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KAJIAN MENGENAI SIFAT-SIFAT PEMBASAHAN, TINDAKBALAS ANTARAMUKA 
DAN SIFAT-SIFAT MEKANIKAL PATERI-PATERI Sn-Zn DAN Sn-Zn-Bi KE ATAS 

PELOGAMAN KUPRUM 

ABSTRAK 

 
Secara praktiknya kesemua pemasangan elektronik masa kini menggunakan 

pateri eutektik Sn-Pb pada antara penyambung. Akibat pertambahan penggunaan 

peranti elektronik dalam industri serta untuk kegunaan peribadi, maka penggunaan 

pateri penyambung juga bertambah. Disebabkan oleh masalah keracunan Pb yang 

berpunca daripada pateri Sn-Pb, Negara-negara di Eropah (WEEE) dan Jepun telah 

mensasarkan had penggunaan Pb dalam pemasangan elektronik. Hasilnya, 

diwujudkan peraturan alam sekitar yang menghadkan penggunaan Pb di dalam 

pateri. Keadaan ini menjadikan satu isu penting untuk mendapatkan pateri yang 

bebas Pb. Dalam penyelidikan ini logam pateri bebas-plumbum iaitu Sn-9Zn dan Sn-

8Zn-3Bi telah diselidik sebagai pengganti berpotensi untuk pateri Sn-40Pb. Satu 

kajian sistematik telah dilakukan dalam pencirian logam pateri, sifat basahan, 

tindakbalas antaramuka, sifat-sifat mekanikal dan kinetik penumbuhan logam pateri 

dengan substrat Cu. Tambahan 3 % berat Bi ke dalam sistem Sn-Zn menurunkan 

takat lebur sebanyak 3.5oC iaitu hanya 12oC lebih tinggi daripada pateri Sn-40Pb. 

Pateri ini dapat meningkatkan kebolehbasahan pada substrat Cu dengan 

mengurangkan ketegangan permukaan pateri lebur. Fasa -Cu5Zn8 adalah sebatian-

antaralogam antaramuka yang utama terbentuk antara pateri Sn-Zn dan substrat Cu 

dan ketebalan sebatian-antaramuka ini meningkat dengan tempoh dan suhu. Sn-8Zn-

3Bi/Cu mempunyai kekuatan sambungan yang lebih tinggi berbanding dengan Sn-

9Zn/Cu dan Sn-40Pb/Cu tetapi sambungan pateri ini terdegradasi pada rawatan haba 

150oC. Tenaga untuk penumbuhan fasa -Cu5Zn8 dalam sistem Sn-9Zn/Cu ialah 

44.05 kJ/mol dan untuk sistem Sn-8Zn-3Bi/Cu ialah 55.35 kJ/mol. Tambahan Bi ke 

dalam sistem Sn-Zn telah membantutkan petumbuhan fasa -Cu5Zn8 dengan 

menambahkan tenaga untuk pertumbuhan sebatian-antaralogam. Antaramuka di 
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antara Cu dan pateri Sn-8Zn-3Bi mestilah dihadkan pada suhu bawah 100oC, dan 

suhu ini memadai untuk penggunaan hampir keseluruhan alat elektronik komersial. 
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STUDY ON THE WETTING PROPERTIES, INTERFACIAL REACTIONS AND 
MECHANICAL PROPERTIES OF Sn-Zn AND Sn-Zn-Bi SOLDERS ON COPPER 

METALLIZATION 
 

ABSTRACT 

 

Practically all microelectronic assemblies in use today utilize Sn-Pb eutectic 

solder for interconnection. Due to the increase in the use of electronic devices within 

the industry as well as personal use, the usage of solder connections has increased. 

Emerging environmental regulations worldwide, most notably in Europe (WEEE) and 

Japan, have targeted the elimination of Pb usage in electronic assemblies, due to the 

inherent toxicity of Pb. This has made the search for suitable Pb-free solders an 

important issue for microelectronics assembly. In this research, Sn-9Zn and Sn-8Zn-

3Bi lead-free solders were investigated as potential replacements for the Sn-Pb solder. 

A systematic study was conducted on the solders characteristics, wetting behaviour, 

the interfacial reaction, mechanical properties and growth kinetics of solders on Cu 

substrate. The addition of 3wt% of Bi to the Sn-Zn system lowered the melting 

temperature by 3.5oC which is only 12oC higher than Sn-40Pb solder. It improved the 

wettability on Cu substrate by reducing the surface tension of the molten solder. The -

Cu5Zn8 phase is the main interface intermetallic formed between Sn-Zn solders and the 

Cu substrate and this intermetallic thickness increased with time and temperature. The 

Sn-8Zn-3Bi/Cu solder joint had higher joint strength than Sn-9Zn/Cu and Sn-40Pb/Cu 

joints but solder joint degradation occurred at 150oC aging temperature. The activation 

energy for the growth of -Cu5Zn8 phase in Sn-9Zn/Cu and Sn-8Zn-3Bi/Cu systems are 

44.05 and 55.36 kJ/mol, respectively. The addition of Bi to the Sn-Zn system had 

retarded the growth of -Cu5Zn8 phase by increasing the activation energy for the 

intermetallic growth. The direct interface between Cu and Sn-8Zn-3Bi solder should 

have a temperature limit to be used below 100oC, which is enough for most of the 

commercial electronics applications.  
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CHAPTER 1 
INTRODUCTION 

 The increase in the use of electronics within industry as well as personal use 

has been growing exponentially over the past few decades. The driving forces for the 

microelectronics industry today involve the increasing circuit density at the 

semiconductor level, global competition in quality, reliability and cost. So, soldering 

technology has become indispensable for the interconnection and electronic packaging 

in virtually all electronic devices and circuits.  

