and 13/03/2019, the second set of plants (T2) was harvested 

on 01/04/2019 and 02/04/2019, and the final set (T3) was harvested on 

23/04/2019 and 24/04/2019.  

Upon harvest, root material was separated from herbage and washed under 

cold water to remove excess soil. Herbage was split into pseudostems and 

leaf blades (see section 2.2.1 and Fig. 2.5) and necrotic tissue was removed. 

Roots and pseudostems were placed into individual plastic bags and stored 

until required (see section 2.2.2). For each harvest point there were ten 

replicate plants. Plant material was bulked together to ensure there was 

enough material for silicon, loline, and mycelial mass analysis (see 

section 2.3). Replicates one to three, four to six, and seven to ten were 

bulked together. Silicon analysis was conducted on all samples 

(see section 2.3.1). Loline analysis was carried out for E+ samples only 

(see section 2.3.3) and mycelial mass analysis was only measured for E+ 

herbage samples (there is no mycelium in roots) (sees section 2.3.2).  
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5.2.2 LBAM artifical diet rapid bioassay  

The known silicon concentrations of root material from the previous 

experiment was used as an indicator to select remaining root material to 

include in an artificial diet rapid bioassay with LBAM. For each species and 

endophyte status, the roots with the highest and lowest silicon concentration 

were selected (see Table 5.1), ground into a fine powder, and incorporated 

into a diet.  

Table 5.1: Approximate silicon concentrations of selected root material for LBAM rapid bioassay 
based on analysis of the same plant genotypes used in experiment described in section 5.2.1 

 

5.2.2.1 LBAM diet preparation 

A semi-synthetic diet was made on 14/08/2019 and fed to newly hatched 

LBAM larvae for a period of two weeks. Ingredients included; 4.68 g agar, 

153 mL Milli-Q water, 0.31 g sorbic acid, 0.2 g methyl parahydroxybenzoate, 

2.5 g casein, 0.94 g Wesson’s salts, 2.81 g finely ground wheatgerm, 5 g 

yeast, 3.75 g finely ground freeze-dried carrot, 0.47 mL linoleic acid, 0.047 g 

cholesterol, 0.43 g ascorbic acid and 1.5 g of freeze-dried ground root 

material for each treatment. This diet has previously been successfully used 

the by AgResearch Ruakura team with LBAM.  

Agar, water, sorbic acid, methyl parahydroxybenzoate, casein, Wesson’s 

salts and wheatgerm were heated in a microwave until boiling point in a 1 L 

Species Endophyte 
Silicon 

treatment 

Approximate 

silicon (%) 

Meadow 

Fescue 

E+ 
High 4.67 

Low 2.47 

EF 
High 4.30 

Low 1.88 

Perennial 

Ryegrass 

E+ 
High 4.78 

Low 2.38 

EF 
High 5.20 

Low 2.60 
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beaker. The diet was left to cool to 70°C, stirring occasionally.  To the cooled 

mixture, the remaining ingredients (except root material). were added and 

thoroughly mixed through.  

Diet was weighed (8.5 g) into 50 mL beakers labelled for each treatment. 

Beakers had been warmed on a hot plate to ensure the agar did not set too 

quickly. To this, 1.5 g of the corresponding root material was added and 

thoroughly mixed before being evenly spread into a 60 mm Petri dish. Diets 

were left at room temperature to set and then placed in the fridge overnight. 

 

5.2.2.2 Setup of LBAM rapid bioassay 

LBAM eggs were received at AgResearch Ruakura from Anne Barrington 

of Plant and Food Research Auckland on 14/08/2019. Eggs were left 

overnight in a 70 mL specimen vial at approximately 20°C. The following 

morning (15/08/2019) enough larvae had hatched to set up the bioassay. 

There was a total of 25 replicates for each of the eight treatments (totalling 

200 larvae).  

To each 1.5 mL Eppendorf tube, a circular piece of diet (~ 0.5 cm diameter) 

was added. A freshly hatched LBAM larva was carefully picked up with the 

tip of a fine paintbrush and placed on the side of the Eppendorf tube next to 

the diet (see Fig. 5.1A). The Eppendorf tubes were arranged in wooden 

blocks in a randomised design blocked by replicate (see Fig. 5.1B). Wooden 

blocks were wrapped in aluminium foil to prevent light penetration and 

placed in a 20°C controlled environment room. 

 

 

 

 

 

 

B A 

Figure 5.1 LBAM rapid bioassay setup. A) Piece of diet in Eppendorf tube with a single LBAM 
larva. Larva not visible. B). LBAM Eppendorf tubes arranged in a randomised block design in 
wooden block (Replicates 8 – 14). 
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5.2.2.3 LBAM experiment assessment 

Larvae were assessed within the Eppendorf tubes under a stereo 

microscope at 63x magnification. The first assessment, on 16/08/2019, 

involved checking the survival, and whether the larva had started to produce 

webbing (see Fig. 5.2). The production of webbing indicated that the larva 

had established on the diet. On 20/08/2019, 21/08/2019, and 22/08/2019 

the larva was checked to see whether or not it had undergone its first moult, 

and the amount of webbing was scored. A score of 3 indicated the larva had 

produced webbing all around the diet, 2 indicated webbing covering a large 

portion of the diet, 1 indicated a small amount of webbing, and 0 no webbing. 

The final assessment on 28/08/2019 involved checking larval instar, web 

scoring, and larval weight (Mettler AT261 Delta Range). Larval instar was 

based on the appearance and size of the head capsule. Larvae were left in 

empty Eppendorf tubes and placed in a -20°C freezer until 01/10/2019 when 

head capsule width was measured.  

 

  

Figure 5.2: First instar LBAM viewed through plastic 
Eppendorf tube under a stereo microscope at 63x 
magnification. Webbing is visible above and to the right of 
larva. 
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5.3 Results 

 

5.3.1 Correlations between silicon, lolines, and mycelial mass 

There were no significant correlations between silicon, total lolines, and 

mycelial mass in herbage from either species. Nor were there significant 

correlations between silicon and total lolines in meadow fescue root material. 

