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Abstract

This thesis investigates the use of formal methods to verify cloud system de-
signs against Service Level Agreements (SLAs), towards providing guaran-
tees under uncertainty. We used WATERS (the Waikato Analysis Toolkit for
Events in Reactive Systems), which is a model-checking tool based on discrete
event systems. We created models for one aspect of cloud computing, horizon-
tal autoscaling, and used this to verify cloud system designs against an SLA
that specifies the maximum request response time.

To evaluate the accuracy of the WATERS models, the cloud system de-
signs are simulated on a private Kubernetes cluster, using JMeter to drive the
workload. The results from Kubernetes are compared to the verification re-
sults from WATERS. A key research goal was to have these match as closely
as possible, and to explain the discrepancies between the two. This process is
followed for two applications: a default installation of NGINX, a web server
with a fast but variable response time, and a hand-written Node.js program
enforcing a fixed response time.

The results suggest that WATERS can be used to predict potential SLA
violations. Lessons learned include that the state space must be constrained
to avoid excessive checking times, and we provide a method for doing so. An
advantage of our model checking-based technique is that it verifies against all
possible patterns of arriving requests (up to a given maximum), which would
be impractical to test with a load testing tool such as JMeter.

A key difference from existing work is our use non-probabilistic finite state
machines, as opposed to probabilistic models which are prevalent in existing
research. In addition, we have attempted to model the detail of the autoscaling
process (a “white-box” approach), whereas much existing research attempts to
find patterns between autoscaling parameters and SLA violation, effectively
viewing autoscaling as a black-box process.

Future work includes refining the WATERS models to more closely match
Kubernetes, and modelling other SLO types. Other methods may also be used
to limit the compilation and verification time for the models. This includes
attempting different algorithms and perhaps editing the models to reduce the
state space.
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Chapter 1

Introduction

Cloud computing abstracts computing resources, such as memory, disk and

CPU. Clients, such as businesses, can use these resources from a Cloud Ser-

vices Provider (CSP) on a pay-as-you-go basis [7]. This is an alternative to a

traditional in-house IT infrastructure.

The cloud services provider and client usually agree upon a Service Level

Agreement (SLA) that defines the expected level of service required from the

cloud. The provider aims to ensure that their cloud system meets the SLA,

to avoid financial penalties and ensure good reputation [5]. The SLA specifies

the Service Level Objectives (SLO) that the cloud system must meet.

The task of the cloud administrator is to configure the cloud system to

meet the requirements of the SLA. Due to the complexity of cloud systems and

uncertainties about the environment (such as frequency of incoming requests),

this is an inexact process and prone to error [16]. A method of formally

verifying a cloud system design against an SLA would certainly be useful in

this process. In this work, we present a prototype for formal verification of

one aspect of cloud computing, namely horizontal autoscaling. For this we use

WATERS [2] in order to provide formal guarantees of SLA satisfaction under

these uncertainties.

The research questions we aimed to address are as follows:

• How accurately can model-checking using WATERS verify that a cloud
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design meets its SLA with regard to availability?

• How closely can a WATERS model match Kubernetes?

Our hypothesis was that model checking using WATERS can verify perfor-

mance requirements to a limited extent, and thereby help ensure more robust

cloud system design. We also hypothesise that WATERS can closely match

Kubernetes within a limited range of parameters, and under certain assump-

tions.

The key contributions of this thesis are:

• Prototype models in WATERS to represent horizontal autoscaling in

Kubernetes, and a discussion of its accuracy.

• A summary of lessons learned and design principles for formal modelling

of cloud systems.

The accuracy of our models is evaluated by comparing the verification

results from WATERS to experimental results obtained using JMeter1 and

Kubernetes, in which the cloud system simulated and checked against the

SLA.

A key discovery was that model checking allowed exploration of all possible

traffic patterns up to a given maximum, which would take a very long time

to test using a load-testing tool. Another conclusion was that the state space

sometimes has to be deliberately reduced in order to ensure fast compilation

and verification times in WATERS.

In terms of the MAPE-K loop [17], this work fits within the Analysis and

Planning elements. That is, it analyses if the planned cloud design will meet

its objectives. In terms of the Waves of Self-adaptation [69], this work belongs

to Waves III (Performance Models) and V (Guarantees Under Uncertainties).

This is because our work checks the possible (uncertain) scenarios a cloud sys-

tem may encounter, and aims to provide formal guarantees as to whether the
1https://jmeter.apache.org/
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system will meet its requirements (SLA) or not. This is done via a performance

model.

We envision that this type of model checking can be used by a CSP’s

self-management module to verify new configurations before deciding to apply

them. The planned cloud configuration parameters and the SLA could be

run through a WATERS model. If WATERS reports a possibility of an SLA

violation, different parameters could be attempted until an acceptable set is

found. This type of verification would be especially useful for mission-critical

applications, where formal guarantees are required. It could also be used by

CSPs to provide stricter SLAs, thus attracting more customers. This research

has also been submitted as a conference paper, and is pending review.

The rest of this thesis is structured as follows: Chapter 2 discusses the back-

ground including SLAs, formal methods, WATERS and cloud control software.

Chapter 3 presents existing work related to this thesis. Chapter 4 describes our

theoretical model. Chapter 5 presents the system model. Chapter 6 presents

the testing method and experimental setup, and Chapter 7 discusses the exe-

cution and results. Finally, Chapter 8 states the conclusions and suggestions

for future work.



Chapter 2

Background

This chapter presents the relevant background information for this thesis.

Firstly, an overview of cloud computing is given. Secondly, SLAs for cloud

systems are discussed. This is followed by an overview of formal methods,

including model checking (which is the focus of this thesis). After this discrete

event systems are introduced, which are the basis of the models created in

WATERS. Next, an overview of the WATERS model checking tool is given.

Finally, we present a brief introduction to cloud management software includ-

ing Kubernetes, which is used as a basis for our WATERS models.

2.1 Cloud Computing

Cloud computing allows clients to host data and software externally in data

centres maintained by a cloud services provider (CPS). This is a convenient and

popular alternative to traditional IT infrastructure, where the client maintains

their own servers, data, and software [7]. A key advantage of cloud computing

for the client is that they are only required to pay for the resources actually

used (a “pay-as-you-use” model) [7]. From the provider perspective, cloud

computing allows profit through economies of scale. Common examples of

cloud-based services include social networking and web hosting [12]. Businesses

now commonly use cloud systems to host their services [25].

One disadvantage of traditional IT infrastructure is the difficulty in choos-
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ing the right number of resources (servers, RAM, CPU, and so on) to purchase.

If too few resources are available, requests to the system will be dropped

(known as underprovisioning). If more resources are invested into than are

required to handle maximum load, this represents unnecessary cost (known

as overprovisioning). Cloud computing overcomes this problem by providing

seemingly infinite resources available on demand. That is, the cloud will ensure

sufficient resources are allocated to the client to handle all requests, without

overprovisioning and thereby incurring unnecessary costs [7].

The term cloud system refers to both the infrastructure of the provider

and the software running on it. A cloud system typically consists datacenters

containing a large amount of commodity servers. Cloud systems have tradi-

tionally been based on Virtual Machines (VMs) [29]; the physical servers host

VMs, each of which is referred to as a node. When a request is made to the

cloud, it is delegated to one of the nodes [7] [29]. The nodes are provisioned

by the provider to clients as required; this is largely done automatically via

cloud management software.

Many modern cloud management systems, such as Kubernetes, use contain-

ers instead of or in addition to VMs [32]. Containers include libraries, software

and data, but unlike VMs do not include an operating system, making them

more lightweight than VMs and easier to migrate. Multiple containers typi-

cally run inside a physical or virtual machine, which acts as their host [29].

Cloud services can be classified into the following types [7]: Infrastruc-

ture as a Service (IaaS): The hardware, such as network, data centre, Vir-

tual Machines (VMs) and so on is provided, but the client must install or

choose the operating systems and applications. Platform as a Service

(PaaS): The hardware and operating systems (containers, load balancing, and

so on) are provided, but the client must install or choose the applications.

Microsoft Azure is one example of a provider of PaaS. Software as a Ser-

vice (SaaS): The hardware, operating systems and software are provided. The

client simply adds their data. Function as a Service (FaaS) could also be
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added to this list; it executes a single function on demand.

Clouds can be categorised as public, private or hybrid [7]. A public cloud

makes services available on a pay-as-you-go basis to the general public. A

private cloud, such as an internal data centre of a business, is not available to

the general public. A hybrid cloud contains public and private elements.

Theoretically, any type of application may be deployed to a cloud sys-

tem. For modelling purposes, it is useful to categorise application types into

stand-alone, multitier and microservice applications. Standalone applications

are fully contained in a single node. Multitier applications usually provision

separate nodes for each layer of the application. For example, a 3-tier appli-

cation may consist of a database, logic, and presentation layer, each with its

own node. Many web applications are structured in a similar manner [16].

Microservice applications consist of many individual services, each performing

a specific function [32].

Many cloud applications follow a client/server model: clients make requests

to the server which runs in a cloud system [48].

Clouds serving more than one client are referred to as multitenant clouds,

and each client is referred to as a tenant. In a multi-tenant cloud two or

more tenants may share the same application code on the same node. It is the

responsibility of the provider to ensure that each tenant has sufficient resources,

and that there is no interference between tenant (this is an important security

aspect of cloud computing).

A cloud system is an example of a self-adaptive system: that is, a system

which adapts itself to changes in the environment and itself [71]. A self-

adaptive system consists of a managed system and a managing (controlling)

system [70]. The managing system ensures that the managed system meets

its quality objectives. This is performed via perform self-healing and self-

adaptation [41]. Self-healing refers to the automatic resolution of issues to

ensure the reliability of the system. In the context of cloud computing, a node

which fails may be replaced with a new one automatically. Self-adaptation
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refers to modification in structure or behaviour in response to external condi-

tions which are difficult to anticipate at design time.

Self-adaptation in a cloud system is typically performed by cloud man-

agement software, such as Kubernetes1 or Docker Swarm2. The orchestration

software usually runs on a special node called the master, and is responsible

for making ensuring the system runs smoothly. One self-adaptive strategy

used by cloud management is automatic scaling (autoscaling), referring to the

automatic provisioning of resources to meet demand, which is the focus of this

thesis. For example, when the master detects that 80% of the CPU is being

used, it could scale by starting another node to lessen the CPU load of the

existing nodes.

Three scaling strategies are commonly used in practice [29]: Threshold

scaling performs scaling when certain threshold is reached (such as 80% av-

erage CPU consumption across existing servers); in Predictive scaling, the

system predicts beforehand when to apply scaling, typically using algorithms

or historic data; Seasonal scaling applies scaling according to known “busy

periods” or seasons (such as end of tax year for financial applications). This

thesis focuses on threshold scaling.

A distinction is also drawn between horizontal scaling and vertical scaling.

In vertical scaling, more resources are added to existing nodes; this is also

referred to as scaling up or down. In horizontal scaling, entire nodes are added

or removed; this is also referred to as scaling in or out [74]. In practice,

normally a combination of both is used, but we shall focus on horizontal scaling

in this thesis.

Currently auto-scaling policies tend to lack correctness guarantees [21],

which is a large motivator for this work.

Cloud management software is also able to manage the number of instances

of each microservice in a cloud-based application [32]. For example, if the
1https://kubernetes.io/
2https://docs.docker.com/engine/swarm/
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database nodes have a high load, it can create more database node instances.

Another self-adaptive strategy used within cloud systems is load balancing,

or delegating requests evenly to servers in a cloud so that all requests can

be handled within an acceptable time limit [74, 11]. Common load balanc-

ing strategies for cloud systems include Round Robin, Weighted Round Robin,

Sticky Session, Least Connections and IP Hash [30]. In a Round Robin strat-

egy, the first requests is sent the first node, the second request to the second

node, and so on. This is useful for homogeneous clouds, where all nodes can

handle roughly the same amount of work. Weighted Round Robin assigns a

weight to each node so that more requests are sent to those with higher weight.

This is useful for heterogeneous clouds, where different nodes have different

resource limits. Sticky Session involves “pinning” a user to a node so that

all requests from that particular user are sent to the same node. This is use-

ful in stateful applications. Using Least Connections, the node with the least

connections open gets the next request. This is useful for stateful applica-

tions. Using IP Hash, each request has a hash computed for it based on the

IP address. This hash maps to a particular node, and the request is then sent

to that node. In the models presented in this thesis, we shall assume Round

Robin load balancing is used.

There are concerns which hinder the adoption of cloud computing. One

example is reputation sharing: In a multitenant cloud, if a datacenter is com-

promised due to one misbehaving client, other clients may also be affected

also [7]. For example, if data from a cloud system must be confiscated for

one client, it will also be confiscated for other clients sharing the same re-

sources [29]. Another concern is whether cloud computing provides adequate

availability, since systems are often expected to be “always available” [7]. An-

other notable concern is whether cloud computing provides adequate security

adaptation [7, 10] including confidentiality of data in a multi-tenant cloud, and

in the context of attacks such Distributed Denial of Service (DDoS) attacks

and Man-in the-Middle attacks during VM cloning [29]. The large datacenters
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used in cloud systems also tend to consume a vast amount of power, which has

a potentially adverse effect on the environment [29].

2.2 Service Level Agreements

A cloud system is usually created by a provider for a client. Examples of a

cloud service providers include AWS (Amazon Web Services)3, IBM Bluemix4

and Microsoft Azure5.

In order to ensure that the cloud system is acceptable, the client and

provider typically create a service level agreement (SLA) [11] to define the

responsibilities of the client and the provider. In particular, the SLA specifies

the non-functional requirements of the cloud system [38], called Service Level

Objectives (SLOs). The SLA also defines escalation procedures and financial

penalties (costs) for the provider if the SLOs are not met [16].

An SLO normally specifies a Service Level Indicator (SLI) and its required

value [11] [5]. An SLI is a measurement of the performance of a cloud system,

such as the average response time of the cloud to incoming requests. Other

examples of SLIs include the error rate (number of failed requests divided by

the total number of requests) and monthly up-time percentage, which are listed

on the SLA for AWS6.

SLOs are often defined in terms of percentiles [63] instead of averages or

absolute maximum or minimum values. For example, the SLO “the 99% per-

centile or response time must be less than 1 second” implies that it is allowable

for the top 1% of requests to have response times of 1 second or more. This is

partly because it is difficult to avoid “outliers” in practice. Possible examples

of SLOs are:

• The system must be available 99.999% of the time (the “5 nines” rule) [25].
3https://aws.amazon.com/
4https://www.ibm.com/cloud/
5https://azure.microsoft.com/en-us/
6https://aws.amazon.com/s3/sla/
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(Availability)

• The failure rate at most 1 in 10. (Reliability)

• The 99th percentile of response time must be less than 1 second. (Per-

formance)

• The average CPU utilisation must be less than 80%. (Performance)

In this thesis, we shall focus on the maximum response time.

SLA often specify an error budget, which represents the amount of SLO

violations which may occur within a rolling time window [5].

It is useful to categorise SLO requirements into Quality Attributes (QAs):

• Functionality: The system should provide the behaviour specified by its

functional requirements [59].

• Reliability: The system maintains an adequate level of performance while

running in all specified conditions [41].

• Availability: The system performs its required functions at the required

points in time. This requires maturity (the ability to avoid failure), fault

tolerance and recoverability (the ability to re-establish a specified level

of performance after failure) [71].

• Fault-tolerance: The system should recover from internal faults [71] [59].

• Survivability: The system should survive a disaster or outage (these may

be viewed as external faults).

• Performance: The response time (how long the system takes to respond

to a request) and throughput (how many requests are served per unit

time) of the system should be acceptable.

• Security: Only authorised parties should have access to data (confiden-

tiality) [23], data must not be tampered with (integrity), and must always

be available to its intended users (availability) [60].
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• Maintainability: The system should be easily updated to meet new spec-

ifications.