 

1.1 Problem Statement 

 Lead-containing solders and especially the eutectic or near-eutectic Sn-Pb 

alloys have been used extensively in the assembly of modern electronic circuits (Choi 

et al., 1999; Chen and Lin, 2000; Zeng and Tu, 2002). Many electronic devices, mostly 

consumer products (i.e. computers, hand phones), are considered disposable because 

of the introduction of newer, faster technologies each year. Hence, these disposed 

devices generally end up in landfills.  

 There is a concern that lead and other elements within the electronic products 

are considered toxic because there is a potential for leaching from landfills into water 

sources and becoming a hazard to human health and the surrounding environment 

(Islam et al., 2006). Even recycling or reclaiming programs are not practical because 

most circuit boards are too complex to disassemble to reclaim these materials and are 

not cost effective.  

 For these reasons, emerging environmental regulations in various countries, 

most notably in Europe and Japan, have targeted the elimination of lead usage in 

electronics assemblies (Kim et al., 2005b). Moreover, lead and its compounds have 

been cited by the Environmental Protection Agency (EPA) as one of the top 17 

chemicals posing the greatest threat to human beings and the environment (Abtew and 

Selvaduray, 2000).  
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 The most aggressive and well-known effort is the European Union‟s Directive 

for Waste Electrical and Electronic Equipment (WEEE) proposal, which were initially 

set to come into effect on 1st July 2006. The legislation, which will be regulated by 

RoHS (Restriction of Hazardous Substances) will limit the disposal of hazardous 

materials by eliminating certain materials from electrical and electronics products. The 

WEEE directive was intended to ban the selling, importing and exporting of 

electrical/electronic containing lead (with some exemption) within the EU countries. The 

summary of the directive is given in Appendix A. 

  Subsequently, the Japanese Electronic Industry Development Institute 

Association (JEIDA) and the Japanese Institute of Electronic Packaging (JIEP) followed 

the same footstep to maintain trade with EU countries and marketing edge by 

promoting “green product” (lead-free) to their customers. Furthermore, many other 

jurisdictions are planning to put in place similar legislation modeled after EU directives 

(i.e. China). 

 Therefore, it is quite an important issue for the electronic industry to develop 

viable alternative solders (lead-free solders) for electronics assemblies, which can 

replace the conventional Pb-based solders. The combined effects of these proposals 

put pressure on the rest of the world to follow suit and generated a large investment in 

soldering process, equipment and materials development. Many tens of thousands of 

hours were committed to research and development of lead-free solders during the 

1990s. Although the efforts were somewhat uncoordinated, the conclusions of these 

studies conducted across the globe were remarkably similar: Lead-free soldering was 

seen to be a technical possibility and indeed, further work has resulted in the 

commercial availability of lead-free solders and lead-free electronics products 

(Humpston and Jacobson, 2004). 

 The threat of legislation has now receded and the European Union has greatly 

expended the category of exceptions scheduled for review in 2008 (Puttlitz and Galyon, 

2007). Nevertheless, most responsible companies now have accepted a commitment 
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to clean and “green” manufacturing, whereby no new electronic products may contain 

lead. It is believed that there will be a progressive transition to lead-free manufacturing 

for electronics products over the next decade or so, driven largely by companies 

wishing to promote an environmentally aware image (Humpston and Jacobson, 2004). 

 A drop-in replacement for the Sn-Pb solder alloy must exhibit various 

desirable materials characteristic in terms of melting temperature, wettability, electrical 

and thermal conductivity, thermal expansion coefficient, mechanical strength and 

ductility, creep resistance, thermal fatigue resistance, corrosion resistance, 

manufacturability and affordable cost (McCormack and Jin, 1994; Abtew and 

Selvaduray, 2000; Suganuma, 2001; Zeng and Tu, 2002). Although many Sn-based 

binary, ternary and quaternary systems are being investigated with improving 

properties but none of them meet all standards. On the other hand, current processing 

equipment and conditions (including fluxes) have been optimized for Sn-Pb solder 

alloys over the last 30 years (Suganuma, 2001). 

 Many consortiums such as the National Electronic Manufacturing Initiation 

(NEMI), the National Centre for Manufacturing Sciences (NCMS), IPC and JEIDA are 

working hard to find a proper Sn-Pb replacement. On top of that, many technical 

papers, proposing alternative lead-free solders with improved properties were 

published in recent years. 

 

1.2 Lead-free Solder  

 Lead in the electronics industry is widely used, so, the push to remove lead 

from electronics is an extensive and international issue. Seeking to drastically reduce 

the small amounts of lead found in electronics components, and in most cases totally 

eliminate it, is thus a huge undertaking for the industry. The efforts require extensive 

research, evaluation and collaboration not only at the individual company and product 

sector level, but within the entire electronics industry, to ensure compatibility. 

Manufacturers are discovering that complying with the rules and converting to lead-free 
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parts costs millions of dollars. The most efficient solution would be to find a direct 

substitute (“drop in”) for Sn-Pb solder. Unfortunately, the “drop in” substitute is not 

available thus far. So, the substitutes for the Sn-Pb solder have been proposed and 

generally accepted by industry. National Electronic Manufacturing Initiation (NEMI) has 

recommended Sn-3.9Ag-0.6Cu for reflow soldering and Sn-0.7Cu for wave soldering 

processes (Zeng and Tu, 2002; Kim et al., 2003a). The Sn-3.9Ag-0.6Cu and Sn-0.7Cu 

solders have melting temperatures of 217 and 229oC respectively. On contrary, JEIDA 

recommended Sn-3.0Ag-0.5Cu as an alternative lead free solder and The EU 

proposed Sn-3.8Ag-0.7Cu as a replacement for conventional Sn-Pb eutectic solder 

(Kim et al., 2003a).  