Tests for correlations between silicon and loline contents in ryegrass root 

material were not possible because a large proportion of samples contained 

no detectable levels of loline alkaloids. There were significant correlations 

between the production of the individual lolines (NFL, NANL, and NAL) in 

the herbage material of both species (see Table 5.2).  

Table 5.2: Correlation coefficients (r) of individual loline alkaloid production in meadow fescue and 
ryegrass herbage 

 Meadow Fescue Ryegrass 

NAL 0.91  0.94  

NANL 0.92 0.82 0.95 1.00 

 NFL NAL NFL NAL 

 

5.3.2 Loline concentrations 

Total loline concentrations in the herbage of meadow fescue plants declined 

throughout the experiment (see Table 5.3); this pattern was similar across 

the 3 individual lolines measured (NAL, NANL, and NFL). Total loline 

concentrations were significantly less at T3 (10 weeks supplementation) 

compared to T1 (4 weeks) and T2 (7 weeks) (P < 0.05), declining by 

42.2 % between T1 and T3. There was no significant difference between 

total lolines at T1 and T2. NANL and NFL showed a similar pattern, reducing 

by 28.7 % and 43.8 % between T1 and T3 respectively. There was no 

significant difference between T1 and T2. Results for NAL varied slightly, 

there was a significant difference between T1 and T2, as well as T2 and T3. 

Overall the concentration of NAL reduced by 32.1 % between the first and 

last harvest date. In contrast, there was no significant decline in the root 

loline concentrations for meadow fescue plants (see Table 5.4), although 
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Table 5.3: Meadow fescue herbage loline levels over 10 weeks of silicon supplementation. Different letters next to loline concentration indicate significant differences between 
harvest time for that loline (Fishers Unprotected LSD, P < 0.05). 

Loline 

alkaloid 
Harvest Time 

Mean Concentration 

(µg/g) 
SD Range 

Percentage 

change from T1 

(%) 

NAL 

T1 557 a 69.9 458 - 649 - 

T2 474 b 78.3 335 - 565 - 14.9 

T3 378 c 20.0 345 - 349           - 32.1 

NANL 

T1 1057 a 138.4 858 - 1204 - 

T2 1013 a 268.1 513 - 1320 - 4.2 

T3 754 b 63.1 703 - 876 - 28.7 

NFL 

T1 12455 a 1737.9 9732 - 14393 - 

T2 10882 a 2179.5 6756 - 13125 - 12.6 

T3 7000 b 545.1 6473 - 7970 - 43.8 

Total Lolines 

T1 14080 a 1922.1 11047 - 16152 - 

T2 12368 a 2505.3 7605 - 14948 - 12.2 

T3 8132 b 607.1 7578 - 9233 - 42.2 
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Table 5.4: Meadow fescue root loline levels over 10 weeks of silicon supplementation. Different letters next to loline concentration indicate significant differences between harvest 
time for that loline (Fishers Unprotected LSD, P < 0.05). ND = not detectable, concentrations were below the detectable limit. 

Loline 

alkaloid 
Harvest Time 

Mean Concentration 

(µg/g) 
SD Range 

Percentage 

change from T1 

(%) 

NAL 

T1 5.99 a 14.7 ND - 36 - 

T2 ND a -  - 100 

T3 ND a -  - 100 

NANL 

T1 14.68 a 23.8 ND - 55 - 

T2 ND a - - - 100 

T3 ND a - - - 100 

NFL 

T1 317 a 188.3 109 - 631 - 

T2 225 a 98.9 133 – 352 - 29.1 

T3 243 a 153.0 74 - 454 - 23.3 

Total Lolines 

T1 344 a 220.5 109 – 722 -  

T2 229 a 106.0 133 – 369 - 33.4 

T3 247 a 159.3 74 - 477 - 28.3 
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total lolines reduced by 28.3% between T1 and T3. There was no detection 

of either NAL or NANL in T2 or T3, and only low levels in T1 (detected in 3 

and 6 samples total respectively). Root loline concentrations for meadow 

fescue were significantly lower than herbage concentrations for each loline 

and overall (P < 0.05). The percentage of NFL out of total lolines in meadow 

fescue roots (96.59%) was higher than in the herbage (87.83%) (P < 0.001), 

while the opposite was true for NANL and NAL was (4.15% in herbage and 

1.17% in roots, and 8.02% in herbage and 2.23% in roots, respectively) (P 

< 0.001). There was no effect of silicon supplementation on the proportions 

of lolines in roots and herbage.   

Ryegrass plants had a different pattern of lolines compared to meadow 

fescue. Ryegrass herbage had significantly lower loline concentrations than 

those found in meadow fescue (P < 0.05).  There was a significant decrease 

in total lolines and NFL in ryegrass herbage between T1 and T3, 120.3 % 

and 66.2 % respectively (see Table 5.5). Concentrations from T2 were not 

different from either T1 or T3. There was also a reduction in NAL and NANL 

(detected only in silicon supplemented samples) between T1 and T3, but 

these were not significant differences. Ryegrass roots were the only 

samples to show an increase in loline concentrations over time (see Table 

5.6), although increases were not significant (P > 0.05). Total loline 

concentrations were low in ryegrass root material, ranging from non-

detectable to 292 µg/g. NAL and NANL were not detected in any T1 or T3 

root samples, and levels were low in T2 (only detected in two samples total). 

There was no difference in the proportions of each of the lolines between 

the roots and the herbage.  

There was no effect of silicon supplementation on the production of total or 

individual lolines  in meadow fescue herbage or ryegrass roots (P > 0.05).  