• Replaceability: Components in the system should be replaced easily [71,

59].

• Cost: The system should be cost-efficient. In the context of cloud com-

puting, financial penalties due to SLA violations and losses due to over-

provisioning should be kept low.

• Power Efficiency: Power consumption should be kept low both to save

cost and to reduce environmental impact.

Availability is the QA that is the focus of this thesis.

One disadvantage of textual SLAs is that they are difficult to verify. In

particular, it is difficult to use a program to determine whether a system meets

a textual SLA. Therefore it is useful to translate a textual SLA into a set of

formal requirements. To this end, formal SLA languages have been developed,

such as SLAng [38] and SLAC [64].

2.3 Formal Methods

Formal methods are mathematical techniques to check the validity of a system [61].

They are used to verify a system to eliminate design mistakes [27]. Formal

methods are normally used to verify critical software, where failure must be

avoided. Formal methods may be applied at design time (offline) or at run-

time [70].

Model checking [18] is one type of formal method. This consists of creating

a model of the system and a specification of the requirements, then verifying

if the system actually meets the requirements. A key advantage of model

checking is that the verification can be done automatically using a software

tool, and thereby saving manual effort.
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To create the model of the system, a variety of model types which may

be used, which we shall briefly describe. Automata (Finite State Machines)

consist of a set of states, a starting state, a set of final states and a set of

transitions. Each event triggers a transition to another state [13]. Finite state

machines are form the basis of models in WATERS.

Timed Automata are automata which simulate time using real-valued clocks [61].

Transitions are enabled based on the value of these clocks. UPPAAL a mod-

elling tool that uses timed automata [70].

I/O Automata are an extension of automata which distinguish between

input, output and internal events. I/O Automata have often been used to

model reactive systems [61].

Team Automata are an extension of I/O automata which are used to model

collaboration in groupware systems [61]. Examples of team automata are

presented by ter Beek et al. [62].

Petri Nets (PNs) are directed graphs that contain places and transitions.

A transition is only enabled if the required place has sufficient tokens. Petri

Nets are especially useful for modelling concurrent processes [22]. A Finite

State Machine can in fact be defined as a Petri Net in which the number of

inputs and outputs per transition is exactly one [25].

Timed Petri Nets (TPN) are an extension to Petri Nets which model time

by assigning a time duration to each transition [25, 51].

Kripke structures are essentially finite state machines in which each state

contains a set of propositions which are true in that state [18]. Kripke struc-

tures are especially useful for modelling digital electronic circuits.

Other modelling techniques used by formal methods include regular alge-

bra, Markov models, Z notation, and ADL [70]. This thesis focuses on model

checking using finite state machines.

Clarke Jr et al. discuss a practical example of the use of model checking

in the design of the Futurebus+ cache coherence protocol [18]. During the

formalising and verification of the protocol, a number of errors and ambiguities



13

were discovered using model checking.

2.4 Discrete Event Systems

A Discrete Event System (DES) is a representation of a real-world system con-

taining states, events and transitions [13]. The system starts at an initial state.

Events cause the system to transition to another state7. Time is considered

to be discrete, such that each events occurs at a discrete points in time. A

DES may be represented in a number of ways (such as the model types listed

in Section 2.3. Finite state machines (automata) are one of the simplest types

of model for Discrete Event Systems [13].

In particular, a DES can be described by the combination, or composition,

of several finite state machines. To this end, let us define a deterministic finite

state machine as the set (Q, qi, Qm,
∑
, δ). Q is the set of all states and qi is

the initial (starting) state. Qm is the set or marked states; this is the set of

states which the automaton should eventually be able to reach. ∑ is the set

of all possible events, called the event alphabet. δ is the transition function;

given a current state and an event, this defines the next state.

A DES does not model details about events, but only that they occurred

(for example, the fact that a user request was received, but not the data within

the request).

The automata in a DES perform synchronisation on common events [27,

13]. When an event fires, all automata which contain the event transition at

the same time (they are synchronised). In addition, if one of the automata

which contain the event is not in a state where it can be executed, the event

cannot fire at all.

A DES typically includes one or more specifications that define the intended

behaviour or controlling logic of the system. Specifications control the flow of

the DES by specifying which events are allowed in any given state [22].
7It may transition to the same state
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Events can be classified as controllable or uncontrollable [13]. Controllable

events may be enabled or disabled by the specification (the controller), whereas

uncontrollable events cannot.

Events are also classified as either observable or unobservable [13]. Observ-

able events may be responded to directly by specifications, whereas unobserv-

able events cannot.

A specification is controllable if it defines transitions for all possible uncon-

trollable events which may occur [27, 13]. This means that no uncontrollable

event will put the DES in a state where it cannot be controlled. We can define

this formally. The following definition is taken from Åkesson et al. [3]: Let G

and K (the specification) be two automata with the same event alphabet Σ.

K is controllable with respect to G if L(G ‖ K)Σu∩L(G) ⊆ L(G ‖ K), where

Σu is the set of uncontrollable events.

Amarked stated or accepting state is a state which indicates that the system

has finished its processing and is in a normal, idle state. A DES should ideally

always be able to end in an accepting state; then it is called nonblocking. The

following definition is taken from Åkesson et al. [3]: Let G be an automaton.

G is nonblocking if L(G) ⊆M(G), whereM(G) is the marked language of G

(the set of strings which end in a marked state).

Alternatively, one can define a DES as nonblocking if it has no deadlocks

or livelocks [27, 13]. In a deadlock, the system has reached a state that it

cannot transition out of. In a livelock, the system becomes stuck in a loop of

unmarked states that it cannot transition out of. It is still “live” in the sense

that it is transitions between states, but it can never reach an accepting state.

2.5 WATERS

WATERS8 (the Waikato Analysis Toolkit for Events in Reactive Systems)

is the model checking used in this work. In WATERS, models are created as
8http://www.supremica.org/
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Discrete Event Systems (DES) using Extended Finite State Machines (EFSM).

Extended Finite State Machines, or Extended Finite Automata are an exten-

sion of ordinary automata, which include variables, guards and actions [56].

WATERS is formally calledWATERS/Supremica, as it is based on the Suprem-

ica program.

There are four types of automata in WATERS: plants represent the system

to be controlled; specifications represent the control logic for the plants; proper-

ties; and supervisors are used for synthesis (generating models automatically).

Models can also contain variables. Transitions in WATERS can contain guards

that only allow the transition if the guard condition is true, and actions that

change the value of a variable [42].

WATERS is a comprehensive model-checking software package; it provides

verification tools including controllability check, conflict check, deadlock check,

control-loop check and property check.

• Controllability check: This checks that the specification is controllable.

• Conflict check: This checks that the system eventually reaches an ac-

cepting state.

• Deadlock check: This checks whether the system may enter a state from

which it cannot escape (a deadlock).

• Control loop check: This checks whether the machine could enter a loop

of controllable events and thus be prevented from reaching an accepting

state (a livelock).

• Property check: This ensures the properties (modelled as automata) are

satisfied by the language specified by the DES.

WATERS allows the definition of variables that can be used within tran-

sitions. This is a feature of extended finite state machines. A variable in

WATERS has a type (such as numeric), a set of allowable values and a start-

ing value.
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Events in WATERS may have guards and actions. If an event has a guard,

the event is only allowed to fire if the guard condition evaluates to true. An

action usually modifies the value of a variable when the transition is fired.

Actions should only be used within plant automata. In addition, if the action

for an event assigns to a variable a value which is outside its allowable range,

then the cannot be fired (it is blocked). In this way the action also acts as a

guard.

Note that in WATERS one cannot modify the state machine itself by adding

states or transitions on-the-fly. So it is not possible, for example, to model

scaling out by having a transition which creates another state machine entirely.

To perform model checking, WATERS models are first compiled then ver-

ified. In general, complexity of verification in WATERS is polynomial in the

number of states and transitions in the composed system, and exponential in

the number of components (automata and variables). Different parameters can

be passed to WATERS to improve its performance (for example, compiling the

model to a binary decision diagram representation using the “-bdd” flag).

Other examples of model checking tools include CZT,NuSMV, PAT, PRISM,

SPIN, and UPPAAL [18, 57, 70]. However, we will focus only on WATERS in

this thesis.

2.6 Cloud Management Software

Cloud systems are usually managed by Cloud Management Software, such

as Kubernetes or Google Cloud. This software manage the deployment and

adaptation of the cloud, including starting and removing VMs or containers,

and overseeing the health of the system. This may also be referred to as cloud

orchestration [72].

Kubernetes (also called K8s) is a container-based cloud orchestration pro-

gram developed by Google [8]. In Kubernetes, the containers are called pods9,
9https://kubernetes.io/docs/concepts/workloads/pods/pod/
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and are hosted on machines called worker nodes. In particular, K8s can in-

crease or decrease the number of containers in the cloud based on certain

metrics, via the Horizontal Pod Autoscaler [1]. Kubernetes is the cloud man-

agement software focused on in this thesis.

Kubernetes actually has three systems for automatic scaling: the Hori-

zontal Pod Autoscaler, the Vertical Pod Autoscaler (VPA) and the Cluster

Autoscaler [1]. The Horizontal Pod Autoscaler creates more instances of pods.

The Vertical Pod Autoscaler assigns more resources to existing pods. The

Cluster Autoscaler creates further worker nodes to contain pods. The HPA is

the focus of this thesis.

Other examples of cloud management software include CloudFormation,

OpenStack Heat, Puppet, Chef and Ansible [72].



Chapter 3

Related Work

This chapter presents related work in three categories: existing frameworks,

overview papers, and investigative papers. Existing frameworks check cloud

system validity at design-time or increase cloud performance at runtime; some

do both. These are discussed and compared with this thesis when appropriate.

Overview papers give a summary of existing research on a topic relevant to

this thesis. Investigative papers describe aspects which are useful to model or

at least take into account for this thesis.

3.1 Existing Frameworks

This section discusses the existing frameworks which aim to verify or im-

prove cloud systems. These are summarised in Table 3.1. To the best of

our knowledge, there is limited work on the formal modelling and verification

of cloud autoscaling policies. In particular, to our knowledge no research ex-

ists that applies model checking to verify cloud horizontal autoscaling using

non-probabilistic finite state machines.

The columns are used as follows: the target system is the system which the

research applies to. Most apply to cloud systems specifically, but some are ap-

plicable to self-adaptive systems in general [9, 39]. Those with a checkmark in

the Optimisation column focus on improving the performance or overall qual-

ity of the system at runtime, without necessarily providing formal guarantees.
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Table 3.1: An overview of relevant frameworks towards providing guarantees
for or improving cloud and self-adaptive systems.

Source Target Optimi- Verifi- Design Run- Perfor- Security Model-Checking

System sation cation Time time mance Tool Used

[4] Cloud 3 3 Z3

[9] Self-Adaptive Systems 3 3 3 PRISM

[14] Web Services 3 3 SPIN

[20] Cloud 3 3 3 3

[21] Cloud 3 3 3 3 PRISM

[23] Cloud 3 3 3

[24] Self-Adaptive Systems 3 3 3 3 PRISM

[25] Cloud 3 3 3

[27] Phone Application 3 3 WATERS

[32] Cloud 3 3 3

[34] Cloud 3 3 3 PRISM

[33] Cloud 3 3 3 3 Z3

[35] Cloud 3 3

[36] Cloud 3 3 3

[39] Self-Adaptive Systems 3 3 3 3

[43] Cloud 3 3 3 3 Z3

[45] Cloud 3 3 3 3

[46] Cloud 3 3 3

[48] Cloud 3 3 3

[50] Cloud 3 3 3

[52] Web Services 3 3 3 3

[53] Cloud 3 3 3

[55] RAS 3 3 3 GreatSPN

[67] Cloud (Case Study) 3 3 3 FOAM

[72] Cloud 3 3

[73] Cloud 3 3 3 Maria

This Thesis Cloud 3 3 3 WATERS
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Those with a checkmark in the Verification column aim to verify if the system

will meet its SLA (or in the case of runtime, is meeting its SLA currently).

The Design Time and Run Time columns indicate whether the framework is

applied at design time or runtime (or both). The Performance and Security

columns indicate whether the frameworks focus on performance (availability,

response time and throughput) or security (the CIA triad)1. Finally, the Model

Checking Tool used is listed, where applicable.

Evangelidis et al. propose a probabilistic performance model using Discrete

Time Markov Chains, focusing on cloud horizontal autoscaling policies [21].

This work used the PRISM model checker, and related CPU utilization with

response time using K-Means clustering. Similar to our work, this falls into

Wave V (Guarantees under Uncertainty) and in Wave III (Performance Mod-

els) of self-adaptation [69]. Instead, we use non-probabilistic modelling, and

focus on modelling the mechanics of autoscaling (a bottom-up, “white box”

approach).

Heidari et al. present a method for controller synthesis to determine a cloud

system configuration that meets an SLA in [25]. In this study the cloud system

is modelled using Timed Petri Nets (TPN) and could be extended to other

model types. The authors provide an example for maintaining availability in

the case of component failure. In contrast, we focus on maintaining availability

based on horizontal autoscaling.

Raimondi et al. collected performance information at runtime to detect a

state that indicated an SLO was about to be violated [52]. In contrast, we are

aiming to predict SLO violations at design time.

Johnson et al. introduce the INVEST framework for efficient incremen-

tal verification of probabilistic models, integrating with the PRISM model

checker [34]. The authors present a model for the availability/reliability of a

multi-tier cloud service given certain probabilities of component failure. Sim-

ilar to our work, the test case examines cloud availability. However, their ex-
1This is a broad distinction and may not apply neatly to all studies.
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ample is based on probability of component failure and not autoscaling. They

also use probabilistic modelling, whereas we use deterministic modelling.

A closely related work presents a method for incremental verification of

adaptive systems using a satisfiability modulo theory (SMT) solver [33]. Again,

the system is re-verified after undergoing change at runtime, as required. The

authors suggest how the two methods could be integrated.

Idziorek presents a discrete event simulation model to investigate horizontal

scaling within a cloud system [31]. This is, however, based on VM-based clouds

and on simulation, whereas we focus on container-based clouds and formal

verification.

Basset et al. describe a method for composition of stochastic games us-

ing probabilistic automata (PA) to improve the performance of autonomous

systems [9]. In contrast, this thesis uses regular (non-probabilistic) automata.

The Kubernetes community is planning to implement SLO guarantees as

part of the SIG-Scalability project [37]. The documentation distinguishes be-

tween steady state SLOs (during normal traffic) and burst SLOs (during un-

usually high traffic).

Yoshida et al. used the TOSCA (Topology and Orchestration Specification

for Cloud Applications) language to model relationships between components

of a system. TOSCA was used to specify the service template for a cloud

application, which consisted of a topology template (resource structure) and

set of plans. TOSCA designs were mapped to state machines and prove that

the systems have “leads-to” properties (a class of liveness). This is a useful

approach for testing availability [72].

Hinze et al. used WATERS to verify and improve the design of a mobile

tourist information system [27]. While this is different from a cloud system,

we also hope to improve the design of cloud systems with the same approach.

Zeng et al. used Coloured Petri Nets (CPNs) to verify security require-

ments for cloud systems [73]. Their system ensures that resources can only

be accessed by clients with the appropriate permission level. The focus of the
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research is security, whereas this thesis focuses on availability.

A framework to provide cross tenant access control (CTAC) is presented by

Alam et al. [4]. The cloud resource mediation service (CRMS) runs as a third-

party service and manages access to resources from one tenant to another. The

system is modelled using High Level Petri Nets, and verified using SMT-Lib

and the Z3 solver. The focus of the research is security, whereas this thesis

focuses on availability.

Chareonsuk and Vatanawood proposed a method to formally validate or-

chestration of services in the cloud [14]. In this approach the topology and

service functionality of the cloud are specified using the TOSCA and BPEL

XML-based languages. This specification is then translated into Promela code,

and the resulting Promela code is verified by the SPIN model checking tool.

