
Noname manuscript No.
(will be inserted by the editor)

On the Computation of Counterexamples in Compositional

Nonblocking Verification

Robi Malik · Simon Ware

the date of receipt and acceptance should be inserted later

Abstract This paper describes algorithms to compute a counterexample when
compositional nonblocking verification determines that a discrete event system
is blocking. Counterexamples are an important feature of model checking that
explains the cause of a detected problem, greatly helping users to understand and
fix faults. In compositional verification, counterexamples are difficult to compute
due to the large state space and the loss of information after abstraction. The paper
explains the difficulties and proposes solutions, and experimental results show that
counterexamples can be computed successfully for several industrial-scale systems.

Keywords Model checking, Compositional verification, Discrete event systems,
Nonblocking.

1 Introduction

The nonblocking property is a weak liveness property commonly used in supervisory

control theory of discrete event systems to express the absence of livelocks and
deadlocks [22]. This is a crucial property of safety-critical control systems, and
with the increasing size and complexity of these systems, there is an increasing
need to verify them automatically. The standard method to check the nonblock-
ing property involves the explicit composition of all components involved, and is
limited by the well-known state-space explosion problem. Symbolic model checking

can be used to reduce the memory requirements by representing the state space
symbolically rather than enumerating it explicitly [2].

Compositional verification [4, 8, 24] is an effective alternative that can be used
independently of or in combination with symbolic methods. Compositional verifi-
cation exploits the fact that large systems are typically modelled by several com-
ponents interacting in synchronous composition. Then compositional minimisation

Robi Malik
Department of Computer Science, University of Waikato, Hamilton, New Zealand
E-mail: robi@waikato.ac.nz

Simon Ware
E-mail: simianware@gmail.com

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Commons@Waikato

https://core.ac.uk/display/326005893?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

or abstraction [4] can be used to simplify individual components before computing
their synchronous composition, gradually reducing the state space of the system
and allowing much larger systems to be verified in the end. The ways how com-
ponents can be simplified to ensure correct verification results depends on the
property being verified [5].

The nonblocking property considered in this paper is logically different from
most properties commonly studied for compositional verification, and requires spe-
cific abstraction methods [7]. A suitable theory is laid out in previous work [17],
where it is argued that abstractions used in nonblocking verification should pre-
serve a process-algebraic equivalence called conflict equivalence.

Various abstraction rules preserving conflict equivalence have been proposed
and used for compositional nonblocking verification. First, observer projection [20],
weak observation equivalence [23], and the set of certain conflicts [13, 14] have been
used to simplify individual components. The journal paper [7] introduces conflict
equivalence to compositional nonblocking verification and proposes a more com-
prehensive set of conflict-preserving abstraction rules. The same technique has
also been applied to compositional verification of the generalised nonblocking prop-
erty [16], giving rise to an improved set of abstraction rules. It has also been
proposed to replace abstraction rules by more general simplification processes us-
ing annotated automata [26] or canonical automata [27]. All these methods are based
on conflict equivalence, and make no assumptions about the system components
not being simplified. To improve the degree of simplification, it has also been
proposed to use a weaker equivalence that takes more information about the re-
mainder of the system into account, e.g., by identifying events that are used in
special ways [21].

The above publications on compositional nonblocking verification describe al-
gorithms that decide efficiently for a given system whether or not it is nonblock-
ing. If a system fails this nonblocking check, it is also important to present a
counterexample that shows the cause of the problem and helps to find a fix. The
counterexample is a sequence of events that takes the system to a livelock or
deadlock situation, and it is routinely computed by standard model checking algo-
rithms [15]. However, if verification is done compositionally, the counterexample
at first only applies to the simplified system, and needs to be converted back to
the original system. This problem has been addressed for safety properties [25],
but only partly [13] for the nonblocking property.

This paper gives a more complete account of the issues and solutions regarding
counterexample computation in compositional nonblocking verification. It is an
extended version of its conference precursor [18]. It includes the new Section 3.4
that shows how some particular abstraction rules fit in the framework of the paper,
and the new Section 5 with a general counterexample algorithm. Also included are
full formal proofs of all technical results.

In the following, Section 2 reviews the background of finite-state machines, the
nonblocking property, and compositional verification. Then Section 3 describes
the process of counterexample computation for two common classes of abstraction
rules, and Section 4 shows experimental results for these methods. Afterwards,
Section 5 proposes a general algorithm independent of specific abstraction rules
that works for all conflict-preserving abstractions. Lastly, Section 6 adds conclud-
ing remarks.

2

2 Preliminaries

2.1 Languages and Finite-State Machines

Event sequences and languages are a simple means to describe discrete system
behaviours [3, 22]. Their basic building blocks are events, which are taken from a
finite alphabet Σ. Two special events are used, the silent event τ and the termination

event ω. These are never included in an alphabet Σ unless mentioned explicitly
using notation such as Στ = Σ ∪ {τ}, Σω = Σ ∪ {ω}, and Στ,ω = Σ ∪ {τ, ω}.

Σ∗
τ,ω denotes the set of all finite traces of the form σ1 · · ·σn of events from Στ,ω,

including the empty trace ε. A subset L ⊆ Σ∗
τ,ω is called a language. The concate-

nation of two traces s, t ∈ Σ∗
τ,ω is written as st. A trace s ∈ Σ∗

τ,ω is called a prefix

of t ∈ Σ∗
τ,ω, written s ⊑ t, if there exists u ∈ Σ∗

τ,ω such that su = t. The length of a
trace s ∈ Σ∗

τ,ω, i.e., its number of events, is denoted by |s|. The natural projection

P : Σ∗
τ,ω → Σ∗

ω is the operation that deletes all silent (τ) events from traces.
System behaviours are modelled using finite-state machines. Typically, system

models are deterministic, but abstraction may result in nondeterminism.

Definition 1 A (nondeterministic) finite-state machine (FSM) is a tuple G = 〈Σ,

Q,→, Q◦〉 where Σ is a set of events, Q is a finite set of states, → ⊆ Q ×Στ,ω ×Q

is the transition relation, and Q◦ ⊆ Q is the set of initial states.

The transition relation is written in infix notation x
σ
→ y and extended to traces

s ∈ Σ∗
τ,ω in the standard way. For state sets X,Y ⊆ Q, the notation X

s
→ Y means

x
s
→ y for some x ∈ X and y ∈ Y . For states or state sets x and y, the notation

x → y means x
s
→ y for some s ∈ Σ∗

τ,ω, and x
s
→ means x

s
→ z for some z ∈ Q.

Events not in the event set of an FSM are always enabled without state change,
so the transition relation is further extended by x

σ
→ x for all x ∈ Q and σ /∈ Στ,ω.

To support silent events, another transition relation ⇒ ⊆ Q ×Σ∗
ω ×Q is intro-

duced, where x
s
⇒ y denotes the existence of a trace t ∈ Σ∗

τ,ω such that P (t) = s

and x
t
→ y. That is, x

s
→ y denotes a path with exactly the events in s, while

x
s
⇒ y denotes a path with an arbitrary number of τ events shuffled with the

events of s. Notations such as X
s
⇒ Y and x

s
⇒ are defined analogously to →. For

an FSM G = 〈Σ, Q,→, Q◦〉, the notation G
s
⇒ x means Q◦ s

⇒ x.
The termination event ω /∈ Σ denotes completion of a task and does not appear

anywhere else but to mark such completions. It is required that states reached
by ω do not have any outgoing transitions, i. e., if x

ω
→ y then there does not exist

σ ∈ Στ,ω such that y
σ
→. This ensures that the termination event, if it occurs,

is always the final event of any trace. The traditional set of accepting states is
Qω = {x ∈ Q | x

ω
→} in this notation. The marked or accepting language of a state

or state set x is Lω(x) = { s ∈ Σ∗ | x
sω
⇒}, and the accepting language of an FSM G

is Lω(G) = Lω(Q◦). The accepting language contains traces that can be extended
to termination with an ω-event, but it does not explicitly include ω.

Example 1 Fig. 1 shows the same FSM G in two graphical representations. The
diagram on the left includes ω-transitions that lead to a terminated state, also
called ω, without any outgoing transitions. The diagram on the right uses a more
conventional representation, where accepting states in Qω are coloured black with-
out explicitly showing ω-transitions. The second representation will be used in later
figures for graphical simplicity.

3

α

α α
β

β
β

0

1

2

3

ω

ω

ω

α

αα

β
β

β

1

2

0

3

Fig. 1 Graphical representation of an FSM with and without ω-transitions.

FSMs are synchronised in lock-step [10]. The synchronous composition of two
FSMs G = 〈ΣG, QG,→G, Q◦

G〉 and H = 〈ΣH , QH ,→H , Q◦
H〉 is

G ‖H = 〈ΣG ∪ΣH , QG ×QH ,→, Q◦
G ×Q◦

H〉 (1)

where

(xG, xH)
σ
→ (yG, yH) if σ 6= τ, xG

σ
→G yG, xH

σ
→H yH ; (2)

(xG, xH)
τ
→ (yG, xH) if xG

τ
→G yG ; (3)

(xG, xH)
τ
→ (xG, yH) if xH

τ
→H yH . (4)

Equation (2) uses the extended definition of the transition relation, x
σ
→ x for

σ /∈ Στ,ω, to define synchronous composition for events that appear in only one of
the FSMs G or H. As a result, shared events in Σω (including ω) must be executed
by both the composed FSMs together, while events that appear in only one FSM
and τ are executed by only one FSM without the other changing its state.

2.2 The Nonblocking Property

The key liveness property in supervisory control theory is the nonblocking property
[22]. An FSM is nonblocking if termination is possible from every reachable state.

Definition 2 [17] An FSM G = 〈Σ, Q,→, Q◦〉 is nonblocking if, for every state

x ∈ Q and every trace s ∈ Σ∗ such that Q◦ s
⇒ x, there exists a trace t ∈ Σ∗ such

that x
tω
⇒; otherwise G is blocking.

This definition generalises the language-based definition [22] of the nonblock-
ing property to the case of nondeterministic state machines. According to the
language-based definition, a deterministic FSM is nonblocking if every trace of
its behaviour can be extended to an accepting trace, or equivalently for every
reachable state there exists a path to a marked or accepting state. This becomes
equivalent to Def. 2 if the set of accepting states is considered as the set of states
where the termination event ω is enabled, Qω = {x ∈ Q | x

ω
→}. Then Def. 2 means

that for every reachable state x it holds that x → Qω, i.e., an accepting state can
be reached from x. (There is an exception for states reached after termination,
which do not exist in the language-based setting and which given ω /∈ Σ are ruled
out by the requirement Q◦ s

⇒ x with s ∈ Σ∗.)
If a system is found to be blocking by automatic verification, it is desirable

to present an explanation of the fault to the designers. In model checking, this
explanation is provided in the form of a counterexample. For deterministic FSMs,

4

counterexamples can be described as traces of events, while in the nondetermin-
istic case the state information is also important. Therefore, this paper considers
counterexamples to be paths.

Definition 3 Let G = 〈Σ, Q,→, Q◦〉 be an FSM. A path in G is an alternating
sequence of states and events of G,

C : x0
σ1→ x1

σ2→ · · ·
σn→ xn . (5)

The path C is said to be accepted by G if x0 ∈ Q◦ and xi−1
σi→ xi for i = 1, . . . , n.

The event trace of the path C is the sequence of its events, trace(C) = σ1 · · ·σn,
and the length of the path C is its number of events, |C| = |trace(C)| = n.

Definition 4 Let G = 〈Σ, Q,→, Q◦〉 be an FSM. A counterexample to the nonblock-

ing property of G is a path x0
σ1→ · · ·

σn→ xn accepted by G such that Lω(xn) = ∅.

A counterexample highlights the cause of blocking by showing a path that leads
to a faulty (blocking) state. It starts from the initial state and follows transitions
of the FSM. Its end state xn has an empty accepting language, Lω(xn) = ∅, or

equivalently xn
tω
⇒ does not hold for any t ∈ Σ∗. Such a state is called a blocking

state. Clearly, a counterexample to the nonblocking property exists if and only if
G is blocking.

Example 2 The FSM in Fig. 1 is blocking, because the reachable state 2 is block-
ing. Although the system can still execute the transition 2

α
→ 2, it will never be able

to terminate from state 2 so that Lω(2) = ∅. A counterexample to the nonblocking
property is

0
α
→ 1

β
→ 2 . (6)

2.3 The Conflict Preorder

To reason about the nonblocking property in a compositional way, the notion
of conflict equivalence is used [17]. According to process-algebraic testing theory,
two FSMs are considered as equivalent if they both respond in the same way to
tests [6]. For conflict equivalence, a test is an arbitrary FSM, and the response is the
observation whether the test composed with the FSM in question is nonblocking
or not.

Definition 5 [17] Let G and H be two FSMs. H is less conflicting than G, written
H .conf G, if for any FSM T such that G ‖ T is nonblocking, it also holds that
H ‖T is nonblocking. G and H are conflict equivalent, G ≃conf H, if G .conf H and
H .conf G.

If H .conf G, then H is said to be less conflicting than G, or G is more conflicting

than H. The properties of the conflict preorder .conf and of conflict equivalence
and their relationship to other process-algebraic relations are studied in [17]. Con-
flict equivalence is the coarsest congruence with respect to synchronous composi-
tion that respects blocking, making it an ideal equivalence for use in compositional
verification of this property [7].