There were differences in the presence of lolines in meadow fescue roots 

based on silicon supplementation.  Roots supplemented with silicon had half 

the total lolines of those not supplemented (P = 0.006) and significantly less 

NFL (P = 0.005). There was no effect of silicon supplementation on NAL or 

NANL in meadow fescue roots.  
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Over the whole experiment, silicon supplementation significantly increased 

the production of each loline in ryegrass herbage (NFL (P = 0.006), NANL 

(P = 0.004), and NAL (P = 0.005)). There was also a significant interaction 

between silicon supplementation and harvest date on total loline production 

(P = 0.037) and each of the individual lolines (NFL (P = 0.035), NANL 

(P = 0.042), and NAL (P = 0.05)) (see Fig. 5.3).  This effect was due to the 

significantly higher lolines detected in silicon supplemented plants at T1 

(see Fig. 5.3). No NAL or NANL was found in any samples that were not 

supplemented with silicon.  
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Figure 5.3: Concentration of individual lolines in ryegrass herbage with and without silicon 
supplementation over a 10 week period; A) NANL B) NAL C) NFL. Error bars are ± SEM. 
Different letters above bars denote a significant difference LSD (Fishers Unprotected (P < 

0.05)). 
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Table 5.5: : Ryegrass herbage loline levels over 10 weeks of silicon supplementation, values are not based on silicon supplementation i.e. include both supplemented and not 
supplemented. Different letters next to loline concentration indicate significant differences between destruction dates for that loline (Fishers Unprotected LSD, P < 0.05). ND = 
not detectable, concentrations were below the detectable limit. 

Loline 

alkaloid 
Harvest Time 

Mean Concentration 

(µg/g) 
SD Range 

Percentage 

change from T1 

(%) 

NAL 

T1 39.45 a 48.6 ND – 117 - 

T2 5.74 a 14.1 ND – 34 - 85.4 

T3 13.72 a 21.7 ND – 47 - 65.2 

NANL 

T1 62.42 a 79.0 ND – 193 - 

T2 7.28 a 17.8 ND – 44 - 88.3 

T3 23.91 a 30.2 ND – 73 - 61.7 

NFL 

T1 1215 a 938.0 446 – 2808 - 

T2 624 ab 234.1 345 – 1022 - 48.6 

T3 411 b 149.2 276 – 695 - 66.2 

Total Lolines 

T1 1317 a 1065.1 446 – 3118 - 

T2 644 ab 264.3 345 – 1100  - 51.1 

T3 542 b 197.3 276 – 815  - 120.3 
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Table 5.6: Ryegrass root loline levels over 10 weeks of silicon supplementation, values are not based on silicon supplementation i.e. include both supplemented and not 
supplemented. Different letters next to loline concentration indicate significant differences between destruction dates for that loline (Fishers Unprotected LSD, P < 0.05). ND = 
not detectable, concentrations were below the detectable limit. 

Loline 

alkaloid 
Harvest Time 

Mean Concentration 

(µg/g) 
SD Range 

Percentage 

change from T1 

(%) 

 T1 ND a - ND - 

NAL T2 6.3 a 15.5 ND - 38 - 

 T3 ND a - ND - 

NANL 

T1 ND a  - ND - 

T2 8.39 a 20.6 ND - 50 - 

T3 ND a - ND - 

NFL 

T1 11.29 a 17.9 ND - 40 - 

T2 33.99 a  83.3 ND – 204 + 201.1 

T3 36.7 a 44.9 ND – 109 + 225. 1 

Total Lolines 

T1 11.29 a 17.9 ND – 40 - 

T2 48.73 a 119.4 ND – 292 + 331.6 

T3 40.44 a 52.4 ND – 131 + 258.2 
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5.3.3 Mycelial mass 

Average mycelial mass in ryegrass (5.32 µg/mg) was significantly higher 

than in meadow fescue plants (3.62 µg/mg) (P < 0.001). In a significant 

interaction between plant species and silicon supplementation (P < 0.001) 

(see Fig. 5.4) ryegrass with silicon had significantly more mycelial mass 

than those not supplemented (P = 0.002), whereas the opposite was true 

for meadow fescue (P = 0.006). 

Meadow fescue non-silicon supplemented plants at T3 had significantly 

lower mycelial mass than the same plant genotypes sampled at T1 

(P = 0.016) and T2 (P = 0.026). There was not an overall effect of harvest 

time, however, on the mycelial mass of E+ treatments (P = 0.176) 

(see Table 5.7) or other significant differences with any other treatments.  

Table 5.7: ANOVA results of mycelial mass. Significant effects and interactions in bold. Residual 
degrees of freedom = 35. 

Source of Variation F-statistic P-value 

Harvest time 2.36 0.176 

Species 41.56 < 0.001 

Silicon 0.13 0.725 

Species.Silicon 23.53 < 0.001 

Species.Harvest time 3.37 0.057 

Silicon.Harvest time 0.3 0.747 

Species.Silicon.Harvest time 0.85 0.444 
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Figure 5.4: Mycelial mass (µg/mg) of meadow fescue and ryegrass based on silicon 
supplementation. Error bars are ± SEM. Different letters above bars denote a significant 
difference LSD (Fishers Unprotected (P < 0.05)). 
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5.3.4 Silicon levels  

There were no significant correlations between the root and herbage silicon 

for either species, endophyte status, or silicon supplementation. 

 

5.3.4.1 Herbage material  

Meadow fescue had significantly higher silicon content in herbage than 

ryegrass (P < 0.001), 1.40% and 1.19% respectively. There was a 

significant effect of both harvest date (T1 = 1.30%, T2 = 1.65%, T3 = 1.26%; 

P = 0.007) and silicon supplementation (Si+ = 1.48%, Si- = 1.33%; P = 0.031) 

on silicon levels of meadow fescue herbage, but no effect of endophyte 

infection (P = 0.337). There were no interactive effects. In contrast, ryegrass 

herbage silicon levels (see Table 5.8) were significantly different based on 

harvest date (T1 = 1.20%, T2 = 1.40%, T3 = 0.96%; P = 0.004), and 

endophyte infection (E+ = 1.12%, EF = 1.25%; P = 0.031) but not silicon 

supplementation (P = 0.154). There were no interactive effects for ryegrass 

herbage.  