Safety properties are specified using linear temporal logic. In contrast, this

thesis does not focus on composition of services (primarily an SaaS concern),

but rather on the level of PaaS and FaaS.

Vinárek et al. present the FOAM tool for lightweight formal analysis of use

cases [67]. They present an example in the context of cloud service providers,

but the tool can be used for other domains as well. The use cases are annotated

with required conditions (such as the fact that a resource must always be closed

after being opened). Then the NuSMV model checker is used to verify that

the proposed implementation of the use cases will meet these conditions. This

focuses on functional requirements, whereas in this thesis we focus instead on

non-functional requirements.

Malik et al. used a combination of model-checking and theorem-proving

using High Level Petri Nets (HLPN) to verify cloud management software

itself [43]. The focus is on IaaS, particularly the configuration of VMs within

the cloud environment. However, the authors do not present an example of a

violation; in all the tests given the management software works as expected.

The Z3 solver is used as the verification tool.

Etchevers et al. present the VAMP framework for formally specifying rela-
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tionships between cloud application components, and performing the deploy-

ment of a VM-based cloud system [20]. The formal modelling is done using

an extension to the XML-based specification language called OVF (Open Vi-

talisation Format). An evaluation is presented, in which the focus was on the

speed of deployment. In contrast, this thesis focuses on the post-deployment

behaviour of the cloud.

Klai and Ochi present a method to verify the composition of cloud-based

services using Symbolic Observation Graphs (SOGs), Linear Temporal Logic

(LTL), Petri Nets and Labelled Kripke Structures (LKS) [35]. The aim is to

check whether a set of cloud services will function as expected when composed

together. The authors present a class of Petri Net called a resource-constrained

open workflow net (RCoWF-net), used in the verification process. In contrast,

this thesis focuses on modelling the cloud system itself as opposed to the

composition of services running on the cloud.

Lee et al. present the RINGA framework which uses model-checking in

self-adaptive software at runtime [39]. The authors present a type of state

machine created at design time called a self-adaptive state machine (SA-FSM).

This is used to create an adaptive finite state machine (A-FSM) which is

then used in a MAPE loop at runtime to make the software self-adaptive.

If the trigger conditions are met, an adaptive transition is performed. The

RINGA framework was tested using an IoT-based lighting controller, and its

performance overhead compared to existing symbolic model checking tools.

This is somewhat related to the work of Klein et al. [36] which aimed to

help create self-adaptive software, and Johnson et al. [34] which used model-

checking at runtime. However, it is perhaps too low-level for this thesis, which

focuses on modelling high-level behaviour of a cloud system at design-time

only.

The SLAC Management Framework presented by Uriarte et al. verifies

that an SLA is internally consistent at design time [64]. It also monitors

the cloud system at runtime to check if the SLA is being met, and sends
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alerts if there violations. However, this does not seem to check if a cloud

design meets the SLA. It also does not take into account actions such as

scaling. The authors also focus on IaaS clouds, whereas this thesis focuses on

PaaS. In addition, SLAC is a textual language written in terms of constraint

satisfaction problems, whereas this thesis focuses on model checking using

finite state machines.

Rodríguez and Campos used Petri Nets to model the throughput (perfor-

mance) of systems [55]. Specifically, the authors present a technique to esti-

mate the throughput of resource-allocation systems (RASs). A cloud system

may be viewed, at least partly, as such a system.

Ficco et al. present an extension to UML to allow modelling security in the

context of cloud systems [23]. The cloud is represented by a Cloud Component

Diagram and Deployment Diagram, which include Use Cases, representing

normal and intended user behaviour, and Misuse Cases, which pose a security

threat. Mitigation Cases are added to specify how Misuse Cases are han-

dled. A useful overview of security modelling frameworks for cloud systems

is also provided, notably Abstract State Machine Language, which is based

on extended finite state machines, and STATL, a state/transition-based lan-

guage. However, the focus of the work is security, whereas this thesis focuses

on availability.

Nawaz et al. present a framework to predict possible SLA violations in

a dynamic Cloud of Things (CoT) environment [45]. The authors present a

framework using probabilistic modelling to predict SLA violations based on

events. This requires translating the SLA into a set of rules, and analysing

past QoS data. This is used to infer the likelihood of SLA violations given a

set of events. The authors also compare the existing event-driven approaches

to modelling SLA violations.
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3.2 Overview Papers

This section presents papers which provide a summary of relevant topics to

this thesis. These are listed also in Table 3.2.

Table 3.2: Overview papers relevant to this thesis.

Citation Topic

[6] Modelling QoS in cloud systems

[61] Web service composition approaches

[41] Assuring QoS in reactive systems

[57] Formal verification in cloud systems

[70] Use of formal methods in self-adaptive systems

[71] How to model requirements for self-adaptive systems

Souri et al. present a survey of the recent use of formal methods to ver-

ify cloud systems [57]. Notably, the authors have not listed WATERS as a

tool used for checking cloud systems. Existing formal approaches are grouped

into three categories: specification process algebra, model or property checking

and theorem proving [57]. Model checking is further divided into two cate-

gories: state-based and action-based. The state-based approaches use a Kripke

Structure, whereas the action-based approaches use a labeled transition system

(finite state machine). Making use of this work, this thesis would be added in

the category Model Checking - Action Based - Labeled Transition System.

Weyns et al. survey the use of formal methods in self-adaptive systems in-

cluding the Internet of Things (IoT) and cloud systems [70]. The authors state

that the main focus of these efforts has been performance and reliability, and

also note that there is a need for lightweight tools which use formal methods

to verify system performance at runtime.

Ardagna et al. provide an overview of Quality of Service (QoS) modelling

for cloud systems [6], covering modelling techniques such as wavelet-based

methods, regression analysis, filtering, Fourier analysis and kernel based meth-
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ods. The focus is on availability, which is also the focus of this thesis.

Mahdavi-Hezavehi et al. review existing approaches to handling multiple

Quality Attributes (QAs) in self-adaptive systems [41]. Performance, reliabil-

ity, cost, availability and scalability were the most commonly studied QAs.

Only one of the studies investigated used automata to model QAs and their

characteristics. Model checking was used by 5 of the studies surveyed.

ter Beek et al. discuss the application of formal methods to the composition

of Web Services [61]. Web services typically provide a description of their

functionality, and formal methods may be applied to verify if the composition

of different web services will produce the required behaviour. In particular,

the authors mention automata - which is the focus of our work.

Yang et al. provide an overview of requirements modelling for adaptive

systems (including cloud systems) [71]. The approaches modelling tools used

included KAOS, pi*, and so on. The authors do not seem to list a Discrete

Event Simulation tool such as WATERS. In Figure 12 the authors provide a

table of Requirements Engineering activities. Our project in in the category

Modelling requirements.

3.3 Investigative Papers

This section presents papers investigate an aspect of cloud computing which

may be useful to model formally. These are summarised in 3.3.

Table 3.3: Investigative papers relevant to this thesis.

Source Topic

[26] Elasticity in Cloud Computing

[46] Scaling in the presence of resource-intensive tenants

[49] Effect of garbage collection in Java on SLOs

[54] Sharing resources amongst cloud providers

[74] Scaling of Node.js applications in the cloud
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Patros et al. investigated the effects of scaling an application in a multi-

tenant cloud where other tenants consume a maximum amount of resources [46].

The authors introduce a set of applications called Cloud Burners, which de-

liberately consume a maximum number of allocated resources. There is one

for CPU, Cache, Resident Memory, Disk I/O and Network I/O. The results

indicate that scaling does not always work as expected. For example, scaling

horizontally may cause further network congestion, making the application

perform worse when the Network I/O is the bottleneck.

Patros et al. reported the effects of different garbage collection policies on

meeting SLOs in a cloud environment [49, 47]. The authors created a Java test

program called CloudGC for testing garbage collection settings versus SLOs in

the cloud. Using CloudGC the authors tested various parameters and policies

and reported the relationships between them.

Patros et al. introduced a method to re-order requests in the cloud to better

meet SLOs [48]. This favours the scenario where there are multiple connected

clients (many users or devices communicating with the same cloud).

Rameshan et al. [53] present the Stay-Away framework which helps en-

sure SLA compliance for multi-tenant clouds. If a batch application (that is,

not performance-sensitive) is co-located with a performance-sensitive appli-

cation, Stay-Away throttles the batch application as required to ensure the

performance-sensitive application has enough resources to meet its SLOs.

Hu et al. present a framework to provide formal verification as a service in

a cloud system [28]. This is designed to take advantage of cloud features such

as scaling, pay-as-you-go, and to be used my multiple clients (multi-tenant).

Using this, models are made as bigraphs using a graphical interface. The

models are then converted to SPIN code and verified using the SPIN model

checker, since the tools for checking bigraphs directly were not mature yet.

To be clear, the authors present a general-purpose verification service which

runs on the cloud; they are not verifying a cloud system itself. This thesis

investigates modelling the cloud system itself.
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Jindal et al. modelled the performance of micro-services based cloud ap-

plications by testing the individual micro-services to determine their capacity

in terms of requests per second, before SLOs are violated [32]. This was done

using the Terminus tool.

Podolskiy et al. used machine-learning algorithms to find the best configu-

rations for horizontal and vertical scaling to ensure SLOs are met and cost is

kept to a minimum [50].

Klein et al. explain the brownout concept [36]. Similar to an electrical

brownout, this refers to reducing the amount of work the software does, in

order to maintain availability during peak periods.

Souri et al. present the Graphical Symbolic Modelling Toolkit (GSMT)

model-checking framework for distributed systems. This allows creating a

model via a graphical user interface as either labelled transition systems or

Kripke structures. The tool then generates the SMV code for the model, and

the verification is done using the NuSMV tool. The authors also present a

useful summary of existing tools for the same purpose. However, WATERS is

not listed in the summary.
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Theoretical Model

This chapter presents our theoretical model for a cloud system. This is a basis

for the formal guarantees in the WATERS models presented in Section 5. As

far as possible, we have based this model on Kubernetes. We focus on Platform

as a Service (PaaS) and Function as a Service (FaaS) clouds, since providing

guarantees under uncertainty in Infrastructure as a Service (IaaS) and Software

as a Service (SaaS) has been studied in existing work, for example by Wang

et al. [68] and Chen et al. [15].

If the theoretical model is accurate enough, then the WATERS verification

results provide formal guarantees of SLA compliance (or non-compliance). It

should be noted that the theoretical model is currently rather limited and

acts as a proof-of-concept of our proposed methodology; the models can be

expanded in the future.

The theoretical model for a cloud comprises the workload, cloud (pods),

SLA and the master. Note that we work at the level of pods, not worker pods.

The cloud users submit a number of requests each second. These requests

are delegated to the pods of the cloud. The pods process the requests, which

takes a certain duration per request. The master scales out or in by creating

or removing a pod when the queue lengths reach the relevant thresholds. The

SLA specifies the maximum response time for processing requests. Each of

these components is explained in detail below.
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4.1 Workload

Let us represent the workload as a set of stateless requests from users to the

cloud. Each request asks the cloud system to perform a task (for example,

return a webpage) which consumes various amounts of cloud resources, such

as RAM, CPU or disk space. Let us assume the SLA specifies a maximum

rate at which the requests may be sent by users per second, namely RPSmax.

Let us assume that each request takes the maximum possible processing

time PTmax; this way the worst case scenario is modelled. In a real-world

cloud, each request may take a different amount of time to process [48] (for

example, a request to encrypt a file may take longer than a request to return

a static webpage).

Let us consider two shapes of workload, a constant load and a square wave

load. In a constant load, there is a fixed maximum rate at which requests

are sent, RPSmax. Each second, the number of requests entering the cloud

is a number between zero and this maximum. In a square wave load, this

maximum rate is first set to a high level RPSmax(high) for a set amount of time

Thigh, then a low level RPSmax(low) for a set amount of time Tlow; this pattern

is then repeated indefinitely.

Note that we do not model the network between the user’s machine and

the cloud, since we are considering the cloud provider’s perspective. Therefore

packets that are dropped by the network between the cloud and client are not

modelled.

4.2 Cloud

Let us define the cloud as a set of pods. A pod represents a single Kubernetes

container within the cloud. Let as assume this is a single-tenant cloud, and

that each pod runs one instance of a single (stateless) application.

When a request is submitted to the cloud, it is delegated to exactly one of

the pods, and is appended to the queue of the designated pod. Every second,
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the pod processes a certain number of requests and removes them from its

queue. Let us assume that the queue length has no limit.

Since each request takes PTmax (Processing Time maximum) to process,

the total number of requests processed by a single pod per second is 1/PTmax.

Again, we assume the worst case scenario, that the processing time is the

maximum possible value.

Let us assume that the cloud will always have at least one pod running

(podsmin = 1) and there is a maximum limit of pods podsmax. Let us also

assume that requests are allocated to pods via a round-robin scheme. That

is, the first request is allocated to the first pod, the second to the next pod,

and so on. Formally, if the number of pods currently on is podscurrent, the i-th

request is assigned to pod number ((i− 1) mod podscurrent) + 1.

4.3 SLA

Let us define an SLA as a single SLO: a maximum response time of RTmax.

Thus, all requests must be satisfied within RTmax seconds.

Let us determine the maximum possible queue length in order to satisfy the

SLO. We assume that the requests are always served in a first-come-first-server

order. This means that if there are too many existing requests in the queue

(for any pod), the new request will not be serviced in time and the maximum

response time SLO will be violated. This occurs when:

QL× PTmax > RTmax

where QL is queue length of any pod, including the new request to be

checked. This can be seen as a variation of Little’s Law [40].

So the SLO is satisfied if and only if, for each pod, QL× PTmax ≤ RTmax.

This can be rearranged as:

QL ≤ RTmax

PTmax
(4.1)

Using this we can calculate the maximum queue length to still meet the
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SLO:

QLmax = RTmax

PTmax
(4.2)

Therefore in order to meet the SLO, the queue length of any pod must not

be greater than QLmax as defined above.

4.4 Master

The master represents the controlling logic and self-adaptive strategy used by

the cloud. For this theoretical model, let us consider only horizontal autoscal-

ing. Let us assume that the master scales out by one pod when the queue

of the last pod reaches a threshold QLscale−up. Let us define the threshold in

terms of percentage of the maximum queue length QLmax as defined in (4.2).

Let us introduce a scale threshold parameter STup between 0 to 1, such that:

QLscale−up = QLmax × STup (4.3)

For example if STup is 0.80, the master will scale out when the queue length

of the last pod is at 80% or more of its capacity. Let us also assume that the

master will scale down (in) by one pod when the queue of the first pod reaches

a threshold QLscale−down. Let us introduce a parameter STdown from 0 to 1.

QLscale−down = QLmax × STdown (4.4)

For example if STdown is 0.20, the master will scale out when the queue

length of the last pod is at 20% or less of its capacity.

Let us also assume that pods take a certain amount of time to start up

and start processing requests after being created. This time in seconds is

Tpod−startup.

Let us assume that the master does the check for scaling only at set time

intervals. Let us introduce a parameter Tscale−check to indicate that this check

occurs every Tscale−check seconds. We also assume that Tscale−check > Tpod−startup,
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to avoid the case where the master starts a pod while one is already starting

up.

This model is based on the KubernetesHorizontal Pod Autoscaler (HPA) [1],

but there are some notable differences. Firstly, the Kubernetes HPA scales

based on CPU usage, and not queue length. We assume, however, that CPU

usage is directly proportional to queue length. The relationship between queue

length and CPU utilisation could perhaps be determined experimentally, but

due to time constraints this was not done—related work has shown that ex-

pected response times based on CPU utilization can be predicted using Ma-

chine Learning [50]. Secondly, Kubernetes also does not scale in or out by

exactly one pod each time, but rather sets a desired number of pods, and

creates or removes pods to meet this desired number1. Scaling by one pod

at a time was the simplest to model, and is reasonable for a small number of

maximum pods as we have in our experiments (the maximum is 4). However,

for a large number of maximum pods (such as 100), this assumption would

cause the model to be very inaccurate, since the cloud might scale by a large

number of pods at a time. Finally, Kubernetes does not consider CPU met-

rics from pods that have been recently created, as those metrics may not be

available or stable yet. This is controlled by the “–horizontal-pod-autoscaler-

initial-readiness-delay” parameter, which has a default value of 30 seconds.

