

MULTIRESOLUTION RAY TRACING FOR
POINT-BASED GEOMETRY

MOHAMED NORDIN BIN ZAKARIA

UNIVERSITI SAINS MALAYSIA
2007

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repository@USM

https://core.ac.uk/display/32600424?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

MULTIRESOLUTION RAY TRACING FOR POINT-
BASED GEOMETRY

by

MOHAMED NORDIN BIN ZAKARIA

Thesis submitted in fulfillment of the
requirements for the degree

of Doctor of Philosophy

April 2007

 i

AcknowledgementsAcknowledgementsAcknowledgementsAcknowledgements

• To all who has influenced my life directly or indirectly, knowingly or

unknowingly…BUT

o Very special thanks to Dr Bahari Belaton and Dr Abdullah Zawawi for

accepting me as a graduate student, and for their advices, superb

supervision, and warm friendship.

o Special thanks to Prof Hans-Peter Seidel for giving me a chance to gain

experience in one of the research hubs of Europe.

o Special thanks to UTP for the support and the facilities.

o Thanks to my parents for their patience in waiting for the completion of

my seemingly endless pursuit of a PhD.

o Thanks to Eva for helping me to discover myself.

o Thanks to my little Sohail for having been my little well of joy!

 ii

TABLE OF CONTENTS

 Page

ACKNOWLEDGEMENTS i

TABLE OF CONTENTS ii

LIST OF FIGURES iv

LIST OF TABLES vi

LIST OF ACRONYMNS vii

ABSTRAK viii

ABSTRACT x

CHAPTER 1 INTRODUCTION 1

 1.0 Overview 1

 1.1 Research Scope 5

 1.2 Research Objectives 5

 1.3 Contributions 6

 1.4 Thesis Organization 7

CHAPTER 2 BACKGROUND 8

 2.0 Introduction 8

 2.1 Point-Based Geometry 8

 2.1.1 3D Model Digitization 9

 2.1.2 Computing Local Neighborhood 11

 2.1.3 Computing Normal Orientation 12

 2.1.4 Splatting Point Samples 14

 2.2 Ray Tracing 19

 2.2.1 Ray-Surface Intersection 20

 2.2.2 Acceleration Data Structure 27

 2.2.3 Other Approaches to Accelerate Ray Tracing 31

 2.3 Multiresolution Rendering 34

 2.3.1 Perceptual Model for Multiresolution Rendering 37

 iii

 2.4 Summary 36

CHAPTER 3 MULTIRESOLUTION RAY TRACING WITH A BOUNDING

VOLUME HIERARCHY

41

 3.0 Introduction 41

 3.1 Approach 42

 3.1.1 Level-of-Detail 46

 3.1.2 Backface Culling 48

 3.1.3 Optimized Bounding Shape 49

 3.2 Implementation and Results 51

 3.3 Discussion and Conclusion 56

CHAPTER 4 MULTIRESOLUTION RAY TRACING WITH A COST-

OPTIMIZED KD-TREE

59

 4.0 Introduction 59

 4.1 Approach 60

 4.1.1 Building the Kd-Tree 61

 4.1.2 A Fast Ray-Surface Intersection Strategy 68

 4.1.3 Traversing the Kd-Tree 72

 4.2 Implementation and Results 75

 4.3 Discussion and Conclusion 84

CHAPTER 5 DISCUSSION AND CONCLUSION 86

 5.0 Introduction 86

 5.1 Highlight 86

 5.2 Remark on Analysis of Result 88

 5.3 Limitations 89

 5.4 Future Work 90

 5.5 Concluding Remarks 92

BIBLIOGRAPHY 94