 

5.3.4.2 Root material 

Ryegrass root material had significantly higher silicon levels than meadow 

fescue (P < 0.001); 3.66 % and 2.90 % respectively. There was no effect of 

harvest date, endophyte, or silicon supplementation on ryegrass or meadow 

fescue root silicon levels, nor were there any interactive effects for ryegrass 

(P > 0.05). There was an interactive effect of silicon, endophyte infection, 

and silicon supplementation on the root silicon levels in meadow fescue 

(P = 0.034). This was due to a significant difference between T1 and T2  

(P = 0.03) and T1 and T3 (P = 0.005) EF non-supplemented plants. No 

other treatments had significant differences between harvest times 

(see Fig. 5.5).  
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Table 5.8: Herbage silicon (%) levels over 10 weeks of silicon supplementation. Different letters next to silicon level  indicates significant differences between other values for that 
plant species (Fishers Unprotected LSD, P < 0.05). 

Treatment 
Harvest 

Time 
Silicon level (%) SD Range 

Percentage change 

from T1 (%) 

 T1 1.32 ab 0.12 1.20 – 1.47 - 

Meadow Fescue Si+  T2 1.78 c 0.28 1.45 – 2.25  + 34.2 

 T3 1.35 ab 0.12 1.22 – 1.51 + 1.8 

Meadow Fescue Si- 

T1 1.28 ab 0.09 1.16 – 1.41       - 

T2 1.52 b 0.23 1.27 – 1.92 + 18.2 

T3 1.17 a 0.22 0.90 – 1.45 - 8.8 

Ryegrass E+ 

T1 1.08 a 0.12 0.96 – 1.23 - 

T2 1.34 b 0.25 1.03 – 1.69 + 23.6 

T3 0.94 a 0.14 0.73 – 1.13 - 13.3 

Ryegrass EF 

T1 1.32 b 0.20 1.10 – 1.69 - 

T2 1.46 b 0.11 1.31 – 1.62  + 10.7 

T3 0.98 a 0.14 0.81 – 1.15 - 25.9 
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Figure 5.5: Meadow fescue root silicon level (%) at 3 time points. Error bars are ± SEM. Different letters above bars denote statistically significant difference (Fishers Unprotected 
LSD, P < 0.05). 
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5.3.5 LBAM bioassay 

At the first assessment (20/08/2019) the number of larvae that had moulted 

in ryegrass E+ high silicon was significantly lower than ryegrass E+ low 

silicon  (P = 0.032) and ryegrass EF high silicon (P = 0.032), but not 

significantly different from ryegrass EF low silicon (P = 0.538). There were 

no significant differences between any meadow fescue treatments 

(P > 0.05). By the following day (21/08/2019) there were no significant 

differences in larval instar for any treatments. Results were the same on 

22/08/2019. By the final assessment, larval instar for ryegrass EF low silicon 

was significantly less than all other treatments (P < 0.05).  

There was no significant difference between the web scores of treatments 

on 20/08/2019 (P > 0.05). By the final assessment (28/08/2019) the web 

score of ryegrass EF high silicon was significantly lower than that of 

ryegrass E+ low silicon (P = 0.023). There were no other significant 

differences between web scores of treatments. 

There were significant differences in the final weight and head capsule size 

of larvae between treatments (P < 0.001) (see Fig. 5.6). There was a 

significant effect of plant species and of silicon status (i.e. high or low; see 

Table 5.1) on final larval weights and head capsule size (P < 0.001). Larvae 

in meadow fescue treatments were heavier and had larger head capsules 

than ryegrass treatment larvae, and those fed high silicon roots were larger 

than those fed roots with low silicon. Endophyte infection was a significant 

variable for larval weights (P = 0.001) but not head capsule size (P = 0.828). 

Larvae in E+ treatments weighed significantly less than those in EF; this 

effect was significant across all treatments and for meadow fescue 

(P < 0.001) but not ryegrass (P = 0.103). Of the 200 larvae, seven did not 

survive throughout the experiment (3.5%) but there was no treatment effect 

on mortality. 

 

 

 



106 
 

 

  

c

d

ab

bcbc

c c

a

0

0.2

0.4

0.6

0.8

1

1.2

La
rv

al
 w

ei
gh

t 
at

 d
ay

 1
4

 (
m

g)

High Si

Low Si

a

b

a a
a

a a

c

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

E+ Nil E+ Nil

Meadow Fescue Ryegrass

H
ea

d
 c

ap
su

le
 w

id
th

 (
m

m
) 

Treatment

High Si

Low Si

Figure 5.6: Weight and head capsule size of LBAM larvae after being fed meadow fescue or ryegrass 
roots with different levels of silicon. A) Larval weight (mg) B) Head capsule width (mm). Error bars 
are ± SEM. Different letters above bars denote statistically significant difference (Fishers 
Unprotected LSD, P < 0.05). 
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5.4 Discussion 

 

5.4.1 Temporal changes to silicon, lolines and mycelial mass 

This study found no correlations between silicon levels and endophyte 

mycelial mass or loline alkaloid concentrations in either root or herbage 

material of ryegrass and meadow fescue. This suggests that the presence 

of one of these defences does not directly influence the presence of the 

other. There was no increase in any of the measured variables over time, 

contrary to what was expected. These results may have been affected by 

seasonality and/or plant trimming regimes used in this experiment. 

Interestingly, there was nil detection of both NANL and NAL in ryegrass not 

supplemented with silicon, while there was a low concentration detected in 

silicon supplemented. Mycelial mass results did not indicate any significant 

change over time in either species, apart from a decrease between T1 and 

T3 in meadow fescue non-silicon supplemented plants. This supports 

results from Spiering (2000), that mycelial mass or endophytic growth does 

not appear to be proportional to alkaloid production. Overall these results 

reject the original hypothesis of this thesis, that silicon concentration would 

increase over time and this would be associated with an increase in 

endophytic mycelial mass and subsequently loline alkaloids. 

