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KAJIAN KE ATAS BAHAN GaN UNTUK APLIKASI PERANTI 

 
ABSTRAK 

 
 

Dalam projek ini, tumpuan kerja adalah pada kajian kualiti bahan GaN yang 

ditumbuh oleh teknik-teknik yang berlainan, sentuhan logam pada bahan-bahan GaN 

dan juga kajian pada sifat-sifat asas bahan GaN berliang, serta fabrikasi peranti 

berasaskan bahan GaN berliang. 

Pencirian terperinci untuk mengkaji kualiti bahan GaN yang ditumbuhkan oleh 

dua teknik berlainan, iaitu, pemendapan wap kimia logam-organik pada tekanan 

rendah (LP-MOCVD) dan pemendapan wap kimia logam-organik bantuan plasma (PA-

MOCVD) telah dijalankan. Selain daripada lapisan penimbal didapati mempengaruhi 

sifat-sifat fizikal bahan GaN dalam LP-MOCVD, adalah juga didapati bahawa 

hidrogenasi boleh menghasilkan filem GaN epitaksi pada suhu yang rendah dalam PA-

MOCVD. 

Pelbagai sentuhan logam pada bahan GaN telah dikaji dalam projek ini. Pt 

didapati mempunyai sifat elektrik dan kestabilan termal yang terbaik pada suhu tinggi 

diantara logam-logam sentuh pada n-GaN. Sentuhan ohmik dwi-lapisan Ni/Ag yang 

baru pada p-GaN telah dikaji, kerintangan sentuh spesifik (SCR) skema dwi-lapisan ini 

didapati peka pada perubahan suhu dan masa penyepuhlindapan. Selain itu, kajian 

sentuhan Schottky berdasarkan kepada empat jenis skema logam, iaitu, Ti, Ag, Ti/Ag 

dan Ag/Ti juga dilakukan pada p-GaN, dan rawatan termal didapati boleh 

meningkatkan sifat-sifat elektrik bagi sentuhan Schottky secara amnya.  

Memandangkan GaN berliang adalah bahan yang baru, ciri-cirinya jarang 

didapati dalam tinjauan bacaan. Dalam projek ini, pelbagai alat pencirian  telah 

digunakan untuk mengkaji sifat-sifat  struktur, morfologi dan optik bahan GaN berliang 

yang dihasilkan oleh teknik punaran elektro-kimia dengan bantuan sinaran ultra ungu 

dan teknik punaran tanpa elektro dengan bantuan Pt. Secara umumnya, kajian 

menunjukkan, sifat-sifat fizikal GaN dapat dipengaruhi oleh lapisan berliang ini. Pada 
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keseluruhannya, sampel berliang yang dihasilkan oleh dua cara ini didapati 

mempunyai sifat-sifat yang serupa, akan tetapi, sifat-sifat yang berlainan juga 

diperhatikan pada bahagian-bahagian tertentu. Selain daripada itu, kajian juga 

menunjukan GaN berliang yang disebabkan rawatan kimia ini dapat meningkatkan 

sifat-sifat elektrik sentuhan Schottky Pt pada GaN di mana ketinggian sawar Schottky 

(SBH) dan kebocoran arus dapat diperbaiki. 

Empat peranti GaN berliang telah difabrikasikan. Kecekapan pengesan gas 

dapat ditingkatkan dengan penggunaan lapisan GaN berliang. Pengesan foto 

berasaskan lapisan GaN berliang juga menunjukkan potensinya, di mana, arus gelap 

yang rendah, dan nisbah arus foto kepada arus gelap yang tinggi dapat diperhatikan. 

Walaubagaimanapun, bagi diod Schottky pemancar cahaya yang dibuat pada p-GaN 

yang normal, pertukaran warna cahaya dari kuning, hijau ke ungu dapati diperhatikan 

semasa keupayaan di antara elektrod ditambahkan secara perlahan-lahan, sebaliknya, 

bagi sampel GaN berliang, hanya cahaya warna biru dapat diperhatikan. Selain 

daripada itu, penggunaan GaN berliang dalam struktur diod pemancar cahaya (LED) 

homo simpangan p-n tidak dapat meningkatkan kecekapannya, di mana voltan 

ambang yang agak tinggi dihasilkan bagi sampel berliang jika dibandingkan dengan 

sampel asas. Semua kajian permulaan ini menunjukkan bahawa lapisan GaN berliang 

ini berpotensi untuk meningkatkan prestasi peranti pengesan, tetapi, ianya belum lagi 

dapat dibuktikan and dikaji sepenuhnya bila ia digunakan pada peranti pemancar 

cahaya. 
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THE STUDY OF GaN MATERIALS FOR DEVICE APPLICATIONS 
 

ABSTRACT 
 
 

In this project, works are focusing on the investigation of the material quality 

grown by different techniques, metal contacts on GaN materials as well as the study of 

the fundamental properties of the porous GaN materials and the fabrication of devices 

based on porous GaN materials.  

Detailed characterizations for the investigation on the GaN films quality grown 

by two different techniques, i.e. low pressure metal-organic chemical deposition (LP-

MOCVD) and plasma assisted MOCVD (PA-MOCVD) have been carried out.  Apart 

from buffer layer was observed to be able to influence the physical properties of GaN 

films in LP-MOCVD, it is also found that in PA-MOCVD, hydrogenation during growth 

was capable of producing epitaxial GaN films at reduced temperatures.    

Various metal contacts on GaN materials have been investigated in this project.  