As a related concept, every FSM can be associated with a language of certain
conflicts, which also plays an important role in conflict semantics [14].

5

Definition 6 [14] For an FSM G = 〈Σ, Q,→, Q◦〉, write

Conf(G) = { s ∈ Σ∗ | for every FSM T such that T
s
⇒, it holds that

G ‖ T is blocking } ,

(7)

NConf(G) = { s ∈ Σ∗ | there exists an FSM T such that T
s
⇒ and G ‖ T

is nonblocking } .

(8)

Conf(G) is the set of certain conflicts of G. It contains all traces that, when
possible in the environment, necessarily cause blocking. Its complement NConf(G)
is the most general behaviour of FSMs that are to be nonconflicting with G. If G
is nonblocking, then Conf(G) = ∅ and NConf(G) = Σ∗, because in this case G‖U

is nonblocking, where U is a deterministic FSM such that Lω(U) = Σ∗. The set of
certain conflicts becomes interesting for blocking FSMs.

When verifying whether a composed system of FSMs

G1 ‖G2 ‖ · · · ‖Gn , (9)

is nonblocking, compositional methods [7, 8] avoid building the full synchronous
composition. First, individual FSMs Gi are simplified and replaced by smaller
conflict equivalent FSMs. When no further simplification is possible, a subsys-
tem (Gj)j∈J is selected and replaced by its synchronous composition. The result
is then simplified again before proceeding further.

The final result of this process is a single FSM H, which is the compositional
abstraction of (9). The congruence properties [17] of conflict equivalence ensure
that H is nonblocking if and only if the original system (9) is. H typically has
fewer states than (9), making it possible to check whether it is nonblocking even
though the full composition (9) may be too large to fit in memory.

3 Counterexample Expansion

Assume that a system (9) is found to be blocking at the end of compositional
verification, i.e., the final compositional abstraction is blocking. Then standard
state exploration algorithms [15] produce a counterexample to the nonblocking
property in addition to detecting blocking, but this counterexample applies to
the compositional abstraction only. After several steps of simplification, it is not
guaranteed to apply to the original system (9).

In the following, a counterexample to the nonblocking property of an abstracted
system is called an abstract counterexample, while a counterexample to the non-
blocking property of the system before abstraction is called a concrete counter-
example.

The fact that each abstraction step preserves conflict equivalence guarantees
that, for each abstract counterexample there must exist a concrete counterexample.
A concrete counterexample for the original system (9) can be obtained by a process
of expansion. Starting with the last abstraction step, the abstract counterexample
is modified to be a concrete counterexample for the system before the last step,
and this is repeated for each abstraction step until the original system is reached.
Precisely how these expansion steps work depends on the particular kind of ab-
straction performed at each step.

6

Next, Section 3.1 explains the principles of counterexample computation using
simple abstraction steps. Then Section 3.2 presents the counterexample expansion
algorithm, Section 3.3 proves its correctness, and Section 3.4 discusses the conflict-
preserving abstraction rules that work together with this algorithm. Afterwards,
Section 3.5 describes the more complicated counterexample extension algorithm,
which is needed for some abstraction rules.

3.1 Synchronous Composition and Hiding

The simplest abstraction step is that of synchronous composition. The system (9)
can be replaced by

(G1 ‖G2) ‖G3 ‖ · · · ‖Gn . (10)

Here, two components G1 and G2 are selected and replaced by their synchronous
composition. Clearly, the composed systems before and after abstraction are iso-
morphic in this case, so any abstract counterexample is also a concrete counter-
example—except for the state information. The state tuples in an abstract counter-
example for (10) have the structure ((x1, x2), x3, . . . , xn), which needs to be changed
to (x1, x2, x3, . . . , xn) in a concrete counterexample for (9).

Another simple type of abstraction is hiding. Assume that in (9) the events in
some subset Υ ⊆ Σ appear only in G1 and in no other components. Then (9) can
be replaced by

(G1 \Υ) ‖G2 ‖ · · · ‖Gn . (11)

Here, G1\Υ is the result of hiding, which is obtained from G1 by replacing all events
in Υ by the silent event τ [7]. The abstraction is isomorphic to the original system
apart from event renaming. An abstract counterexample for (11) may contain
steps labelled τ that are not possible in the original system (9). These steps can
be identified from the state information, and their τ events must be replaced with
the correct events from the original FSM G1.

These two counterexample transformations are straightforward, provided that
there is sufficient information about the intermediate FSMs computed during com-
positional abstraction. This information must either be held in memory or recal-
culated on demand.

3.2 State Merging

A common method to simplify an FSM is to construct its quotient modulo an
equivalence relation. The following definitions are standard.

An equivalence relation is a reflexive, symmetric, and transitive relation. Given
an equivalence relation ∼ on a set Q, the equivalence class of x ∈ Q with respect
to ∼ is [x] = {x′ ∈ Q | x′ ∼ x }. An equivalence relation on a set Q partitions Q

into Q/∼ = { [x] | x ∈ Q }.

Definition 7 Let G = 〈Σ, Q,→, Q◦〉 be an FSM, and let ∼ ⊆ Q × Q be an
equivalence relation. The quotient FSM G/∼ of G with respect to ∼ is G/∼ =
〈Σ, Q/∼ ,→/∼ , Q̃◦〉, where →/∼ = { ([x], σ, [y]) | x

σ
→ y } and Q̃◦ = { [x◦] | x◦ ∈

Q◦ }.

7

When constructing a quotient FSM, classes of equivalent states are combined
or merged into a single state. The quotient FSM contains a transition linking two
classes of states if the original FSM contains a transition with the same event that
links some states of these classes.

There are several relations ∼ such that G1 and G1/∼ are conflict equivalent
[7,23]. Therefore, it is common in compositional nonblocking verification to replace
an FSM in (9) by its quotient and obtain an abstract system

(G1/∼) ‖G2 ‖ · · · ‖Gn . (12)

If the abstracted system (12) is blocking, then it has a counterexample accepted
by all its components that ends in a blocking state. This counterexample needs to
be modified so that it is accepted by G1 rather than G1/∼ and leads to an end
state that is blocking in the original system (9). The following condition ensures
that this counterexample modification can be done using information about G1

and G1/∼ only.

Definition 8 Let G and H be two FSMs. H is counterexample-based less conflicting

than G, written H .ce G, if for all paths H
s
⇒ xH with s ∈ Σ∗ there exists a state

xG of G such that G
s
⇒ xG and Lω(xG) ⊆ Lω(xH).

The abstraction H is counterexample-based less conflicting than the original
FSM G, if for every state reachable in the abstraction, the original FSM has a state
reached by the same event trace, such that the marked language of the state in the
original FSM is contained in the marked language of the state of the abstraction.
This state-based property can be shown to be stronger than the conflict preorder.

Proposition 1 Let G and H be two FSMs. If H .ce G then H .conf G.

Proof Let H .ce G. To show H .conf G, let T be an FSM such that G ‖ T is
nonblocking. It is to be shown thatH‖T is nonblocking, so assumeH‖T

s
⇒ (xH , xT)

for some s ∈ Σ∗. Then H
s
⇒ xH , so by Def. 8 there exists a state xG of G such that

G
s
⇒ xG and Lω(xG) ⊆ Lω(xH). It follows that G ‖ T

s
⇒ (xG, xT), and since G ‖ T

was assumed nonblocking, there exists t ∈ Lω((xG, xT)) = Lω(xG) ∩ Lω(xT) ⊆

Lω(xH) ∩ Lω(xT) = Lω((xH , xT)). As H ‖ T
s
⇒ (xH , xT) was chosen arbitrarily, it

follows that H ‖ T is nonblocking. ⊓⊔

If Def. 8 holds, a concrete counterexample can be obtained by the following
observations: if an abstract counterexample takes the abstract FSM H to some
state xH , i.e., H

s
⇒ xH , then the definition ensures the existence of a state xG of

the concrete FSM G with a smaller marked language. This state xG is a suitable
end state for a concrete counterexample. It remains to change the path to xH
so that it ends in xG while using the same non-τ events, which must be possible
because G

s
⇒ xG.

Algorithm 1 is a search procedure to find a concrete counterexample when
Def. 8 is satisfied after abstraction of G1 in a composition (9). First, the loop on
lines 1–3 deletes from the abstract counterexample C̃ all τ -transitions that cor-
respond to the abstract FSM, as these must be replaced by transitions from the
concrete FSM. Then line 4 decomposes the resulting path C̃, in particular its length
is k. From line 5, the algorithm performs a search through the concrete FSM G1

8

Algorithm 1: Counterexample Expansion after State Merging

Input: G1, . . . , Gn where Gi = 〈Σi, Qi,→i, Q
◦
i 〉, and G̃1 = G1/∼

Input: abstract counterexample C̃ for G̃1 ‖G2 ‖ · · · ‖Gn

Output: concrete counterexample C for G1 ‖ · · · ‖Gn

1 while C̃ includes a transition (x̃1, x̃2, . . . , x̃n)
τ
→ (z̃1, x̃2, . . . , x̃n) do

2 delete the first such transition together with its source state from C̃

3 end

4 let C̃ : ỹ0
σ1→ · · ·

σk→ ỹk, with ỹi = (x̃i1, x̃
i
2, . . . , x̃

i
n) for i = 0, . . . , k

5 foreach x◦1 ∈ Q◦
1 do

6 C := (x◦1, x̃
0
2, . . . , x̃

0
n) // one-state path

7 add (C, 0) to Queue

8 add (x◦1, 0) toVisited

9 end

10 while Queue is not empty do

11 remove (C, c) with |C|+ k − c minimal from Queue

12 let C : y0
α1→ · · ·

αm−−→ ym, with yi = (xi1, x
i
2, . . . , x

i
n) for i = 0, . . . ,m

13 if c = k then

14 if Lω(xm1) ⊆ Lω(x̃k1) then

15 return C

16 end

17 else if σc+1 ∈ Σ1 then

18 foreach transition xm1
σc+1

−−−→1 z1 in G1 do

19 if (z1, c+ 1) /∈Visited then

20 C′ := C
σc+1

−−−→ (z1, x̃
c+1
2 , . . . , x̃c+1

n)
21 add (C′, c+ 1) to Queue

22 add (z1, c+ 1) toVisited

23 end

24 end

25 else if (xm1 , c+ 1) /∈Visited then

26 C′ := C
σc+1

−−−→ (xm1 , x̃c+1
2 , . . . , x̃c+1

n)
27 add (C′, c+ 1) to Queue

28 add (xm1 , c+ 1) toVisited

29 end

30 foreach transition xm1
τ
→1 z1 in G1 do

31 if (z1, c) /∈Visited then

32 C′ := C
τ
→ (z1, x̃

c
2, . . . , x̃

c
n)

33 add (C′, c) to Queue

34 add (z1, c) toVisited

35 end

36 end

37 end

9

to find paths using the same steps as the abstract counterexample, possibly in-
terleaved with τ -transitions of the concrete FSM. It uses a Queue of pairs (C, c),
where C is a partially constructed initial segment of a concrete counterexample,
and c is the number of events of the abstract counterexample C̃ already processed.
The setVisited contains pairs (x1, c) of concrete states x1 of G1 and numbers c of
processed events, to ensure termination by avoiding duplicate search states. The
loop on lines 5–9 initialises the search with concrete counterexamples starting from
each initial state of G1. The main loop on lines 10–37 retrieves each pair (C, c),
decomposes C as per line 12, so its length is m, and explores transitions originating
from the concrete end state xm1 in G1.

If all events of C̃ have been processed, then c = k and line 14 checks the ter-
mination condition Lω(xm1) ⊆ Lω(x̃k1) according to Def. 8, and returns C as the
concrete counterexample if satisfied. Otherwise, the next event σc+1 from C̃ is con-
sidered, and its possible transitions are explored to extend C and form new search
states. The event is either synchronised with G1 (lines 17–24) or only performed
by the rest of the system G2 ‖· · ·‖Gn (lines 25–28). In any case, τ -transitions in G1

also have to be explored (lines 30–36).
Assuming Def. 8, Algorithm 1 always terminates through line 15 before the

Queue becomes empty. The measure |C|+ k− c on line 11 optimistically estimates
counterexample length, given by the number |C| of events in the constructed con-
crete counterexample plus the number k − c of events from the abstract counter-
example still to be added. By processing pairs where this measure is minimal first,
the algorithm performs an A∗-search that guarantees a shortest result [9].

The language containment check on line 14 is a potentially time-consuming
operation. The worst-case time to determine whether Lω(G) ⊆ Lω(H) for nonde-
terministic FSMs G and H is exponential in the number of states of H. Fortunately,
most abstractions satisfy Def. 8 in such a way that this check can be replaced by
a simple constant-time operation, as will be shown in Subsection 3.4 below.

Setting aside the time taken for the language containment checks on line 14,
the time complexity of Algorithm 1 depends on the length of the abstract counter-
example and the size of the concrete FSM. The number of possible search states
and thus iterations of the main loop starting on line 10 is bounded by |C̃||Q1|,
and each iteration may process up to two transitions to each state of the nonde-
terministic FSM G1 through the loops starting on lines 18 and 30. This gives a
worst-case time complexity of O(|C̃||Q1|

2), which is insignificant compared to the
overall runtime of compositional nonblocking verification.