This could be addressed by having the model ignore the queue length of pods

that have not been active for a certain amount of time; however, this does add

complexity to the model, and the calculation is already complicated due to the

CPU vs. length-difference issue explained earlier. The next chapter describes

how this theoretical model is represented in WATERS.

1https://kubernetes.io/docs/tasks/run-application/horizontal-pod-

autoscale/#algorithm-details



Chapter 5

System Model

This chapter presents our system model. These are extended finite state ma-

chines created using WATERS, based on the theoretical model presented in

the previous chapter. This chapter presents the system model for the master,

workload, cloud, SLA, and Horizontal Pod Autoscaler.

The naming convention used within the models is that states, automata

and transitions are spelled in lowercase, for example user_submits_requests;

variables and named constants are capitalised, for example Submitted.

The requirements for our final models were that they had to compile and

perform a property check (for all properties) within 10 seconds such that the

model is convenient to use. We also aimed to satisfy the generally desirable

properties for a DES: the models should be controllable, nonblocking, and con-

tain no livelocks, deadlocks or control loops. These properties were confirmed

by checking the final models using the WATERS controllability check, conflict

check, deadlock check and control loop check features.

The model consists of automata that are synchronised on common events.

Thus, if two or more automata use the same event, the event can only fire if it

is enabled in all automata, and it fires in each automaton at the same time (in

lock-step). For example, because the event user_submits_requests is present

in both the master and user automata, it can only fire if user is in idle and

master is in waiting (discussed in Sections 5.1 and 5.2).
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We developed two separate, but similar models in WATERS. The first rep-

resents a cloud system running a default NGINX installation. The second

represents a cloud running a custom Node.js application. The NGINX cloud

has a fast and variable response time, and was tested using a constant max-

imum load (RPS_max). The Node.js application has a fixed and relatively

slow response time, and was tested using a square wave load. Both WATERS

models can be downloaded from our GitHub repository1. We will firstly ex-

plain the NGINX model fully, then explain differences for the Node.js model

in Section 5.6.

5.1 Master

The master automaton controls the overall flow of the model. This is shown

in Figure 5.1. The automaton starts in the state waiting and transitions to the

state waiting_for_user_to_finish via event user_submits_requests. This event

is synchronised in the automaton user, which is described in Section 5.2. Once

the user automaton has finished, it triggers the event user_finished. This lets

the master automaton transition to state user_done. The master then triggers

the event scaling_start and goes to state waiting_for_scaler_to_finish. The

scaling is then done by the automaton horizontal_pod_autoscaler, which is

described in Section 5.4. The horizontal_pod_autoscaler automaton triggers

the event scaling_finished when done, which lets the master transition to state

scaling_done. The master then triggers the transition pods_handle_requests.

This is synchronised to the pod automata, which handle requests and remove

them from their queue. This is described in Section 5.3. Finally, the master

transitions back to state waiting via the event one_second. This represents

one second of time. The loop can then continue indefinitely.
1https://github.com/martinvanzijl/masters-project/
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scaling_done

waiting_for_user_to_finish

waiting_for_scaler_to_finish

waiting

user_done

pods_done

pods_handle_requests

scaling_finished

one_second

user_submits_requests

user_finished

scaling_start

Figure 5.1: The master specification.
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5.2 Workload

The workload is controlled by the plant called user. This plant represents

the users of the cloud as a whole. Every second the users send a certain

number of requests to the cloud. The user automaton for this design is shown

in Figure 5.2. The corresponding pod_queue automaton for this is shown in

Figure 5.3. Note the guard condition for the user_submits_request event in

the user automaton: Submitted′ ≤ RPS_Max. The prime notation indicates

the next state of the variable. Therefore this guard ensures that the transition

is allowed only if the next value of Submitted (that is, Submitted′) is less than

RPS_Max. Therefore when the transition is finished and the automaton is in

state submitting, the value of Submitted is between zero and RPS_Max. Note

that RPS_Max is set to the maximum number of requests per second allowed.

This highlights one of the key uncertainties that model checking allows

us to explore: the incoming traffic to the cloud. Each second there may be

any number of requests up to RPS_Max. For a period of 2 minutes and a

maximum of 299 requests per second, the number of possible patterns is 300120

(300 possible values each second, for 120 seconds): it is infeasible to test all

possible variations with a load testing tool; however, model checking can test

this rapidly.

The number of pods currently active (on) is represented by the variable

Pods_On, which is always between Pod_Min and Pod_Max. There is one pod_

queue automaton for each pod, identified by Pod_Index from 1 to Pods_On.

The pod_queue automaton (Figure 5.3) represents the queue of a pod with

index Pod_Index. Since we assume round-robin load-balancing, we divide the

submitted requests evenly among the pods that are currently active. On the

event allocate_requests_to_pods, there are two possible transitions: if the pod

is on (that is, Pods_On ≥ Pod_Index) then the action is executed: QL[Pod_

Index] = min(QL_Max+1, QL[Pod_Index] + Submitted / Pods_On). This means

the queue length of the pod will be the minimum of: 1) QL_Max+1, which is

the length at which the SLO is violated, and 2) QL[Pod_Index] + Submitted /
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submitting_done

submitting

idle

waiting

Submitted’ <= RPS_Max

user_finished

user_submits_requests
one_second

allocate_requests_to_pods

Figure 5.2: The user automaton. Submitted’ is the next state of Submitted.
The Submitted variable represents the number of requests submitted in this
second. RPS_Max is the maximum number of requests per second.

Pods_On, which is the current length with the number of requests submitted

this second divided by the number of available pods added. The reason for

using the minimum is to avoid the model being blocking on this transition. QL_

Max+1 is the maximum value of the QL[Pod_Index] variable, and the transition

will be blocked if the assigned value is over this maximum. There is no need to

consider any higher values, since a property check will fail for any value higher

than QL_Max. If the pod is off (that is, Pods_On < Pod_Index), then the pod

queue length stays the same.

One downside of this approach is that, if the amount of requests submitted

does not divide evenly into the number of pods currently on (for example,

5 requests were submitted and 2 pods were on), then the remainder is lost.

However, for high values of RPSmax such that RPSmax � Podsmax, this is

assumed to be acceptable.

However, the compilation and verification times were quite high in some

instances. This is probably due to the large possible number of values of the
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working

Pods_On < Pod_Index

QL[Pod_Index] = min(QL_Max+1, QL[Pod_Index] + Submitted / Pods_On)

Pods_On >= Pod_Index

allocate_requests_to_pods

allocate_requests_to_pods

Figure 5.3: The pod_queue automaton. QL[Pod_Index] represents the queue
length of the current pod. QL_Max represents the maximum queue length.

queue length variables. To limit this, let us introduce a new constant called

QL_Max_Limit. This forces the possible values of the queue length variables

to be at most this length, and thus decreases the state space, which improves

performance. However, then we must adjust the parameters for maximum

requests per second and requests handled per second accordingly.

First, we calculate the actual maximum queue length based on the param-

eters:

QL_Max_Actual = Max_Response_Time_In_Ms
Processing_Time_Per_Req_In_Ms

Then limit it if required, as follows:

QL_Max = min(QL_Max_Actual,QL_Max_Limit)

Then calculate the ratio between the actual and limited value:

Limiting_Divisor = QL_Max_Actual/QL_Max

This will be 1 if the actual maximum queue length is below the limit. Now we

can adjust the other parameters also:

RPS_Max = RPS_Max_Actual/Limiting_Divisor
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Figure 5.4: The for-each loop in the WATERS model to represent pods (pods)
in the cloud.

Finally,

Req_Handled_Per_Sec_Per_Pod

= Req_Handled_Per_Sec_Per_Pod_Actual/Limiting_Divisor

The downside of this approach is that the limit makes the model less ac-

curate.

5.3 Cloud

To match Kubernetes, the cloud is modelled as a set of pods. The pods are

defined using a “for-each” loop in WATERS [42]. This effectively creates a

set amount of copies of the same set of state machines. The state machines

that are copied are max_response_time, QL, pod, pod_queue and load_balancer.

This is shown in Figure 5.4.

The individual members of this loop are referred to using array notation,

such as pod[1] for the first pod and pod[2] for the second.

Note that the number of copies is always between the parameters Pod_Min

and Pod_Max. This corresponds to podsmin and podsmax from the theoretical

model. Pod_Min must be at least 1.

The pod state machine is shown in Figure 5.5. The event pods_handle_

requests reduces the queue length by Req_Handled_Per_Sec_Per_Pod. It will

never go below zero, since that would make no physical sense. When the

one_second event fires, the state machine will go back to the idle state. The

value Req_Handled_Per_Sec_Per_Pod is set to Req_Handled_Per_Sec_Per_Pod_
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workingidle

QL[Pod_Index] = max(QL[Pod_Index] - Req_Handled_Per_Sec_Per_Pod, 0)

one_second

pods_handle_requests

Figure 5.5: The pod automaton.

Actual divided by Limiting_Divisor. The value Req_Handled_Per_Sec_Per_Pod_

Actual is set to 1000 divided by Processing_Time_Per_Req_In_Ms.

5.4 Horizontal Pod Autoscaler

Scaling is done by the plant horizontal pod autoscaler shown in Figure 5.6.

This only checks scales up or down at set time intervals of HPA_Check_Interval

seconds. The automaton starts in state idle. If HPA_Seconds_Elapsed < HPA_

Check_Interval, the interval has not yet finished, so the scaling_start event

transitions to the no_check state. From there, the scaling_finished event is

fired, which transitions to the done_no_check state. Finally, the one_second

event transitions back to the idle state.

However, if HPA_Seconds_Elapsed ≥ HPA_Check_Interval, the scaling_start

event transitions to the started state. There are two possible transitions next:

if the queue length of the last pod currently on is more than or equal to the

threshold for scaling up, the number of pods currently on increases by one.

Else, it stays at the current value. Either way, this transitions to state scale_

up_ended. Next, there are two possible transitions: if the queue length of the

first pod is less than or equal to the threshold for scaling down, the number

of pods currently on decreases by one. Else, it stays at the current value. The

number of pods currently on stays within the limits 1 to Pod_Max thanks to

the min and max function calls in the actions.
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done_no_check

scale_up_ended

idle

scale_down_ended

started

no_check

done

timer_reset

QL[Pods_On] < Scale_Up_Threshold

Pods_On = max(Pods_On-1, Pod_Min)

QL[Pods_On] >= Scale_Up_Threshold

HPA_Seconds_Elapsed >= HPA_Check_Interval

QL[1] > Scale_Down_Threshold

QL[1] <= Scale_Down_Threshold

HPA_Seconds_Elapsed < HPA_Check_Interval

scaling_finished

scale_down

scaling_start
one_second

no_scale_down

scale_up

scaling_finished

no_scale_up

scaling_start

one_second

reset_hpa_timer

Figure 5.6: The horizontal_pod_autoscaler automaton.
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working

HPA_Seconds_Elapsed += 1

HPA_Seconds_Elapsed = 0

reset_hpa_timer

one_second

Figure 5.7: The horizontal_pod_autoscaler_clock automaton.

The HPA_Seconds_Elapsed variable is managed by the automaton horizontal_

pod_autoscaler_clock automaton, shown in Figure 5.7.

The startup time for pods Tpod−startup is specified by the parameter Pod_

Startup_Time. The starting of the pod is done by the plant pod_scheduler

shown in Figure 5.8. This starts in state idle. When the horizontal_pod_

autoscaler plant fires the transition scale_up, the pod_scheduler plant goes to

state creating_pod. It remains in this state for Pod_Startup_Time seconds via

the one_second transition. Note that additional firings of scale_up while in

this state have no effect; this is why HPA_Check_Interval should be greater

than Pod_Startup_Time. The next firing of one_second will transition back to

state idle. In doing so, the number of pods (Pods_On) increases by one, up to

a maximum of Pod_Max.

One issue with this model is that, after scaling down, the queue length of

the pod that was “turned off”, may still be greater than zero. This means

the remaining requests in the queue are effectively dropped. This can be

shown by running a property check for property unit_test_5_if_pod_is_off_

its_queue_is_empty shown in Figure 5.9. This issue may be resolved changing

the model to scale down only when the queue length of the last pod is zero.

Alternatively, the “dropped” requests could also be counted as failed requests
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creating_pod

idle

PS_Seconds_Elapsed += 1

PS_Seconds_Elapsed < Pod_Startup_Time

PS_Seconds_Elapsed = 0

Pods_On = min(Pods_On+1, Pod_Max)

PS_Seconds_Elapsed >= Pod_Startup_Time

scale_up

one_second

scale_up

one_second

one_second

Figure 5.8: The plant pod_scheduler. PS_Seconds_Elapsed represents the sec-
onds elapsed for the pod scheduler clock.

toward the SLO; however, that would require keeping track of the number of

failed requests, which the model does not do.

5.5 SLA

The SLA is modelled using properties in WATERS. These represent the de-

sired properties of the language represented by the model. WATERS checks

whether there are any circumstances where the properties are not met (a coun-

terexample). Each property represents one requirements of the SLA (an SLO).

The SLO for maximum response time is modelled by the property max_

response_time in WATERS. This is shown in Figure 5.10.

This has only one state (checking). In order for the property to be met,

the transition slo_check must always be able to execute. There is a guard

condition that only allows this to execute if the queue length is below the

maximum queue length (QL ≤ QL_Max). QL_Max is calculated as

QL_Max = Max_Response_Time_In_Ms
Processing_Time_Per_Request_In_Ms

which corresponds to Equation 4.2. Note that this may be limited by a common

divisor as discussed in Section 5.2.

Running a property check within WATERS indicates if any SLOs will not
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if_pod_is_off_its_queue_must_be_empty

Pod_Index > Pods_On & QL[Pod_Index] == 0

Pod_Index <= Pods_On

unit_test_check_5

unit_test_check_5

Figure 5.9: The unit test property unit_test_5_if_pod_is_off_its_queue_is_

empty.

checking

QL[Pod_Index] <= QL_Max

slo_check[Pod_Index]

Figure 5.10: The property max_response_time.
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Figure 5.11: A counter-example trace to show a possible SLO violation in
WATERS.

be met. WATERS also shows a trace of events that occur to cause the prop-

erty violation. An example trace to show an SLA violation is presented in

Figure 5.11. Each line represents one event. The first line represents the

initial state, before any events are fired. The rest of the lines are described

below:

1. The event user_submits_requests fires in automata master and user, in-

dicating the user starts to submit requests.

2. The event allocate_requests_to_pods fires in automata user and pod_

queue. This divides the requests among the active pods (in this case

it is one pod only). Note that the value of Submitted is 16 in this case.

3. The event user_finished fires in automata user and master, indicating

the user has finished submitting requests.

4. The event scaling_start fires in automata master and horizontal_pod_

autoscaler. This indicates the HPA can scale if required. Note that in

this case HPA_Seconds_Elapsed is less than 15, which means no auto-

scaling will occur, since the HPA checking period has not elapsed yet.
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Figure 5.12: A warning symbol is shown next to the property max_response_

time[1] to indicate that it is not met.

5. The event scaling_finished fires in automata master and horizontal_pod_

autoscaler. This indicates the HPA is done for this second.

6. The event pods_handle_requests fires in the pod automata. The pod

queues decrease as the pods process requests.

7. The event one_second fires in all automata which use the event. Thus,

the loop can start again.

8. The event user_submits_requests is fired. In this case there are 40 re-

quests fired.

9. The event allocate_requests_to_pods fires, this takes the queue length for

pod[1] above the maximum.