Pt was found to have excellent electrical properties and thermal stability at elevated 

temperatures among the metal contacts on n-GaN.  A new Ni/Ag bi-layer ohmic contact 

on p-GaN has been explored; the specific contact resistivities (SCRs) of this bi-layer 

scheme were observed to be sensitive to the change of annealing temperatures and 

durations. Other than that, the study of Schottky contacts based on four different 

metallization schemes i.e. Ti, Ag, Ti/Ag, and Ag/Ti were also performed on p-GaN, and 

heat treatment was found to be able to improve the electrical properties of Schottky 

contacts generally.   

Since porous GaN is a new form of material, the properties are scarcely found 

in the literature. In this project, various characterization tools have been used to 

investigate the structural, morphological and optical properties of porous GaN 

generated by ultra-violet assisted electrochemical etching and Pt assisted electroless 

etching methods. Generally, the studies showed that the physical characteristics of the 

GaN were found to be influenced significantly by the porous layer. Overall the porous 
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samples produced by these two techniques were found to have many similarities, 

however, different characteristics were also observed in certain areas. Other than that, 

study also showed that chemical treatment induced porous GaN layer was able to 

enhance the electrical properties of Pt Schottky contacts on GaN in which the Schottky 

barrier height (SBH) and leakage current were improved significantly.   

Four devices have been fabricated from porous GaN. Performance of the gas 

sensor was found to be enhanced substantially by using porous GaN layer. 

Photodetector fabricated from porous GaN layer also showed promise in which low 

dark current and higher photo-current to dark current ratio were observed.  On the 

other hand, for light emitting Schottky diodes fabricated from as-grown p-GaN, the 

change of emission colors from yellow, green to violet was observed when the potential 

between the electrodes was increased gradually, however, there was only blue 

emission observed when electrical bias was applied on the porous GaN sample. In 

addition, the use of porous GaN layer in p-n homojunction LED structure shows no 

improvement on the device performance, since relatively high turn on voltage was 

produced for the porous sample as compared to as-grown sample.  All these initial 

studies reveal that porous GaN layer has the potential for the substantial improvement 

of the performance of sensing devices. However, the potential of porous GaN layer has 

not been fully proven and explored when it is applied in the light emitting devices. 
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CHAPTER 1 
INTRODUCTION 

 
 

1.1   Introduction to III-nitrides 
 

The III-V nitrides have long been viewed as a promising system for 

semiconductor devices operating in the blue and ultra-violet spectra region. In III-V 

nitrides family, AlN, GaN, InN and their alloys are all wide bandgap semiconductor 

materials, and can crystallize in both wurtzite and zinc-blende polytypes. The wurtzite 

polytypes of GaN, AlN and InN form a continuous alloy system whose direct bandgap 

cover from 1.9 eV for InN, to 3.4 eV for GaN, to 6.2 eV for AlN. Following recent 

studies, the InN bandgap was found to be smaller than 0.8 eV (Wu et al., 2002, Saito et 

al., 2002). These findings further span the whole nitrides bandgap from infra-red into 

deep ultra-violet (UV) regions. This makes the nitride system attractive for 

optoelectronic device applications, such as light emitting diodes (LEDs), laser diodes 

(LDs) and photodetectors. 

High temperature/high power/high frequency electronics is another area 

receiving enormous attention for III-V nitrides (Pearton et al., 2000). Presently, Si and 

GaAs are the two most widely used materials in the semiconductor industries. 

Electronics devices based on current Si and GaAs semiconductor technologies are not 

able to operate at elevated temperatures due to the uncontrolled generation of intrinsic 

carriers. On the other hand, the wide bandgap nature of nitrides such as GaN is 

attractive for high temperature applications, because their intrinsic properties are 

maintained at much higher temperatures. This suggests that GaN-based power 

devices can operate with less cooling and fewer high cost processing steps associated 

with complicated structures designed to maximize heat extraction. In addition, the III-V 

nitrides posses higher breakdown electric field which sustains larger voltage gradient, 

enabling thinner active regions, lower on resistances and high voltage operation as well 

as  high electron drift velocity which leads to faster operating speed. 
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Other superior properties of nitrides include large piezoelectric constants and 

possibility of passivation by forming thin layers of Ga2O3 or Al2O3 as well as high 

bonding energy. GaN has a bond energy of 8.92 eV/atom, InN 7.72 eV/atom, and AlN 

11.52 eV/atom; giving high mechanical strength, chemical inertness and radiation 

resistance (Pearton, et al 1999). Moreover, nitride materials are non-toxic, 

environmentally friendly materials compared to other conventional III-V compounds 

such as GaAs and GaP which contain arsenic and phosphorous, and therefore are 

toxic for human.   

Researchers have laboured for more than 35 years and have been able to 

determine many of the physical parameters and properties of the III-V nitride 

semiconductors. Among all the nitride semiconductors, GaN is by far the most heavily 

studied. Table in Appendix I summarizes the fundamental properties of wurtzite III-

nitride semiconductors at room temperature.  