3.3 Correctness Proof of Counterexample Expansion

This section gives a formal proof of the correctness of Algorithm 1. This algorithm
performs a search with a complex loop invariant, which is proved in three steps.
First, Lemma 2 establishes the partial correctness, which means that the algorithm
produces a correct result if it terminates [12]. Afterwards, Lemmas 3 and 4 prove
termination. These results are combined in Prop. 5, which states that Algorithm 1
is totally correct, i.e., it terminates and gives a correct result.

First, Lemma 2 establishes the partial correctness of Algorithm 1. It shows
that any result returned from line 15 is a concrete counterexample. Interestingly,
this lemma does not require the assumption of the counterexample-based preorder,

10

G̃1 .ce G1. Any counterexample returned by Algorithm 1 is correct, however the
algorithm is not guaranteed to return a result unless G̃1 .ce G1.

Lemma 2 Assume that Algorithm 1 is run with a counterexample to the non-
blocking property of G̃1 ‖G2 ‖ · · · ‖Gn as input. If the algorithm returns a counter-
example C from line 15, then C is a concrete counterexample to the nonblocking
property of G1 ‖ · · · ‖Gn.

Proof Let

C̃ : ỹ0
σ1→ · · ·

σk→ ỹk with ỹi = (x̃i1, . . . , x̃
i
n) for i = 0, . . . , k ; (13)

be the reduced path that results from the loop on lines 1–3, as per line 4. The loop
on lines 1–3 modifies an abstract counterexample to the nonblocking property of
G̃1‖G2‖· · ·‖Gn by removing τ -transitions performed by G̃1 whose source and target
state components of G2, . . . , Gn must be equal. Then the modified C̃ continues to
be accepted by G2, . . . , Gn (but not necessarily by G̃1), and the end state of C̃ is
unchanged as the loop removes transitions with their source states. Thus,

C̃ is accepted by G2 ‖ · · · ‖Gn ; (14)

Lω(ỹk) = ∅ . (15)

It is first shown that the main loop of Algorithm 1 satisfies the following loop

invariant. At the beginning of every iteration, on line 11, for every pair (C, c) ∈

Queue with

C : y0
α1→ · · ·

αm−−→ ym with yi = (xi1, . . . , x
i
n) for i = 0, . . . ,m ; (16)

the following conditions hold:

(i) c ≤ k;
(ii) C is accepted by G1 ‖ · · · ‖Gn;
(iii) (xm2 , . . . , xmn) = (x̃c2, . . . , x̃

c
n);

First consider the initial pairs (C, 0) added to the Queue on line 7, i.e., C = y0 =
(x◦1, x̃

0
2, . . . , x̃

0
n) is a one-state path. Obviously 0 ≤ k, so (i) holds. Following (14),

it is clear that x̃0j ∈ Q◦
j for j = 2, . . . , n, and as x◦1 ∈ Q◦

1 from line 5, it follows

that y0 = (x◦1, x̃
0
2, . . . , x̃

0
n) is an initial state of G = G1 ‖ · · · ‖Gn, showing (ii). Also

(xm2 , . . . , xmn) = (x02, . . . , x
0
n) = (x̃02, . . . , x̃

0
n) from line 6, showing (iii).

Now assume a pair (C, c) that satisfies (i)–(iii) is removed from the Queue on
line 11, and consider the pairs added during the loop on line 21, 27, or 33.

If (C′, c + 1) is added on line 21, then c < k from (i) and line 13, and thus

c+1 ≤ k which shows (i). Furthermore, σc+1 ∈ Σ1 from line 17, and xm1
σc+1

−−−→1 z1

in G1 from line 18, and C′ = C
σc+1

−−−→ (z1, x̃
c+1
2 , . . . , x̃c+1

n) from line 20. The end
state of C is ym = (xm1 , . . . , xmn) = (xm1 , x̃c2, . . . , x̃

c
n) as C satisfies (iii), and given (14)

it holds that (xm1 , x̃c2, . . . , x̃
c
n)

σc+1

−−−→ (z1, x̃
c+1
2 , . . . , x̃c+1

n) in G̃1 ‖G2 ‖ · · · ‖Gn. As C is
accepted by G1 ‖ · · · ‖Gn according to (ii), it follows that C′ also has this property.
Also the end state components for G2, . . . , Gn in C′ are x̃c+1

2 , . . . , x̃c+1
n from line 20,

which shows (iii).
If (C′, c + 1) is added on line 27, then c < k from (i) and line 13, and thus

c+ 1 ≤ k which shows (i). Furthermore, σc+1 /∈ Σ1 from line 17 and C′ = C
σc+1

−−−→

11

(xm1 , x̃c+1
2 , . . . , x̃c+1

n) from line 26. The end state of C is ym = (xm1 , . . . , xmn) =
(xm1 , x̃c2, . . . , x̃

c
n) as C satisfies (iii), and from (14) and σc+1 /∈ Σ1 it follows that

(xm1 , x̃c2, . . . , x̃
c
n)

σc+1

−−−→ (xm1 , x̃c+1
2 , . . . , x̃c+1

n). As C is accepted by G1‖· · ·‖Gn accord-
ing to (ii), it follows that C′ also has this property. Also the end state components
for G2, . . . , Gn in C′ are x̃c+1

2 , . . . , x̃c+1
n from line 26, which shows (iii).

If (C′, c) is added on line 33, then (i) continues to hold as c is unchanged.

Further, xm1
τ
→1 z1 from line 30 and C′ = C

τ
→ (z1, x̃

c
2, . . . , x̃

c
n) from line 32. Then

(xm1 , x̃c2, . . . , x̃
c
n)

τ
→ (z1, x̃

c
2, . . . , x̃

c
n), and as C is accepted by G1 ‖ · · · ‖Gn according

to (ii), it is clear that C′ also has this property. The end state components for
G2, . . . , Gn in C′ are x̃c2, . . . , x̃

c
n, which shows (iii).

This completes the proof of the loop invariant and shows that (i)–(iii) hold
for all pairs (C, c) ∈ Queue. Now assume C is returned from line 15. Then C has
been removed from the Queue on line 11, so there exists c such that (C, c) satisfies
(i)–(iii). Then c = k from line 13 and Lω(xm1) ⊆ Lω(x̃k1) from line 14, where the end
state of C is ym = (xm1 , . . . , xmn). Firstly, C is accepted by G1‖· · ·‖Gn because of (ii),
and secondly it follows from (iii) that ym = (xm1 , . . . , xmn) = (xm1 , x̃c2, . . . , x̃

c
n) =

(xm1 , x̃k2 , . . . , x̃
k
n), which implies Lω(ym) = Lω(xm1)∩Lω(x̃k2)∩· · ·∩L

ω(x̃kn) ⊆ Lω(x̃k1)∩
Lω(x̃k2)∩· · ·∩Lω(x̃kn) = Lω(ỹk) = ∅ by (15). This shows that C is a counterexample
to the nonblocking property of G1 ‖ · · · ‖Gn according to Def. 4. ⊓⊔

Having established partial correctness, the next step towards the correctness
proof of Algorithm 1 is to prove termination. The next Lemma 3 proves that the
main loop on lines 10–37 is guaranteed to terminate, either by returning a result
from line 15 or by the loop entry condition of a non-empty Queue on line 10
becoming false. The second case is not desirable, because the algorithm does not
return any result in this case, and it will be ruled out by Lemma 4 below. The
proof of Lemma 3 still does not require the assumption of the counterexample-
based preorder. Thus, the algorithm terminates under all circumstances, but the
result may be inconclusive if G̃1 .ce G1 does not hold.

Lemma 3 Assume that Algorithm 1 is run with a counterexample to the non-
blocking property of G̃1 ‖G2 ‖ · · · ‖Gn as input. Then the main loop on lines 10–37
will terminate after a finite number of iterations.

Proof Denote by
si = σ1 · · ·σi for i = 0, . . . , k (17)

the strings of events on the first i transitions on the reduced path C̃ (13) result-
ing from the loop on lines 1–3. Based on this, the set of pairs to be visited by
Algorithm 1 is defined as

V = { (v1, c) ∈ Q1 × {0, . . . , k} | G1
P (sc)
=⇒ v1 } . (18)

The set V contains pairs of states v1 of G1 and numbers c of processed events
from C̃, which are expected to be added to the setVisited .

It is now shown that the main loop of Algorithm 1 satisfies the following loop
invariant conditions in addition to (i)–(iii) that were shown in Lemma 2. At the
beginning of every iteration, on line 11, for every pair (C, c) ∈ Queue and for the
setVisited the following conditions hold:

(iv) P (trace(C)) = P (sc);

12

(v) Visited ⊆ V.

First, if a pair (C, 0) is added to the Queue on line 7, then trace(C) = ε and
thus P (trace(C)) = P (ε) = P (s0) using (17), which shows (iv). Also, if (x◦1, 0) is

added to Visited on line 8, then x◦1 ∈ Q◦
1 so that G1

ε
⇒ x◦1 with s0 = ε, which

implies (x◦1, 0) ∈ V using (18) and shows (v).
Now assume the main loop enters an iteration where (i)–(v) hold at the begin-

ning, and a pair (C, c) that satisfies (i)–(iv) is removed from the Queue on line 11.
Note that by (ii) and (iv)

G1
P (sc)
=⇒ xm1 , (19)

where xm1 is the state component of G1 at the end of C. Consider the pairs added
on lines 21–22, 27–28, and 33–34.

If (C′, c+1) is added on line 21, then c < k from (i) and line 13, and σc+1 ∈ Σ1

from line 17, and xm1
σc+1

−−−→1 z1 in G1 from line 18, and trace(C′) = trace(C)σc+1

from line 20. Then, since (iv) holds for (C, c), it follows that P (trace(C′)) =
P (trace(C)σc+1) = P (scσc+1) = P (sc+1), showing (iv) for (C′, c + 1). If next

(z1, c + 1) is added to Visited on line 22, then G1
P (sc)
=⇒ xm1

σc+1

−−−→ z1 by (19), and

with P (scσc+1) = P (sc+1) it is clear that G1
P (sc+1)
=⇒ z1. This means (z1, c+1) ∈ V

by (18) and shows that (v) continues to hold.
If (C′, c+1) is added on line 27, then c < k from (i) and line 13, and σc+1 /∈ Σ1

from line 17, and trace(C′) = trace(C)σc+1 from line 26. It is shown in the same
way as in the case of lines 21–22 above that (iv) and (v) continue to hold, just

using xm1 instead of z1 and noting that xm1
σc+1

−−−→1 xm1 for σc+1 /∈ Σ1.
If (C′, c) is added on line 33, then xm1

τ
→1 z1 from line 30 and trace(C′) =

trace(C)τ from line 32. Then P (trace(C′)) = P (trace(C)τ) = P (trace(C)) = P (sc)
as (C, c) satisfies (iv), which then also holds for (C′, c). If next (z1, c) is added to

Visited on line 34, then G1
P (sc)
=⇒ xm1

τ
→ z1 by (19) and thus G1

P (sc)
=⇒ z1. This means

(z1, c) ∈ V by (18) and shows that (v) continues to hold.
This completes the proof of the additional invariants. In particular, (v)Visited ⊆

V holds before and after each iteration. In Algorithm 1, whenever a pair (C, c) is
added to the Queue on line 7, 21, 27, or 33, then the following instruction also
adds an entry toVisited that is not already contained. AsVisited ⊆ V and V is a
finite set with at most |Q1| ·(k+1) elements, it follows that only a finite number of
pairs can be added to the Queue. As each iteration of the main loop removes one
element from the Queue on line 11, the number of iterations must be finite. ⊓⊔

Lemma 3 shows that the main loop on lines 10–37 of Algorithm 1 terminates.
The other loops on lines 1–3, 5–9, 18–24, and 30–36 clearly have finite numbers of
|C̃| or |Q1| iterations, so this is enough to prove termination of Algorithm 1.

Additionally, the proof of Lemma 3 gives the number of iterations of the main
loop as |Q1| · (k+1) where k = |C̃| is the number of events in the reduced abstract
counterexample. This gives rise to a time complexity estimation by considering
that each iteration of the main loop may also include the loops on lines 18–24
and 30–36 which may visit one transition to each state of the nondeterministic
FSM G1, i.e., |Q1| iterations. The initial loops on lines 1–3 and 5–9 are dominated
by the main loop. This gives the worst-case time complexity of O(|C̃||Q1|

2). This
estimate is based on the assumption that the lookup of pairs inVisited on lines 19,

13

25, and 31 and the construction of traces C′ on lines 20, 26, and 32 are done in
constant time. This can be achieved by representingVisited as a hash set and the
traces C′ as linked lists, for example.

It remains to be shown that Algorithm 1 does not only terminate, but that it
terminates by returning a result from line 15. This is only guaranteed under the
assumption G̃1 .ce G1 of the counterexample-based preorder.

Lemma 4 Let the input of Algorithm 1 be such that C̃ is a counterexample to
the nonblocking property of G̃1 ‖G2 ‖ · · · ‖Gn and G̃1 .ce G1. Then the main loop
on lines 10–37 terminates by returning a result from line 15.

Proof It follows from Lemma 3 that the main loop terminates either by returning
a result or because of an empty Queue. Now assume that the main loop never
returns from line 15. It will be shown that this results in a situation where the
loop must reach line 15, i.e., a contradiction.