APPENDIX A IMAGES FROM KD-TREE RAY TRACER 106

APPENDIX B RAY-SURFACE INTERSECTION SCHEME OUTPUT 122

APPENDIX C ACTUAL KD-TREE PERFORMANCE DATA 128

PUBLICATION LIST 141

 iv

LIST OF FIGURES

Figure 2.1 Grossman and Dally (1998) Point Samples Projection 15

Figure 2.2 a) Circular Splats and b) Elliptical Splats 16

Figure 2.3 The Ray Tracing Concept 19

Figure 2.4 Ray-Disk Intersection 22

Figure 2.5 Points as Overlapping Disks 23

Figure 2.6 Ray Coordinate System 24

Figure 3.1 Schematic Diagram for Multiresolution Ray Tracing with

BVH

43

Figure 3.2 BVH Construction 44

Figure 3.3 Ray Tracing Viewing Setup 47

Figure 3.4 BVH Backface Culling 48

Figure 3.5 Dragon and Statue Model for BVH Test 52

Figure 3.6 Number of BVH Nodes Visited 54

Figure 3.7 Number of BVH Surface Intersections 55

Figure 3.8 BVH Ray Tracing with and without LoD 56

Figure 3.9 Images Ray Traced using BVH-based Ray Tracer 58

Figure 4.1 Schematic Diagram for Multiresolution Ray Tracing with

Cost-Optimized Kd-Tree

61

Figure 4.2 Possible Positions of Splitting Planes 64

Figure 4.3 An Example Split resulting in an Empty Region 64

Figure 4.4 RFD Images 70

Figure 4.5 Traversing the Kd-Tree 74

Figure 4.6 Kd-Tree Rendering Times without LoD 78

Figure 4.7 Rendering Time for Bunny Data 79

Figure 4.8 Rendering Time for Blade Data 79

Figure 4.9 Rendering Time for Bone Data 80

Figure 4.10 Rendering Time for Hand Data 80

 v

Figure 4.11 Percentage Improvement for Dragon Data 81

Figure 4.12 Percentage Improvement for Happy Buddha Data 81

Figure 4.13 Images of Bunny with (left) and without (right) LoD 82

Figure 4.14 Close-range and Distant Images with (left) and without

(right) LoD, with Pixel Threshold Size = 4

84

 vi

LIST OF TABLES

Table 3.1 BVH Rendering Time 53

Table 3.2 BVH Rendering Time with Increasing Distance 55

Table 4.1 Details on Models Used for Kd-Tree Experiments 77

 vii

LIST OF ACRONYMNS

SJ Schaufler and Jensen Ray-Surface Intersection Scheme

PSS Point Set Surface Ray-Surface Intersection Scheme

RFD Ray-Facing Disk Ray-Surface Intersection Scheme

LoD Level of Detail

MLS Moving Least Square

PCA Principle Component Analysis

BVH Bounding Volume Hierarchy

NURBS Non-Uniform Rational B-Spline

GPU Graphics Processing Unit

PBRT Physically Based Ray Tracer

CMM Coordinate Measuring Machine

 viii

PENYURIHAN SINAR BERBILANG PELERAIAN UNTUK GEOMETRI
BERASASKAN TITIK

ABSTRAK

Tumpuan utama di dalam tesis ini adalah kajian tentang integrasi teknik

berbilang peleraian dengan penyurihan sinar di dalam menjanakan imej objek-

objek 3D berasas titik. Sejak kebelakangan ini, terdapat keperluan untuk model-

model 3D yang semakin meningkat kekompleksan geometrinya. Ini telah

menyebabkan penggunaan yang lebih berleluasa teknologi pengimbasan 3D.