 

1. 2   Historical development of Nitrides  

The evolution of nitride semiconductors has been interesting and followed a 

bumpy road. GaN was first synthesized by Johnson (Johnson, et al 1932) in 1932, in 

which ammonia was passed over hot gallium. This technique produced small needles 

and platelets. Grimmeiss (Grimmeiss, et al. 1959) used similar method to produce 

small GaN crystal for the purpose of measuring photoluminescence spectra. In 1969, 

Maruska and Tietjen (Maruska and Tietjen, 1969) succeeded in growing the first single-

crystal GaN on a sapphire substrate by using hydride vapor phase epitaxy (HVPE) 

technique. They found that GaN posseses a direct transition band structure with 

bandgap energy of about 3.39 eV.  
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Fig. 1.1 Number of publications (INSPEC) and activities in GaN over the years 
(adapted from Akasaki, 2002) 

 

The accomplishment of Maruska and Tietjen accelerated and inspired the 

research on GaN, particularly the fabrication of the Zn-doped first blue LED by 

Pankove (Pankove, et al 1972). This was a metal-insulator-semiconductor (MIS) 

structured device. The unintentionally-doped GaN produced at that time was strongly 

n-type with high residual electron concentration which was believed to be due to 

nitrogen vacancies. However, the failure in achieving the p-type doping has resulted in 

many researchers withdrawing from the field of research on the nitride semiconductors, 

subsequently led to slow GaN research activities, and this started a big gap in the 

history of the nitrides as indicated in Fig. 1.1 which shows the number of publications 

(INSPEC) and research activities in nitrides over the years.  

It was the perseverance of Akasaki that eventually paid off in the pursuit of the 

p-type GaN conduction. In 1985, Akasaki with Amano and Hiramatsu developed 

organo metallic vapor phase epitaxy (OMVPE) for the nitride growth and low-
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temperature AlN buffer layers. Now the low temperature buffer layer becomes part of 

the growth process before the main epitaxial layer is grown onto it. This low 

temperature buffer layer lowered the large background electron concentrations from 

previous 1019 – 1020 cm-3 levels to 1017 cm-3, which not only improved the crystal  

quality but set the stage for p-type doping. In fact, the p-type conduction was an 

accidental discovery. In 1988, Amano (Amano, et al 1988) was observing the 

cathodoluminescence of GaN:Mg under scanning electron microscopy (SEM) and 

noticed that the brightness increased with further raster scanning. Low–energy electron 

beam irradiation (LEEBI) treatment of the sample showed that the luminescence 

efficiency had increased two orders of magnitude. This surprising phenomenon was 

explained by Van Vechten (Van Vechten, et al 1992), who proposed that the shallow 

acceptor level of Mg was compensated by a hydrogen atom complexing with the Mg 

acceptor. The energy of the electron beam releases the hydrogen atom from the 

complex that then becomes a shallow acceptor about 0.16 eV above the valence band. 

The follow-up investigation of Nakamura (Nakamura, et al 1992) found out that thermal 

annealing GaN:Mg above 750°C in N2 or vacuum also converted the material to 

conducting p-type. Since then the research activities on GaN have increased 

tremendously. 

 

1.3 Research Background 

In recent years, the miniaturization of electronic devices has been drastically 

enforced in the semiconductor technology.  Knowledge on the microscopic electronic 

properties of thin film becomes very important.  On the other hand, the crystalline 

microstructure is a fundamental property of the semiconductor.  The microstructure is 

closely related to the growth condition, it has a significant influence on the quality of the 

film and the performance of the electronics devices eventually.  The detailed 

characterizations will be able to provide useful information about the quality of the GaN 

films, so that some precautions can be employed during the growth of the GaN and 
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groundwork therefore is laid to optimize the growth conditions, which will lead to 

improvement of the quality of the films. 

GaN-based materials have been investigated intensively in recent years due to 

their potential applications in visible and UV LEDs and LDs for lighting and data 

storage, field effect transistors (FETs) for high-temperature and high-power electronics 

devices, and solar-blind UV detectors (Liu and Lau, 1998). These exciting applications 

present numerous challenges in making high quality metal contacts to GaN-based 

materials, which is crucial for device performances. Generally, making low-resistance 

ohmic contacts is difficult for GaN-based materials, particularly p-type GaN due to 

difficulty in doping. This difficulty has been one of the major obstacles in fabricating 

highly efficient LED and LDs. Moreover, conventional metallization schemes may not 

have the adequate thermal stability when devices operate at high power and high 

temperature environments (Liu and Lau, 1998). 

Porous semiconductors have drawn great deal of attention in recent years, 

primarily due to the potential for intentional engineering of properties not readily 

obtained in the corresponding crystalline precursors as well as the potential 

applications in chemical and biochemical sensing.  Porous semiconductors are also 

under study as possible templates for epitaxial growth (Inoki, et al 2003, Ponce and 

Bour, 1997), in which the pores could act as sinks for mismatch dislocations and 

accommodate elastic strain in heterostructures, this eventually leads to the growth of 

high quality epitaxial films with low structural defect density and strain. 

Interest in porous semiconductors also arises from the potential applications in 

optoelectronics area. Porous semiconductors have been demonstrated to be capable 

of shifting the emission wavelength and enhancing the luminescence efficiency as 

compared to the unetched precursors (Fauchet, et al 1995, Chattopadhyay, et al 2002). 

Among porous semiconductors, porous silicon receives enormous attention and has 

been investigated most intensively. However, the instability of the physical properties 

has prevented it from large scale application. This leads to the development of other 
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porous semiconductors, for instances, the conventional III-V compounds such as 

GaAs, GaP and InP, however, low band gap semiconductors always suffer from the 

generation of charge carriers due to undesirable background optical or thermal 

excitation.  The research in porous GaN is strongly driven by the wide band gap and 

superior physical properties such as the excellent thermal, mechanical and chemical 

stability, nevertheless, the study of porous GaN is still in the stage of infancy. Since 

porous GaN is a new form of material, most of the fundamental properties are not 

available in the literature, furthermore, there is no device fabricated based on porous 

GaN reported in the literature, therefore there is a big room for the exploration of 

porous GaN.  