First, it can be observed from Algorithm 1 that, whenever a pair (v1, c) is
added toVisited (on line 8, 22, 28, or 34), then the preceding line adds a pair (C, c)
to the Queue where the state component of G1 in the last state of C is v1.

It is now shown that Algorithm 1 will eventually add every element of V,

defined by (18), toVisited . Consider (v1, c) ∈ V. Then 0 ≤ c ≤ k and G1
P (sc)
=⇒ v1,

which means that there exists a trace t ∈ Σ∗
τ with P (t) = P (sc) such that G1

t
→ v1.

The claim is shown by induction on |t|+ c.

For the inductive base, |t| + c = 0 and thus t = ε and c = 0. Then G1
t
→ v1

implies v1 ∈ Q◦
1, so that (v1, c) = (v1, 0) is added toVisited on line 8.

For the inductive assumption, assume the claim has been shown for some N ≥

0. That is, for all (v1, c) ∈ V and all t ∈ Σ∗
τ such that P (t) = P (sc) and G1

t
→ v1,

if |t|+ c ≤ N , then (v1, c) is added toVisited by Algorithm 1.
For the inductive step, consider (v1, c) ∈ V and t ∈ Σ∗

τ such that P (t) = P (sc)

and G1
t
→ v1 and |t| + c = N + 1. Note that |t| + c > 0 so that |t| > 0 or c > 0.

Thus, t 6= ε or sc 6= ε. Then at least one of the following holds: t ends with τ , or sc
ends with τ , or given P (t) = P (sc) both t and sc end with the same event σ 6= τ .
These three cases are considered separately in the following.

Case 1: t = uτ . Then G1
u
→ w1

τ
→ v1 and P (u) = P (uτ) = P (t) = P (sc), which

means G1
P (sc)
=⇒ w1 and thus (w1, c) ∈ V. As also |u| + c = |t| − 1 + c = N , it

follows by inductive assumption that (w1, c) is added to Visited by Algorithm 1.
Then also a pair (C, c) is added to the Queue where the state component of G1 in
the last state of C is w1. If the algorithm does not terminate early, this pair (C, c)
is removed from the Queue on line 11 during some later iteration, at which point
xm1 = w1. Then the loop on lines 30–36 must process the transition xm1 = w1

τ
→ v1,

which results in addition of (v1, c) toVisited on line 34 (unless this pair is already
contained beforehand).

Case 2: sc = sc−1σc with σc = τ . Then P (t) = P (sc) = P (sc−1τ) = P (sc−1),

which given G1
t
→ v1 means G1

P (sc−1)
=⇒ v1 and thus (v1, c − 1) ∈ V. As also

|t|+c−1 = N , it follows by inductive assumption that (v1, c−1) is added toVisited .
Then also a pair (C, c−1) is added to the Queue where the state component of G1 in
the last state of C is v1. This pair is removed on line 11 during some later iteration,
at which point xm1 = v1 and the value of c is c − 1. As c ≤ k for (v1, c) ∈ V it is
clear that c − 1 6= k on line 13, and σ(c−1)+1 = σc = τ /∈ Σ1 on line 17. Then the

14

code on lines 26–28 gets executed, so (xm1 , (c− 1) + 1) = (v1, c) is added toVisited

on line 28.
Case 3: sc = sc−1σc and t = uσc with σc 6= τ . Then G1

u
→ w1

σc→ v1 and

P (u) = P (sc−1), which means G1
P (sc−1)
=⇒ w1 and thus (w1, c − 1) ∈ V. As also

|u|+(c− 1) = |t| − 1+ c− 1 = (N +1)− 2 < N , it follows by inductive assumption
that (w1, c−1) is added toVisited . Then also a pair (C, c−1) is added to the Queue

where the state component of G1 in the last state of C is w1. This pair is removed
on line 11 during some later iteration, at which point xm1 = w1 and the value of c
is c− 1. As c ≤ k it is clear that c− 1 6= k and σ(c−1)+1 = σc. Consider two further
cases. If σc ∈ Σ1, then as also c − 1 6= k, the loop on lines 18–24 gets executed.
Given xm1 = w1

σc→ v1 it follows that the pair (v1, (c− 1) + 1) = (v1, c) is added to
Visited on line 22. Otherwise, if σc /∈ Σ1, the code on lines 26–28 gets executed, and
it follows from w1

σc→ v1 that w1 = v1. Therefore, (x
m
1 , (c−1)+1) = (w1, c) = (v1, c)

is added toVisited on line 28.
This completes the induction and shows that every pair from V gets added

to the set Visited at some point. Now recall that the input to Algorithm 1 is a
counterexample to the nonblocking property of G̃1 ‖ G2 ‖ · · · ‖ Gn, which is mod-
ified through the loop on lines 1–3 by deletion of τ -transitions. The projection
P (trace(C̃)) = P (sk) on line 4 is unchanged from the original input, so that

G̃1
P (sk)
=⇒ x̃k1 where x̃k1 is the state component of G̃1 at the end of a concrete

counterexample. As G̃1 .ce G1, by Def. 8 there exists a state x1 ∈ Q1 such that

G1
P (sk)
=⇒ x1 and Lω(x1) ⊆ Lω(x̃k1). Then (x1, k) ∈ V by (18), and this pair gets

added to Visited at some point during execution of Algorithm 1. Then also a
pair (C, k) is added to the Queue where the state component of G1 in the last
state of C is x1. This pair is removed on line 11 during some later iteration, at
which point c = k and xm1 = x1. Thus, c = k and Lω(xm1) = Lω(x1) ⊆ L(x̃k1), so
Algorithm 1 returns C from line 15. ⊓⊔

The following Prop. 5 combines the results of the above lemmas and confirms
the total correctness of Algorithm 1. That is, under the assumption G̃1 .ce G1 of
the counterexample-based preorder, the algorithm terminates and gives a correct
result.

Proposition 5 Let the input of Algorithm 1 be such that C̃ is a counterexample
to the nonblocking property of G̃1 ‖G2 ‖ · · · ‖Gn and G̃1 .ce G1. Then Algorithm 1
terminates after a finite number of steps and returns a counterexample to the
nonblocking property of G1 ‖ · · · ‖Gn.

Proof By Lemma 4, the algorithm terminates by returning a result from line 15.
By Lemma 2, this result is a counterexample to the nonblocking property of G1 ‖

· · · ‖Gn. ⊓⊔

3.4 Specific Abstraction Rules

In order to obtain a concrete counterexample from Algorithm 1, it must be guar-
anteed that the abstraction does not only preserve conflict equivalence but also
the stronger counterexample-based preorder of Def. 8. Fortunately, many conflict-
preserving abstraction rules [7, 21] can be shown to fit in this framework. This
section presents the relevant results for the abstraction rules of [7].

15

For an abstraction to satisfy Def. 8, it must be shown that for every state reach-
able in the abstraction there exists a state in the original FSM, which is reached
by the same trace and has a smaller accepting language. As state merging abstrac-
tions are constructed as quotient FSMs, it is noticed that the accepting language
of a state x is always contained in the accepting language of its equivalence class [x]
in a quotient FSM. This is well-known for all state merging abstractions [2].

Lemma 6 Let G = 〈Σ, Q,→, Q◦〉 be an FSM, and let G/∼ be its quotient modulo
an equivalence relation ∼ ⊆ Q ×Q. Then Lω(x) ⊆ Lω([x]) for every state x ∈ Q.

Proof Let x ∈ Q and s ∈ Lω(x). Then there exists a path x = x0
σ1→ · · ·

σn→ xn
ω
→

in G where s = P (σ1 · · ·σn). Then by Def. 7, [x] = [x0]
σ1→ · · ·

σn→ [xn]
ω
→ is a path

in G/∼, and this is enough to show s ∈ Lω([x]). ⊓⊔

Based on Lemma 6, for every abstract state [x] it is clear that there exists
x ∈ [x] with a smaller marked language. For counterexample expansion, it remains
to be shown that these states can also be reached with the same traces. This
second condition is not true for all quotient FSMs, and it depends on the specific
equivalence relation used. One equivalence that can be used is the well-known weak

bisimulation or observation equivalence [19].

Definition 9 Let G = 〈Σ, Q,→, Q◦〉 be an FSM. An equivalence relation ≈ ⊆

Q×Q is a weak bisimulation or observation equivalence relation on G if for all states
x1, x2 ∈ Q such that x1 ≈ x2 the following condition holds: if x1

σ
→ y1 for some

y1 ∈ Q and σ ∈ Στ,ω, then there exists y2 ∈ Q such that y1 ≈ y2 and x2
P (σ)
=⇒ y2.

Two states are observation equivalent if they have got exactly the same en-
abled events, leading to equivalent successor states. This property of observation
equivalence ensures that Lemma 6 can be reversed to construct paths in the orig-
inal FSM G from paths in its abstraction G/≈. The proof of the following lemma
is by straightforward induction from Def. 9.

Lemma 7 Let G = 〈Σ, Q,→, Q◦〉 be an FSM, and let ≈ ⊆ Q×Q be an observation
equivalence relation on G. If x̃

s
⇒ ỹ in G/≈, then for every state x ∈ x̃ there exists

a state y ∈ ỹ such that x
s
⇒ y in G.

Observation equivalence is a well-known equivalence with efficient algorithms
that preserves conflict equivalence [7]. It is now shown that a quotient FSM modulo
an observation equivalence satisfies Def. 8 so that Algorithm 1 can be used for
counterexample expansion.

Proposition 8 Let G = 〈Σ, Q,→, Q◦〉 be an FSM, and let ≈ ⊆ Q × Q be an
observation equivalence relation on G. Then G/≈ .ce G.

Proof Let G/≈
s
⇒ x̃ for some s ∈ Σ∗ and x̃ ∈ Q/≈. Then there exists an initial

state class x̃◦ ∈ Q̃
◦
such that x̃◦

s
⇒ x̃. By Def. 7, there exists an initial state

x◦ ∈ Q◦ ∩ x̃◦. By Lemma 7, it follows that there exists a state x ∈ x̃ such that
x◦

s
⇒ x, i.e., G

s
⇒ x. By Lemma 6, it is clear that Lω(x) ⊆ Lω(x̃), and this is

enough to show G .ce G/≈ using Def. 8. ⊓⊔

16

Observation equivalence is the most effective known abstraction rule for com-
positional nonblocking verification in terms of state-space reduction [7,21]. This is
known as the Observation Equivalence Rule [7]. Its use is justified by the fact that
observation equivalence implies conflict equivalence, which is proved in a more
general setting in [16]. The following proof is more direct and demonstrates the
use of the counterexample-based preorder.

Proposition 9 (Observation Equivalence Rule) Let G = 〈Σ, Q,→, Q◦〉 be an
FSM, and let ≈ ⊆ Q × Q be an observation equivalence relation on G. Then
G ≃conf G/≈.

Proof By Props. 1 and 8, it is clear that G/≈ .conf G. It is now shown that
also G .ce G/≈ as this implies G .conf G/≈ by Prop. 1. Let G

s
⇒ x for some

s ∈ Σ∗. It follows from Def. 7 that G/≈
s
⇒ [x], so it remains to be shown that

Lω([x]) ⊆ Lω(x). Let s ∈ Lω([x]). Then [x]
sω
⇒ ỹ in G/≈. By Lemma 7, it follows

that there exists y ∈ ỹ such that x
sω
⇒ y in G, which means that s ∈ Lω(x). ⊓⊔

Conflict equivalence allows for other means of simplification beyond observa-
tion equivalence. The compositional verification method [7] includes abstraction
rules where the quotient is based on a different kind of equivalence relation, called
incoming equivalence.

Definition 10 [7] Let G = 〈Σ, Q,→, Q◦〉 be an FSM. An equivalence relation
∼inc ⊆ Q ×Q is an incoming equivalence relation on G if, for all states x1, x2 ∈ Q

such that x1 ∼inc x2 the following conditions hold.

(i) If Q◦ ε
⇒ x1 then Q◦ ε

⇒ x2.

(ii) If x
σ
⇒ x1 for some x ∈ Q and σ ∈ Σω, then it also holds that x

σ
⇒ x2.

Two states are incoming equivalent if they have got the same incoming tran-
sitions from exactly the same source states. Incoming equivalent states typically
result from nondeterministic branching. If a state in a nondeterministic automaton
has two successor states reached by the same event, then these successor states are
incoming equivalent provided that they do not have other incoming transitions.
Incoming equivalence also allows the construction of paths in the original FSM
from paths in its abstraction, making it another sufficient condition for Def. 8.

Lemma 10 [7] Let G = 〈Σ, Q,→, Q◦〉 be an FSM, and let ∼inc ⊆ Q × Q be an

incoming equivalence relation on G. If G/∼inc
s
⇒ x̃, then there exists a state x ∈ x̃

such that G
s
⇒ x.

Proposition 11 Let G = 〈Σ, Q,→, Q◦〉 be an FSM, and let ∼inc ⊆ Q × Q be an
incoming equivalence relation on G. Then G/∼inc .ce G.