This study also did not find an anticipated increase in silicon concentration 

in E+ plants compared to EF. There was no difference in meadow fescue 

silicon levels based on endophyte infection, and ryegrass EF plants had 

11.61% more silicon on average than E+ plants. In contrast, Huitu et al. 

(2014) observed an average increase of 16% in silicon levels of E+ meadow 

fescue plants, however, this was a different cultivar than the one used in 

this experiment. In the grass-endophyte associations studied here, the 

hypothesis that endophyte infection is linked to increased silicon 

concentration (Huitu et al., 2014) is rejected.  

Interestingly, meadow fescue had higher herbage silicon levels than 

ryegrass and the opposite was true for root material. This suggests that the 

two species differentially allocate silicon to their tissues. Hodson et al. 
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(2005),  Hartley et al. (2015), and Massey et al. (2007a) discuss differences 

in the accumulation of silicon between and within species but only report 

shoot silicon concentrations. There are numerous other studies which 

compare shoot silicon concentrations between species, but few studies 

report shoot and root silicon concentrations and compare allocations of 

silicon between species.  This study demonstrates that between two pasture 

grass species, the accumulation and storage of silicon in below- and above-

ground portions of the plant is variable.  

Herbage silicon results were potentially influenced by the sampling method 

and plant trimming regime carried out in this experiment. Remaining plants 

(for subsequent harvests), were trimmed after each harvest, ensuring that 

all plants had equal time to re-grow before harvest. This approach was used 

to simulate typical grazing that would occur in a pastoral agriculture setting. 

However, trimming and removal of plant material did not allow for an 

accumulation of silicon in herbage over time. Also, pseudostem tissue was 

used for analysis because this is where mycelial mass is concentrated. 

Similar experiments investigating silicon analysed both the leaf and 

pseudostem bulked together, or just leaf material which is known to 

accumulate high levels of silicon (Hall et al., 2019; Kumar et al., 2017). 

Ideally, both leaf and pseudostem tissue would have been analysed 

separately in this experiment to gain further insight into the distribution of 

silicon and alkaloids throughout plants. However, because sample 

preparation and analysis is labour intensive, this was not possible.  

This study also found a decrease in ryegrass herbage loline levels alongside 

an increase in root lolines in response to silicon supplementation. Root 

loline concentrations in this novel-association were minimal and other work 

has shown an absence of lolines in the roots of novel associations between 

ryegrass hosts and tall fescue endophytes (Popay, A. J. unpublished). 

Although the same effect was not observed in meadow fescue in this study, 

in previous work by Patchett (2007) a shift in lolines from pseudostems to 

root material had been observed, during a similar time of year, in various 

meadow fescue breeding lines. The authors suggested that this shift was 

aligned with decreases in soil temperature and implied that rather than 
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producing additional alkaloids, plants are able to mobilise and relocate them, 

which aligns with the timing of the experiment reported here. They also 

proposed that this shift coordinated with when roots were most susceptible 

to attack from belowground feeders, such as grass grub, and lolines would 

be relocated to herbage in spring to protect new growth from folivore 

herbivores (Patchett, 2007).  

Results for all chemical analyses were also likely impacted by low 

replication. During experimental design, it was anticipated that plants would 

grow large enough that there would be enough material for analysis of each 

individual plant. However, plant growth was less than expected and 

therefore replicates had to be bulked together. Additionally, sample 

preparation was more labour intensive than predicted. The low replication 

for each treatment limited the ability to detect differences between and 

within treatments and did not allow for comparison of clonal plants between 

harvest times. It is recommended that future studies allow plants to grow 

larger (more tillers) prior to beginning silicon supplementation. Based on 

these results, and lack of correlations between the measured variables, 

analysis of all of the variables may not be required and so less plant material 

would be needed.  

 

5.4.2 LBAM larval development bioassay 

Root tissue incorporated into artificial diets was selected based on known 

values of silicon from the previous experiment and would therefore only be 

approximate. Larvae fed roots from E+ ryegrass with high silicon gained 

less weight than the low silicon E+, while results from meadow fescue E+ 

treatments were not significantly different. In contrast, in both species, 

larvae fed EF high silicon gained more weight than EF low silicon. This 

suggests that LBAM larvae perform better on high silicon diets when there 

is no endophyte present. The reason for this is unknown. There is some 

evidence to suggest that silicon may alter the carbon to nitrogen ratio of the 

plant (Frew et al., 2019) which may affect the development of larvae (Moise 

et al., 2019).  Moise et al. (2019) studied the effect of silicon and nitrogen 
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application on Zea mays (maize) and the performance of an armyworm 

(Pseudeletia unipuncta). The authors found that the deleterious effects of 

silicon on the insect were partially mitigated with the application of nitrogen. 

There is also evidence that nitrogen and other elements such as carbon and 

phosphorus, alongside silica, are occluded in phytolith structures as they 

are formed (Alexandre et al., 2016; Laue et al., 2007). This potentially 

changes the nutritional quality of plant material and influences the 

development of insects. Analysis of plant carbon to nitrogen ratios in the 

future would enable further disentanglement of the underlying causes of 

differences in larval development between treatments. Another factor that 

may have influenced results is the unknown effect that grinding plant tissue 

has on the structure of phytoliths and the importance this may have on 

feeding deterrence properties. The functional significance of structural 

diversity in phytoliths is unknown (Cooke & Leishman, 2011), suggesting 

that structure, as well as silicon content itself, may have a role in alleviating 

herbivore damage.   