Teknologi ini berupaya mengimbas sesuatu model fizikal yang kompleks untuk

menghasilkan sesuatu set titik yang padat dan tidak berstruktur. Set ini

mengandungi banyak maklumat. Walaubagaimanapun, kajian di dalam persepsi

manusia menunjukkan tidak semua maklumat berkenaan dapat dilihat atau

diproses oleh seseorang. Maka teknik berbilang peleraian menawarkan peluang

untuk mengurangkan beban komputasi yang terlibat di dalam melakukan

penyurihan sinar bagi set data berkenaan. Sumbangan pertama tesis ini di dalam

perkara ini adalah penggunaan struktur data Hierarki Isipadu Kongkongan untuk

tujuan penyurihan sinar. Struktur data yang digunakan mengawal tahap perincian

yang digunakan di dalam penjanaan imej, menghapuskan permukaan terhadang

dan menggunakan kombinasi isipadu berbentuk sfera dan berbentuk kotak untuk

mencapai kelajuan penyurihan sinar yang lebih baik. Sumbangan yang kedua

tesis ini adalah kajian tentang penggunaan teknik berbilang peleraian bersama-

sama dengan struktur data pokok kd yang dioptimakan kosnya. Struktur data

 ix

yang terhasil berupaya meningkatkan prestasi penyurihan sinar dengan cara

mengawal dengan efisien tahap perincian yang digunakan di dalam penjanaan

imej dan menggunakan sesuatu varian yang baru skema persilangan sinar-

permukaan. Hasil daripada kedua-dua kajian ini menunjukkan yang teknik-

teknik yang dipelopori berupaya menghasilkan imej yang berkualiti dan

meningkatkan prestasi penyurihan sinar.

 x

MULTIRESOLUTION RAY TRACING OF POINT-BASED GEOMETRY

ABSTRACT

The primary concern in this thesis is with the incorporation of multiresolution-

based optimization into ray tracing algorithms specially tailored for point-based

geometry. In recent years, increasing demand for model complexity has led to an

increasing use of 3D scanning technologies capable of digitizing a complex

physical model into a dense, massive and unstructured point cloud. Despite the

dense amount of information contained in this data set, work in human

perception study has shown that not all of it will be perceptible by a human

viewer. Hence multiresolution technique offers an opportunity to reduce the

computational workload involved in ray tracing such data set. In this respect, the

first contribution in this thesis is the adaptation and enhancement of a Bounding

Volume Hierarchy data structure in order to allow for faster ray tracing. The

resulting data structure incorporates an efficient Level-of-Detail control and

backface-culling optimization, and uses a mixture of bounding spheres and

boxes to enable faster ray tracing. The second contribution in this thesis is an

approach for incorporating multiresolution-based optimization into a point-based

geometry ray tracer that is already optimized by use of a cost-optimized kd-tree.

The resulting data structure incorporates an efficient Level of Detail control and a

new variant of ray-surface intersection scheme that improves the ray tracing

performance. Both the image quality and the ray tracing performance obtained

 xi

point to the effectiveness of the multiresolution techniques introduced in this

thesis.

 1

CHAPTER 1

INTRODUCTION

1.0. Overview

In a number of works related to the perceptual aspect of 3D computer

graphics system (Reddy 1997, Reddy 2001, Luebke and Hallen 2001, Howlett et al

2004), it has been shown that the details frequently generated by current computer

graphics technology are often much more than what users can perceive.

Multiresolution rendering is an attempt to exploit this fact to reduce the

computational requirement of computer graphics application. In multiresolution

rendering, one seek to render an image more efficiently by presenting to the user

only what would be perceptible and thus saving computational resources that

would otherwise have been wasted. In implementing multiresolution rendering,

one must be able to encode and to selectively retrieve different level of details

(LoD) of a scene or object during a rendering pass. Intuitively, the idea is to select

a high LoD for objects or surfaces whose details are likely to be seen well by the

eye and to select a lower LoD for other objects or surfaces.

Of course, multiresolution technique is inherently tied to work in human

perception. Much of the perception issue relate to the selection of a LoD given a

certain user state and the state of the scene or object being viewed. On the other

hand, the focus in this thesis is on the algorithmic aspect of multiresolution

technique. Specifically, the author is concerned with studying and designing

 2

multiresolution-capable rendering algorithm specialized for ray tracing of point-

based geometry.

A point-based geometry is an object that comprises of point samples. In this

thesis, it will be interchangably refered to it as a point set. In fact, frequently in this

thesis, a ray tracer specialized for point-based geometry shall be frequently refered

to as a point set ray tracer, rather than a point-based geometry ray tracer.