This will show a warning symbol next to the property in the Automata tab

of the Simulator, as shown in Figure 5.12.
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Figure 5.13: The property max_response_time[1] shown in the right-hand
pane.

Double-clicking on the property will show the automaton on the right-hand

pane, as shown in Figure 5.13. The transition line is greyed out to show that it

is disabled. The guard for the transition is shown (Pod_Queue_Length[1] <=

50).

5.6 Differences in Node.js Model

The model for the Node.js application differs from the NGINX model in the

following ways: 1) a square wave workload instead of a constant workload, 2)

the remainder of the requests each second is divided among the queues instead

of being discarded, and 3) there is no limiting divisor or related variables.

To represent a square wave workload, we add an automaton to control

the workload shape. This is shown in Figure 5.14. Let us also introduce

parameters T_High set to Thigh, RPS_Max_High set to RPShigh, T_Low set to

Tlow and RPS_Max_Low set to RPSlow. RPS_Max is initially set to RPS_Max_

High. The workload automaton starts in high_load. On the one_second event

it increments the value of W_Seconds_Elapsed by one. It stays in this state

until W_Seconds_Elapsed is equal to T_High. When this is true, it transitions

to state low_load. During the transition, the variable RPS_Max is set to RPS_
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low_load

high_load

RPS_Max = RPS_Max_High

W_Seconds_Elapsed += 1

RPS_Max = RPS_Max_Low

W_Seconds_Elapsed < T_High

W_Seconds_Elapsed = 0

W_Seconds_Elapsed >= T_Low W_Seconds_Elapsed >= T_High

W_Seconds_Elapsed += 1

W_Seconds_Elapsed = 0

W_Seconds_Elapsed < T_Low

one_second

one_second one_second

one_second

Figure 5.14: The workload_shape automaton.

Max_Low and W_Seconds_Elapsed is reset to zero. The automaton then stays

in state low_load until W_Seconds_Elapsed equals T_Low. Then it transitions

back to state high_load, setting RPS_Max back to RPS_Max_High and resetting

again W_Seconds_Elapsed to zero. This cycle can repeat indefinitely.

To divide the remainder of requests, a modification is made to the user

automaton, and a new automaton is introduced. The modified user automaton

is shown in Figure 5.15. The key difference with respect to NGINX is the

transition allocate_req_to_pods_remainder, which allocates the remainder of

requests among the active pods. The new automaton is pod_queue_remainder

(Figure 5.16), and this is part of the for-each loop representing the pods.

The limiting divisor is not required in the Node.js, since we found that

the compilation and verification times for this model were already acceptable
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main_requests_allocated

submitting

requests_all_allocated

idle

waiting

Submitted’ <= RPS_Max

Remainder = 0 Remainder = Submitted % Pods_On
Next_Pod = Next_Pod_Temp + 1

Next_Pod_Temp = (Next_Pod + Remainder - 1) % Pods_On

allocate_req_to_pods_remainder

one_second

user_finished

user_submits_requests

allocate_req_to_pods_main

Figure 5.15: The user automaton for the Node.js application WATERS model.

working

Pod_Index < Next_Pod & Pod_Index < Next_Pod + Remainder - Pods_On

QL[Pod_Index] = QL[Pod_Index]

QL[Pod_Index] += 1

Pod_Index >= Next_Pod & Pod_Index >= Next_Pod + Remainder

QL[Pod_Index] = QL[Pod_Index]

Pod_Index >= Next_Pod & Pod_Index < Next_Pod + Remainder

QL[Pod_Index] += 1

Pod_Index < Next_Pod & Pod_Index >= Next_Pod + Remainder - Pods_On

allocate_req_to_pods_remainder

allocate_req_to_pods_remainder

allocate_req_to_pods_remainder

allocate_req_to_pods_remainder

Figure 5.16: The pod_queue_remainder automaton that allocates the remain-
der of requests in the Node.js model.
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without it. The maximum queue length is shorter than for NGINX, due to the

longer response times of the Node.js application. This means there are fewer

possible values of the queue length variables, and thus a naturally smaller state

space.

The next chapter presents the experimental setup used to test whether this

model is accurate to a real cloud system.



Chapter 6

Experimental Methodology

To test the accuracy of our model, we created a local Kubernetes cluster, drove

a workload using JMeter, analysed the results to see whether the SLO was met,

and compared this to the results from the WATERS model. This was done

for a set of test cases, in which parameters were varied such as the number

of requests sent per second and the maximum number of pods the cloud can

scale to. Each test case was run for a number of trials. An overview of the

experimental methodology is shown in Figure 6.1.

In summary, the following high-level process was used:

1. Model the cloud system in WATERS.

2. Create the real system using Kubernetes.

3. Test the Kubernetes cloud using JMeter using a comprehensive set of

test cases.

4. Analyse the results from JMeter using Python scripts to see whether the

SLA was met or not.

5. Run verifications in WATERS to see whether it predicts the system will

meet the SLA or not.

6. Compare the results from JMeter and WATERS to see how closely they

match.
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Figure 6.1: The setup for the test cases.
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It was decided not to test on a public cloud, since it was likely that outside

interference would cause the results to be inconsistent.

6.1 Applications

Two different applications were tested: 1) a default NGINX installation and 2)

a Node.js application with a fixed response time. NGINX1 is a load balancer

and reverse proxy that provides a static “Hello World” web page to every

request by default. This represents a simple, standalone application with a

variable but fast response time. NGINX performs round-robin load balancing

by default.

We also tested a simple Node.js application with fixed response time via a

semaphore loop. The application sends a unique response to each request, in

order to avoid sending “304” (not modified) responses. The default response

time is 1 second, but can be set per request using the “rt” parameter (for

example, “rt=500” for a response time of 500 milliseconds). In contrast to

NGINX, this is a relatively slow, stable response time.

Node.js is single-threaded, allows close control over the sequence in which

requests are responded to. This makes it a suitable candidate for a test using

a fixed response time. It should be noted, however, that I/O operations are

not single-threaded [44]. However, since there are few I/O operations in this

simple application, this should not be a concern.

6.2 Kubernetes

The local Kubernetes cloud was created using a Vagrant installer [66]. The

cloud consisted of one master node and two worker nodes. All nodes were

VirtualBox Virtual Machines running Ubuntu. The master node had 2 GiB of

RAM and 2 vCPUs. The worker nodes each had 1 GiB of RAM and 1 vCPU.

The resources on the worker nodes were limited to ensure repeatable response
1https://www.nginx.com/
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times. All VMs were located on the same physical machine with an Intel(R)

Xeon(R) CPU E5-2670 @ 2.60 GHz with 32 virtual cores, 256 GiB of RAM

and running Ubuntu 18.04.1 LTS (Bionic Beaver).

For each test case, the Kubernetes settings were configured for the cluster

including minimum number of pods, maximum number of pods, initial number

of pods, CPU threshold for scaling, and the RAM and CPU limit for each pod.

This was done by substituting the values in a template Kubernetes YAML

configuration file. These files are described in Chapter 7. In all test cases,

the Horizontal Pod Autoscaler checking interval (“–horizontal-pod-autoscaler-

sync-period”) was kept at the default value of 15 seconds.

Note that Kubernetes may move pods between nodes as required [19], which

adds an uncertainty to the system being modelled.

6.3 JMeter

The workload was created using Apache JMeter2, a load testing tool written

in Java. Requests were set to time out after 10 s (RTmax): requests that timed

out were also counted to determine if the the 99th percentile of response time

was below the SLO threshold. For NGINX, the test plan created a constant

workload using a Constant Throughput Timer. For Node.js, the test plan

created a square wave workload using a Throughput Shaping Timer.

For each trial, if the 99th percentile of response times was below 10 seconds,

then the trial was defined as meeting the SLO. This differs from the theoret-

ical model, since the theoretical model SLO required 100 percent (not 99) of

response times to be under 10 seconds. The reason for this difference is that in

testing we often encountered requests which go above the maximum response

time due to effects we have not modelled, such as garbage collection [49] or

JMeter stopping a test before the final few requests had time to be responded

to. In addition, percentiles are most often used in real-world SLOs [63]. We
2https://jmeter.apache.org/
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also found it difficult to model the 99th percentile in WATERS; it is much

easier to check whether any request at all goes above the time limit.

Separate test plans were created for constant workload and a square wave

workload. The test plan for a constant workload used a Constant Throughput

Timer3 to ensure that the requests were sent at a constant rate. However, this

did not always provide a constant number of requests per second. “Bursting”

was observed: for example, when 1 request per second was specified, JMeter

might send 10 requests the first second, then none for the next nine seconds,

then 10 requests again the next second. A set number of users (threads) of

1000 was used in the test plan.

The specified request rate would not always be met if it was above about

300 requests per second. If there were many time-outs, the actual request rate

would be closer to 250 per second.

Note that the WATERS model allows for any level of traffic up to RPSmax,

whereas JMeter in this case attempts to provide exactly RPSmax. A more

comprehensive future test could perhaps include a random component which

will send a random number of requests up to a set maximum per second.

However, this would also change the predictability of the results.

The test plan for a square wave workload used a Throughput Shaping

Timer4 with a feedback loop. This allowed setting an interval with a constant

high rate of requests and an interval with a constant low rate of requests. The

timer then maintains the required number of threads to keep the requests per

second value at the specified rate rate. As with the Constant Throughput

Timer, this also would not always match the desired rate if it was over about

300 requests per second. Note that this approach can also produce a constant

load (by simply having one level instead of two), possibly with less bursting

than with the Constant Throughput Timer.

JMeter was run on a desktop PC with an Intel(R) Core(TM) i7-8700 CPU
3https://www.blazemeter.com/blog/how-use-jmeters-throughput-constant-timer/
4https://www.blazemeter.com/blog/using-jmeters-throughput-shaping-timer-plugin/
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@ 3.20 GHz with 12 cores, 16 GiB of RAM and running Ubuntu 18.04.2 LTS.

This machine was located in the same building as the Kubernetes cloud, so we

assume that network latency between JMeter and Kubernetes was negligible.

A number of trials (between 1 and 5) was run for each test case. The

proportion of trials meeting the SLO was recorded in each case. Where a true

or false result is required, if half or more of the trials met the SLO, the result

was defined as meeting the SLO.

Our goal was to include an even balance of test cases which satisfied the

SLO and which did not. These are a positive test and negative test, respectively.

This was most often done on a trial-and-error basis, since it was difficult to

determine beforehand which parameters would cause the SLO to be violated.

We also ran only a limited number of tests, due to time constraints.

6.4 WATERS

After running the JMeter tests, the same test cases were run through WA-

TERS, using the models for NGINX and Node.js. The verifications were run

using WATERS v2.5.1, built on 27 Nov 2019. This was done with the wcheck

script that comes with the WATERS installation, using the options “wcheck

-bdd -lang -q -stats”. The -bdd option instructs WATERS to perform verifica-

tion using Binary Decision Diagrams (BDDs). Using BDDs has been shown to

increase speed of verification for models with large state spaces [65]. The -lang

option instructs WATERS to perform a language inclusion check (that is, check

all properties). The -q option tells WATERS not to list a counter-example if a

property is not met. The -stats option produces additional statistics, including

compilation and verification times.

The experimental results were compared using a spreadsheet, checking the

SLA satisfaction prediction from WATERS to JMeter’s results. The average

accuracy was recorded as noted in Section 7.

One of our goals was to ensure the overall time to verify a single cloud
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system model for one test case in WATERS was under 10s. Thus, we checked

the compilation and verification times from the statistics logged by WATERS

using the -stats option (WATERS first compiles the model, then verifies it).

The assumption is made that, if the same model is verified twice, it will take

the same time in both instances since WATERS runs the exact same algo-

rithm each time. Therefore WATERS verifications were only run once for

each benchmark and only the execution time for that was recorded.

However, to prove this is the case, one benchmark was verified 10 times and

the standard deviation of WATERS execution time calculated. This is shown

in Table 6.1. The model model-2-02-Node.js.wmod5 was run with parameters

RPS_Max=2, Pod_Max=4, Processing_Time_Per_Req_In_Ms=700 and Scale_

Cpu_Threshold=80.

Table 6.1: Test to check the consistency of WATERS execution times.

Trial Total Time

1 0.76

2 0.62

3 0.63

4 0.60

5 0.59

6 0.59

7 0.59

8 0.60

9 0.61

10 0.60

Note that the first trial (.76 seconds) took significantly longer than the

following 9 trials. This is perhaps due to caching on the machine. In any case,

the first instance is the worst case scenario, and since the goal is to ensure
5https://github.com/martinvanzijl/masters-project/blob/master/models/model-2-02-

Node.js.wmod
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that compilation and verification time does not exceed 10 seconds, running

each test case once is sufficient for timing purposes.

The next chapter presents the results obtained using this experimental

methodology.



Chapter 7

Results and Analysis

The results from testing the applications on our Kubernetes cluster and com-

paring with WATERS predictions are presented in this chapter.

Each test case has four possible results: a true positive indicates the JMeter

results and WATERS property check result agree the SLO is met. A true

negative indicates the JMeter and WATERS result agree the SLO is not met.

A false positive occurs when the JMeter results show the SLO is not met, but

the WATERS property check predicts the SLO is met. A false negative occurs

when the JMeter results show the SLO was met, but the WATERS property

check predicts the SLO is not met.

Our aim was to avoid false positives, but false negatives are somewhat

acceptable. This is because firstly, the penalty to the provider for over-

provisioning due to a false negative is likely to be less than the penalty for

violating the SLA due to a false positive. Secondly, a false negative may occur

because WATERS has discovered a failing scenario that was not encountered

in the JMeter tests: essentially, WATERS verifies all possible combinations;

whereas, JMeter validates only a small subset.

7.1 Application 1: NGINX

The first application tested was NGINX. The system model is as presented in

Chapter 5, using a constant workload, and without allocating the remainder
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of requests. The test cases for this application all used a high number of

requests per second with a relatively low number of maximum pods, so that

RPSmax � podsmax. The parameters to this model are listed in Table 7.1.

Each of these may be set in the WATERS GUI or on the command line when

testing the model. If no value is specified then the default value was used.

Table 7.1: Parameters for the NGINX model.

Parameter Symbol Default Description

HPA_Check_Interval Tscale−check 15 Number of seconds between checks by the HPA.

RPS_Max_Actual RPSmax 200 Maximum requests per second.

Max_Response_Time_In_Ms RTmax 10000 Maximum response time in milliseconds.

Pods_Initially_On Podsinitial 1 Number of starting pods.

Pod_Min Podsmin 1 Minimum number of pods to scale down do.

Pod_Max Podsmax 2 Maximum number of pods to scale up to.

Processing_Time_Per_Req_In_Ms PTmax 6 Processing time per request in milliseconds.

QL_Max_Limit 50 Highest possible value of QL_Max.

Pod_Startup_Time Tpod−startup 5 Time(s) pod to start processing requests after being scheduled.

Scale_Down_CPU_Threshold STdown 20 Percentage of QL_Max for first pod before scaling down.

Scale_CPU_Threshold STup 80 Percentage of QL_Max for last pod before scaling up.

The pod startup time Tpod−startup for this application was measured by

configuring the HPA to have 1 pod minimum, killing all existing pods, waiting

for the HPA to start a new pod, waiting for the pod to be ready, then inspecting

the logs to see how long the pod took to start up. The difference in time

between the Scheduled and Started states was taken as the pod startup time,

taken from the “kubectl describe pods” command. This was done 10 times and

the average used for the final figure. In this case the average was 5 seconds.