Silicon levels in the roots used in this experiment appear to be much higher 

than those observed in other root-herbivore studies. Frew et al. (2017a) 

found that root silicon levels in sugarcane fell between 0.25% and a 

maximum of 2.5%. This study found a negative effect on insect herbivore 

mass increase with increasing silicon concentrations. In the present study, 

root silicon concentrations were estimated to fall between 1.88% and 5.20%. 

It is possible that the lowest silicon levels used here are higher than what 

would cause negative effects on herbivores. Therefore, the differences seen 

in herbivore performance are likely due to underlying factors such as 

nutrient balance rather than silicon content. However, there are limited 

studies investigating the effect of silicon in root tissue on root-herbivores 

and further research is required to better understand the mechanism behind 

root-herbivore feeding and silicon defences.  

Overall, larvae in E+ treatments gained significantly less weight than those 

in EF treatments. This effect was only significant for meadow fescue and 

not ryegrass. This suggests that the loline alkaloid levels present in meadow 

fescue root material were sufficient to reduce the performance of LBAM 
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larvae, but not in ryegrass. This is not unexpected as alkaloid 

concentrations in the novel endophyte association are typically low 

(Malinowski & Belesky, 2019) and the results presented here show that they 

were lower than those which have been previously been known to reduce 

insect feeding (Jensen et al., 2009; Popay & Lane, 2000).  

Results from this study indicate some areas of improved methodology to be 

used in the future. Larval weights were more effective at detecting 

differences in the development of larvae than measurement of head 

capsules. Head capsule measurement was limited as it is strongly 

correlated to larval instar, and the majority of larvae were second or third 

instar by the end of the experiment. However, larval weight, even within an 

instar, is more variable and provides more information on the overall 

development of the larvae. This suggests that in the future only 

measurement of final larval weight is required. The measurement of both 

variables does however provide an indication of relative development of the 

larvae between treatments i.e. larvae may gain weight but not develop to 

the next instar (noted through head capsule measurement). Additionally, 

when the first assessment of larval instar was conducted the majority of 

larvae had already developed to the second instar. In future, the 

development of larvae should be checked sooner and more frequently in 

order to detect any differences in initial larval development.  
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6. Final conclusions 

 

The initial aims of this thesis were to: 

a)  investigate the potential synergistic defensive effects of silicon 

accumulation and Epichloë endophyte infection in pasture grass species on 

the performance of common New Zealand pasture pests;  

b) determine temporal changes to silicon levels, loline concentrations, and 

endophytic mycelial mass in two species of grass infected with different 

endophyte.  

 

6.1 Key findings 

Initial experiments found that there was no effect of silicon supplementation 

on the feeding of either ASW adults or porina larvae, but their feeding was 

affected by the presence of endophytes. Presence of endophyte in the 

ryegrass did not reduce porina feeding but reduced the number of ASW 

feeding scars. Subsequent analysis of silicon content found no difference 

between silicon supplemented and non-supplemented plants. Later studies 

on the root-herbivore grass grub, with plant material supplemented with 

silicon for ten weeks, also found no effect of silicon and no significant 

differences in silicon content based on supplementation. There was a 

negative effect of meadow fescue endophytes on grass grub performance 

in whole-plant experiments but not in excised root assays, and no negative 

effects of ryegrass endophyte in either. Due to study limitations, discussed 

below, this study was not able to resolve the hypothesis that silicon and 

endophyte would have synergistic negative effects on the herbivory and 

performance of insect pasture pests. Further research is needed to be able 

to accept or reject this hypothesis.   

There was not a clear temporal pattern of increases in silicon, loline 

alkaloids or mycelial mass in the two breeding lines. Nor were there any 

strong correlations between any of these variables. Interestingly, silicon 

supplementation of ryegrass did not result in an increase in plant silicon 
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content but did cause a significant increase in the production of loline 

alkaloids in the herbage. Overall, this study can reject the original 

hypothesis that silicon concentration would increase in both root and 

herbage material over time and that this increase would occur alongside an 

increase in mycelial mass and increased concentration of loline alkaloids in 

root tissue. 

 

6.2 Study limitations 

The main limitation of this study was the inability to ‘produce’ significant 

silicon differences between silicon supplemented and non-supplemented 

treatments. This meant that the synergies of silicon and endophyte were not 

able to be studied in a two-way factorial design as anticipated. It is 

hypothesised that bioavailable silicon in the soil utilised for plant growth was 

high, meaning that plants, even in non-supplemented treatments, were 

accumulating as much silicon as they were genotypically capable of. 

Consequently, the application of additional silicon did not have an effect on 

overall plant silicon content, and silicon content in this study was likely to be 

more strongly influenced by genotypic variability than silicon application 

regimes. Also of note is the potential increase in silicon accumulation with 

increasing moisture content reported by Ryalls et al. (2018). This study 

found that an Australian pasture grass, Microlaena stipoides, accumulated 

more silicon in herbage material when grown in elevated soil moisture 

conditions. In this experiment, the silicon supplementation regime and 

automatic watering of plants in the screenhouse meant that the soil moisture 

in which plants were grown was high. This may have further impacted the 

lack of differences in silicon content between treatments.  

Another limitation of this study was the need to bulk replicate samples 

together for chemical analysis. This was both because of time pressure in 

sample preparation and analysis, and lack of plant material available from 

individual plants. Downstream effects of this were that, statistically, the low 

number of replicates reduced the ability to detect differences between 

treatments. Had each plant been analysed separately it would have been 
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possible to directly compare the silicon/loline values of each plant with the 

feeding and performance of the individual insects that fed on that plant 

material. This would have provided greater insight into the interactions 

between silicon and endophyte and subsequent effects on insect herbivores 

in individual plants.  

 

6.3 Future research directions and suggestions 

Results from this study have opened up further research questions that 

require investigation and suggestions for such research are discussed 

below.  

Firstly, studies aiming to investigate the effects of silicon in pot trials should 

make use of inert growth media or hydroponics. This will optimise the 

potential to have differences in silicon content between treatments, while 

also reducing the variability of factors in other growth media such as soils. 