 While these alloys have many merits, there is still scope to replace them with 

better alloys. These alloys are no “drop-in” replacement for the Sn-37Pb eutectic 

solder. Furthermore, these alloys have liquidus temperatures 30-50oC higher than Sn-

37Pb and, therefore, require significantly higher assembly temperatures than eutectic 

Sn-37Pb, and are much more expensive. Researchers are working extensively to find 

other alternatives in Sn-based lead-free solders with small addition of bismuth (Bi) 

(Yoon et al., 2003), indium (In) (Kim et al., 2005a), silver (Ag) (Kikuchi et al., 2001; Lin 

and Shih, 2003b), antimony (Sb) (Lee et al., 2005) and aluminium (Al) (Lin and Hsu, 

2001). Surprisingly, the toxicity of alloys with low levels of these elements appears not 

to be an issue (Anonymous, 2005).  

 

1.3 Lead-free Solder Used in this Study 

 Although there are many lead-free solders available, of these, the Sn-Zn 

system with some addition of Bi has been expected to be one of the best alternative 

choices for Sn-Pb replacement. In this study the eutectic Sn-9Zn and Sn-8Zn-3Bi lead-

free solders were studied and the near eutectic Sn-40Pb solder was used as reference.  

The addition of Bi to Sn-Zn alloy confers several important advantages on them. 

It lowers the liquidus temperature of the alloy from that of the Sn-9Zn eutectic to a 
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value that is closer to that of Sn-Pb eutectic solder. So, existing production lines and 

electronics components do not require major modifications (Yoon et al., 1997; 

Suganuma et al., 1998; Harris, 1999; Yu et al., 2000a; Suganuma, 2001; Chuang et al., 

2002; Choi and Lee, 2002; Wu et al., 2002, Shohji et al., 2004; Kim et al., 2004). It also 

seems to improve the wetting (Yu et al., 2004) and corrosion performance (Harris, 

1999; Kim et al., 2005b). Apart from its favourable melting temperatures, its mechanical 

properties, e.g. tensile strength, are comparable or better than that of the Sn-Pb 

solders (Yoon et al., 1997; Wu et al., 2003; Hirose et al., 2004; Kim et al., 2005b). It is 

also anticipated that the addition of Bi to the Sn-Zn system will have a beneficial effect 

on the intermetallic formation and subsequently to the growth rate of intermetallic 

compounds (Islam et al., 2005a). 

 Although Bi is recognized as a rare metal and information on the earth‟s total 

resource amount and its annual production amount is still ambiguous, it is estimated 

that the Bi supply is enough for solders even with Sn-58Bi eutectic solder system 

(Suganuma, 2001). So, compared with other rare metals, Bi is readily available if it is 

used as soldering material. 

 The microelectronics industry is extremely cost conscious. The history of the 

industry has been to continuously produce higher performance at lower cost (Abtew 

and Selvaduray, 2000). Since cost of the product is the resultant of the cumulative cost 

of the components, the cost of lead-free solder alloys can impact the cost of the 

finished product. So, cost is another important factor in the adoption of solders for 

practical applications. In general, taking cost of raw metals into consideration, most 

lead-free solders cost about two to three times more than Sn-Pb solders (Suganuma, 

2001). The cost of Zn and Bi is generally cheaper than other raw metals like Ag and In 

(Abtew and Selvaduray, 2000; Kim et al., 2005b). So, the Sn-9Zn and Sn-8Zn-3Bi 

solders are a potential system for replacing Sn-Pb eutectic alloy from the cost point of 

view. 
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 There are several lead-free solders, which are patented. Among them are Sn-

20In-2.8Ag, Sn-2.5Ag-0.8Cu-0.5Sb (CastinTM), Sn-2Cu-0.8Sb-0.1Ag and Sn-3.4Ag-

4.8Bi. This implies that the number of suppliers could be restricted. Patented lead-free 

solder may require licensing or royalty agreements before use. The prospect of an 

entire industry being dependent on one supplier for its solder alloys is not desirable. If 

this were to happen, the likelihood of future price decreases would be extremely small 

as there will be no competition. So, from an availability standpoint, an unpatented 

solder alloy, with multiple and stable price structure and no geopolitical concerns, 

would be most desirable. Being an unpatented solder, the Sn-9Zn and Sn-8Zn-3Bi 

solders is a possible replacement from this point of view. 

 

1.4 Importance of Study  

 Although lead-free solders lack of the toxicity problems, however, the recently 

employed lead-free solders do not have a long history and well-established 

manufacturing and engineering database. Consequently, the inertia for acceptance of 

lead-free solders by design engineers and manufacturers will remain pending thorough 

examinations of these materials. However, research studies in recent years by 

organizations and researchers, characterizing various properties and performance of 

lead-free solders have alleviated some of the reluctance for acceptance (Plumbridge, 

1996).  For the need of lead-free solder in practical usage, scientific information is 

needed that enables us to understand the various phenomena occurring in electronics 

that employ lead-free solders. The development of a lead-free solder alloy that has all 

the desirable properties will be a formidable task unless a scientific basis has been 

established. 

 The reliability of soldered devices is related to wettability of the solder to the 

substrate and to microstructural evaluation of the joint during soldering operation or in 

use (Yoon et al., 1997). It is believed that the interface reaction products between 

solder alloys and substrate have a great effect on mechanical properties of the 



 

 7 

solder/substrate joints. In addition, the formation of intermetallic compounds at the 

interface during soldering processes plays an important role in wettability of the solder. 