 

1.4   Research Objectives 

In this project, the research mainly focuses on the investigation of the GaN-

based materials for device applications. The project starts with the detailed study of the 

material quality grown by two different techniques, i.e. low pressure metal organic 

chemical vapor deposition (LP-MOCVD) and plasma-assisted metal organic chemical 

vapor deposition (PA-MOCVD). This investigation provides the fundamental study of 

the characteristics of the GaN films, subsequently; it allows a better understanding of 

the material quality for the study of porous GaN. 

In this work, a wide variety of metal contacts on n- and p-GaN materials have 

been investigated under different conditions, i.e. effect of thermal treatments and wide 

range of annealing temperatures, for the study of the change of electrical, 

morphological properties and thermal stability of the contacts under different 

environments.  Attention is specially paid to metal contacts on p-type GaN materials. 

Since metal contacts to p-GaN are relatively less investigated as compared to n-GaN, 

this allows us to exploit many new research areas on p-GaN, for instance, novel 

metallization scheme, i.e. Ni/Ag. These metallization schemes eventually will be 

applied in the fabrication of various devices.  
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The studies of material quality of GaN films and metal contacts on GaN-based 

materials are two important research areas which will give an insight in the GaN 

technology, this eventually provides a better understanding on the fundamental 

properties for the subsequent study of the porous GaN materials and device 

fabrication. 

Following the intensive investigations of material quality and metal contacts, 

tremendous effort is also channeled into the exploration the fundamental properties of 

the porous GaN materials; a new form of material which is rarely reported in the 

literature, therefore, in this project, works have been devoted to the study of the 

structural, morphological, optical and electrical properties of this material. Apart from 

that, the devices, i.e. gas sensor, MSM photodetector, light emitting Schottky diode and 

light emitting diode based on porous GaN are also fabricated and compared to other 

non-porous-based devices so that the potential of porous GaN could be fully explored. 

The ease of fabrication, simple experimental setup and the availability of 

characterization tools for measuring the performance of the devices are the reasons for 

choosing these devices in this project. 

 

1.4.1 Originality of the research works  

A number of original works have been carried out in this project. For instances, 

the investigation of new metallization scheme Ni/Ag ohmic contacts on p-type GaN; 

and the study of light emitting Schottky diodes based on p-GaN. For the porous GaN 

material aspects, the use of porous GaN layer for improving the electrical 

characteristics of Pt Schottky contacts; and the fabrication and investigation of various 

devices based on porous GaN layer in this project, i.e. gas sensor, metal-

semiconductor-metal (MSM) photodetector, and LED have not been reported in the 

literature. In addition, a much simpler electroless etching technique for obtaining 

porous GaN has also been developed during the course of this project.  
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 1.5 Outline of the Thesis 

The content of this thesis is organized as follows:- 

Chapter 2 encompasses an overview of the GaN technology, such as the nitride 

epitaxial growth techniques, factors influencing the crystalline quality of GaN, metal-

GaN contact technology, as well as the development of porous GaN.  The basic 

principles of characterization tools, process equipment, and devices, the theory of 

metal-semiconductor contact, porous GaN formation mechanisms as well as the basic 

principles of some devices (which have been fabricated in this project) are covered in 

Chapter 3.  Methods in studying material properties, metal contacts, porous GaN as 

well as the fabrication and characterization of various types of devices are presented in 

Chapter 4. The results obtained from the research works are then analyzed, discussed 

in Chapter 5, 6, 7 and 8. Chapter 5 and 6 are devoted to the study of GaN material 

quality and metal contacts on GaN. Chapter 7 is focusing on the study of the properties 

of the porous GaN, whereas Chapter 8 reports on the performance of the devices 

fabricated based on porous GaN. In the final Chapter 9, the conclusion of the thesis 

with a summary of the research work is presented. A few suggestions for future 

research are also included. 
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CHAPTER 2 
LITERATURE REVIEW  

 
 
2.1 Introduction 

In this chapter, a brief overview of GaN technology is presented. The review 

mainly focuses on the nitride semiconductors growth techniques, factors influencing the 

GaN crystalline quality, metal-GaN contact technology and the development of the 

porous GaN.  

 

2.2 Nitride Epitaxial Growth Techniques  

Tremendous efforts have been applied to the epitaxial growth of III-V nitride 

materials. Most of the works so far can be divided into three categories: hydride vapor 

phase epitaxy (HVPE), metalorganic chemical vapor deposition (MOCVD), and 

molecular beam epitaxy (MBE) methods. 

 

2.2.1 Hydride Vapor Phase Epitaxy (HVPE)  

In the early investigation of III-V nitrides, HVPE was the most successful 

epitaxial growth technique to grow GaN thin films which was developed by Maruska 

and Tietjen in 1969. In their method, HCl vapor flowing over a Ga melt, cause the 

formation of GaCl which was transported downstream. At the substrate, GaCl mixed 

with NH3 leads to the chemical reaction: 

  

GaCl  +  NH3   GaN +  HCl  + H2 

 

The growth rate was quite high (0.5m/min) which allowed the growth of 

extremely thick film and the properties were relatively not influenced by the thermal and 

lattice mismatches with the substrate. Zn or Mg dopant incorporation could be achieved 

by simultaneous evaporation of dopant source in the HCl stream.  
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Fig. 2.1 Schematic diagram of a vapor transport GaN growth reactor (adapted from 
Pankove, 1973). 