Researchers should also ensure the nutrient and moisture content is optimal 

for plant growth so that plants grow large enough that there is sufficient 

material for individual plant silicon analysis. Alternatively, researchers could 

employ analytical techniques for silicon analysis that require less plant 

material and sample preparation, such as high-resolution continuum source 

graphite furnace atomic absorption spectrometry (HR-GS SS-GF AAS) 

(Boschetti et al., 2015) or inductively coupled plasma mass spectrometry 

(ICP-MS) (Pohl et al., 2010). Another recommendation is to have genotypic 

clones of each plant (one supplemented and one not supplemented with 

silicon) and subsequently compare herbivore performance on these plants. 

This would reduce the effects of genotypic variability between plants and 

allow the study of direct effects of silicon supplementation. For example, in 

the summer of 2019/2020 genotypic clones will be grown in inert growth 

medium and subjected to varying silicon supplementation regimes. The 

clonal plants will then be re-potted into the same pot and ASW adults will 

be given a choice between the two plants for feeding and oviposition. This 

method will allow for the detection of differences in feeding and oviposition 

based on silicon supplementation treatment of the plant. Future experiments 
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investigating effects on plants/herbivores should utilise similar methods to 

optimise the study of silicon.  

A further recommendation is to measure other relevant variables such as 

carbon to nitrogen ratios (Frew et al., 2019) and phenolics (Massey et al., 

2007a) of plant material. These variables are known to have effects on 

insect herbivores (Frew et al., 2016; Loranger et al., 2012), and therefore 

would enable the researcher to have a more holistic understanding of plant-

herbivore interactions in their studies. Analysis of all of these variables may 

lead to the ability to breed plant lines which are naturally highest in both 

defences;  for instance, both high silicon content (Johnson et al., 2016a) 

and alkaloid production.  

Another potential factor affecting plant-herbivore interactions in these 

studies is the occlusion of other nutrients such as carbon and nitrogen within 

silica phytolith structures (Alexandre et al., 2016; Laue et al., 2007). Further 

studies are needed to understand the effect that this may have on 

experimental outcomes. Specifically, the effect when plant material is 

ground into a fine powder and incorporated into an artificial diet for insect 

feeding assessment may alter the phytolith structure. This might therefore 

alter the available carbon and nitrogen within plant material thereby 

influencing herbivore performance. Also, because silicon is concentrated 

within phytoliths, effects on insect mandibles and/or intestinal tracts may be 

less obvious to observe after material is ground.  

A key area of future research is the need for a better understanding of the 

potential impact that silicon fertilisation may have in pastoral New Zealand 

systems. There is an abundance of research indicating that increased 

silicon increases resistance from insect herbivores (Frew et al., 2017a; Hall 

et al., 2019; Massey et al., 2007b; Ryalls et al., 2017). However, the 

bioavailable silicon content of our pastoral soils is not known. Potentially, 

some soil may already have a high concentration of silicic acid, such that 

supplementation of silicon would not influence the silicon content of plants. 

A survey of New Zealand soils, as well as plants, in different environments, 

would increase understanding of the potential impact that silicon application 
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would have in a field setting. Additionally, recent research has indicated that 

the application of nitrogen fertiliser (a common practice in New Zealand 

pastures) partially mitigates the negative effects of silicon on insect 

herbivore performance (Moise et al., 2019). This suggests that the 

application of silicon in New Zealand may not be a practical or economical 

means of reducing damage to pastures caused by insect herbivores.  

There is also potential that silicon not only plays a structural role in defence, 

but may also have a metabolic role (Leroy et al., 2019), or influence changes 

to soil nutrients and microbial communities which consequently alters soil 

ecosystem properties and potentially plant performance (Frew et al., 2019). 

For example, in the present study, there was no difference in herbage silicon 

content, but there was some evidence of an increase in loline alkaloid 

production in ryegrass plants supplemented with silicon. This suggests that 

silicon supplementation may be influencing plant performance through 

mechanisms other than silicon accumulation. Further research into the 

effects of silicon on soil properties as well as expression of genetic and 

metabolic properties of plants will aid in increasing our understanding of 

these possible mechanisms (Zargar et al., 2019).  

Another area that requires further research is knowledge of an effective 

level of silicon to reduce herbivore performance. In the literature, there is 

large variability in silicon contents which are reported to influence herbivory. 

For example, Moise et al. (2019) reported an effective increase from ~0.3% 

silicon to ~0.9% in maize. However, Massey et al. (2006) reported an 

average increase in ryegrass silicon content from 0.54% to 4.68% with 

supplementation and this influenced the feeding of two folivorous insects. A 

better understanding of the silicon content required to alter feeding of 

insects, across both plant and herbivore species, would aid in the potential 

implementation of silicon fertilisation as an effective means to reduce 

damage by pest insects in field settings.  

Overall, this area requires further research to understand potential 

real-world applications of silicon, specifically in New Zealand pastoral 

systems, where the use of Epichloë endophytes is prevalent. Continued 
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investigation in this area and increased understanding of the interactions 

between silicon and endophytes may aid in reducing the economic impact 

of the most severe New Zealand pasture pests in the future.   
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8. Appendices 

 

8.1 Hill Laboratories soil test results 
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8.2 Summarised XRF element output   

Table 8.1: Herbage material summarised XRF output. All values in average (of all plants in specified treatment throughout all experiments in this thesis) ppm ± standard deviation, 
except silicon which is percentage ± standard deviation. MF = meadow fescue. RG = ryegrass.  