The author is interested in point-based representation as for a number of

years now, points have been the representation of choice for models of very high

geometric complexity or very high appearance granularity. Typically these models

are obtained from laser range and optical scanners (Levoy et al 2000),

procedurally generated (Stamminger and Drettakis 2001) or sampled from a

polygon-based geometry (Grossman and Dally 1998, Pfister et al 2000). With a

point-based representation, the surface of a 3D object is described by a set of

sample points without further topological information such as triangle mesh

connectivity. It has been shown before that the lack of topological information leads

to simpler and more efficient rendering (Grossman and Dally 1998, Rusinkiewicz

and Levoy 2000), simplification (Pauly et al 2002), level-of-detail control

(Rusinkiewicz and Levoy 2000, Chen and Nguyen 2001, Stamminger and Drettakis

2001), and texturing (Pfister et al 2000) for very complex models.

The approach commonly used to directly view a point-based geometry is

splatting (Pfister et al 2000, Zwicker et al 2001). In splatting, the basic idea is to

 3

iterate through the points in the point set and compute its projection onto the

screen. A splatting-based point set viewer, examples of which include QSplat

(Rusinkiewicz and Levoy 2000) and Pointshop (Zwicker et al 2002), can typically

run at an interactive frame rate on a computer system with recent consumer

graphics hardware. While, it is fast and easy to view a point-sampled geometry

using splatting, it is nontrivial and expensive to use the technique to create

advanced accurate lighting effects such as shadows and self-shadowing,

reflection, and global illumination. On the other hand, ray tracing, being based on

the simulation of light rays through a 3D environment, can quite easily model such

effects.

However, ray tracing tends to be slow. The reason is that while in splat-

based rendering, one projects from points onto the screen, in ray tracing, one

projects from individual pixels in the screen onto the points. For each frame or

image to be rendered, a ray is formed going through each pixel and intersected

against the point set. Hence, while in splatting, one processes the list of points

once per frame, in ray tracing, one processes it once per pixel. And since, a point-

based geometry can contain millions of points and for anti-aliasing more than one

ray is casted per pixel, ray tracing of such a dense geometry can take up much

computational resources.

Still, animated movies (Toy Story, Over the Hedge, and virtually all others)

and a great many video clips for computer games were all successfully created

using methods based on ray tracing. Hence, much effort has been exerted

 4

research-wise, to improve ray tracing speed and to bring the ray tracing technique

closer to the realms of interactive real-time usage on an ordinary personal

computer.

Methods that have been reported in the past on improving the performance

of ray tracing include using specialized spatial data structure (Glassner 1989,

Havran 2001), exploiting ray coherence (Wald 2004, Reshetov et al 2005), tuning

memory and cache performance (Yoon and Manocha 2006), and using parallel

computation technology (Wald 2004). A spatial data structure partitions memory

space into cells in order to speed up the process of traversing a ray to search for

the closest intersection with a surface. Exploitation of ray coherence works

because rays close together tends to hit the same portion of a surface, and hence

they share parts of the computation involved. Tuning memory and cache

performance can improve overall ray tracing performance especially when dealing

with large data set, as if memory and cache are not managed wisely, the ensuing

cache miss and disk crashing will tend to bog down any ray tracer. Finally, parallel

computation is an attractive approach for speeding up ray tracing as the algorithm

is quite well-known to be trivial to parallelize.

Only as recently as 2003 has there been attempts to exploit multiresolution

methods in ray tracing (Stoll et al 2006, Yoon et al 2006, Christensen 2003).

Multiresolution ray tracing methods reported thus far have been tailored for

polygonal scenes. However point-based geometry has a different demand as it is

geometrically a different representation. Hence, the author’s primary motivation in

 5

this thesis is to further improve the state-of-the-art in visualization of point-based

geometry by investigating a multiresolution approach to its ray tracing.

1.1. Research Scope

It should be highlighted that in this thesis, the primary concern is with the

algorithmic aspect of multiresolution ray tracing. As such, only a simple model for

LoD selection, the aspect of the system that is most tied up to human perception

study, is used. Hence, the author does not perform any human perception study. A

survey of existing work in this concern is however provided in Section 2.3.1.