The response time for the application was measured by running a one-

minute JMeter test sending one request per second. In this trial, the average

response time was 18 ms, the minimum was 8 ms and the maximum was 112

ms. According to the theoretical model, the maximum value (112 ms) should

be used for RTmax. However, when testing the model using different values

of the Processing_Time_Per_Req_In_Ms parameter, we found that the most

accuracy is obtained when the value is between 6 and 10 milliseconds. Using

a value of 6 ms was most accurate overall (68%) but yielded a relatively high
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Figure 7.1: A graph of accuracy versus the processing time parameter
Processing_Time_Per_Req_In_Ms for the NGINX model. All other parame-
ters were kept at their default values.

number of false positives (8%). Since false positives are to be avoided, using

a value of 8 ms is more suitable. This had an overall accuracy of 67% and

only 1% false positives. An even safer value is 10 ms, which had an overall

accuracy of 64% and no false positives. The percentage of verifications that are

accurate, false positives and false negatives for different values of Processing_

Time_Per_Req_In_Ms is graphed in Figure 7.1.

The raw results are presented in Appendix A. In these results value of

Processing_Time_Per_Req_In_Ms was set to 6. It is convenient to summarise

the results in terms of true and false positives and negatives. We will show

this for two different values of the Processing_Time_Per_Req_In_Ms parameter.

Table 7.2 shows the results when Processing_Time_Per_Req_In_Ms is set to 6,

and Table 7.3 shows the results when Processing_Time_Per_Req_In_Ms is set

to 10.

As discussed previously, the case where Processing_Time_Per_Req_In_Ms

set to 6 is more accurate overall, but has a high amount of false positives (20).

The case where Processing_Time_Per_Req_In_Ms is set to 10 is slightly less
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Table 7.2: Analysis of NGINX results, with Processing_Time_Per_Req_In_Ms
set to 6.

Test: SLA Met Test: Not Met

WATERS: SLA Met 75 20

WATERS: Not Met 20 29

Table 7.3: Analysis of NGINX results, with Processing_Time_Per_Req_In_Ms
set to 10.

Test: SLA Met Test: Not Met

WATERS: SLA Met 36 0

WATERS: Not Met 48 86

accurate, but importantly has no false positives. We hypothesise that setting

this parameter to slightly above the minimum response time is appropriate, to

account for delays not modelled currently, such as network latency and per-

formance interference. Further experiments using different applications with

variable response times would be required to test this.

A few false negatives are to be expected, since WATERS checks more

scenarios than are tested by JMeter. In JMeter, a near-constant load was

produced for each test, but WATERS checks every possible load combination

up to the maximum requests per second. So, it is to be expected that WATERS

finds counter-examples that were not triggered by JMeter. A good example

of this is the scenario where Processing_Time_Per_Req_In_Ms = 10, Min_Pods

= 1, Max_Pods = 4, Initial_Pods = 1, Scale_CPU = 75. The test results from

JMeter indicate that this meets the SLA, but WATERS indicates it does not.

Examining the counter-example trace in WATERS shows that, upon the HPA

check, the queue length is exactly one less than the value required to scale

out. It is unlikely that this exact worst-case scenario was encountered in the

JMeter tests.

One limitation of this test is that the noise-to-signal ratio is possibly quite

high. The reason for this is that the server (NGINX) responds very quickly
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with a small web-page. Often it uses a “cached” 304 response. This means

that the delay caused by networking latency may be more than that caused

by the cloud system items.

We also investigated the effect of the limiting divisor discussed in Chapter 5.

In general, the variable with the largest possible number of values is QL, and

there are effectively Max_Pods copies of this variable, since there is a copy

for each pod. Therefore, we expect the compilation and verification (Tc+v) of

WATERS to increase according to the formula:

Tc+v ∝ QL_Max(Max_Pods+1)

A graph of the average WATERS compilation and verification time versus

the limiting parameter QL_Max_Limit is shown in Figure 7.2. A graph of the

accuracy of the model versus the limiting parameter QL_Max_Limit is shown

in Figure 7.3. Here the processing time parameter Processing_Time_Per_Req_

In_Ms is set to 6.

This shows that the accuracy increases up to a point (in this case at 68%

accuracy when QL_Max_Limit = 50), then the accuracy stays constant. The

key is the ratio of incoming to processed requests:

RPS_Max/Req_Handled_Per_Sec_Per_Pod

This is analysed further in Table 7.4, and shows that this value changes

relatively little for values of QL_Max_Limit 50 and above. This is most likely

the reason why the accuracy does not improve any further.

An interesting effect is observed when the response time parameter Processing_

Time_Per_Req_In_Ms is set to 10. All test cases with RPSmax set to 150 or

above are predicted to fail the SLA, and all test cases with RPSmax set to

100 or below are predicted to satisfy the SLA. This suggests the model is not

fine-grained enough for values above 10 for RPSmax.

In contrast, when Processing_Time_Per_Req_In_Ms is set to 6, all test cases

where RPSmax is set to 250 or above are predicted to fail the SLA. This still

suggests that the model is “under-fitting” the real process. All test cases with
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Table 7.4: Analysis of effect of the limiting divisor on accuracy. Omitted are
the variables which are the same in each case.

RPS_Max_ QL_Max_ Limiting_ RPS_ Req_Handled_ RPS_Max /

Actual Limit Divisor Max Per_Sec_Per_Pod Req_Handled_Per_Sec_Per_Pod

50 6 277 0 0 N/A

50 12 138 0 1 0.00

50 25 66 0 2 0.00

50 50 33 1 5 0.20

50 100 16 3 10 0.30

50 200 8 6 20 0.30

50 400 4 12 41 0.29

250 6 277 0 0 N/A

250 12 138 1 1 1.00

250 25 66 3 2 1.50

250 50 33 7 5 1.40

250 100 16 15 10 1.50

250 200 8 31 20 1.55

250 400 4 62 41 1.51

400 6 277 1 0 N/A

400 12 138 2 1 2.00

400 25 66 6 2 3.00

400 50 33 12 5 2.40

400 100 16 25 10 2.50

400 200 8 50 20 2.50

400 400 4 100 41 2.44
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Figure 7.2: A graph of the average WATERS compilation and verification time
versus the QL_Max_Limit parameter. For each point, all test cases were verified
in WATERS using the given value of QL_Max_Limit. Processing_Time_Per_

Req_In_Ms was set to 6.

Figure 7.3: A graph of the model accuracy versus the QL_Max_Limit parame-
ter.
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Figure 7.4: A graph showing the impact of the processing time parameter for
the NGINX model. Test cases with RPSmax equal to or above the top line
are predicted to fail the SLA. Test cases with RPSmax equal to or below the
bottom line are predicted to meet the SLA. Test cases between the two lines
have a mixture of predictions.

RPSmax set to 150 or below are predicted to satisfy the SLA. This suggests

that for each value of Processing_Time_Per_Req_In_Ms there is a lower bound

below which each test case is predicted to satisfy the SLA, and an upper bound

above which each test case is predicted to satisfy the SLA.

In fact, we can see a general pattern for this, where for all values of

Processing_Time_Per_Req_In_Ms, there is such a lower bound and upper bound,

which is demonstrated in Figure 7.4. The actual bound where there is a mix-

ture of true or false predictions is rather narrow.

When Processing_Time_Per_Req_In_Ms is set to 6, then only for test cases

where RPSmax = 200 are the effects of autoscaling actually investigated by

the model. All other cases are marked as true or false regardless of the values

of the minimum and maximum pods, initial pod, scale CPU threshold and so

on. For Processing_Time_Per_Req_In_Ms set to 10, only for test cases where

RPSmax = 150 are the effects of autoscaling investigated by the model.
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Figure 7.5: Results of NGINX model for processing time parameter set to 6
ms and maximum requests per second equals 200.

Also of note is that for values of Processing_Time_Per_Req_In_Ms of 14 and

above, the upper bound is 100 and the lower bound is 50. This means that

the real effects of auto-scaling are not investigated at all by the model in these

cases.

According to the experimental results, the SLA was actually met in all

cases when RPS was 100 or less. This is the true “lower bound”. In this regard

the results when the processing time parameter is between 8 and 10 matches.

There is no real “upper bound” since there were true and false results even for

the highest value of RPSmax that was tested (400).

Let us inspect an example where the effects of autoscaling were checked,

namely Processing_Time_Per_Req_In_Ms = 6 and RPS_Max = 200, shown in

Figure 7.5. In the experimental results, the maximum number of pods seems to

have a greater effect than Scale CPU Threshold on meeting the SLA. In cases

where Max Pods is 2, 3, and 4, WATERS predicts those with Scale CPU of

50% and below to meet the SLA, but with 75% and above to fail. In contrast,

the experimental results mostly indicate that configurations with Max Pods

of 2 and below fail the SLA, but with 3 and above meet it; the Scale CPU

has little effect. This suggests that the effect of Scale CPU Threshold in the

WATERS model is overestimated.

The same pattern manifests itself for other values. For example, with

Processing_Time_Per_Req_In_Ms = 8 and RPSmax = 150. The WATERS

model still relies too heavily on Scale CPU whereas maximum number of pods
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has the greatest influence in the experimental results.

7.2 Application 2: Node.js Program

The system model differs from that used for NGINX in that it uses a square

wave workload and does divide the request remainder. The ratio of requests

per second to maximum pods is quite low, so dividing the remainder was

considered appropriate. The parameters for the model are listed in Table 7.5.

Table 7.5: Parameters for the Node.js model.

Parameter Symbol Default Description

HPA_Check_Interval Tscale−check 15 Number of seconds between checks by the HPA.

Max_Response_Time_In_Ms RTmax 10000 Maximum response time in milliseconds.

Pods_Initially_On Podsinitial 1 Number of starting pods.

Pod_Min Podsmin 1 Number of starting pods.

Pod_Max Podsmax 4 Minimum number of pods to scale down do.

Processing_Time_Per_Req_In_Ms PTmax 1000 Maximum number of pods to scale up to.

RPS_Max_High RPSmax(high) 2 Max. requests per second in high part of square wave.

RPS_Max_Low RPSmax(low) 1 Max. requests per second in low part of square wave.

T_High Thigh 60 Duration of high part of square wave.

T_Low Tlow 60 Duration of low part of square wave.

Pod_Startup_Time Tpod−startup 14 Time(s) pod to start processing requests after being scheduled.

Scale_Down_CPU_Threshold STdown 20 Percentage of QL_Max for first pod before scaling down.

Scale_CPU_Threshold STup 80 Percentage of QL_Max for last pod before scaling up.

The template Kubernetes YAML file and source code for the application

are available on GitHub. Note that the desired response time may be given as

a parameter to the HTTP request; for example, “rt=500” for a response time

of 500 milliseconds. The default is 1000 milliseconds (or 1 second).

The pod startup time Tpod−startup for this application was measured in the

same way as for NGINX. The average startup time was 14 seconds. Note that

this is almost the same as the HPA checking period of 15 seconds.

The raw results are presented in Appendix A. The results can be sum-

marised in terms of true and false positives and negatives as per Table 7.6.

One observation is that the vast majority of test cases did not meet the SLA

(190), and only a small number actually met the SLA (38). Ideally the test

cases should have included a more even distribution.
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Table 7.6: Analysis of Node.js results.

Test: SLA Met Test: Not Met

WATERS: SLA Met 31 41

WATERS: Not Met 7 149

Overall, the accuracy of the model is quite high (79%) but there is a large

number of false positives (41). This indicates that perhaps the processing

time parameter in the model should have an addition made to it to account

for effects of networking delays and so on. Ideally, there should be no false

positives.

This model does not seem to suffer from the “Upper Bound” and “Lower

Bound” problem encountered by the NGINX model. In fact, all test cases

with processing time less than 500 ms are predicted to meet the SLA, but

this matches the experimental results. Even for the maximum tested value,

the WATERS predictions include a mixture of true and false values. From

this, we can infer that the effects of auto-scaling are always investigated by

the model. This suggests that perhaps the limiting divisor approach used in

the NGINX model is flawed.

There was one instance of a verification time over 10 seconds (11.03s),

which occurred when RPSlow = 1, RPShigh = 1, Tlow = 60, Thigh = 60,

PTmax = 1000, minimum, maximum and initial pods are all 4, and the Scale

CPU Threshold is 80%. The prediction is for the test case to fail the SLA

(which is correct), and it is possible that the verification was slow because the

counter-example is quite long. This suggests that for a maximum number of

pods of 5 or greater, verification times may grow rather large.

7.3 Discussion

We can classify the inaccuracy of our models into the following reasons: Firstly,

the model produces counter-examples that are not encountered in the JMeter
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tests. This produces additional “false negatives”, which are acceptable since

they may in fact occur during runtime.

Secondly, inaccuracies may arise because our models do not follow Kuber-

netes autoscaling functionality exactly, as discussed in Chapter 5. This is the

primary area we wish to avoid inaccuracies for, since our goal is to model Ku-

bernetes autoscaling. This in turn can be divided into two reasons: Firstly due

to scaling based on queue length and not CPU (although we do assume these

are directly proportional), and secondly due to the difference in algorithm for

how many pods to scale up or down by. In order to determine the amount of

inaccuracy caused by each reason, we must examine 1) how does average CPU

utilisation relate to queue length? and 2) what proportion of times did the

HPA scale out or in by more than one pod at a time?

In order to determine the CPU utilisation of a pod versus the queue length

of the pod, we must measure both. Unfortunately, this is difficult to do, since

by default there is no queue length metric measured. It is possible to set this

up using Prometheus1, but due to time constraints this was not done.

The proportion of times the HPA scaled by more than one pod can be

most accurately determined by inspecting the Kubernetes logs. However, the

relevant log files were not kept, so unfortunately due to time constraints this

was not determined.

Thirdly, inaccuracies occur due to the incompleteness of the model. As-

pects we have not modelled include the effects of garbage collection, variability

in times taken to create or remove additional pods, possible failures to start

up new pods, and so on. Since the current models are simple prototypes, this

is not of great concern.

Since NGINX is written in C++, we hypothesise that garbage collection

had little to no effect on processing time. In the Node.js program, there are

few objects created on the heap, and due to the fixed response time, the code

is run infrequently. Therefore we also hypothesise that garbage collection had
1https://prometheus.io/
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little effect on it.

Variations in pod start-up times are likely to have had a greater effect. For

the Node.js program, the standard deviation of the startup times measured

was 5.5 seconds, which is 0.4 of the mean (14 seconds). For NGINX, the stan-

dard deviation was 2.25 seconds, which is about 0.5 of the mean (5 seconds).

However, for NGINX the effect is not as pronounced as the statistics suggest,

since the mean is small.

Overall, the results are promising, but more work is required to improve

their accuracy and reduce false positives. We hypothesise that this includes

making the models more closely match the Kubernetes HPA, and perhaps

to add a buffer to the processing times to account for aspects we have not

modelled.



Chapter 8

Conclusions and Future Work

In this thesis, we introduced a framework for verifying cloud autoscaling poli-

cies using WATERS. The cloud is modelled using extended finite state ma-

chines in WATERS. Parameters are passed to the model to represent the au-

toscaling policy, and WATERS verifies if this will meet an SLO related to

maximum response time.

We used WATERS to model a homogeneous cloud running one of two

applications: NGINX, and a Node.js program with fixed response time. In

both cases, the SLA consisted of a single SLO — that the maximum response

time is 10 seconds. To check the accuracy of our models, we ran tests using

JMeter and Kubernetes to see in what scenarios the SLA is met (or not), and

compared this with the predictions from WATERS.

Results indicate that, with suitable parameters, the approach is useful for

filtering out policies that do not meet the SLA. There is, however, a rather

high rate of false negatives. Nevertheless, much of this can be attributed

to WATERS checking the worst-case scenario, which may not have occurred

during experiment execution.

A key uncertainty that model checking allowed us to explore is the traffic

pattern incoming to a cloud system. WATERS allowed checking any traffic

pattern up to a given maximum requests per second against the SLA. It would

take a very long time to test all similar possibilities using a load-testing tool.
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One limitation was that the compilation and verification times were high

for large parameter values (for example, 400 requests per second). In order

to keep the compilation and verification times under our targeted maximum

of 10 seconds, we used a work-around of a “limiting divisor” in the NGINX

model, which limited the state space but lost some precision.