 

The early GaN grown by this technique had very high background n-type carrier 

density, typically~1019cm-3. Fig. 2.1 shows the schematic diagram of the HVPE growth 

reactor. 

 

2.2.2 Metalorganic Chemical Vapour Deposition (MOCVD) 

 

Fig. 2.2 The schematic diagram of a typical MOCVD growth reactor (adapted from 
Akasaki and Amano 1997) 

 



 11

Presently, MOCVD is the most successful and widely used technique for 

growing nitride materials. It involves the transport of vapours of metal organic 

compound in a carrier gas with thermal decomposition at or near the substrate.  Fig. 

2.2 shows the schematic diagram of a typical MOCVD. 

The general popularity of the MOCVD arises in part from its scalability to 

production volumes of high quality multilayer heterostructures. However, the high 

growth temperatures, necessary for efficient decomposition of the precursors, may 

influence the quality of the grown heterostuctures through thermal diffusion, with large 

thermal expansion differentials introducing additional dislocation. Therefore, many 

attempts have been made to reduce the MOCVD growth temperature by providing 

additional, non-thermal, decomposition routes (Tansley et al 1997). Many improved 

versions have been developed since the introduction of this growth technique. 

 

2.2.2.1 Atmospheric pressure MOCVD 

In conventional atmospheric pressure MOCVD reactor, III precursors used for 

the growth of nitride materials come from metal-organic source i.e. trimethylgallium 

(TMGa/TMG), trimethylaluminum (TMAl/TMA), or trimethylindium (TMIn/TMI). In the 

case of GaN growth, TMGa reacts with nitrogen in the form of NH3 which requires high 

temperatures (typically 1000°C) to become reactive, and need to be abundant, so that 

the III/V ratio is very small. This causes technical difficulties in flow rate control, mixing 

and reactant flows over substrate (Tansley et al 1997). In view of technical difficulties, 

Nakamura et al (1991) designed a two-flow MOCVD reactor specifically for nitride 

growth which has been highly successful. In this reactor, the main flow carries the 

reactant gas parallel to the substrate. The second subflow perpendicular to the 

substrate forces, on the other hand, a deviation of the reactant gas toward the 

substrate, and suppress thermal convection effects. A rotating susceptor was used to 

enhance uniformity of the deposited films. The key aspect of this design is a downward 
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subflow of H2 and N2 which has been claimed to improve the interaction of the reactant 

gasses with the substrate. Fig. 2.3 shows the schematic diagram of the reactor. 

 

  

Fig. 2.3 The schematic diagram of the two-flow MOCVD reactor (adapted from 
Nakamura et al 1991). 

 

2.2.2.2 Low pressure MOCVD (LP-MOCVD) 

 

Fig. 2.4 The schematic diagram of the commercial vertical rotating disk LP-MOCVD 
reactor (adapted from Hassan and Kordesch, 2000) 

 

LPMOCVD has been developed for the purpose of realizing growth of GaN at 

lower temperature. At low pressure, the decomposition products have a lower collision 

frequency, so that a higher proportion of “unrecombined” radicals arrive at the growth 

surface. Heat of formation liberated at the surface provides the mobility necessary for 
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the adsorbates to diffuse to nucleation sites with a reduced requirement for kinetic 

energy to be provided by a hot substrate, making growth possible (Tansley et al 1997). 

Fig. 2.4 shows the commercial vertical rotating disk LP-MOCVD reactor. 

 

2.2.2.3 Plasma-assisted MOCVD (PA-MOCVD)  

 

 

 

 

 

 

 

Fig. 2.5 The schematic diagram of plasma-assisted MOCVD reactor (The schematic 
diagram provided by Prof. Barmawi, of ITB) 

 

Fig.2.5 shows the schematic diagram of the reactor.  It consists of a water-

cooled stainless-steel vertical reactor which is equipped with a plasma-cracking cell. 

The reactor was pumped by a combination of a root blower pump and a rotary vacuum 

pump. A low power downstream plasma cavity (ASTex) supplied the reactive N-plasma 

from nitrogen gas and reactive H-plasma from hydrogen gas. The plasma is generated 

by 2.45 GHz microwave at power ranges from 200 to 250 Watt, and the un-cracked 

TMGa and plasma-cracked N2 gas were used as the Ga and N sources. The H2 carrier 

gas was purified by passing through a heated palladium cell. The growth temperature 

was monitored by a thermocouple inserted inside the heater.  

TMGa = trimethylgallium        ; MFC = mass flow control 
TMAl  = trimethylalluminium ; CDO = controlled combustion, decomposition & oxidation 
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The development of PA-MOCVD is strongly driven by the need to reduce the 

growth temperature. A typical MOCVD reactor requires high growth temperature 

(above 1000°C) which is necessary for the efficient decomposition of the nitrogen 

precursor and this may influence the quality of heteroepitaxial grown GaN films, with 

large thermal expansion differentials, thus introducing high densities of structural 

defects (Tansley et al 1997) 

 

2.2.3 Molecular Beam Epitaxy (MBE) 

 

Fig. 2.6 Schematic diagram of the MBE growth chamber (Adapted from Franchi, et al 
2003) 

 

MBE was developed in late 1960s by A.Y, Cho. It offers the possibility to grow 

epitaxial films on crystalline substrate with atomic layer precision. An MBE system can 

be considered as a refined form of evaporator.  