Furthermore, as far as geometric representation is concerned, this thesis is

focused on point-based geometry. Hence the methods investigated are specialized

for point-based geometry. The author made neither substantive investigation nor

strong claim as to whether the methods, results or conclusions to be reported in

Chapter 3 and 4 apply for other geometrical representation such as polygonal

meshes or NURBS surfaces.

1.2. Research Objectives

The work as presented in this thesis started out with a mission to improve

the state of the art in ray tracing of point-based geometry. The general strategy is

to improve the performance of existing data structures for ray tracing by employing

multiresolution technique. Two data structures are selected. One is the bounding

volume hierarchy (BVH), and the other is the kd-tree. The BVH is a simple data

structure that is widely implemented in many ray tracers. On the other hand, the

 6

kd-tree is widely considered to be the state-of-the-art data structures and is

implemented in high-performance ray tracing engines such as the OpenRT (Wald

2005). Hence, improving the performance of these two data structures for ray

tracing would have significant impact in the area of ray tracing.

The objectives for the work presented in this thesis can then be succinctly

stated as follows:

i) To improve the performance of BVH-based ray tracing of point-

based geometry by using multiresolution technique.

ii) To improve the performance of cost-optimized kd-tree based ray

tracing of point-based geometry by using multiresolution

technique.

1.3. Contributions

Two general contributions are made in this thesis. First, it is shown how

multiresolution method can be used to improve the performance of a BVH-based

ray tracer. While the incorporation of multiresolution method into a BVH-based ray

tracer is by itself a novelty, the author notes the following specific contributions:

• Adaptation of a technique from splat-based rendering to compute the

level-of-detail information stored in the nodes of the BVH tree,

• Adaptation of a technique from splat-based rendering to use the level-of-

detail information stored in the nodes of the BVH to perform backface

culling, and

 7

• The use of non-spherical shapes to bound nodes which is unlikely to

project to a pixel area on the screen smaller than a predefined threshold

value.

Secondly, a method is presented for integrating multiresolution method into

a ray tracer that has already been accelerated by use of a cost-optimized kd-tree.

While this integration is by itself a novelty, the author notes the following specific

contributions:

• Adaptation of a technique from splat-based rendering to compute the

level-of-detail information stored in the nodes of the kd-tree, and

• A new variant of ray-surface intersection scheme that is faster compared

to existing methods.

1.4. Thesis Organization

The rest of this thesis is organized as follows: In Chapter 2, a sampling of

related background material is provided. In Chapter 3, work on integrating

multiresolution capability into a ray tracer based on bounding volume hierarchy is

discussed. In Chapter 4, a study on integrating the capability into a ray tracer

already accelerated by a cost-optimized kd-tree is presented. Finally in Chapter 5,

the overall work is discussed and the thesis concluded.

 8

CHAPTER 2
BACKGROUND

2.0. Introduction

In this chapter, a sampling of background materials relevant to work on

multiresolution ray tracing of point-based geometry is provided. In particular, the

author presents in this chapter an overview of point-based representation, an

overview of the ray tracing algorithm, and that of multiresolution technique.

2.1. Point Based Geometry

The idea of using points as the basis geometric representation dates back

even before the age of 3D scanning technologies. Points became popular in

particular with the introduction of particle systems. Early works involving this

primitive include the modeling of smoke (Csuri et al 1979), clouds (Blinn 1982), fire

(Reeves 1983), and trees (Smith 1984). In 1985, Levoy and Whitted (1985)

proposed points as a universal modeling primitive and presented algorithms

allowing for anti-aliased rendering. The use of points for non-fuzzy models,

however, reemerges in recent years, and this is especially attributed to the need to

deal with massive data set gathered from 3D scanning devices. These 3D

scanning devices use various technologies to digitize a physical object. These

technologies are reviewed in the following subsection.

 9

2.1.1. 3D Model Digitization

There exist a variety of approaches to digitize the shape of an object.