Proof Let G/∼inc
s
⇒ x̃ for some s ∈ Σ∗ and x̃ ∈ Q/∼inc. By Lemma 10, there exists

a state x ∈ x̃ such that G
s
⇒ x. By Lemma 6, it is clear that Lω(x) ⊆ Lω(x̃), and

this is enough to show G/∼inc .ce G using Def. 8. ⊓⊔

By Prop. 11, every quotient FSM constructed with an incoming equivalence
relation results in an abstraction that is counterexample-based less conflicting
than the original FSM. Incoming equivalence alone does not ensure the converse,

17

G:

α α

β

β

β

0

1 2

3

H:

α

β

β

0

12

3

Fig. 2 Example of application of the Active Events Rule.

G:

α

α β

β τ

τ
0 1

2 3

H:

α

α

β

β

τ
01

2 3

Fig. 3 Example of application of the Silent Continuation Rule.

i.e, that the abstraction is also more conflicting than the original, so additional
conditions are imposed to ensure a conflict equivalent abstraction.

One of these is described as the Active Events Rule [7]. In addition to being
incoming equivalent, two states must also have exactly the same enabled events,
either immediately or after some τ -transitions. Merging states that are equivalent
subject to this combined condition preserves conflict equivalence.

Proposition 12 (Active Events Rule [7]) Let G = 〈Σ, Q,→, Q◦〉 be an FSM,
and let ∼ ⊆ Q × Q be an incoming equivalence relation on G such that, for all
x1, x2 ∈ Q with x1 ∼ x2 and all events σ ∈ Σω it holds that x1

σ
⇒ if and only if

x2
σ
⇒. Then G ≃conf G/∼.

Example 3 [7] In Fig. 2, states 1 and 2 in G have incoming transitions from 0

associated with α and from 1 associated with β, which establishes incoming equiv-
alence. Furthermore, the only event enabled from these states is β. According to
Prop. 12, these two states are equivalent and can be merged into a single state 12

as shown in H.

Another abstraction based on incoming equivalence is the Silent Continuation

Rule [7]. It allows for the merging of incoming equivalent states, which in addition
have outgoing τ -transitions that eventually lead to stable states, i.e., states with
no further outgoing τ -transitions.

Proposition 13 (Silent Continuation Rule [7]) Let G = 〈Σ, Q,→, Q◦〉 be an
FSM, and let ∼ ⊆ Q × Q be an incoming equivalence relation on G such that,
for all x1, x2 ∈ Q with x1 ∼ x2 it holds that either x1 = x2 or there exist states
y1, y2 ∈ Q such that x1 6= y1 and x2 6= y2 and x1

ε
⇒ y1 6

τ
→ and x2

ε
⇒ y2 6

τ
→. Then

G ≃conf G/∼.

Example 4 [7] In Fig. 3, states 0 and 1 in G are both considered initial as they
both can be reached silently from the initial state 0. This is enough to satisfy
incoming equivalence in this case, since neither state is reachable by any event
other than τ . Moreover, both states can, by executing at least one silent transition,
reach the stable state 3, which has no outgoing τ transitions. By Prop. 13, states 0
and 1 in G are conflict equivalent and can be merged into state 01 as shown in H.

18

G:

α

αα

β
β

β 0

1

2

3

H:

α

β 0

⊥

T1:

α, β

0

T2:

α

β0

1

Fig. 4 Example of certain conflicts abstraction.

As incoming equivalence results in a counterexample-based less conflicting ab-
straction by Prop. 11, and then also in a less conflicting abstraction by Prop. 1,
to complete the proofs of Props. 12 and 13 it only needs to be shown that these
abstractions are also more conflicting than the original FSMs. These proofs are
not given here, since full proofs of conflict equivalence appear in [7].

By inspecting the proofs of Props. 8 and 11, it is furthermore noticed that the
end state x of the concrete counterexample always is a member of the class x̃ that
represents the end state of the abstract counterexample, x ∈ x̃. Here it is guaran-
teed by Lemma 6 that Lω(x) ⊆ Lω(x̃). This means that the language containment
check Lω(xi1) ⊆ Lω(x̃k1) on line 14 of Algorithm 1 can be replaced by simply check-
ing whether xi1 ∈ x̃k1 . Such a state is a guaranteed to exist according to the proofs
of Props. 8 and 11, and unlike language containment, the state membership check
can be completed in constant time.

Two further abstraction rules are known as the Only Silent Incoming Rule and
the Only Silent Outgoing Rule [7]. These rules can be described as combinations
of the Observation Equivalence and Silent Continuation Rules, so the results of
this section apply to these rules also. This means that Algorithm 1 can be used to
compute counterexamples for all the abstraction rules proposed in [7]—with the
exception of the Certain Conflicts Rule, which requires a different approach and is
considered in the next subsection.

3.5 Certain Conflicts

The converse of Prop. 1 does not hold, so being counterexample-based less con-
flicting is a strictly stronger property than being less conflicting. An example is
abstraction by certain conflicts [13, 14].

Example 5 FSMs G and H in Fig. 4 are conflict equivalent, because any FSM T

that can initially execute α is conflicting with both G and H. Note that execution
of α may take G to state 1, where β is needed to reach an accepting state, but β

also leads to the blocking state 2. However, H is not counterexample-based less
conflicting than G, because for H

α
⇒ ⊥ with Lω(⊥) = ∅, there is no state in G

reachable via α with a smaller accepting language.

Counterexample expansion is more difficult in the absence of Def. 8. Assume
that the remainder of the system in Fig. 4 behaves like T1, and the abstract
counterexample for H ‖T1 is (0, 0)

α
→ (⊥, 0). Attempts to convert this to a concrete

counterexample with end state (1, 0) or (3, 0) in G‖T1 fail as these are not blocking

states. A concrete counterexample can only be obtained by extension, e.g., (0, 0)
α
→

(1, 0)
β
→ (2, 0) is a counterexample to the nonblocking property of G ‖ T1. How to

19

extend does not only depend on the abstracted FSM but also on the rest of the
system [13]. An abstract counterexample for H ‖ T2 in Fig. 4 is (0, 0)

α
→ (⊥, 1),

which cannot and does not need to be extended.
In the following, a variant of the of the Certain Conflicts Rule [7] is considered,

which is exemplary for all cases where Def. 8 does not apply.

Definition 11 (Limited Certain Conflicts Rule) Let G = 〈Σ, Q,→, Q◦〉 be an
FSM. Define sets of limited certain conflict states inductively:

lcc0G = {x ∈ Q | Lω(x) = ∅ } ; (20)

lcci+1
G = {x ∈ Q | for every path x = x0

σ1→ · · ·
σk→ xk

ω
→ there exists j ≥ 0

such that j ≤ k and xj
ε
⇒ lcciG, or j < k and xj

σj+1

=⇒ lcciG } ;

(21)

lccG =
⋃

i≥0

lcciG . (22)

The limited certain conflicts abstraction of G is Lcc(G) = 〈Σ, Qlcc,→lcc, Q
◦
lcc〉 where

Qlcc = (Q\lccG)∪{⊥} (with ⊥ /∈ Q); x
σ
→lcc y if x, y 6= ⊥ and x

σ
→ y and x

P (σ)
=⇒ lccG

does not hold, or x 6= ⊥ = y and x
σ
→ lccG; and Q◦

lcc = Q◦ if Q◦ ∩ lccG = ∅ and
Q◦

lcc = {⊥} otherwise.

The set lcc0G of level-0 limited certain conflict states is the set of blocking
states (20). Level i+1 adds to this states that can only reach accepting states by
passing through a state that can reach a level-i limited certain conflict state using
τ -transitions, or using a transition that may lead to a level-i state (21). These
sets form an increasing sequence, lcc0G ⊆ lcc1G ⊆ · · · , which in the finite-state case
converges against the set lccG. The abstraction Lcc(G) is constructed by merging
these states into a new state ⊥, and deleting some transitions.

Example 6 Consider again the FSM G in Fig. 4. It holds that lcc0G = {2} and
lccG = lcciG = {1, 2} for i ≥ 1. This results in the abstraction Lcc(G) = H (the
unreachable state 3 is not shown in the figure).

The limited certain conflicts rule in Def. 11 is described in more detail and
is more general than its previous version [7], and therefore a brief proof of its
correctness is given here. The argument is based on the following Lemma 14,
which describes a crucial property of the set lccG of limited certain conflicts: all
states in lccG are states of certain conflicts, i.e., if such a state is reachable in
composition with some test T , then the composition is necessarily blocking.

Lemma 14 Let G and T be two FSMs. If there exists a state pair (x, xT) such
that G ‖ T → (x, xT) and x ∈ lccG, then G ‖ T is blocking.

Proof As x ∈ lccG, it holds that x ∈ lcciG for some i. The claim is shown by
induction on i.

If i = 0, then it follows from (20) that Lω((x, xT)) ⊆ Lω(x) = ∅, hence G ‖ T

with G ‖ T → (x, xT) is blocking.
Now assume the claim has been shown for all x ∈ lcciG, and consider x ∈ lcci+1

G .
If Lω((x, xT)) = ∅ then G ‖ T is blocking, otherwise there exists t ∈ Lω((x, xT)) ⊆

Lω(x). By (21), there exists a prefix u ⊑ t such that x
u
⇒ lcciG. Then there exists a

state pair (y, yT) of G ‖ T with y ∈ lcciG such that G ‖ T → (x, xT) → (y, yT), i.e.,
G ‖ T is blocking by inductive assumption. ⊓⊔

20

Proposition 15 Let G be an FSM. Then G ≃conf Lcc(G).

Proof First, to show Lcc(G) .conf G, let T be an arbitrary FSM such that Lcc(G)‖
T is blocking, i.e., Lcc(G) ‖ T → (x, xT) with Lω((x, xT)) = ∅. It is to be shown
that G‖T is blocking. Consider two cases. If x = ⊥, then it follows by construction
(Def. 11) that G‖T → lccG×{xT }, so G‖T is blocking by Lemma 14. Otherwise, if
x 6= ⊥, then by construction G‖T → (x, xT). If L

ω((x, xT)) = ∅ in G‖T then G‖T

is blocking, otherwise there exists a path (x, xT)
tω
→. As Lcc(G)‖T is blocking, this

path cannot exist in Lcc(G) ‖ T , i.e., at least one of the transitions on this path
exists in G but not in Lcc(G). Then by construction G‖T → (x, xT) → lccG×QT ,
so G ‖ T is blocking by Lemma 14.

Second, to show G .conf Lcc(G), let T be an arbitrary FSM such that Lcc(G)‖
T is nonblocking. It is to be shown that G‖T is nonblocking, so let G‖T → (x, xT).
If this path contains a transition present in G but not in Lcc(G) then it follows by
construction (Def. 11) that Lcc(G) ‖T → (⊥, xT), which means that Lcc(G) ‖T is
blocking. But Lcc(G)‖T was assumed nonblocking, so the path G‖T → (x, xT) also

exists in Lcc(G) ‖ T . As Lcc(G) ‖ T is nonblocking, there exists a path (x, xT)
tω
→,

which by construction implies (x, xT)
tω
→ in G ‖ T . As G ‖ T → (x, xT) was chosen

arbitrarily, it follows that G ‖ T is nonblocking. ⊓⊔

By Prop. 15, during compositional nonblocking verification, an FSM G1 in (9)
can be abstracted to get

Lcc(G1) ‖G2 ‖ · · · ‖Gn . (23)

An abstract counterexample for (23) is accepted by all the FSMs in the origi-
nal system (9), up to the point where Lcc(G1) visits the new state ⊥. If ⊥ is
encountered, then the path from this point on must be replaced by a path into
the limited certain conflicts of the concrete FSM G1. To ensure that the concrete
counterexample reaches a blocking state, it is extended to the lowest level lcciG1

(closest to blocking) possible according to the other FSMs G2 ‖ · · · ‖Gn.
Algorithm 2 searches for this extension. Given the abstract counterexample C̃

for (23), it first determines the starting point I for extension. If C̃ starts in ⊥,
then the search starts from the initial states of the concrete FSM G1 (lines 2–3),
otherwise from the last state before ⊥ in C̃ (lines 5–6). If the abstract counter-
example does not contain ⊥ at all, extension may still be needed as G1 could reach
an accepting state with transitions removed in Lcc(G1). In this case, the search
starts from the end of C̃ (lines 8–9).

Once the set I of start states is determined, the loop on lines 12–15 searches
for an extension E from I to the lowest possible level of limited certain conflicts
of G1, which is accepted by the concrete system (9). If no extension can be found,
the abstract counterexample is returned unchanged (line 17). Otherwise the result
is the extension, possibly preceded by the steps of the abstract counterexample
that do not include ⊥ (line 19 or 21).

The search for the extension on line 12 can be done with a language inclusion

check [25]. It involves the full composed state space of (9), which may not be
feasible to explore in the context of compositional verification. One option is to use
the iterative projection algorithm [25], which has similar performance characteristics
to compositional nonblocking verification.