Fig. 2.6 shows the schematic diagram of a typical modern MBE growth 

chamber. Substrates are loaded into the growth chamber via a vacuum load lock 

system, so that the chamber is isolated from the air. During the growth process, 

elemental sources are heated in Knudsen cells and evaporated at controlled rate onto 
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a heated substrate under ultra-high vacuum (UHV) conditions ~10-10 – 10-11 torr. The 

UHV growth environment is crucial to the MBE process. It provides an ultra clean 

growth ambient leading to epitaxial layers with the highest purity. This is extremely 

important for growing high quality semiconductor materials which are used for high 

performance devices. Under UHV condition, the long mean-free path of particles 

minimizes collisions or reactions between molecules in the beam, which results in a 

line-sight growth reaction at the surface.  

Since MBE is a UHV-based technique, it has the advantage of being compatible 

with wide range of surface analysis techniques. Mass spectrometer for residual gas 

analysis (RGA) and reflection high energy electron diffraction (RHEED) are two 

important in situ analysis tools which are commonly incorporated in the MBE system to 

monitor the growth rates and epitaxial film quality during growth process. 

GaN film grown by MBE usually carried out at relatively low temperatures of 650 

to 800C with typical growth rate of one to three monolayers per second, approximately 

0.3 to 1 µm/hr. On the other hand, molecular nitrogen is stable and inert gas which has 

a strong N-N bond and does not chemisorb on a GaN surface for temperature below 

950C, Therefore atomic nitrogen or nitrogen molecules with weaker bonds should be 

supplied. Radio frequency (RF) or electron cyclotron resonance (ECR) plasma sources 

are commonly employed to activate the nitrogen species. 

 

2.2.3.1 MBE growth kinetics 

Fig. 2.7 shows the schematic illustration of the surface process in a MBE 

system. There are a number of processes involved during growth (Herman and Sitter 

1996), which can be summarized as:- 

(a) Adsorption of the molecules or constituent atoms impinging on the substrate 

surface, 

(b) Surface migration and diffusion of these molecules on the substrate, 
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(c) Incorporation of the adsorbed species into the grown epilayers or the crystal lattice 

of the substrate, and 

(d) Thermal desorption of atoms not being incorporated into the lattice. 

 

 

Fig 2.7 Schematic illustration of the surface processes during growth in a MBE system 
(Adopted from Herman and Sitter 1996) 

 

2.2.3.2 The strengths of MBE 

Semiconductor compounds fabricated by MBE offers a number of advantages 

compared to other growth techniques, for instances, the opening or closing of 

mechanical shutter, located in front of each furnace, allows turning a specific molecular 

beam on or off instantaneously, resulting in abrupt interfaces in the order of one 

monolayer. This unique capability provides precise composition and doping profiles, 

extremely well-defined layer; enable the fabrication of device structures with critical 

performance. In addition, the consumption of source materials is significantly reduced 

as compared to MOCVD. 

The growth of GaN films by MBE at reduced temperatures not only allow wider 

range of substrates to be investigated but also reduce the structural defects due to 
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large thermal expansion differentials. Moreover hydrogen-free environment also 

provides the growth of p-type Mg-doped GaN without the need for post-growth 

processing. 

 

2.3 Factors Influencing GaN Crystalline Quality 

Many fundamental questions about the III-V nitrides growth are still being 

raised. One of the major problems rests with the absence of well-suited substrates, 

since GaN single crystals of sufficiently large dimensions are not yet available, 

therefore GaN film has to be grown heteroepitaxially on foreign substrates, this leads to 

the generation of high density of structural defects. However, the employment of low 

temperature buffer layer coupled with the advancement of epitaxial growth techniques 

allow great enhancement in the crystalline quality and subsequently the reduction of 

the high background electron density in GaN, these lead to a tremendous improvement 

of carrier mobility and eventually the performance of GaN-based devices. 

 

2.3.1 Substrates 

One of the major difficulties which hinders the GaN research is the lack of a 

substrate material that is lattice matched and thermally compatible with GaN. High 

dislocation densities arise in GaN epilayers due to the large mismatch between film 

and substrate, contributing to the low mobility and high residual carrier density. In fact, 

homoepitaxy is an ideal situation where it is possible to minimize problems associated 

with difference in lattice, wetting as well as thermal expansion between substrate and 

film. However, the equilibrium phase relationships between gallium, nitrogen and GaN 

present formidable technological problems. As a result, the bulk growth must resort to 

high temperatures of 1400 - 1600°C and extremely high pressure of 12-15 kbar that 

yield small size (few mm) GaN (Porowski and Grzegory 1997).  
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Table 2.1 Lattice parameters and thermal expansion coefficient of prospective 
substrates for nitrides epitaxial growth (Data extracted from Popovici and Morkoc 2000) 
 
Crystal Symmetry Lattice Constant (nm) 

(a; c) 
Thermal Expansion Coef. 