Whatever the approach, the shape is typically acquired as a set of coordinates

corresponding to points on the object's surface. These coordinates measure the

distance or depth of the point from a measuring device, and are called range

values. The measuring device is accordingly called a rangefinder and the data

acquired is called range data. Three dominant classes of acquisition technologies

will be briefly discussed: stereo imaging, Coordinate Measuring Machines (CMM)

and optical triangulation.

In stereo imaging (Szeliski 1999), the idea is to capture 2D images of

objects from different viewpoints and to use the known camera coordinates in each

case to reconstruct the shape of the objects from the photographs. Automatic

reconstruction addresses issues like finding corresponding objects in different

images (correspondence), telling objects apart from each other (segmentation),

identification of similar areas (region detection) and identification of boundaries

(edge detection).

CMM (Bosch 1995) on the other hand, takes a brute force approach by

having mounted, movable touch probes scan the entire surface of an object. The

movement of the probe with respect to a reference point is tracked, so that the

location of a contact point can be calculated. CMMs are precise and accurate.

These have, in fact, led to it being the industry standard for manufacturing

applications. However, the machinary needs a human operator, the handling

 10

clumsy, and the scanning process is typically slow.

In optical triangulation (Venuvinod et al 2003), a light source, typically laser,

projects light onto a surface. A sensor then catches the reflected light rays and

determines their direction. As the positions of the light source, the sensor, and the

direction of projection are known, the point of intersection of the projected and

reflected rays can be found. The intersection point gives the range value for the

surface point that the projected ray hit. By translating or rotating the surface

through the beam, or by sweeping the beam across the surface, one can then

acquire the range data for the entire object.

Whatsoever the method deployed in digitization, one has to note that

conceptually, in the same way that pixels form the digital elements of 2D images,

the point samples acquired are the atomic units that collectively describes object

geometry and appearance. In fact, a point set is, mathematically, a piecewise

constant surface approximant. What this means is that the point set approximates

a surface in a linear way, and that the quality of the approximation is proportional to

the average spacing h between the point samples pi. Hence, the approximation

error of a point set is of the order O(h) (Davis 1975). Consequently, the number of

point samples required to cover a surface is proportional to the surface area.

 11

2.1.2. Computing Local Neighborhood

For a number of modeling and rendering operations, information on the local

neighborhood of each sample point in a point set is needed. For example, to

compute the normal vector for a sample point, one needs to gather information

about points in its local neighborhood. There is, however, no connectivity

information explicitly stored in a point-sampled geometry. Hence, given a sample

point, one cannot directly compute its neighbors.

There two possible approaches in which these local neighborhoods may be

constructed; using Euclidean neighborhoods or using k-nearest neighbors. In the

first approach, all the point samples within a certain radius around a query point

are defined to be its neighbors. The output from this method is however dependent

on the sampling density of the surface, as noted by Amenta et al (1998). There

may be too many or too few neighbors found within a particular region of a surface.

Furthermore, as also noted by Amenta et al (1998), the neighborhood estimate

would be erroneous if two separate surfaces or regions of a surface were located

spatially close to each other.

On the other hand, if the surface is sufficiently dense, and the sampling

satisfies certain sampling criteria, especially adaptation to the local feature size,

the second approach - k-nearest neighbors - provides reliable neighborhood

information. In fact, Amenta et al (1998) provides a formal proof for the stability of

the neighborhood estimate if the sampling criteria is fulfilled.

 12

The k-nearest neighborhood can be computed efficiently by using a

hierarchical space partitioning technique such as kd-tree. The kd-tree in this

context is a multidimensional search tree for points in k dimensional space. For the

purpose of ray tracing, the value of k is 3. One may understand the kd-tree data

structure to be an extension of the binary search tree. In a traditional binary search

tree, records are defined by only one key. In a kd-tree for point based geometry,

records are defined by 3 keys, corresponding to the x,y and z coordinates of point

samples within the geometry. Similar to a traditional binary search trees, records

are inserted and returned using relational operators namely less than (<) and

greater than (≥) operators. However, in searching through the kd-tree, the key that

determines the subtree to use (i.e. left or right) varies with the level in the tree. At

level L, key number L mod 3 + 1 is used, where the root is at level 0. Therefore, the

first key (x coordinate) is used at the root, the second key (y coordinate) at level 1,

and the third key (z coordinate) at level 2. The search process reverts to the first

key at every 3 levels.