Accordingly, the reliability of solder joints will be strongly affected by the type and 

extent of the reaction between solder and substrate (Vianco et al., 1995; Lee et al., 

1998; Choi et al., 1999). As such, solder-substrate interactions are increasingly 

important and need deeper understanding. Furthermore, with the inevitable use of 

lead-free solder alloys, research on the formation of the intermetallic layer in lead-free 

solders have become more important than that with Sn-Pb solders (Yu et al., 2005). 

 Although the Sn-9Zn and Sn-8Zn-3Bi lead-free solders were studied by many 

researchers (Suganuma et al., 1998; Suganuma et al., 2000; Kim et al., 2003b; Shohji 

et al., 2004; Islam et al., 2005a; Kim et al., 2005b, Islam et al., 2006), there is still a 

general lack of engineering information about these solders with respect to their 

interaction with copper (Cu) substrate. Suganuma et al. (1998) reported the wetting, 

interface microstructure and tensile strength of Sn-9Zn solder on Cu substrate after 

soldering at 290oC without any aging. A similar study was conducted by Suganuma et 

al. (2000) by using Sn-9Zn solder paste. Suganuma et al. (2000) study the 150oC aging 

effect on solder joint degradation. The thermal and mechanical properties of the bulk 

Sn-9Zn and Sn-8Zn-3Bi solders were conducted by Kim et al. (2003b) by investigating 

the microstructural changes under different cooling rate. The creep properties of the 

bulk Sn-8Zn-3Bi solder were studied by Shohji et al. (2004) at different temperatures. 

The interfacial reaction between Sn-9Zn and Sn-8Zn-3Bi solders and Cu substrate 

were studied by Islam et al. (2005a) using reflow method. The reflow was done at 

230oC for duration of 20 minutes. A similar reflow method was used by Kim et al. 

(2005b) to study the intermetallic growth between Sn-8Zn-3Bi solder and Cu substrate. 

Kim et al. (2005b) selected the aging temperatures between 70 and 150oC for duration 

of 100 days. Islam et al. (2006) conducted microhardness test on bulk Sn-9Zn and Sn-

8Zn-3Bi solders and wetting (spreading) on Cu substrate at 230 and 250oC.  
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 In the present study, the wetting characteristic (spreading and dipping) of the 

Sn-9Zn and Sn-8Zn-3Bi bulk solders were investigated. The as-soldered interface 

formed with Cu substrate after soldering for 1 minute was studied. Solder joints were 

fabricated by soldering at 240oC and the joint strength (butt-joint and single lap joint) 

and phase transformation studies were conducted at different crosshead speed and  

aging. The intermetallic growth study was conducted for aging temperatures between 

50 to 150oC for duration of 700 hours by using the single lap joint specimens. 

 There can be a number of intermetallic compounds formed at the substrate 

and solder interface during soldering. However, only the intermetallic compounds that 

form first during the soldering process have a significant effect on wetting. So, the 

wetting properties and intermetallic formation of the solders‟ performance with respect 

to different fluxes and temperatures need to be explored. 

 During storage or in use, the intermetallics generated during soldering grow 

further in thickness or increase in number, especially if the operational temperatures 

are well above the ambient (Laurila et al., 2005). Generally, the main cause of 

breakdown in solder joints is known to be the excessive growth of brittle intermetallic 

compound because it bonds mechanically with the solder and substrate. This in turn, 

degrades the interfacial strength and the mismatch in physical properties such as 

thermal expansion coefficient and the elastic modulus (Hwang et al., 2003). In this way, 

the growth behavior of the intermetallic and the mechanical properties of the solder 

joints significantly affect the performance and reliability of the joints (Frear, 1996; Yoon 

et al., 1999; Yu et al., 2005). Therefore, the interaction between solder/substrate needs 

to be investigated more systematically from the soldering stage to the servicing stage 

to have a better understanding of the reliability of soldered joints. Furthermore, the 

knowledge on the reliability of the solders with regards to phase transformation, 

mechanical properties and growth kinetics during long-time aging is also generally 

lacking. 
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1.5 Objective of the Study  

The primary objectives of this work are:  

 

(1) Study the wetting characteristics of Sn-40Pb, Sn-9Zn and Sn-8Zn-3Bi solders 

by spreading and dipping methods on copper metallization. The effect of flux 

chemistry or type and temperature on wetting characteristics is also 

investigated. 

(2) To investigate the intermetallic formed between solders and Cu substrate and 

study their growth kinetics. 

(3) To determine the tensile property (butt-joint) on the as-soldered joint at 

different crosshead speeds. 

(4) To study the effect of aging on phase transformation and mechanical 

properties of solder joint using single lap shear test. 

 

1.6 Structure of the Thesis 

 In this thesis the background theory and the relevant literature survey are 

presented in the second chapter. This is followed, in chapter three, by a description of 

all of the methods and techniques used in experiment, characterization and test 

procedures. Chapter four consists of the details of the results and discussions. Chapter 

five presents the conclusions of this thesis and suggesting future works. 
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CHAPTER 2 
LITERATURE REVIEW 

2.1 Soldering 

The American Welding Society defines soldering as a joining process wherein 

a coalescence between metal parts is produced by heating to temperatures below 

425oC  using filler metals (solders) having melting temperatures below those of the 

base metal (Frear et al., 1994). Manko (2001) defines soldering as a metallurgical 

joining method using a filler metal (the solder) with a melting point below 315oC and to 

achieve this, wetting is needed for the bond formation and requires neither diffusion nor 

intermetallic compound growth with base metal. Metallurgical bonds are connections 

between metals only. These are the bonds in which metallic continuity from one metal 

to the other is established.  