(a; c) (×10-6K-1) 
GaN Wurtzite (0.3189; 0.5185) (5.59; 3.17) 

GaN Cubic 0.452 - 

AlN Wurtzite (0.3112; 0.4982) (4.2; 5.3) 

InN Wurtzite (0.353; 0.569)  

Sapphire Hexagonal (0.4758; 1.299) (7.5; 8.5) 

ZnO Wurtzite (0.3250; 0.5213) (8.25; 4.75) 

6H-SiC Wurtzite (0.308; 1.512) (4.2; 4.68) 

3C-SiC Cubic 0.436 - 

Si Cubic 0.54301 (3.59) 

GaAs Cubic 0.56533 6 

InP Cubic 0.5869 4.5 

MgO Cubic 0.4216 10.5 

MgAlO2 Cubic 0.8083 7.45 

LiAlO2 Tetragonal (0.5406; 0.626) - 

ScMgAlO4 Tetrahedral (0.3240; 2.511) (6.2; 12.2) 

  

The density of threading dislocation defects in GaN films is always in the range 

of 1010cm-2.  These defects originate from the substrate/GaN interface and propagate 

into the epilayer.  The large difference of lattice constant and thermal expansion 

coefficient between the substrate and GaN is considered to be the major factor 

attributing to the high density of this defect. Table 2.1 shows the lattice constant and 

thermal expansion coefficient for some prospective substrates as compared to nitrides.  

Sapphire exhibits a higher thermal expansion coefficient relative to GaN, and for 6H-

SiC, the thermal expansion coefficient is smaller than GaN.  GaN films grown on 

sapphire and 6H-SiC will experience compressive and tensional biaxial strain 
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respectively (Monemar et al 1997). However, with the formation of threading 

dislocations, the strain in the GaN epilayer will be released. 

Although sapphire (Al2O3) possesses a substantially different lattice constant 

and thermal expansion coefficient from GaN, it is still the most commonly used 

substrate for GaN growth because of its wide availability, hexagonal symmetry, and 

ease of handling and pre-growth cleaning.  Sapphire is also stable at high temperature 

(~1000 C), which is normally required for GaN film grown by metalorganic chemical 

vapor deposition (MOCVD) method. On the other hand, sapphire is electrically 

insulating, therefore, all electrical contacts have to be formed on the front side of the 

device, reducing the area available for devices and complicating the device fabrication 

(Liu and Edgar 2002). 

Si is another potential substrate due to the low price, high quality and wide 

availability as well as easy integration with the current silicon technology. Both Si (110) 

and (111) are employed for wurtzitic GaN growth. However, GaN grown on Si (001) is 

predominantly cubic (Popovici and Morkoc 2000). 

  

Table 2.2 Lattice mismatch between GaN and the most commonly used substrates 

Substrate (%)Lattice 
Mismatched 

Reference 

(0001) Al2O3 16 (Kung et al 1994) 

(0001) 6H-SiC -4 (Tansley et al 1997) 

3C-SiC -4 (Tansley et al 1997) 

(100) GaAs 20 (Tansley et al 1997) 

(111) GaAs 20 (Tansley et al 1997) 

(001) Si 17 (Tansley et al 1997) 

(111) Si 17 (Tansley et al 1997) 
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 6H-SiC exhibits a closer lattice constant and thermal expansion coefficient to 

GaN, however, this substrate is very expensive. GaAs has been used as substrate 

despite its poor compatibility.  This is mainly due to its widely availability and familiarity 

of the researchers. Other uncommon substrates such as MgO, ZnO, MgAl2O4 (Popovici 

and Morkoc 2000), also have been used as substrate, however, there are little 

technical information available in the literature, therefore, the use of these substrates 

need to be further developed and explored. 

Lattice mismatch between GaN and the most commonly used substrates is 

summarized in Table 2.2. 

 

2.3.2 Buffer layer 

Since GaN single crystals with practically large dimensions are not yet 

available, single crystalline film has to be grown heteroepitaxially on substrates which 

are normally not lattice matched and thermally compatible. Therefore heteroepitaxial 

growth is accompanied with high density of structural defects such as stacking faults, 

threading dislocation (Sverdlov et al 1995), as well as vacancies and impurities (Meyer 

et al 2000), which form shallow and deep levels inside the band gap and eventually 

degrade the optical and electrical properties of the films. The major problem in 

obtaining high quality heteroepitaxial grown GaN film is mainly due to the formation of 

defects in the nucleation layer which is attributed to the inhomogeneous wetting of the 

substrate. Therefore direct deposition of GaN on substrates would result in poor 

crystalline quality of the film.   

The introduction of low temperature buffer layer is one of the promising 

approaches that can reduce the structural defect significantly. AlN is commonly used as 

a buffer for GaN grown on sapphire. Buffers are amorphous-like structure with small 

crystallites (Amano et al 1988) which are normally deposited at about 600°C with layer 

thickness between 50 – 100 nm prior to the growth of GaN film. The initial growth stage 

is very important in obtaining heteroepitaxy and eventually a good quality of the film 
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(Wang et al 1996). The epitaxial growth can be a two-dimensional (2-D): layer-by-layer 

mode, a three-dimensional (3-D): island mode, or a mixed mode: layer-by-layer plus 

islands. The first mode would result in the smooth surface, while the last two modes 

give rough surface and lead to low quality of epitaxial layers. The mode of growth is 

governed by many factors. For instances, the interfacial energy of the solid and vapor 

phases, as well as the vapor phase and substrate. This in turn depends on the growth 

temperature, the bond strength and bond lengths of the substrate and the overgrowth 

atoms, the rate of species impingement, surface migration rates of reactants, 

supersaturation of the gas phase, and the size of critical nuclei (Popovici and Morkoc 

2000). 