21

Algorithm 2: Counterexample Extension after Limited Certain Conflicts

Input: G1, . . . , Gn where Gi = 〈Σi, Qi,→i, Q
◦
i 〉

Input: abstract counterexample C̃ : ỹ0
σ1→ · · ·

σk→ ỹk for Lcc(G1) ‖G2 ‖ · · · ‖Gn

where ỹi = (xi1, x
i
2, . . . , x

i
n) for 0 ≤ i ≤ k

Output: concrete counterexample for G1 ‖ · · · ‖Gn

1 if x01 = ⊥ then

2 j := 0

3 I := (Q◦
1 ∩ lccG1

)× {(x02, . . . , x
0
n)}

4 else if xi1 = ⊥ for some 1 ≤ i ≤ k then

5 j := min{ i | xi1 = ⊥} − 1

6 I := {ỹj}

7 else

8 j := k;

9 I := {ỹk}

10 end

11 m := min{ i | lcciG1
= lccG1

}

12 while m ≥ 0 and I → lccmG1
×Q2 × · · · ×Qn in G1 ‖ · · · ‖Gn do

13 assign E to be the path I → lccmG1
×Q2 × · · · ×Qn

14 m := m− 1

15 end

16 if E is unassigned then

17 return C̃

18 else if j = 0 then

19 return E

20 else

21 return ỹ0
σ1
→ · · ·

σj
→ E

22 end

The complexity of Algorithm 2 is dominated by these language inclusion checks.
Their number is bounded by O(m), the maximum level of limited certain conflicts.
It can be reduced to O(log2 m) using binary search [29], or to a single check using
a modified language inclusion procedure that takes the levels into account. Even
so, extension can result in one additional language inclusion check per successful
abstraction step, substantially increasing the overall nonblocking check time.

The remainder of this subsection is devoted to the correctness proof of Al-
gorithm 2, which is based on the following two observations. Firstly, an abstract
counterexample for Lcc(G) ‖ T is either a concrete counterexample or it takes the
concrete system into a state of limited certain conflicts—if the abstract counter-
example ends in ⊥, it becomes a concrete trace into limited certain conflicts by
construction of Lcc(G), otherwise this is the claim of Lemma 16 (i) below. Sec-
ondly, once a concrete trace into limit certain conflicts is found, this trace is either
already a concrete counterexample, or it can be extended deeper into limited cer-
tain conflicts—this is stated in Lemma 16 (ii).

Lemma 16 Let G and T be FSMs.

22

(i) If C : (xG, xT)
s
→ (yG, yT) with yG 6= ⊥ is a counterexample to the nonblock-

ing property of Lcc(G) ‖ T , then C is a counterexample to the nonblocking
property of G ‖ T or (yG, yT) → lccG ×QT in G ‖ T .

(ii) If C : (xG, xT)
s
→ (yG, yT) with yG ∈ lcciG is a path in G ‖ T , then C is a

counterexample to the nonblocking property of G‖T or (yG, yT) → lcci−1
G ×QT

in G ‖ T .

Proof (i) If C is a path in Lcc(G) ‖ T that does not end in ⊥, it follows by con-
struction (Def. 11) that C does not include ⊥ and is a path in G ‖ T . Assume
C is not a counterexample to the nonblocking property of G ‖ T , i.e., there is a

path (yG, yT)
tω
→ in G ‖ T . As C is a counterexample to the nonblocking property

of Lcc(G) ‖ T , some transition on this path has been removed in Lcc(G), i.e.,

(yG, yT) → (vG, vT)
σ
→ (wG, wT) where vG

σ
→ wG but not vG

σ
→lcc wG. This means

by construction that wG ∈ lccG or vG
P (σ)
=⇒ lccG. In both cases, this gives rise to a

path (yG, yT) → lccG ×QT in G ‖ T .
(ii) Assume that the given path C is not a counterexample to the nonblocking

property of G ‖ T . Then there is a path (yG, yT)
tω
→ in G ‖ T , and it is possible

to write yG = x0
σ1→ · · ·

σk→ xk
ω
→. As yG ∈ lcciG, it follows from (20) and (21)

that i > 0 and there exists j ≥ 0 such that j ≤ k and xj
ε
⇒ lcci−1

G , or j < k and

xj
σj+1

=⇒ lcci−1
G . It follows that x0

σ1⇒ · · ·
σl⇒ lcci−1

G for some l ≤ k, which implies

(yG, yT) → lcci−1
G ×QT in G ‖ T . ⊓⊔

Given the results from Lemma 16, the correctness of Algorithm 2 is proved by
distinguishing the cases resulting from the if-statements in the algorithm.

Proposition 17 Let G1, . . . , Gn be FSMs. If C̃ is a counterexample to the non-
blocking property of Lcc(G1) ‖ G2 ‖ · · · ‖ Gn, then Algorithm 2 terminates and
returns a counterexample to the nonblocking property of G1 ‖ · · · ‖Gn.

Proof Let C̃ : ỹ0
σ1→ · · ·

σk→ ỹk, with ỹi = (xi1, x
i
2, . . . , x

i
n) for 0 ≤ i ≤ k, be a

counterexample to the nonblocking property of Lcc(G1) ‖G2 ‖ · · · ‖Gn. Consider
three cases.

Case 1: x01 = ⊥. Lines 2 and 3 of Algorithm 2 assign j = 0 and I = (Q◦
1∩lccG1

)×
{(x02, . . . , x

0
n)}. As x01 = ⊥, clearly ⊥ ∈ Q◦

lcc which by construction (Def. 11) implies
Q◦

1∩lccG1
6= ∅. Then the empty path satisfies I → lccmG1

×Q2×· · ·×Qn on line 12 and
becomes the path E accepted by G ‖ T . The loop may perform further iterations,
until m = 0 or E is a path to lccm+1

G1
×Q2 × · · · ×Qn that cannot be extended to

lccmG1
×Q2 × · · · ×Qn. Then E is a counterexample to the nonblocking property of

G ‖ T by Lemma 16 (ii), which given j = 0 is returned from line 19.
Case 2: xi1 = ⊥, where i ≥ 1 is the smallest such index. Lines 5 and 6 assign

j = i − 1 and I = {ỹj}, where ỹ0
σ1→ · · ·

σj
→ ỹj is a path in G ‖ T and xj1

σi→ ⊥

in Lcc(G). Then xj1
σi→ lccG by construction (Def. 11). Thus there exists a path E

that satisfies I → lccmG1
×Q2 × · · · ×Qn on line 12. The loop may perform further

iterations, until m = 0 or E is a path to lccm+1
G1

× Q2 × · · · × Qn that cannot be

extended to lccmG1
×Q2 × · · · ×Qn. Then ỹ0

σ1→ · · ·
σj
→ E is a counterexample to the

nonblocking property of G ‖ T by Lemma 16 (ii), which is returned from line 19
or 21.

23

Table 1 Experimental results.

Model No LCC LCC

State CE Total Exp CE Total Exp Ext Ext CE
Name n space min [s] [s] len [s] [s] [s] # len

agvb 17 2.29 · 107 6 0.2 0.0 18 0.3 0.0 0.1 4 17
aip0alps 35 3.00 · 108 4 0.3 0.0 19 0.3 0.0 0.1 1 20
aip0tough 60 1.02 · 1010 39 7.1 0.1 149 6.9 0.1 6.2 5 39
aip1efa 〈16〉 50 9.50 · 1012 153 33.9 0.2 185 35.5 0.6 1.3 1 185
aip1efa 〈24〉 50 1.83 · 1013 153 27.9 0.1 185 27.8 0.1 0.0 0 185
ct17 67 3.91 · 1022 3 0.5 0.0 5 0.3 0.0 0.0 1 5
fencaiwon09b 31 8.93 · 107 225 0.4 0.0 249 0.4 0.0 0.0 1 249
fencaiwon09s 29 3.00 · 108 2 0.3 0.0 25 0.3 0.0 0.0 1 6
fms2003 30 1.70 · 107 20 1.3 0.1 22 0.4 0.0 0.0 1 20
ftechnik 36 1.21 · 108 0 0.4 0.0 3 0.5 0.0 0.1 3 3
prime sieve4b 16 1.17 · 1020 31 5.0 0.4 32 8.1 0.6 3.8 10 32
psl big 37 3.87 · 107 13 0.4 0.0 13 0.3 0.0 0.0 1 24
psl partleft 39 7.69 · 107 4 5.7 0.1 9 0.7 0.0 0.4 3 15
psl restart 37 3.87 · 107 8 1.3 0.0 28 0.9 0.0 0.3 5 26
tbed ctct 84 3.94 · 1013 0 6.7 0.1 0 471.9 0.3 465.8 11 203
tbed hisc1 184 2.87 · 1017 19 2.4 0.1 22 2.8 0.1 1.6 13 59
tbed noderailb 84 3.20 · 1012 2 3.4 0.2 4 47.4 0.2 44.2 8 4
tip3 bad 54 5.25 · 1010 16 0.8 0.1 24 0.8 0.1 0.0 0 24
verriegel3b 52 1.32 · 109 4 0.7 0.0 45 0.8 0.0 0.4 3 4
verriegel4b 64 6.26 · 1010 4 0.9 0.1 54 1.0 0.0 0.5 3 4
6linka 53 2.45 · 1014 5 0.3 0.0 6 0.3 0.0 0.0 1 6
6linki 53 2.75 · 1014 5 0.3 0.0 6 0.3 0.0 0.0 1 6
6linkp 48 4.43 · 1014 1 0.4 0.0 11 0.2 0.0 0.0 1 11
6linkre 59 6.21 · 1013 90 0.4 0.1 102 0.5 0.0 0.1 11 108

Case 3: C̃ does not include ⊥. Lines 8 and 9 assign j = k and I = {ỹj}. In this
case, C̃ is a path accepted by G ‖ T . If the loop-entry condition I → lccmG1

×Q2 ×

· · ·×Qn = lccG1
×Q2×· · ·×Qn on line 12 fails, then C̃ is a counterexample to the

nonblocking property of G ‖ T by Lemma 16 (i), which is returned from line 17.
Otherwise the proof continues as in case 2 above. ⊓⊔

4 Experimental Results

The counterexample expansion procedure is part of the compositional conflict
check in Supremica [1]. It has been used to compute counterexamples for 24 ex-
amples. The test suite includes complex industrial models and case studies from
different application areas such as manufacturing systems, automotive electron-
ics, and communication protocols [21]. The experiments were run on a standard
desktop PC using a single 3.3GHz microprocessor and 8GiB of RAM.

Each model was verified with and without limited certain conflicts (LCC). The
abstraction sequence consists of τ -loop removal, observation equivalent transition
removal, marking removal, the Silent Incoming Rule, the Only Silent Outgoing
Rule, the Silent Continuation Rule, the Active Events Rule, possibly the Limited
Certain Conflicts Rule, observation equivalence, and marking saturation [7, 21].

Table 1 shows the results of the experiments. It shows for each model, the num-
ber of FSMs (n), the number of reachable states in the synchronous composition
(State space), and the shortest possible counterexample length (CE min). Then

24

it shows for each test the combined runtime of verification and counterexample
computation (Total), the total time taken by Algorithm 1 (Exp), and the length of
the computed counterexample (CE len). Algorithm 2 is only needed with limited
certain conflicts, where the table shows the time taken by Algorithm 2 (Ext) and
the number of language inclusion checks (Ext #).

The compositional conflict check algorithm proves all these models to be block-
ing within seconds. While the counterexample expansion times of Algorithm 1 are
insignificant, counterexample extension by Algorithm 2 adds substantial runtime
to the tbed ctct and tbed noderailb tests, by far outweighing the small verifica-
tion time benefit from the improved abstraction. In other cases such as psl partleft

the overall performance improves with limited certain conflicts. The difference is
likely due to the time when limited certain conflicts are triggered: late during the
abstraction process the number of FSMs and the extension effort are small.

The computed counterexamples are rarely the shortest possible, although close
to the minimum in several cases. While Algorithm 1 guarantees a shortest result,
this is not the case for Algorithm 2. Either way, minimality in individual steps
does not ensure a shortest result overall. In some cases, e.g., aip0tough and ver-

riegel4b, limited certain conflicts lead to shorter counterexamples, while in other
cases such as tbed ctct the opposite is the case. Although shorter counterexamples
are usually preferable, extension into certain conflicts makes the counterexample
more specific and can add valuable information.

5 Counterexample Algorithm for the General Case

The previously given methods for counterexample expansion and extension are
closely linked to specific abstraction rules. This allows for efficient computation,
but it requires specific considerations for every abstraction used in a compositional
verification algorithm. As there is an ever-increasing number of conflict-preserving
abstraction rules [13,16,21,23,26,27], such specific algorithms may not always be
readily available.

As an alternative, this section proposes an algorithm to compute a concrete
counterexample for G1‖· · ·‖Gn from an abstract counterexample forH1‖G2‖· · ·‖Gn

based only on the assumption that the abstraction H1 is less conflicting than G1,
i.e., H1 .conf G1. Being less conflicting is enough for counterexample computation
because it ensures that, if H1 ‖G2 ‖ · · · ‖Gn is blocking, then G1 ‖ · · · ‖Gn is also
blocking, so a counterexample to the nonblocking property exists in both cases.

The algorithm proposed here is based on the conflict preorder algorithm [28].
Section 5.1 introduces the necessary concepts about this algorithm, and based on
these Section 5.2 shows how to compute a concrete counterexample.

5.1 Concepts from Conflict Preorder Algorithm

The conflict preorder algorithm [28] determines for two nondeterministic FSMs G

and H whether H is less conflicting than G. To compare two FSMs according to the
conflict preorder, it is necessary to identify sets of states the two FSMs may reach
under the same input. This is done using the well-known subset construction [11].

25

To capture termination, the usual powerset state space is extended by a special
state ω entered only after termination.