 

2.2 Lead 

 Lead is a heavy metal found naturally in the earth that has been used in many 

ways for hundreds of years. Lead was added to gasoline from the 1920s until it was 

phased out, beginning in the 1970s. Until the 1970s, lead was added to paint used in 

homes and for another decade it was used in solder to seal food cans and connect 

plumbing pipes. Lead consumption in industries is listed in Table 2.1. Battery 

manufacturing accounts the vast majority of the lead consumed and electronic 

industries consumes less than 0.5% each year. On the other hand, lead recycling in 

battery industry is almost 100% effective. However, virtually none of the 66 000 tons 

lead used by the electronic and lighting industries is recycled (Humpston and 

Jacobson, 2004). Because lead does not decompose or deteriorate, it does not go 

away but remains in homes, in the soil alongside roadways and in some water pipes. 

The waste in landfill sites is subjected to chemical attack by rain water, from where 

leached-out constituents, including lead, eventually find their way into drinking water 

supplies. 
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Table 2.1: Major uses of lead globally (Anonymous, 2004a) 

Product Consumption (%) 

Storage Batteries 80.8 

Paint, Ceramics, Chemicals, Pigments 4.8 

Ammunition 4.7 

Other uses 9.2 

Electronic Solder <0.5 

 

2.3 Sn-Pb Solder and Electronics Industries 

 Sn-Pb solders for metal interconnections have a long history, dating back 

2000 years. This solder and the alloys developed with it have long provided and 

continue to provide many benefits, such as ease of handling, low melting temperatures, 

good workability, ductility and excellent wetting on Cu and its alloys (Suganuma, 2001). 

Furthermore, the eutectic Sn-Pb solder provides excellent electrical conductivity and 

suitable mechanical strength (Cheng and Lin, 2002). It is also a critical material in 

virtually all electronics because it is uniquely capable of meeting high technology 

performance requirements in a cost efficient manner. 

 

2.4 Pb-free Solders Requirements  

 When trying to identify an alternative to the Sn-Pb solders, it is important to 

ensure that the properties of the replacement solder are comparable to or superior than 

Sn-Pb solders. There are strict performance requirements for solder alloys used in 

microelectronics (Abtew and Selvaduray, 2000). In general, the solder alloy must meet 

the expected levels of electrical and mechanical performance, and must also have the 

desired melting temperature. It must adequately wet common printed circuit board 

(PCB), form inspectable solder joints, allow high volume soldering and rework of 

defective joints, provide reliable solder joints under service conditions and must not 
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significantly increase assembly cost. The major performance characteristics of the 

solder are listed below: 

(i) Non-toxic 

(ii) Acceptable melting and processing temperature: One of the most sensitive 

parameters for the quality of soldered joints is soldering temperature. The 

melting temperature of Sn-Pb eutectic alloy is 183oC, and the typical soldering 

temperatures are 230 and 250oC for reflow and wave soldering, respectively. 

The temperature margin beyond the melting temperature of solder is 50oC for 

reflow (Suganuma, 2001). The melting point of a solder should be low enough 

to avoid thermal damage to the assembly being soldered and high enough for 

the solder joint to bear the operating temperatures.  

(iii) Narrow Paste Range: The pasty range is the temperature range between 

solidus   and liquidus, where alloy is part solid and part liquid. When the pasty 

range is narrow, the solder needs shorter time to solidify. The criteria set by 

NIST (National Institute of Standards and Technology) (Anonymous, 2004b), 

the acceptance level is <30oC. 

(iv) Good Solder Wetting: The bond between the solder and the base metal is 

formed only when the solder wets the base metal properly. A high Sn content 

ensures this and thus forms a strong bond (Wu et al., 2004). 

(v) Available and Affordable: There should be adequate supplies or reserves of 

candidate metals. Some potentially viable compounds may not be available in 

sufficient quantity to satisfy worldwide demand should the material is chosen.  

The world reserves for some of the solder candidate metal are listed in Table 

2.2. 

(vi) Form Reliable Joint: Reliability of a solder alloy is mainly dependent on the 

coefficient of thermal expansion, elastic modulus, yield strength, shear 

strength, fatigue and creep behaviour of the alloy. 
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Table 2.2: World reserves for raw metals (Anonymous, 2004a) 

Raw Metals World Reserves  (Thousand Metric Tons) 

Lead (Pb) 140,000 

Zinc (Zn) 440,000 

Copper (Cu) 650,000 

Antimony (Sb) 3200 

Bismuth (Bi) 260 

Tin (Sn) 12000 

Silver(Ag) 420 

Indium (In) 6 

 

(vii) Cost: Manufactures of electronics systems are likely to change to an 

alternative solder with an increase cost unless it has demonstrated better 

properties or there is legislative pressure to do so (Wu et al., 2004). The unit 

cost of the major elemental metals used in solders is summarized in Table 

2.3. In Table 2.4, the cost of some solder alloys is listed. On an elemental 

basis, Pb and Zn are the cheapest metals and Ag and In falls in a very 

expensive category. All of the Pb-free solder alloys are more expensive than 

the eutectic Sn-Pb alloy, which costs US5.87/kg. Some of the alloys are in the 

US7.70–8.80/kg range, other alloys cost between US11.00 and 16.50/kg. The 

Sn–In–Ag ternary alloy costs the highest of US51.63/kg because the high cost 

of Ag and In. If cost were the sole deciding factor, it is highly unlikely that the 

electronics industry would adopt an alternative solder. There has to be a 

demonstrated benefit in using one or more of the Pb-free solder alloys. For 

example, a significant improvement in reliability that can offset the cost 

increase could justify the adoption of a higher cost alternative (Abtew and 

Selvaduray, 2000). However, in the case of Pb-free solders, the driving force 

is government legislation, which would eventually prohibit the use of Sn-Pb 

solder, which happens to have a long track record. While price fluctuations of 

minor components have minimal effect on the alloy cost, but price fluctuations 

of major constituents can be expected to have a more significant effect, thus 
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making In a less attractive choice. The price of the patented solders, CastinTM, 

increases from US2.21/kg in 1997 to US12.06/kg in 1999.  