Our approach suffers somewhat from simplifying assumptions and incom-

pleteness [69], since we have only modelled a certain part the cloud system

and made assumptions about the rest. This is necessary to keep model compi-

lation and verification time reasonable, and to avoid the models being overly

complex. It also suffers from model drift, because of checking only at design

time and not at runtime. However, the models could potentially be made more

complete and assumptions removed.

A key difference to related research is the use of non-probabilistic model

checking. Another difference was the modelling of the inner working of the

autoscaling process, instead of using machine learning or related approaches

which abstract away this type of detail. This type of model checking would be

useful for mission-critical applications where formal guarantees are required,

or for creation of strict SLAs by cloud service providers.

8.1 Future Work

Future work could explore different methods to reduce compilation and verifi-

cation times of the NGINX model, and thus eliminate the need for the limiting

divisor. For example, we have used the “-bdd” flag in WATERS, but other

flags may prove more efficient in some circumstances.

The models presented in this thesis have only been tested using a limited

range of parameter values. For example, the Pod_Max parameter was only

tested from values 1 to 4. Future work could include testing this for values

above 5, and seeing whether the checking process is still under 10 seconds.

Finally, scaling based on queue length instead of CPU in Kubernetes could
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be implemented and tested (for example, with a custommetric using Prometheus1).

This may provide a more direct measurement of the accuracy of our models.

1https://prometheus.io/



Appendix A

Raw Results

This appendix presents the raw results from testing the NGINX and Node.js

applications, as summarised in Chapter 7. Testing was performed over a num-

ber of days. If the same test case was run on two separate days, only the later

day’s results were kept.

A.1 NGINX

The raw results from testing the NGINX application are presented in Ta-

bles A.1 through A.7. Each row represents one test case. Each test case was

performed for a number of trials.

A.2 Node.js

The raw results from testing the Node.js application are presented in Table A.8

through A.13.
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Table A.1: Raw results from testing the NGINX application for RPS = 50.

RPS Min Max Initial Scale Prop. WATERS Accuracy Ver.

Pods Pods Pods CPU Meeting Pred. Time

(s)

50 1 1 1 25 2/3 Yes 2/3 0.17

50 1 1 1 50 3/3 Yes 3/3 0.19

50 1 1 1 75 2/3 Yes 2/3 0.17

50 1 1 1 100 3/3 Yes 3/3 0.17

50 1 2 1 25 2/3 Yes 2/3 0.19

50 1 2 1 50 3/3 Yes 3/3 0.19

50 1 2 1 75 3/3 Yes 3/3 0.20

50 1 2 1 100 2/3 Yes 2/3 0.20

50 1 3 1 25 3/3 Yes 3/3 0.22

50 1 3 1 50 2/3 Yes 2/3 0.22

50 1 3 1 75 3/3 Yes 3/3 0.22

50 1 3 1 100 3/3 Yes 3/3 0.22

50 1 4 1 25 3/3 Yes 3/3 0.24

50 1 4 1 50 2/3 Yes 2/3 0.23

50 1 4 1 75 3/3 Yes 3/3 0.23

50 1 4 1 100 3/3 Yes 3/3 0.28
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Table A.2: Raw results from testing the NGINX application for RPS = 100.

RPS Min Max Initial Scale Prop. WATERS Accuracy Ver.

Pods Pods Pods CPU Meeting Pred. Time

(s)

100 1 1 1 25 2/3 Yes 2/3 0.19

100 1 1 1 50 2/3 Yes 2/3 0.19

100 1 1 1 75 3/3 Yes 3/3 0.19

100 1 1 1 80 3/3 Yes 3/3 0.22

100 1 1 1 100 3/3 Yes 3/3 0.20

100 1 2 1 25 3/3 Yes 3/3 0.27

100 1 2 1 50 3/3 Yes 3/3 0.24

100 1 2 1 75 3/3 Yes 3/3 0.24

100 1 2 1 80 3/3 Yes 3/3 0.27

100 1 2 1 100 2/3 Yes 2/3 0.25

100 1 3 1 25 3/3 Yes 3/3 0.27

100 1 3 1 50 2/3 Yes 2/3 0.26

100 1 3 1 75 3/3 Yes 3/3 0.26

100 1 3 1 80 3/3 Yes 3/3 0.27

100 1 3 1 100 2/3 Yes 2/3 0.28

100 1 4 1 25 3/3 Yes 3/3 0.31

100 1 4 1 50 3/3 Yes 3/3 0.28

100 1 4 1 75 3/3 Yes 3/3 0.28

100 1 4 1 80 3/3 Yes 3/3 0.28

100 1 4 1 100 3/3 Yes 3/3 0.30



79

Table A.3: Raw results from testing the NGINX application for RPS = 150.

RPS Min Max Initial Scale Prop. WATERS Accuracy Ver.

Pods Pods Pods CPU Meeting Pred. Time

(s)

150 1 1 1 25 1/3 Yes 1/3 0.20

150 1 1 1 50 2/3 Yes 2/3 0.20

150 1 1 1 75 1/3 Yes 1/3 0.23

150 1 1 1 80 1/3 Yes 1/3 0.20

150 1 1 1 100 0/3 Yes 0/3 0.21

150 1 2 1 25 1/3 Yes 1/3 0.37

150 1 2 1 50 2/3 Yes 2/3 0.25

150 1 2 1 75 1/3 Yes 1/3 0.25

150 1 2 1 80 3/3 Yes 3/3 0.25

150 1 2 1 100 1/3 Yes 1/3 0.25

150 1 3 1 25 3/3 Yes 3/3 0.32

150 1 3 1 50 2/3 Yes 2/3 0.30

150 1 3 1 75 2/3 Yes 2/3 0.31

150 1 3 1 80 3/3 Yes 3/3 0.29

150 1 3 1 100 2/3 Yes 2/3 0.28

150 1 4 1 25 3/3 Yes 3/3 0.32

150 1 4 1 50 3/3 Yes 3/3 0.31

150 1 4 1 75 3/3 Yes 3/3 0.34

150 1 4 1 80 3/3 Yes 3/3 0.32

150 1 4 1 100 3/3 Yes 3/3 0.34



80

Table A.4: Raw results from testing the NGINX application for RPS = 200.

RPS Min Max Initial Scale Prop. WATERS Accuracy Ver.

Pods Pods Pods CPU Meeting Pred. Time

(s)

200 1 1 1 25 0/3 No 3/3 0.51

200 1 1 1 50 0/3 No 3/3 0.47

200 1 1 1 75 0/3 No 3/3 0.43

200 1 1 1 80 0/3 No 3/3 0.42

200 1 1 1 100 0/3 No 3/3 0.42

200 1 2 1 25 1/3 Yes 1/3 0.72

200 1 2 1 50 0/3 Yes 0/3 0.91

200 1 2 1 75 1/3 No 2/3 0.72

200 1 2 1 80 2/3 No 1/3 0.72

200 1 2 1 100 0/3 No 3/3 0.72

200 1 3 1 25 1/3 Yes 1/3 0.78

200 1 3 1 50 2/3 Yes 2/3 0.99

200 1 3 1 75 3/3 No 0/3 0.80

200 1 3 1 80 3/3 No 0/3 0.79

200 1 3 1 100 3/3 No 0/3 0.80

200 1 4 1 25 2/3 Yes 2/3 0.89

200 1 4 1 50 3/3 Yes 3/3 1.13

200 1 4 1 75 3/3 No 0/3 0.88

200 1 4 1 80 2/3 No 1/3 0.87

200 1 4 1 100 2/3 No 1/3 0.89
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Table A.5: Raw results from testing the NGINX application for RPS = 250.

RPS Min Max Initial Scale Prop. WATERS Accuracy Ver.

Pods Pods Pods CPU Meeting Pred. Time

(s)

250 1 1 1 25 0/3 No 3/3 0.35

250 1 1 1 50 0/3 No 3/3 0.35

250 1 1 1 75 0/3 No 3/3 0.36

250 1 1 1 80 0/3 No 3/3 0.33

250 1 1 1 100 0/3 No 3/3 0.34

250 1 2 1 25 1/3 No 2/3 0.79

250 1 2 1 50 0/3 No 3/3 0.71

250 1 2 1 75 0/3 No 3/3 0.57

250 1 2 1 80 1/3 No 2/3 0.50

250 1 2 1 100 0/3 No 3/3 0.53

250 1 3 1 25 1/3 No 2/3 0.96

250 1 3 1 50 2/3 No 1/3 0.85

250 1 3 1 75 3/3 No 0/3 0.62

250 1 3 1 80 1/3 No 2/3 0.55

250 1 3 1 100 2/3 No 1/3 0.56

250 1 4 1 25 3/3 No 0/3 0.64

250 1 4 1 50 2/3 No 1/3 0.61

250 1 4 1 75 2/3 No 1/3 0.53

250 1 4 1 80 3/3 No 0/3 0.47

250 1 4 1 100 3/3 No 0/3 0.51
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Table A.6: Raw results from testing the NGINX application for RPS = 300.

RPS Min Max Initial Scale Prop. WATERS Accuracy Ver.

Pods Pods Pods CPU Meeting Pred. Time

(s)

300 1 1 1 25 0/3 No 3/3 0.30

300 1 1 1 50 0/3 No 3/3 0.30

300 1 1 1 75 0/3 No 3/3 0.30

300 1 1 1 80 0/3 No 3/3 0.31

300 1 1 1 100 0/3 No 3/3 0.30

300 1 2 1 25 0/3 No 3/3 0.39

300 1 2 1 50 0/3 No 3/3 0.39

300 1 2 1 75 0/3 No 3/3 0.38

300 1 2 1 80 1/3 No 2/3 0.40

300 1 2 1 100 0/3 No 3/3 0.38

300 1 3 1 25 2/3 No 1/3 0.43

300 1 3 1 50 1/3 No 2/3 0.42

300 1 3 1 75 1/3 No 2/3 0.43

300 1 3 1 80 0/3 No 3/3 0.42

300 1 3 1 100 3/3 No 0/3 0.45

300 1 4 1 25 2/3 No 1/3 0.49

300 1 4 1 50 2/3 No 1/3 0.47

300 1 4 1 75 2/3 No 1/3 0.50

300 1 4 1 80 2/3 No 1/3 0.49

300 1 4 1 100 2/3 No 1/3 0.48
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Table A.7: Raw results from testing the NGINX application for RPS = 400.
Note that for these tests cases, the pods were not killed after each trial. This
means that the initial number of nodes may vary per trial. In all other test
cases, the pods were killed after each trial.

RPS Min Max Initial Scale Prop. WATERS Accuracy Ver.

Pods Pods Pods CPU Meeting Pred. Time

(s)

400 1 1 1 80 0/5 No 5/5 0.31

400 1 2 1 25 0/5 No 5/5 0.41

400 1 2 1 50 0/5 No 5/5 0.38

400 1 2 1 75 1/5 No 4/5 0.46

400 1 2 1 80 1/5 No 4/5 0.41

400 1 2 1 100 2/5 No 3/5 0.41

400 1 3 1 25 5/5 No 0/5 0.47

400 1 3 1 50 5/5 No 0/5 0.46

400 1 3 1 75 5/5 No 0/5 0.45

400 1 3 1 80 5/5 No 0/5 0.45

400 1 3 1 100 5/5 No 0/5 0.44

400 1 4 1 25 5/5 No 0/5 0.52

400 1 4 1 50 5/5 No 0/5 0.56

400 1 4 1 75 5/5 No 0/5 0.53

400 1 4 1 80 5/5 No 0/5 0.49

400 1 4 1 100 5/5 No 0/5 0.50
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Table A.8: Results from testing the Node.js application, part 1.

RPS RPS High Low Max. Min. Max. Initial Scale Prop. WATERS Accuracy Ver.

(low) (high) Dur. Dur. RT Pods Pods Pods CPU Meeting Pred. Time

(s) (s) (ms) (s)

1 2 60 60 50 1 1 1 80 1/1 Yes 1/1 2.70

1 2 60 60 100 1 1 1 80 1/1 Yes 1/1 1.84

1 2 60 60 150 1 1 1 80 1/1 Yes 1/1 1.74

1 2 60 60 200 1 1 1 80 1/1 Yes 1/1 1.68

1 2 60 60 250 1 1 1 80 1/1 Yes 1/1 1.70

1 2 60 60 300 1 1 1 80 1/1 Yes 1/1 1.70

1 2 60 60 400 1 1 1 80 1/1 Yes 1/1 1.68

1 1 60 60 500 1 1 1 25 1/3 Yes 1/3 1.44

1 1 60 60 500 1 2 1 25 1/3 Yes 1/3 0.22

1 1 60 60 500 1 3 1 25 2/3 Yes 2/3 0.24

1 1 60 60 500 1 4 1 25 1/3 Yes 1/3 0.29

1 2 60 60 500 1 1 1 25 3/3 Yes 3/3 1.67

1 2 60 60 500 1 2 1 25 3/3 Yes 3/3 0.23

1 2 60 60 500 1 3 1 25 2/3 Yes 2/3 0.28

1 2 60 60 500 1 4 1 25 3/3 Yes 3/3 0.34

1 3 60 60 500 1 1 1 25 0/3 No 3/3 0.23

1 3 60 60 500 1 2 1 25 0/3 No 3/3 0.23

1 3 60 60 500 1 3 1 25 1/3 No 2/3 0.29

1 3 60 60 500 1 4 1 25 3/3 No 0/3 0.33

1 4 60 60 500 1 1 1 25 0/3 No 3/3 0.23

1 4 60 60 500 1 2 1 25 0/3 No 3/3 0.24

1 4 60 60 500 1 3 1 25 0/3 No 3/3 0.29

1 4 60 60 500 1 4 1 25 0/3 No 3/3 0.36

1 5 60 60 500 1 1 1 25 0/3 No 3/3 0.22

1 5 60 60 500 1 2 1 25 0/3 No 3/3 0.26

1 5 60 60 500 1 3 1 25 0/3 No 3/3 0.30

1 5 60 60 500 1 4 1 25 1/3 No 2/3 0.37

1 1 60 60 500 1 1 1 50 1/3 Yes 1/3 1.44

1 1 60 60 500 1 2 1 50 1/3 Yes 1/3 0.23

1 1 60 60 500 1 3 1 50 0/3 Yes 0/3 0.24

1 1 60 60 500 1 4 1 50 0/3 Yes 0/3 0.29

1 2 60 60 500 1 1 1 50 3/3 Yes 3/3 1.66

1 2 60 60 500 1 2 1 50 3/3 Yes 3/3 0.24

1 2 60 60 500 1 3 1 50 3/3 Yes 3/3 0.27

1 2 60 60 500 1 4 1 50 2/3 Yes 2/3 0.34

1 3 60 60 500 1 1 1 50 0/3 No 3/3 0.25

1 3 60 60 500 1 2 1 50 0/3 No 3/3 0.23

1 3 60 60 500 1 3 1 50 1/3 No 2/3 0.33

1 3 60 60 500 1 4 1 50 0/3 No 3/3 0.33
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Table A.9: Results from testing the Node.js application, part 2.

RPS RPS High Low Max. Min. Max. Initial Scale Prop. WATERS Accuracy Ver.