Definition 12 [28] The deterministic state space of FSM G = 〈Σ, Q,→, Q◦〉 is

Qdet
G = 2Q ∪ {ω} , (24)

and the deterministic transition function δdetG : Qdet
G ×Σω → Qdet

G for G is defined as

δdetG (X,σ) =

{

ω, if σ = ω and X
ω
⇒;

{ y ∈ Q | X
σ
⇒ y }, otherwise.

(25)

The deterministic transition function δdetG is extended to traces s ∈ Σ∗ ∪ Σ∗ω

in the standard way. Note that δdetG (X, s) is defined for every trace s ∈ Σ∗∪Σ∗ω; if
none of the states in X accept the trace s, this is indicated by δdetG (X, s) = ∅. This
is also true for termination: if ω is enabled at some state in X, then δdetG (X,ω) = ω,
otherwise δdetG (X,ω) = ∅.

In order to compare two FSMs G and H with respect to possible conflicts, pairs
of state sets of the subset construction of G and H are considered. Therefore, the
deterministic transition function is also applied to pairs X = (XH , XG) of state
sets XG ⊆ QG and XH ⊆ QH ,

δdetH,G(X, s) = δdetH,G(XH , XG, s) = (δdetH (XH , s), δdetG (XG, s)) . (26)

To determine whether H .conf G, the algorithm [28] checks all states xH ∈ QH

against matching state sets XG ⊆ QG and determines whether all possible conflicts
of xH are also present in XG. It cannot always be determined directly whether
a state xH ∈ QH is less conflicting than a state set XG ⊆ QG. Generally, it is
necessary also to consider the deterministic successors of xG and XH . Therefore,
the following definition considers pairs (XH , XG) of state sets.

Definition 13 [28] Let G and H be FSMs. The set LC(H,G) ⊆ Qdet
H × Qdet

G of
less conflicting pairs (LC-pairs) for H and G is inductively defined by

LC0(H,G) = ({ω} ×Qdet
G) ∪ { (XH , XG) | XG ⊆ QG and there exists

xG ∈ XG such that Lω(xG) = ∅ } ;

(27)

LCn+1(H,G) = { (XH , XG) | there is a state xG ∈ XG such that for all t ∈

Lω(xG) there exists r ⊑ tω such that δdetH,G(XH , XG, r) ∈

LCi(H,G) for some i ≤ n } ;

(28)

LC(H,G) =
⋃

n≥0

LCn(H,G) . (29)

Note that XG 6= ∅ and XG 6= ω for every LC-pair (XH , XG) ∈ LC(H,G) with
XH 6= ω. The idea of Def. 13 is to classify a pair (XH , XG) as less conflicting, if
every test FSM T that is nonconflicting in combination with each of the states
in XH can terminate with at least one trace from the accepting language of XG.
This leads to the following main result for testing the conflict preorder.

Theorem 18 [28] Let G = 〈ΣG, QG,→G, Q◦
G〉 and H = 〈ΣH , QH ,→H , Q◦

H〉 be
two FSMs. Then H .conf G if and only if for all s ∈ NConf(G) and all xH ∈ QH

such that H
s
⇒ xH it holds that ({xH}, δdetG (Q◦

G, s)) ∈ LC(H,G).

26

Given the less conflicting pairs for two FSMs G and H, it is possible to deter-
mine whether H .conf G. This is the case if all the pairs ({xH}, XG) with H

s
⇒ xH

and δdetG (Q◦
G, s) = XG for some s ∈ NConf(G) are LC-pairs. The condition does

not apply to traces of certain conflicts, because traces s ∈ Conf(G) are not nec-
essarily in the language L(G) of G. Therefore, checking whether H .conf G in
general also requires computation of the set of certain conflicts of G, which can be
done with a direct algorithm [14] or using the following characterisation based on
LC-pairs.

Theorem 19 [28] Let G = 〈Σ, Q,→, Q◦〉 be an FSM. Then

Conf(G) = { s ∈ Σ∗ | (∅, δdetG (Q◦, r)) ∈ LC(H,G) for some r ⊑ s } , (30)

for any FSM H.

This result can be explained by the observation that, if (∅, XG) is an LC-pair
then, since termination is impossible from ∅, conflict must also be present in XG.
In this case, every trace leading to XG must be a trace of certain conflicts, and so
must be all its extensions. The characterisation of certain conflicts using LC-pairs
helps to integrate the computation of certain conflicts with the rest of the conflict
preorder algorithm, and likewise with counterexample expansion and extension.

While the Theorem 18 shows that LC-pairs are crucial for checking the conflict
preorder, it is not immediately clear how to determine whether a given state-set
pair is an LC-pair. The computation of all LC-pairs for two FSMs H and G is done
in a nested iteration. The set LC0(H,G) is given by (27), and assuming that the
set LCn(H,G) is already known, the set LCn+1(H,G) is computed in a secondary
iteration based on more conflicting triples.

Definition 14 [28] Let G = 〈ΣG, QG,→G, Q◦
G〉 and H = 〈ΣH , QH ,→H , Q◦

H〉 be
two FSMs. The set MCn(H,G) ⊆ Qdet

H × Qdet
G × QG of nth-level more conflicting

triples (MC-triples) for H and G is defined inductively as follows.

MCn
0 (H,G) = { (∅, ω, xG) | xG ∈ QG } ; (31)

MCn
m+1(H,G) = { (XH , XG, xG) | (XH , XG) /∈ LCn(H,G) and xG ∈ XG

and there exists (YH , YG, yG) ∈ MCn
m(H,G) and σ ∈ Σω

such that δdetH,G(XH , XG, σ) = (YH , YG) and xG
σ
⇒ yG } ;

(32)

MCn(H,G) =
⋃

m≥0

MCn
m(H,G) . (33)

For (XH , XG) to be an LC-pair, according to Def. 13 there must be a state
xG ∈ XG such that every trace that takes xG to termination in G has a prefix
that leads to another less conflicting pair. A triple (XH , XG, xG) is considered
“more conflicting” if (XH , XG) is not yet known to be a less conflicting pair, and
the state xG ∈ XG cannot be used to confirm the above property. This is ensured
by (32), which stipulates the existence of a successor MC-triple of lower level, from
where termination in G is again possible without visiting LCn(H,G). Then, if all
the triples (XH , XG, xG) with xG ∈ XG are MC-triples, it follows that (XH , XG)
cannot be an LC-pair. This observation leads to the following characterisation of
LC-pairs based on MC-triples.

27

Theorem 20 [28] Let G and H be two FSMs, and let n ∈ N0. Then

LCn+1(H,G) = { (XH , XG) ∈ Qdet
H ×Qdet

G |

(XH , XG, xG) /∈ MCn(H,G) for some xG ∈ XG } .
(34)

MC-triples can be computed directly based on Def. 14, so that this result
allows for the effective computation of LC-pairs, and an algorithm to test the
conflict preorder can be described. It involves computing the relevant state-set
pairs according to Theorem 18 and all their successors, as well as the induced
MC-triples along with their successors, until it can be determined whether all the
relevant pairs are LC-pairs [28].

5.2 Computation of Concrete Counterexample using LC-pairs

Assuming that H1 is a less conflicting abstraction of G1, this section shows how
the LC-pairs LC(H1, G1) are used to compute a concrete counterexample for G1‖T

from an abstract counterexample for H1 ‖ T , where T = G2 ‖ · · · ‖ Gn represents
the unchanged part of the system. If an abstract counterexample exists for H1 ‖T ,

C̃ : (x◦H , x◦T)
s
⇒ (xH , xT) , (35)

then its end state must be blocking, Lω(xH)∩Lω(xT) = ∅. Moreover, if the trace s

is also accepted by the original FSM G and does not belong to certain conflicts,
then by Theorem 18 it holds that ({xH}, δdetG (Q◦

G, s)) is an LC-pair. Such an LC-
pair is called critical for xT as it plays a crucial role for counterexample expansion
and extension.

Definition 15 Let G, H, and T be FSMs, and let xT be a state of T . An LC-pair
(XH , XG) ∈ LC(H,G) is called critical for xT if XH 6= ω and Lω(XH)∩Lω(xT) = ∅.

An LC-pair (XH , XG) is critical for xT , if all the states recorded in XH for the
abstract FSM are blocking in combination with xT . A critical LC-pair also must
not already be terminated, XH 6= ω, as this cannot arise in a counterexample to
the nonblocking property. Usually, an abstract counterexample such as (35) gives
rise to a critical LC-pair according to Theorem 18, but there is a special case
in combination with certain conflicts. If s ∈ Conf(G), then s is not necessarily
accepted by the original FSM G, and in this case the trace needs to be reduced to
a prefix. The following result holds.

Proposition 21 Let G and H be FSMs such that H .conf G, and let T be a third
FSM such that C : (x◦H , x◦T)

s
⇒ (xH , xT) is a counterexample to the nonblocking

property of H ‖ T . Then there exists a critical LC-pair for xT in LC(H,G)

Proof Write G = 〈ΣG, QG,→G, Q◦
G〉, and consider two cases depending on whether

the trace s is among the certain conflicts of G or not.
First consider the case that s ∈ NConf(G). Then, noting that H .conf G

and H
s
⇒ xH , it follows from Theorem 18 that ({xH}, XG) ∈ LC(H,G) where

δdetG (Q◦
G, s) = XG. Let XH = {xH}. As C is a counterexample to the nonblocking

property of H ‖ T , it is clear that Lω(XH) ∩ Lω(xT) = Lω(xH) ∩ Lω(xT) = ∅.

28

Second consider the case s ∈ Conf(G). Then by Theorem 19 there exists a
prefix r ⊑ s such that (∅, XG) ∈ LC(H,G) where δdetG (Q◦

G, r) = XG. With XH = ∅,
it is clear that Lω(XH) ∩ Lω(xT) = ∅.

In both cases, this gives an LC-pair (XH , XG) ∈ LC(H,G) with XH 6= ω and
Lω(XH) ∩ Lω(xT) = ∅, i.e., critical for xT . ⊓⊔

Thus, a critical LC-pair exists for every concrete counterexample and less con-
flicting abstraction, and the above proof suggests how it can be found depending
on whether the counterexample trace belongs to certain conflicts or not.

A critical LC-pair ensures that the abstract FSM H is blocking in combination
with the state xT of T , but this is not yet guaranteed for the original FSM G. To
find a state of G blocking with xT , a process of extension similar to Algorithm 2
is necessary. This process is based on the following result.

Proposition 22 Let G, H, and T be FSMs, and let xT be a state of T . Let
(XH , XG) ∈ LCn+1(H,G) be an LC-pair that is critical for xT . Then at least
one of the following conditions holds.

(i) There exists a trace t ∈ Σ∗ such that xT
t
⇒ yT and δdetH,G(XH , XG, t) ∈

LCn(H,G) is critical for yT .
(ii) For every state xG ∈ XG such that (XH , XG, xG) /∈ MCn(H,G) it holds that

Lω(xG) ∩ Lω(xT) = ∅.

Proof Consider two cases.
Case 1: there exists a trace t ∈ Σ∗ such that δdetH,G(XH , XG, t) ∈ LCn(H,G)

and xT
t
⇒ yT . Let δdetH,G(XH , XG, t) = (YH , YG). Then YH 6= ω as t ∈ Σ∗, and

Lω(YH)∩Lω(yT) = ∅ as (XH , XG) is critical for xT and thus Lω(XH)∩Lω(xT) = ∅.
Therefore, (YH , YG) is critical for yT and condition (i) holds.

Case 2: there does not exist any trace t ∈ Σ∗ with δdetH,G(XH , XG, t) ∈ LCn(H,G)

and xT
t
⇒ yT . It will be shown by contradiction that condition (ii) holds. So let

xG ∈ XG such that (XH , XG, xG) /∈ MCn(H,G), and assume Lω(xG)∩Lω(xT) 6= ∅.
Then there exists u ∈ Lω(xG)∩Lω(xT). Note that u /∈ Lω(XH) because Lω(XH)∩
Lω(xT) = ∅ for the critical LC-pair (XH , XG). Let s = uω. From u ∈ Lω(xG)

it follows that xG
s
⇒ and δdetH,G(XH , XG, s) = (∅, ω). Write s = σm · · ·σ0 (where

σ0 = ω) and δdetH,G(XH , XG, σm · · ·σi) = (Xi
H , Xi

G) for i = 0, . . . ,m+ 1, and let the

path xG
s
⇒ be

xG = xm+1
G

σm=⇒ xmG
σm−1

=⇒ · · ·
σ1⇒ x1G

σ0⇒ x0G . (36)

Note that xiG ∈ Xi
G for i = 1, . . . ,m + 1. It will be shown by induction on i that

(Xi
H , Xi

G, xiG) ∈ MCn
i (H,G) for i = 0, . . . ,m+ 1.

In the base case, i = 0, it holds that (X0
H , X0

G) = δdetH,G(XH , XG, s) = (∅, ω) and
thus (XH , XG, xG) = (∅, ω, xG) ∈ MCn

0 (H,G) by (31)
Now consider (Xi+1

H
, Xi+1

G
, xi+1

G
). Then δdetH,G(X

i+1
H

, Xi+1
G

, σi) = (Xi
H , Xi

G) and

xi+1
G

σi⇒ xiG, and (Xi
H , Xi

G, xiG) ∈ MCn
i (H,G) holds by inductive assumption. Also

σm · · ·σi+1 ∈ Σ∗ (only σ0 = ω) and σm · · ·σi+1 ⊑ s ∈ L(xT), and therefore
(Xi+1

H
, Xi+1

G
) = δdetH,G(XH , XG, σm · · ·σi+1) /∈ LCn(H,G) by the assumption of this

case. It follows that (Xi+1
H

, Xi+1
G

, xi+1
G

) ∈ MCn
i+1(H,G) by (32).