 

Table 2.3: Raw metals cost  

Element Cost (US/kg) (2 January 1997) (Abtew 
and Selvaduray, 2000) 

Cost (US/kg) (2 March 
1999) (Anonymous, 

2004b) 

Lead (Pb) 1.10 0.99 

Zinc (Zn) 1.08 1.10 

Copper (Cu) 2.24 1.43 

Antimony (Sb) 2.64 1.76 

Bismuth (Bi) 7.15 7.48 

Tin (Sn) 8.67 7.70 

Silver (Ag) 153.19 185.24 

Indium (In) 194.59 275.00 

 

Table 2.4: Solder alloys cost 

Alloy Cost (US$/kg) 
(12 January 1997) (Abtew 

and Selvaduray, 2000) 

Cost (US$/kg) 
(2 March 1999) 
(Anonymous, 

2004b) 

Sn-37Pb 5.87 - 

Sn-58 Bi 7.79 7.57 

Sn-20In-2.8Ag 51.63 66.13 

Sn-10Bi-5Zn 8.14 - 

Sn-9Zn 7.99 7.11 

Sn-7.5Bi-2Ag-0.5Cu 11.42 - 

Sn-3.2Ag-0.5Cu 13.27 - 

Sn-3.5Ag-1.5In 16.52 17.93 

Sn-2.5Ag-0.8Cu-0.5Sb 
(CastinTM) 

2.21 12.06 

Sn-3.5Ag 13.73 13.90 

Sn-2Ag 11.55 - 

Sn-0.7Cu 8.62 7.66 

Sn-2Cu-0.8Sb-0.1Ag 8.78 - 

Sn-5Sb 8.36 7.41 

Sn-4Ag-0.5Cu - 14.41 

Sn-3.4Ag-4.8Bi - 13.73 

Sn-3.5Ag-3Bi - 13.02 

  

 The current processing equipment and conditions for electronics assembly 

were optimized for Sn-Pb solders. Any new conditions for lead-free alloys must ensure 

both productivity and reliability at least equivalent to the present level of Sn-Pb solders. 

In contrast, melting temperatures for some typical lead-free solder are higher than Sn-



 

 15 

Pb eutectic solder, which makes the process window narrower. Because some of the 

electronic components (such as capacitors and connectors) cannot at present 

withstand an increase in reflow temperature, we need to modify or develop processing 

conditions to incorporate heat-resistant components (Suganuma, 2001). In wave 

soldering, the soldering temperature does not need increasing, while wetting of most 

lead-free solders on substrate  needs to be improved by modifying fluxes and 

designing new approaches. 

  

2.5 The Development of Pb-free Solders 

 A brief description of Sn-based major binary, ternary and quaternary systems 

is provided in this section. A relatively large number of Pb-free solder alloys have been 

proposed, and are summarized in Table 2.5 with their elemental compositions and 

melting temperatures. The melting temperatures are presented in the solidus, Ts, 

liquidus, Tl, and eutectic temperatures, Te. The solder alloys are binary, ternary and 

some are even quaternary alloys. Since the properties of the binary Pb-free solders 

cannot fully meet the requirements for applications in electronic packaging, additional 

alloying elements were added to improve the performance of these alloys (Wu et al., 

2004). Temperatures for ternary and quaternary systems were frequently reported in 

the literature as „melting temperature‟, Tm, and therefore are listed as such in Table 2.5 

as well. It can be noticed that most of the alloys are Sn-based. The main alloying 

elements are Zn, In, Bi, Ag, Sb and Cu. Rare earth elements such as cesium (Cs) and 

lanthanum (La) were added to some Sn-Zn binary alloys to overcome the oxidation 

problem. 

 For binary and higher systems, a unique „melting temperature‟ can be 

expected only for eutectic compositions or for compositions that melt congruently. 

Other compositions (off-eutectic) can be expected to melt over a range of 

temperatures, with melting begins at the solidus temperature and completes at the 

liquidus temperature. 
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Table 2.5: Proposed lead-free solder alloys with their melting temperature 
(Tm = Melting Temperature, Ts= Solidus Temperature, Tl = Liquidus Temperature, Te = 
Eutectic Temperature)  

Alloy Composition 
(wt%) 

Tm 
(
o
C) 

Ts 
(
o
C) 

Tl 
(
o
C) 

Te 
(
o
C) 