There has been reported that GaN films grown with AlN buffer layer have led to 

two orders of magnitude reduction in background electron while increasing the carrier 

mobility by a factor of 10, and the near band gap photoluminescence was two orders of 

magnitude more intense, moreover the x-ray diffraction peak width was four times 

smaller (Akasaki et al 1989). The buffer layer reduces the effect of strain, dislocations 

and cracking defect in the GaN films on large lattice and thermally-mismatched 

substrates significantly (Tansley et al 1997). The buffer layer not only relaxes the strain 

in the heteroepitaxial growth but partly blocks the detrimental effect of the substrate, 

such as the crystallographic orientation of the substrate (Akasaki et al 1989). The 

buffer layer is also thought to play an important role in supplying nucleation centres 

which have the same orientation as the substrate and promoting the lateral growth of 

the film due to the decrease in interfacial free energy between the film and the 

substrate.  
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2.4 Overview of Metal-GaN contact technology 

2.4.1 Ohmic contact on GaN 

As the GaN device technology advances, more stringent requirements are 

needed for the fabrication of metal contacts with very low resistance, good thermal 

stability, and flat surface morphology.  It is widely known that parasitic resistances, in 

the form of contact resistance, significantly affect the overall performance of the 

electronic and optical devices.  The large voltage drop across the semiconductor/metal 

interface at the ohmic contacts will seriously lead to the loss of device performance and 

reliability, for instance, in LEDs the power loss at the contacts will reduce the wall-plug 

efficiency and increase the junction temperature. This potentially degrades the 

operating lifetime. Therefore, high quality, thermally stable contacts to GaN-based 

materials are essential for the fabrication of reliable, efficient, high performance devices 

and circuits.  

 A wide variety of metallizations for ohmic contacts on n-GaN have been 

intensively investigated.  From the literature, contact resistances below 10-5 Ω-cm2 can 

be achieved routinely and low contact resistance as low as 10-8 Ω-cm2 has been 

reported (Lin, et al 1994, Fan, et al 1996), which is good enough for the optical and 

electronic devices.  However, for p-type GaN, the typical values of contact resistance 

are higher than 10-4 Ω-cm2. Low-resistance ohmic contact to p-GaN is difficult to obtain 

due to the difficulty in achieving high carrier concentration (~1018 cm-3 and above), and 

the absence of suitable metals with high work function, larger than band gap and 

electron affinity of GaN (7.5 eV) (Liu and Lau, 1998, Jang, et al 1999).   These two 

obstacles have impeded the fabrication of highly efficient blue LEDs and LDs. Table 

2.3 summarizes some of the common contact metallizations used by researchers for p-

GaN. 
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Table 2.3: The overview of some published data on metal contacts/p-GaN  

Metallization Annealing 
(ºC) 

Duration 
(min.) 

c, 
(Ωcm2) 

Remark Reference 

Ni/Au 300 3 9.210-2  -- Cao and Pearton, 
1998 

450 15 0.1 --   Wenzel, et al 2001 

400 5 3.3110-2 sputtered Delucca, et al 1998 

400 10 110-4 Using air during 
heat treatment 

Ho, et al 1999 

500 -- 2.710-3 e-beam evaporator Hu, et al 2006 

800-900 -- 310-4 TiB2 as diffusion 
barrier 

Voss, et al 2006 

Au 450 15 1 Non-ohmic contact Wenzel, et al 2001 

-- -- 2.610-2 Mori, et al 1996 

Ni 400 5 3.410-2 Thermal 
evaporation 

Delucca, et al 1998 

Pd 450 7.5 0.2 --  Wenzel, et al 2001 

Pt 475 
(5min.) 

35 
(accum.) 

1.5 Non-ohmic contact Wenzel, et al 2001 

-- -- 1.310-2 Mori, et al 1996 

600 1 1.510-2 Electro deposited Delucca, et al 1998 

Au/Pt 350 --  4.210-4 -- King, et al 1998 

Pd/Au -- -- 4.310-4 Surface treatment Kim, et al 1998 

Pt/Ni/Au 350 1 5.110-4  -- Jang, et al 1999 

Pt/Re/Au 600 1 1.410-3 -- Reddy, 2005 

 

2.4.2 Schottky contact on GaN    

The Schottky barrier height to n-GaN for a variety of elemental metals has been 

studied intensively. The reported barrier height (as shown in Fig. 2.8) increases 

monotonically but does not scale proportionally with metal work function. The barrier 

heights ranging from ~1.3 eV for Pt to 0.25 eV for Ti have been observed with 

considerable amount of variation in the experimental results for a given metal. The 

strategy to form ohmic contacts on n-GaN would be to use a metal with a small work 

function such as Ti and Al, on the other hand, to use a metal with large work function 
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such as Pt to form Schottky barriers on n-GaN. A survey of the literature shows that 

this principle is generally followed in fabricating contacts on n-GaN.  

 

 

Fig. 2.8. Reported barrier heights of metals to n-GaN as a function of their work 
function (adapted from Liu and Lau, 1998) 

 

Small measured values of the Richardson constant, A** as compared to 

theoretical value, and the ideality factor, n which is significantly greater than unity are 

the commonly observed non-ideal behaviour of GaN Schottky diodes which can be 

caused by several factors. For instances, surface defects which lead to 

inhomogeneities in the transport current, or several transport mechanisms operating at 

the same time or both. GaN grown by various techniques is known to produce high 

density of structural defects, these defects are likely to be the primary reason for non-

ideal I-V curves and small experimental values of A**. Another crucial factor affecting 

the properties of Schottky contacts on GaN and metal contacts is the metal- 

semiconductor (MS) reactions. MS reactions are known to depend strongly on the 

interface. Interfacial reaction between contact metal and semiconductor frequently 
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