Treatment  Si Na Mg Al P K Ca 

MF E+ Si+ 1.44 ± 0.32 378 ± 162 2644 ± 384 410 ± 31 4152 ± 580 40594 ± 6965 3713 ± 366 

MF E+ Si- 1.30 ± 0.21 370 ± 242 2837 ± 298 397 ± 52 3944 ± 706 43819 ± 5942 3984 ± 401 

MF EF Si+ 1.37 ± 0.22 454 ± 230 3053 ± 379 402 ± 32 4041 ± 649 42615 ± 6004 4037 ± 311 

MF EF Si- 1.31 ± 0.20 355 ± 128 2981 ± 414 398 ± 32 3894 ± 823 42452 ± 7065 4173 ± 533 

RG E+ Si+ 1.08 ± 0.23 717 ± 410 2287 ± 410 432 ± 33 3381 ± 469 34097 ± 7576 3184 ± 286 

RG E+ Si- 1.08 ± 0.23 802 ± 514 2359 ± 563 412 ± 28 3321 ± 632 37082 ± 7280 3652 ± 247 

RG EF Si+ 1.22 ± 0.26 927 ± 256 2771 ± 551 438 ± 33 3731 ± 520 36638 ± 8362 3642 ± 283 

RG EF Si- 1.15 ± 0.23 850 ± 332 2855 ± 424 417 ± 29 3405 ± 501 41123 ± 7515 4089 ± 369 
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Treatment  Mn Fe Cu Zn Ag S Cl 

MF E+ Si+ 69.4 ± 15.8 372 ± 280 4.86 ± 0.78 59.2 ± 13.4 290 ± 85 1854 ± 364 28544 ± 4485 

MF E+ Si- 37.4 ± 13.7 377 ± 261 4.78 ± 0.65 65.5 ± 11.8 269 ± 82 2021 ± 234 28904 ± 3619 

MF EF Si+ 63.3 ± 12.0 368 ± 193 4.85 ± 0.61 64.3 ± 14.3 264 ± 65 2019 ± 258 29288 ± 3786 

MF EF Si- 73.0 ± 15.8 451 ± 302 5.06 ± 0.60 61.5 ± 13.9 286 ± 52 2038 ± 298 28603 ± 3555 

RG E+ Si+ 81.7 ± 27.4 349 ± 173 5.36 ± 0.90 58.0 ± 14.6 346 ± 138 2086 ± 328 33209 ± 3910  

RG E+ Si- 82.5 ± 19.4 319 ± 189 5.26 ± 0.75 63.6 ± 20.6 300 ± 109 2127 ± 262 33693 ± 6681 

RG EF Si+ 73.6 ± 21.8 518 ± 235 5.20 ± 0.79 61.8 ± 10.9 279 ± 63 2316 ± 322 36130 ± 5725 

RG EF Si- 77.2 ± 15.8 506 ± 236 5.47 ± 0.83 62.1 ± 12.4 287 ± 47 2239 ± 275 36666 ± 6186 
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Table 8.2: Root material summarised XRF output. All values in average (of all plants in specified treatment throughout all experiments in this thesis) ppm ± standard deviation, 
except silicon which is percentage ± standard deviation. MF = meadow fescue. RG = ryegrass.  

Treatment  Si Na Mg Al P K Ca 

MF E+ Si+ 3.14 ± 0.73 204 ± 62 726 ± 130 4007 ± 874 1351 ± 208 9467 ± 4277 4201 ± 654 

MF E+ Si- 2.92 ± 0.92 160 ± 118 756 ± 155 4018 ± 1116 1504 ± 166 12052 ± 5168 4441 ± 861 

MF EF Si+ 2.80 ± 0.65 181 ± 84 613 ± 147 3678 ± 840 1383 ± 211 9830 ± 4368 4052 ± 718 

MF EF Si- 2.69 ± 0.98 169 ± 94 637 ± 187 3915 ± 1510 1447 ± 257 11499 ± 5507 4395 ± 729 

RG E+ Si+ 3.55 ± 0.72 177 ± 70 710 ± 101 4434 ± 1011 1357 ± 198 8051 ± 2106 4293 ± 862 

RG E+ Si- 3.36 ± 0.81 170 ± 70 696 ± 181 4166 ± 965 1496 ± 238 9011 ± 2907 4126 ± 421 

RG EF Si+ 4.26 ± 1.04 174 ± 45 714 ± 111 5104 ± 1312 1305 ± 151 6488 ± 2530 4037 ± 523 

RG EF Si- 3.46 ± 0.87 148 ± 96 793 ± 212 4110 ± 993 1315 ± 213 7445 ± 3772 3949 ± 706 
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Treatment  Mn Fe Cu Zn Ag S Cl 

MF E+ Si+ 79.3 ± 23.2 3732 ± 1142 15.0 ± 4.8 61.9 ± 17.8 302 ± 53 1090 ± 340 3704 ± 1749 

MF E+ Si- 82.0 ± 24.8 4101 ± 3321 15.4 ± 4.8 60.8 ± 7.5 306 ± 80 1315 ± 294 4142 ± 1726 

MF EF Si+ 65.7 ± 15.8 3087 ± 856 16.3 ± 2.9 51.3 ± 6.3 316 ± 58 1215 ±347 3614 ± 1470 

MF EF Si- 75.9 ± 16.8 3370 ± 1031 17.2 ± 4.1 70.5 ± 29.3 328 ± 49 1258 ± 303 3666 ± 1755 

RG E+ Si+ 103.3 ± 20.6 4580 ± 1653 20.8 ± 8.5 71.7 ± 11.9 386 ± 82 962 ± 139 3157 ± 1418 

RG E+ Si- 93.1 ± 25.5 3768 ± 1052 18.4 ± 7.5 91.4 ± 42.9 369 ± 116 1039 ±180 3210 ± 1486 

RG EF Si+ 95.7 ± 18.9 4564 ± 1345 20.2 ± 9.7 65.4 ± 19.5 378 ± 95 919 ± 191 2387 ± 1265 

RG EF Si- 92.2 ± 20.6 4401 ± 2263 18.4 ± 4.6 64.3 ± 17.3 356 ± 58 948 ± 189 3205 ± 1930 

 