Reference 

Sn-37Pb    183 Abtew and Selvaduray, 2000 

Sn40Pb  183 187  Abtew and Selvaduray, 2000 

Sn-2Ag  221 225  Abtew and Selvaduray, 2000 

Sn-50In  117 125  Cheng and Lin, 2002 

Sn-3Cu  227 275  Abtew and Selvaduray, 2000 

Sn-4Ag  221 225  Abtew and Selvaduray, 2000 

Sn-42Bi  139  170 Abtew and Selvaduray, 2000 

Sn-42In  117 140  Abtew and Selvaduray, 2000 

Sn-36In  117 165  Abtew and Selvaduray, 2000 

Sn-5Sb  234 240  Abtew and Selvaduray, 2000 

Sn-0.7Cu     227 Wu et al., 2004 

Sn-3.5Ag (eutectic)    221 Wu et al., 2004 

Sn-58Bi    138 Cheng and Lin, 2002 

Sn-3.5Ag-1Zn 217    Abtew and Selvaduray, 2000 

Sn-3.6Ag-1.5Cu 225    Abtew and Selvaduray, 2000 

Sn-4Ag-7Sb   230  Abtew and Selvaduray, 2000 

Sn-4Ag-0.5Cu 218    Anonymous, 2004b 

Sn-3.4Ag-4.8Bi
TM

  208 215  Anonymous, 2004b 

Sn-3.5Ag-3Bi  216 220  Anonymous, 2004b 

Sn-2.8Ag-20In
TM

  179 189  Anonymous, 2004b 

Sn-4Sb-8Zn  198 204  Abtew and Selvaduray, 2000 

Sn-9Zn-10In 178    Abtew and Selvaduray, 2000 

Sn-6Zn-6Bi 127    Abtew and Selvaduray, 2000 

Sn-4.7Ag-1.7Cu 217    Abtew and Selvaduray, 2000 

Sn-4Cu-0.5Ag  216 222  Abtew and Selvaduray, 2000 

Sn-2Ag-6Zn-0.8Cu  217 217  Abtew and Selvaduray, 2000 

Sn-8Zn-10In-2Bi 175    Abtew and Selvaduray, 2000 

Sn-2.5Ag-0.8Cu-0.5Sb
TM

  213 219  Anonymous, 2004b 

Sn-2Ag-0.8Cu-8Zn  215 215  Abtew and Selvaduray, 2000 

Sn-Zn-RE     Wu et al., 2002 

Sn-2.8Ag-0.5Cu    218 Rizvi et al., 2006 

Sn-2.8Ag-0.5Cu-1.0Bi    214 Rizvi et al., 2006 

Sn-9Zn-1.5Ag-0.5Bi  195.9 200.9  Liu et al., 2004 

Sn-9Zn-0.5Ag 199.2    Chen et al., 2006 

Sn-9Zn-0.4Ag 198.3    Chen et al., 2006 

Sn-9Zn-0.5Ga 196.1    Chen et al., 2006 

  

 As can be seen from Table 2.5 the vast majority of the Pb-free solder alloys 

have melting points or liquidus temperatures in the low 200°C range, though there are 

a few alloys with significantly lower melting temperatures, primarily among the Bi and In 

systems. The Sn–Cu systems have liquidus temperatures that are significantly higher 

than the 183°C eutectic temperature of the Sn-Pb system. Too high a liquidus or 

melting temperature means that processing temperatures have to be higher. 

 

2.6 Phase Diagrams 

 Knowledge of phase equilibrium of solder/alloy and solder/substrate systems 

provides the basic roadmap for the initial selection of candidate solders and contributes 
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to the understanding of solder wetting and spreading. Phase diagrams data provide not 

only information about the liquidus and solidus temperatures of a candidate solder 

alloy, but also information about possible intermetallic phase formation, either within 

the solder during solidification or in reaction with the substrate material by combination 

of isothermal solidification and solid-state reaction. 

 Most binary phase diagrams that are of interest are fairly simple and most of 

the phase boundaries are well established. Since the binary Sn-based system are key 

system for the evaluation of candidate solder alloys, important features of these 

systems will be briefly discussed. 

 

2.6.1 Sn-Pb Phase Diagram 

 The phase diagram of Sn-Pb binary system is shown in Fig. 2.1. The phase 

diagram of this system is well established and a number of thermodynamic 

assessments are available for this system. The Sn-Pb phase diagram is characterized 

by two solid phases each with substantial solid solubility and a liquid phase. Further, 

the system is characterized by a simple eutectic with a significant depression of the 

liquidus temperature by almost 50oC, from pure Sn at 232oC to the binary eutectic (Sn-

37Pb) at 183oC (Suganuma, 2004). The microstructure on solidification is a mixture of 

Sn and Pb solid solutions. The solid solubility of Sn in Pb at 183oC is about 19 wt.% Sn, 

which decreases to 1.3 ± 0.5 wt.% at room temperature (Gurusamy, 2000). 

 

2.6.2 Sn–Zn Phase Diagram 

 Fig. 2.2 shows the Sn-Zn binary phase diagram, which has a eutectic point at 

198.5oC and composition of 91.1Sn-8.9Zn (wt.%). At this temperature, the liquid 

decomposes into the two terminal solid solutions. Its microstructure consists of two 

phases: a body-centered tetragonal Sn matrix phase and a secondary phase of 

hexagonal Zn containing less than 1 wt.% Sn in solid solution. The solid solubility of Sn 

in Zn is less than 0.05 wt.% and the maximum solid solubility of Zn in Sn has been 
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91.1 
       β-Sn 

      
     198.5 

 1.7 

Composition (wt % Sn) 

Composition (atomic % Sn) 

231.968
o
C 

Zn 

estimated as being ~2 wt.% (Abtew and Selvaduray, 2000). The microstructure of the 

eutectic Sn-9Zn can be expected to be lamellar, consisting of alternating Sn-rich and 

Zn-rich phases. 