This completes the induction and shows that (XH , XG, xG) = (Xm+1
H

, Xm+1
G

,

xm+1
G

) ∈ MCn
m+1(H,G) ⊆ MCn(H,G). But this contradicts the assumption that

(XH , XG, xG) /∈ MCn(H,G). ⊓⊔

29

Algorithm 3: Counterexample Expansion and Extension with LC-pairs

Input: G1, . . . , Gn where Gi = 〈Σi, Qi,→i, Q
◦
i 〉, and H1 .conf G1

Input: abstract counterexample C̃ : ỹ0
σ1→ · · ·

σk→ ỹk for H1 ‖G2 ‖ · · · ‖Gn,
where ỹi = (x̃i1, x

i
2, . . . , x

i
n) for 0 ≤ i ≤ k

Output: concrete counterexample C for G1 ‖ · · · ‖Gn

1 compute all LC-pairs for H1 and G1 reachable from (∅, Q◦
1)

2 if (∅, δdet1 (Q◦
1, r)) ∈ LC(H1, G1) for some r ⊑ P (σ1 · · ·σk) then

3 let s be the shortest such trace r

4 X := (∅, δdetG1
(Q◦

1, s))

5 else

6 s := P (σ1 · · ·σk)

7 X := ({x̃k1}, δ
det
G1

(Q◦
1, s))

8 compute all LC-pairs for H1 and G1 reachable from X

9 end

10 m := min{ l ≥ 0 | X ∈ LCl(H1, G1) }

11 construct CT : (x02, . . . , x
0
n)

s
⇒ (xj2, . . . , x

j
n) from C

12 xT := (xj2, . . . , x
j
n)

13 while δdetH1,G1
(X, t) ∈ LCm−1(H1, G1) and xT

t
⇒ yT for some t ∈ Σ∗ do

14 X := δdetH1,G1
(X, t)

15 s := st

16 CT := CT
t
⇒ yT

17 xT := yT

18 m := min{ l ≥ 0 | X ∈ LCl(H1, G1) }

19 end

20 let (XH , XG) = X

21 choose x1 ∈ XG such that (XH , XG, x1) /∈ MCm−1(H1, G1)
22 find a path C1 : Q◦

1
s
⇒ x1 in G1

23 construct C by combining C1 and CT

24 return C

Prop. 22 ensures for a critical LC-pair that, either condition (i) holds and
its trace can be extended to reach another critical LC-pair of a lower level, or
condition (ii) holds and it contains states of G that are blocking with the state xT
of T . In the latter case, as (XH , XG) is an LC-pair, by Theorem 20 there exists
a state xG ∈ XG such that (XH , XG, xG) does not form an MC-triple, and such
states are blocking with xT .

Algorithm 3 combines these results to compute a concrete counterexample
from an abstract counterexample (35) based on an abstraction step H1 .conf G1.
First, lines 1–7 find an initial critical LC-pair X according to Prop. 21. Line 1
computes the LC-pairs needed for the set of certain conflicts of G1 according to
Theorem 19. Accordingly, if the trace of the abstract counterexample is a trace of
certain conflicts, then lines 3–4 reduce the counterexample to its shortest prefix
that results in a critical LC-pair X. Otherwise the initial critical LC-pair X is

30

constructed from the end state of the abstract counterexample. Both cases follow
the construction in the proof of Prop. 21.

Once a critical LC-pair X has been identified, all its successor LC-pairs need
to be explored for the following search for an extension. If the abstract counter-
example was in certain conflicts, these LC-pairs have already been computed on
line 1, otherwise it is done on line 8 using the already computed pairs. The com-
putation of LC-pairs on lines 1 and 8 is done according to the algorithm [28]. The
computation can be stopped as soon as X is found to be an LC-pair, because
its level is known at that point and higher-level LC-pairs are not needed for the
following counterexample extension. After the computation, it is necessary to re-
member the level of each LC-pair, and the triple missing from MCl−1(H1, G1) that
led to its inclusion in LCl(H1, G1) according to Theorem 20.

With all relevant LC-pairs at hand, lines 10–19 extend the counterexample
according to Prop. 22. During this process, m is the level of the critical LC-
pair X, CT is the projection of the counterexample to the unchanged FSMs T =
G2 ‖ · · · ‖ Gn, and xT is the last state of CT . The construction of CT on line 11
involves the removal of the state components for the abstracted FSM H1 and any
τ -transitions associated with H1 from C. The loop on lines 13–19 continues as
long as condition (i) of Prop. 22 holds. While this is true, there exists a critical
LC-pair of a lower level reached by a trace also possible in T , in which case that
LC-pair becomes the new critical LC-pair X and the counterexample is extended
accordingly.

The loop must terminate, since the level of X is decreased with each iteration,
and a level of 0 is not possible as this requires a terminated trace according to (27).
On termination, condition (i) of Prop. 22 is no longer true, so that condition (ii)
must hold. As X = (XH , XG) is an LC-pair, by Theorem 20 there exists a state
x1 ∈ XG of the original FSM G1 such that (XH , XG, x1) is not an MC-triple,
and then (x1, xT) is a blocking state according to condition (ii). Now it only
remains to find a path in G1 to this state x1, which must exist by construction
as XG = δdetG1

(Q◦
1, s), and to build the final concrete counterexample C by adding

the state information and τ -transitions for G1 to CT . These operations, shown on
lines 22 and 23, can be implemented by a search similar to Algorithm 1.

The complexity of Algorithm 3 is dominated by the construction of LC-pairs
on lines 1 and 8. Although care is taken to explore only the part of the search
space needed for the counterexample, the worst case is the exploration of all LC-
pairs, of which there can be O(2g+h), where g = |QG1

| and h = |QH1
| are the

numbers of states of the concrete and abstract FSM respectively. The worst-case
time complexity to construct these pairs is O(|Σ| · g2 · 22g+2h) [28].

Another time-consuming operation appears in the loop entry condition on
line 13, where the graph of LC-pairs must be searched in composition with the un-
changed FSMs T . The inclusion of T is necessary for the same reasons as explained
in Section 3.5. As mentioned there, the number of iterations can be reduced and
the FSMs, including the graph of LC-pairs, can be abstracted using the iterative
projection algorithm [25], but the effort is still huge.

The appeal of Algorithm 3 lies in the fact that it is only based on a less
conflicting abstraction and makes no assumptions about specific abstraction rules.
It works for all conflict-preserving abstractions, and can even be used if several
abstraction rules have been applied in sequence. Unfortunately, its exponential
complexity means that it may be impracticable for large discrete event systems.

31

6 Conclusions

Three algorithms for counterexample computation during compositional nonblock-
ing verification are proposed. The counterexample computation process depends
on the type of abstraction used during verification, and in many common cases [7]
can be done by counterexample expansion or extension. Counterexample expansion
is fast and simple and often applicable. In other cases, particularly after abstrac-
tion by certain conflicts, the more time-consuming algorithm of counterexample
extension must be used. It is likely that other abstraction rules not covered in this
paper, e.g. [13,16,21,23,26,27], can also be treated by these algorithms, but a closer
examination is needed in each case. As an alternative, this paper also proposes a
slow but general counterexample algorithm that works for every conflict-preserving
abstraction.

References

1. Åkesson, K., Fabian, M., Flordal, H., Malik, R.: Supremica—an integrated environment for
verification, synthesis and simulation of discrete event systems. In: 8th Int. Workshop on
Discrete Event Systems, WODES ’06, pp. 384–385. IEEE (2006). DOI 10.1109/WODES.
2006.382401

2. Bérard, B., Bidoit, M., Finkel, A., Laroussinie, F., Petit, A., Petrucci, L., Schnoebelen, P.:
Systems and Software Verification. Springer (2001)

3. Cassandras, C.G., Lafortune, S.: Introduction to Discrete Event Systems, 2 edn. Springer
Science & Business Media, New York, NY, USA (2008)

4. Clarke, E.M., Long, D.E., McMillan, K.L.: Compositional model checking. In: 4th Annual
Symp. Logic in Computer Science, pp. 353–362 (1989). DOI 10.1109/LICS.1989.39190

5. Dams, D., Grumberg, O., Gerth, R.: Abstract interpretation of reactive systems: Abstrac-
tions preserving ∀CTL∗, ∃CTL∗ and CTL∗. In: E.R. Olderog (ed.) IFIP WG2.1/WG2.2/
WG2.3 Working Conf. Programming Concepts, Methods and Calculi (PROCOMET), IFIP
Transactions, pp. 573–592. Elsevier (1994)

6. De Nicola, R., Hennessy, M.C.B.: Testing equivalences for processes. Theoretical Comput.
Sci. 34(1–2), 83–133 (1984). DOI 10.1016/0304-3975(84)90113-0

7. Flordal, H., Malik, R.: Compositional verification in supervisory control. SIAM J. Control
Optim. 48(3), 1914–1938 (2009). DOI 10.1137/070695526

8. Graf, S., Steffen, B.: Compositional minimization of finite state systems. In: 1990 Work-
shop on Computer-Aided Verification, LNCS, vol. 531, pp. 186–196. Springer (1990). DOI
10.1007/BFb0023732

9. Hart, P.E., Nilsson, N.J., Raphael, B.: A formal basis for the heuristic determination
of minimum cost paths. IEEE Trans. Syst. Sci. Cybern. 4(2), 100–107 (1968). DOI
10.1109/TSSC.1968.300136

10. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall (1985)
11. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory, Languages,

and Computation. Addison-Wesley, Boston, MA, USA (2001)
12. Huth, M., Ryan, M.: Logic in Computer Science. Cambridge University Press, Cambridge,

UK (2004)
13. Lindsey, J.: The set of certain conflicts. Honours project report, Dept. of Computer Science,

University of Waikato (2012)
14. Malik, R.: The language of certain conflicts of a nondeterministic process. Working Pa-

per 05/2010, Dept. of Computer Science, University of Waikato, Hamilton, New Zealand
(2010). URL http://hdl.handle.net/10289/4108

15. Malik, R.: Programming a fast explicit conflict checker. In: 13th Int. Workshop on Dis-
crete Event Systems, WODES ’16, pp. 464–469. IEEE (2016). DOI 10.1109/WODES.2016.
7497885

16. Malik, R., Leduc, R.: Compositional nonblocking verification using generalised nonblocking
abstractions. IEEE Trans. Autom. Control 58(8), 1–13 (2013). DOI 10.1109/TAC.2013.
2248255

32

17. Malik, R., Streader, D., Reeves, S.: Conflicts and fair testing. Int. J. Found. Comput. Sci.
17(4), 797–813 (2006). DOI 10.1142/S012905410600411X

18. Malik, R., Ware, S.: Counterexample computation in compositional nonblocking verifica-
tion. IFAC PapersOnLine 51(7), 230–235 (2018). DOI 10.1016/j.ifacol.2018.06.334

19. Milner, R.: Communication and concurrency. Series in Computer Science. Prentice-Hall
(1989)

20. Pena, P.N., Cury, J.E.R., Lafortune, S.: Verification of nonconflict of supervisors using
abstractions. IEEE Trans. Autom. Control 54(12), 2803–2815 (2009). DOI 10.1109/TAC.
2009.2031730

21. Pilbrow, C., Malik, R.: An algorithm for compositional nonblocking verification using
special events. Sci. Comput. Programming 113(2), 119–148 (2015). DOI 10.1016/j.scico.
2015.05.010

22. Ramadge, P.J.G., Wonham, W.M.: The control of discrete event systems. Proc. IEEE
77(1), 81–98 (1989). DOI 10.1109/5.21072

23. Su, R., van Schuppen, J.H., Rooda, J.E., Hofkamp, A.T.: Nonconflict check by using
sequential automaton abstractions based on weak observation equivalence. Automatica
46(6), 968–978 (2010). DOI 10.1016/j.automatica.2010.02.025

24. Valmari, A.: Compositionality in state space verification methods. In: 18th Int. Conf.
Application and Theory of Petri Nets, LNCS, vol. 1091, pp. 29–56. Springer (1996). DOI
10.1007/3-540-61363-3 3

25. Ware, S., Malik, R.: The use of language projection for compositional verification of dis-
crete event systems. In: 9th Int. Workshop on Discrete Event Systems, WODES ’08, pp.
322–327. IEEE (2008). DOI 10.1109/WODES.2008.4605966

26. Ware, S., Malik, R.: Conflict-preserving abstraction of discrete event systems using an-
notated automata. Discrete Event Dyn. Syst. 22(4), 451–477 (2012). DOI 10.1007/
s10626-012-0133-3

27. Ware, S., Malik, R.: Compositional verification of the generalized nonblocking property
using abstraction and canonical automata. Int. J. Found. Comput. Sci. 24(8), 1183–1208
(2013). DOI 10.1142/S0129054113500287

28. Ware, S., Malik, R.: An algorithm to test the conflict preorder. Sci. Comput. Programming
89(A), 23–40 (2014). DOI 10.1016/j.scico.2013.09.006

29. Wirth, N.: Algorithms and Data Structures. Prentice-Hall (1986)

33