(low) (high) Dur. Dur. RT Pods Pods Pods CPU Meeting Pred. Time

(s) (s) (ms) (s)

1 4 60 60 500 1 1 1 50 0/3 No 3/3 0.24

1 4 60 60 500 1 2 1 50 0/3 No 3/3 0.24

1 4 60 60 500 1 3 1 50 0/3 No 3/3 0.30

1 4 60 60 500 1 4 1 50 0/3 No 3/3 0.37

1 5 60 60 500 1 1 1 50 0/3 No 3/3 0.23

1 5 60 60 500 1 2 1 50 0/3 No 3/3 0.27

1 5 60 60 500 1 3 1 50 0/3 No 3/3 0.30

1 5 60 60 500 1 4 1 50 0/3 No 3/3 0.38

1 1 60 60 500 1 1 1 75 2/3 Yes 2/3 1.43

1 1 60 60 500 1 2 1 75 2/3 Yes 2/3 0.22

1 1 60 60 500 1 3 1 75 1/3 Yes 1/3 0.25

1 1 60 60 500 1 4 1 75 1/3 Yes 1/3 0.28

1 2 60 60 500 1 1 1 75 3/3 Yes 3/3 1.68

1 2 60 60 500 1 2 1 75 3/3 Yes 3/3 0.23

1 2 60 60 500 1 3 1 75 3/3 Yes 3/3 0.28

1 2 60 60 500 1 4 1 75 3/3 Yes 3/3 0.34

1 3 60 60 500 1 1 1 75 0/3 No 3/3 0.24

1 3 60 60 500 1 2 1 75 0/3 No 3/3 0.25

1 3 60 60 500 1 3 1 75 1/3 No 2/3 0.28

1 3 60 60 500 1 4 1 75 2/3 No 1/3 0.35

1 4 60 60 500 1 1 1 75 0/3 No 3/3 0.24

1 4 60 60 500 1 2 1 75 0/3 No 3/3 0.24

1 4 60 60 500 1 3 1 75 0/3 No 3/3 0.30

1 4 60 60 500 1 4 1 75 1/3 No 2/3 0.36

1 5 60 60 500 1 1 1 75 0/3 No 3/3 0.22

1 5 60 60 500 1 2 1 75 0/3 No 3/3 0.24

1 5 60 60 500 1 3 1 75 0/3 No 3/3 0.30

1 5 60 60 500 1 4 1 75 0/3 No 3/3 0.36

1 2 60 60 500 1 1 1 80 1/1 Yes 1/1 1.66

1 1 60 60 500 1 1 1 100 0/3 Yes 0/3 1.45

1 1 60 60 500 1 2 1 100 1/3 Yes 1/3 0.22

1 1 60 60 500 1 3 1 100 1/3 Yes 1/3 0.24

1 1 60 60 500 1 4 1 100 1/3 Yes 1/3 0.28

1 2 60 60 500 1 1 1 100 3/3 Yes 3/3 1.72

1 2 60 60 500 1 2 1 100 3/3 Yes 3/3 0.23

1 2 60 60 500 1 3 1 100 1/3 Yes 1/3 0.27

1 2 60 60 500 1 4 1 100 3/3 Yes 3/3 0.33

1 3 60 60 500 1 1 1 100 0/3 No 3/3 0.23

1 3 60 60 500 1 2 1 100 0/3 No 3/3 0.24
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Table A.10: Results from testing the Node.js application, part 3.

RPS RPS High Low Max. Min. Max. Initial Scale Prop. WATERS Accuracy Ver.

(low) (high) Dur. Dur. RT Pods Pods Pods CPU Meeting Pred. Time

(s) (s) (ms) (s)

1 3 60 60 500 1 3 1 100 0/3 No 3/3 0.29

1 3 60 60 500 1 4 1 100 1/3 No 2/3 0.34

1 4 60 60 500 1 1 1 100 0/3 No 3/3 0.23

1 4 60 60 500 1 2 1 100 0/3 No 3/3 0.26

1 4 60 60 500 1 3 1 100 1/3 No 2/3 0.31

1 4 60 60 500 1 4 1 100 0/3 No 3/3 0.37

1 5 60 60 500 1 1 1 100 0/3 No 3/3 0.21

1 5 60 60 500 1 2 1 100 0/3 No 3/3 0.24

1 5 60 60 500 1 3 1 100 0/3 No 3/3 0.33

1 5 60 60 500 1 4 1 100 0/3 No 3/3 0.38

1 2 60 60 600 1 1 1 80 0/1 No 1/1 0.23

1 2 60 60 600 1 2 1 80 1/1 No 0/1 0.24

1 2 60 60 600 1 3 1 80 1/1 No 0/1 0.27

1 2 60 60 600 1 4 1 80 1/1 No 0/1 0.33

1 2 60 60 700 1 1 1 80 0/1 No 1/1 0.23

1 2 60 60 700 1 2 1 80 0/1 No 1/1 0.25

1 2 60 60 700 1 3 1 80 0/1 No 1/1 0.26

1 2 60 60 700 1 4 1 80 0/1 No 1/1 0.32

1 2 60 60 800 1 1 1 80 0/1 No 1/1 0.21

1 2 60 60 900 1 1 1 80 0/1 No 1/1 0.21

1 1 60 60 1000 1 1 1 25 0/3 Yes 0/3 1.45

1 1 60 60 1000 1 2 1 25 0/3 Yes 0/3 0.21

1 1 60 60 1000 1 3 1 25 0/3 Yes 0/3 0.23

1 1 60 60 1000 1 4 1 25 2/3 Yes 2/3 0.27

1 2 60 60 1000 1 1 1 25 0/3 No 3/3 0.21

1 2 60 60 1000 1 2 1 25 0/3 No 3/3 0.23

1 2 60 60 1000 1 3 1 25 0/3 No 3/3 0.26

1 2 60 60 1000 1 4 1 25 0/3 No 3/3 0.29

1 3 60 60 1000 1 1 1 25 0/3 No 3/3 0.20

1 3 60 60 1000 1 2 1 25 0/3 No 3/3 0.22

1 3 60 60 1000 1 3 1 25 0/3 No 3/3 0.28

1 3 60 60 1000 1 4 1 25 0/3 No 3/3 0.40

1 4 60 60 1000 1 1 1 25 0/3 No 3/3 0.21

1 4 60 60 1000 1 2 1 25 0/3 No 3/3 0.23

1 4 60 60 1000 1 3 1 25 0/3 No 3/3 0.27

1 4 60 60 1000 1 4 1 25 0/3 No 3/3 0.32

1 5 60 60 1000 1 1 1 25 0/3 No 3/3 0.20

1 5 60 60 1000 1 2 1 25 0/3 No 3/3 0.23

1 5 60 60 1000 1 3 1 25 0/3 No 3/3 0.41
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Table A.11: Results from testing the Node.js application, part 4.

RPS RPS High Low Max. Min. Max. Initial Scale Prop. WATERS Accuracy Ver.

(low) (high) Dur. Dur. RT Pods Pods Pods CPU Meeting Pred. Time

(s) (s) (ms) (s)

1 5 60 60 1000 1 4 1 25 0/3 No 3/3 0.42

1 1 60 60 1000 1 1 1 50 0/3 Yes 0/3 1.44

1 1 60 60 1000 1 2 1 50 0/3 Yes 0/3 0.21

1 1 60 60 1000 1 3 1 50 2/3 Yes 2/3 0.23

1 1 60 60 1000 1 4 1 50 1/3 Yes 1/3 0.25

1 2 60 60 1000 1 1 1 50 0/3 No 3/3 0.22

1 2 60 60 1000 1 2 1 50 0/3 No 3/3 0.22

1 2 60 60 1000 1 3 1 50 0/3 No 3/3 0.25

1 2 60 60 1000 1 4 1 50 0/3 No 3/3 0.30

1 3 60 60 1000 1 1 1 50 0/3 No 3/3 0.21

1 3 60 60 1000 1 2 1 50 0/3 No 3/3 0.25

1 3 60 60 1000 1 3 1 50 0/3 No 3/3 0.27

1 3 60 60 1000 1 4 1 50 0/3 No 3/3 0.32

1 4 60 60 1000 1 1 1 50 0/3 No 3/3 0.21

1 4 60 60 1000 1 2 1 50 0/3 No 3/3 0.22

1 4 60 60 1000 1 3 1 50 0/3 No 3/3 0.31

1 4 60 60 1000 1 4 1 50 0/3 No 3/3 0.32

1 5 60 60 1000 1 1 1 50 0/3 No 3/3 0.20

1 5 60 60 1000 1 2 1 50 0/3 No 3/3 0.24

1 5 60 60 1000 1 3 1 50 0/3 No 3/3 0.27

1 5 60 60 1000 1 4 1 50 0/3 No 3/3 0.36

1 1 60 60 1000 1 1 1 75 0/3 Yes 0/3 1.43

1 1 60 60 1000 1 2 1 75 1/3 Yes 1/3 0.21

1 1 60 60 1000 1 3 1 75 0/3 Yes 0/3 0.25

1 1 60 60 1000 1 4 1 75 0/3 Yes 0/3 0.26

1 2 60 60 1000 1 1 1 75 0/3 No 3/3 0.21

1 2 60 60 1000 1 2 1 75 0/3 No 3/3 0.22

1 2 60 60 1000 1 3 1 75 0/3 No 3/3 0.26

1 2 60 60 1000 1 4 1 75 1/3 No 2/3 0.28

1 3 60 60 1000 1 1 1 75 0/3 No 3/3 0.22

1 3 60 60 1000 1 2 1 75 0/3 No 3/3 0.23

1 3 60 60 1000 1 3 1 75 0/3 No 3/3 0.27

1 3 60 60 1000 1 4 1 75 0/3 No 3/3 0.31

1 4 60 60 1000 1 1 1 75 0/3 No 3/3 0.21

1 4 60 60 1000 1 2 1 75 0/3 No 3/3 0.23

1 4 60 60 1000 1 3 1 75 0/3 No 3/3 0.44

1 4 60 60 1000 1 4 1 75 0/3 No 3/3 0.33

1 5 60 60 1000 1 1 1 75 0/3 No 3/3 0.20

1 5 60 60 1000 1 2 1 75 0/3 No 3/3 0.23
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Table A.12: Results from testing the Node.js application, part 5.

RPS RPS High Low Max. Min. Max. Initial Scale Prop. WATERS Accuracy Ver.

(low) (high) Dur. Dur. RT Pods Pods Pods CPU Meeting Pred. Time

(s) (s) (ms) (s)

1 5 60 60 1000 1 3 1 75 0/3 No 3/3 0.27

1 5 60 60 1000 1 4 1 75 0/3 No 3/3 0.34

1 1 60 60 1000 1 1 1 80 0/1 Yes 0/1 1.43

1 1 60 60 1000 1 2 1 80 1/1 Yes 1/1 0.21

1 1 60 60 1000 1 3 1 80 0/1 Yes 0/1 0.24

1 1 60 60 1000 1 4 2 80 0/1 Yes 0/1 0.25

1 1 60 60 1000 1 4 3 80 0/1 Yes 0/1 0.26

1 1 60 60 1000 1 4 4 80 1/1 Yes 1/1 0.26

1 1 60 60 1000 1 4 1 80 0/1 Yes 0/1 0.25

1 1 60 60 1000 2 4 2 80 0/1 Yes 0/1 0.23

1 1 60 60 1000 3 4 3 80 0/1 Yes 0/1 2.98

1 1 60 60 1000 4 4 4 80 0/1 Yes 0/1 11.03

1 2 60 60 1000 1 1 1 80 0/1 No 1/1 0.21

1 2 60 60 1000 1 2 1 80 0/1 No 1/1 0.21

1 2 60 60 1000 1 3 1 80 1/1 No 0/1 0.26

1 2 60 60 1000 1 4 2 80 0/1 No 1/1 0.31

1 2 60 60 1000 1 4 3 80 0/1 No 1/1 0.30

1 2 60 60 1000 1 4 4 80 1/1 No 0/1 0.29

1 2 60 60 1000 1 4 1 80 0/1 No 1/1 0.31

1 2 60 60 1000 2 4 2 80 0/1 Yes 0/1 0.26

1 2 60 60 1000 3 4 3 80 0/1 Yes 0/1 3.92

1 2 60 60 1000 4 4 4 80 0/1 Yes 0/1 4.73

1 3 60 60 1000 1 1 1 80 0/1 No 1/1 0.21

1 3 60 60 1000 1 2 1 80 0/1 No 1/1 0.22

1 3 60 60 1000 1 3 1 80 0/1 No 1/1 0.28

1 3 60 60 1000 1 4 2 80 0/1 No 1/1 0.31

1 3 60 60 1000 1 4 3 80 0/1 No 1/1 0.32

1 3 60 60 1000 1 4 4 80 0/1 No 1/1 0.31

1 3 60 60 1000 1 4 1 80 0/1 No 1/1 0.36

1 3 60 60 1000 2 4 2 80 0/1 No 1/1 0.29

1 3 60 60 1000 3 4 3 80 0/1 Yes 0/1 2.25

1 3 60 60 1000 4 4 4 80 0/1 Yes 0/1 4.33

1 4 60 60 1000 1 1 1 80 0/1 No 1/1 0.24

1 4 60 60 1000 1 2 1 80 0/1 No 1/1 0.22

1 4 60 60 1000 1 3 1 80 0/1 No 1/1 0.27

1 4 60 60 1000 1 4 2 80 0/1 No 1/1 0.32

1 4 60 60 1000 1 4 3 80 0/1 No 1/1 0.32

1 4 60 60 1000 1 4 4 80 0/1 No 1/1 0.32

1 4 60 60 1000 1 4 1 80 0/1 No 1/1 0.33
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Table A.13: Results from testing the Node.js application, part 6.

RPS RPS High Low Max. Min. Max. Initial Scale Prop. WATERS Accuracy Ver.

(low) (high) Dur. Dur. RT Pods Pods Pods CPU Meeting Pred. Time

(s) (s) (ms) (s)

1 4 60 60 1000 2 4 2 80 0/1 No 1/1 0.29

1 4 60 60 1000 3 4 3 80 0/1 No 1/1 0.41

1 4 60 60 1000 4 4 4 80 0/1 Yes 0/1 3.91

1 5 60 60 1000 1 1 1 80 0/1 No 1/1 0.19

1 5 60 60 1000 1 2 1 80 0/1 No 1/1 0.22

1 5 60 60 1000 1 3 1 80 0/1 No 1/1 0.27

1 5 60 60 1000 1 4 2 80 0/1 No 1/1 0.35

1 5 60 60 1000 1 4 3 80 0/1 No 1/1 0.33

1 5 60 60 1000 1 4 4 80 0/1 No 1/1 0.33

1 5 60 60 1000 1 4 1 80 0/1 No 1/1 0.34

1 5 60 60 1000 2 4 2 80 0/1 No 1/1 0.30

1 5 60 60 1000 3 4 3 80 0/1 No 1/1 0.34

1 5 60 60 1000 4 4 4 80 0/1 No 1/1 0.71

1 1 60 60 1000 1 1 1 100 1/3 Yes 1/3 1.44

1 1 60 60 1000 1 2 1 100 0/3 Yes 0/3 0.28

1 1 60 60 1000 1 3 1 100 1/3 Yes 1/3 0.24

1 1 60 60 1000 1 4 1 100 2/3 Yes 2/3 0.25

1 2 60 60 1000 1 1 1 100 0/3 No 3/3 0.22

1 2 60 60 1000 1 2 1 100 0/3 No 3/3 0.24

1 2 60 60 1000 1 3 1 100 0/3 No 3/3 0.26

1 2 60 60 1000 1 4 1 100 0/3 No 3/3 0.32

1 3 60 60 1000 1 1 1 100 0/3 No 3/3 0.21

1 3 60 60 1000 1 2 1 100 0/3 No 3/3 0.22

1 3 60 60 1000 1 3 1 100 0/3 No 3/3 0.27

1 3 60 60 1000 1 4 1 100 0/3 No 3/3 0.31

1 4 60 60 1000 1 1 1 100 0/3 No 3/3 0.20

1 4 60 60 1000 1 2 1 100 0/3 No 3/3 0.23

1 4 60 60 1000 1 3 1 100 0/3 No 3/3 0.27

1 4 60 60 1000 1 4 1 100 0/3 No 3/3 0.33

1 5 60 60 1000 1 1 1 100 0/3 No 3/3 0.19

1 5 60 60 1000 1 2 1 100 0/3 No 3/3 0.24

1 5 60 60 1000 1 3 1 100 0/3 No 3/3 0.27

1 5 60 60 1000 1 4 1 100 0/3 No 3/3 0.34
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