 

 

Fig. 2.1: Sn-Pb binary phase diagram (Humpston and Jacobson, 2004) 

    

             

 

 

 

 

 

 

 

 

 

 

Fig. 2.2: Sn-Zn binary phase diagram (Massalski, 1992) 
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2.6.3 Sn-Cu Phase Diagram 

 Fig. 2.3 shows the phase diagram of Sn-Cu system. In addition to liquid and 

the two terminal solution phases, (Cu) and (Sn), this system has seven intermediate 

phases, β, , Cu41Sn11 (), Cu10Sn3 (), ε-Cu3Sn, -Cu6Sn5 and ‟-Cu6Sn5 ( and ‟ is 

the high and low-temperature forms) (Kattner, 2002). All of the intermediate phases 

form by peritectic or peritectoid reactions.  All of the Cu-rich intermediate phases 

decompose in eutectoid reactions at temperatures above 350oC and therefore, only the 

ε-Cu3Sn, -Cu6Sn5 and ‟-Cu6Sn5 phases are of interest for solder applications. 

 The -Cu3Sn and -Cu6Sn5 intermetallic phases are stable at temperatures 

below 300°C. The  phase has a composition range between 37.9 and 38.5 wt.% (24.5-

25.9 at.%) Sn, and corresponds very closely to the composition Cu3Sn. The  phase 

has Sn concentration of between 60.0 and 61.0 wt.% (43.5-44.5 at.%), and 

corresponds to the composition Cu6Sn5 (Massalski, 1992).  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.3: Cu-Sn binary phase diagram (Massalski, 1992) 
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2.6.4 Cu-Zn Phase Diagram 

 The Cu–Zn system forms three intermediate phases with relatively broad 

ranges of stoichiometric as shown in Fig. 2.4. The -Cu-Zn phase is known to have a 

solubility range of 57.5-71.5 wt.% (57-70 at%) Zn and Cu5Zn8 type structure 

(Massalski, 1992). The β and ε intermediate phases also exist in addition to two 

terminal solid phases and ε phase has a solubility range of 79.0-88.0 wt.% (78-88 at%) 

Zn and a hcp structure (Lee et al., 1998; Massalski, 1992).  

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.4: Cu-Zn binary phase diagram (Massalski, 1992) 

 

2.6.5 Sn-Bi Phase Diagram 

 The Sn-Bi phase is shown in Fig. 2.5. The solubility of Bi in Sn at eutectic 

temperature is nearly 20 wt.%. When the temperature is below the eutectic point, small 

Bi-rich particles form within the Sn-rich phase (Frear et al., 1994). This precipitation is 

due to the fact that the solubility of Bi in Sn decreases significantly as the temperature 

is lowered below the eutectic point. At room temperature, the solubility of Sn in Bi 

probably less than 1 wt.% (Barry and Thwaites, 1983; Zhao et al., 2004).  

 

 

Composition (wt % Zinc) 

Composition (atomic % Zinc) 
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Fig. 2.5: Sn-Bi binary phase diagram (Barry and Thwaites, 1983) 

 

2.6.6 Bi-Zn Phase Diagram 

 Fig. 2.6 shows the phase diagram of Bi-Zn system. This system exhibits 

eutectic at 2.7 wt.% Zn at 254.5oC. Since Bi does not react with Zn, no intermetallic 

formation is expected. 

 

2.6.7 Cu-Pb Phase Diagram 

 Fig 2.7 shows Cu-Pb phase diagram and the two metals are virtually 

immiscible in each other and no intermetallic formed between them. The eutectic 

reaction in this system occurs on the lead site at 326oC at eutectic composition of 

0.0006 wt.% Cu. At room temperature, the solubility limit of Cu is < 0.007 wt.% Cu 

(Gurusamy, 2000). 
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Fig. 2.6: Bi-Zn binary phase diagram (Massalski, 1992) 

 

 

Fig. 2.7: Cu-Pb binary phase diagram (Blaskett and Boxall, 1990) 
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2.6.8 Bi-Cu Phase Diagram 

 The Bi-Cu phase diagram is shown in Fig. 2.8. The system exhibits eutectic 

behaviour with a eutectic composition of 99.8 wt% Bi, and a eutectic temperature of 

270.6°C. Bi does not form intermetallic compounds with Cu. 

 

                 

 

 

 

 

 

 

 

 

 

Fig. 2.8: Bi-Cu binary phase diagram (Massalski, 1992) 

 

2.7 Solder Ball and Copper as Interconnect Material 

 As a joining material, solder provides electrical, thermal and mechanical 

continuity in electronics assemblies (Abtew and Selvaduray, 2000). The performance 

and quality of the solder are crucial to the integrity of a solder joint, which in turn is vital 

to the overall functioning of the assembly. Solders are used in different levels of the 

electronic assembly sequence, shown in Fig. 2.9(a). As a die bonding material, the 

solder provides the electrical and mechanical connection between the silicon die and 

the bonding pad. It also serves as path for heat dissipation of the heat generated by the 

semiconductor. Bonding of the die to a substrate and its encapsulation is referred to as 

Level 1 packaging. The next level of assembly and interconnect, referred as Level 2 
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packaging, is where the component (encapsulated silicon die) is mounted on a printed 

circuit board using solder balls (Fig 2.9(a)).  

 

 

(a) 

 

(b) 

Fig. 2.9: Cross section of the package: (a) Level 1 and Level 2 interconnection (b) A 
schematic illustration of Cu position in interconnection (Islam and Chan, 2005) 
 

 Although the Al alloy has performed well as an interconnect conductor for a 

long time, the trend of miniaturization has recently demanded a change due to the 

following reasons (Tu, 2003): 

(i) the resistance-capacitance (RC) delay in signal transmission in fine lines, 

(ii) the concern of electromigration. For the use of narrower and narrower lines, 

not only the line resistance increases, but also the capacitance between lines 

will drag down signal propagation. 
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1. Heat sink, 2. Cu layer, 3. Solder mask, 4. Micro via,  5. Solder ball, 
6. Flux, 7. Au layer, 8. NiP layer, 9. Cu pad, 10. Polymide 