2.1.3. Computing Normal Orientation

The normal vector of a point on a surface indicates the orientation of the

surface at that point. This vector is needed, for example, when computing the

amount of light reflected from the point in consideration. Hence, it is important to

consider how one would compute normal vectors for points in a point-based

geometry.

 13

The mechanics of computing the normal vector for points or vertices in a

triangle mesh is well-known. Given a vertex in a triangle mesh, the first step is to

compute the normals of the triangles adjacent to it. The normal of a triangle is

computed by taking the cross product of two non-collinear vectors on its plane. The

second step is to compute the normal vector for the vertex in concern by taking a

weighted average of the normal vectors of the adjacent triangles.

For a point-sampled geometry, there is no edge connectivity information as

is the case for a triangle mesh. Instead one first computes the local neighborhood

of a point and then one applies Principal Component Analysis based on

information in that neighborhood to derive the normal vector for that point. Let po

be a sample point and {p1, …, pk} its nearest neighbors. The covariance matrix is

given by

33

0

))((: ×

=

ℜ∈−−=∑
k

i

T

ii ppppC ……………….. Equation 2.1

where

∑
=

+=
k

i

i kpp
0

)1/(,

The covariance matrix C is symmetric and positive semi-definite. A

symmetric matrix, A, is a square matrix that satisfies:

 14

TAA = ……………….. Equation 2.2

where AT is the transpose of A.

A positive semidefinite matrix is a square matrix satisfying certain properties

and whose eigenvalues are all nonnegative. For a detailed exposition of this

concept, the reader is referred to (Lang 1997). For the purpose of this thesis, it

suffices to say that the properties of the matrix C is such that the eigenvector

corresponding to its smallest eigenvalue gives an estimate for the normal direction,

and hence the normal vector.

Note that this determines the normal vector up to its sign only – the normal

vector may be oriented either inward or outward. A consistent orientation over all

sample points may be constructed by propagation along a minimum-spanning tree

as done in (Hoppe et al. 1992).

2.1.4. Splatting Point Samples

An important task in point-based Computer Graphics is that of rendering a

point-based geometry so that it appears to comprise of smooth continuous

surfaces rather than a discrete collection of points.

The focus in this section is on rendering via splatting. The simplest possible

approach to splat is to simply render the point set as a collection of closely spaced

 15

point primitives viewed orthographically. This can be done using a programming

library such as OpenGL. Dense sampling is required due to the insufficient object-

space approximation power of purely point-based representations.

The earliest systematic account of how one may render points for objects

traditionally represented by polygons is that by Levoy and Whitted (1986). Levoy

and Whitted delved into detailed discussion on the concept of ‘splatting’. They

noted that splatting – the projection of point samples onto the image plane –

require that each projected point contributes to more than one pixel.

Not much was heard again about the work of Levoy and Whitted until 1998,

when Grossman and Dally again proposed the idea of decomposing 3D models

into point samples. Instead of a completely unorganized point cloud, they used a

set of depth images that are orthogonally sampled from a given input geometry, as

illustrated in Figure 2.1. Each pixel in each depth image is a surface sample

containing geometric position and (view independent) surface color. To prevent

gaps in images rendered due to the discrete nature of the point samples,

Grossman and Dally (1998) proposed the use of a multi-layered depth buffer.

depth

image

projection

Figure 2.1: Grossman and Dally (1998) Point Samples Projection

 16

Zwicker et al (2001) visited again the concept of splatting. They called points

on the surface of the sampled geometry a surface splat. In the basic form, a point p

has a normal vector n and a radius r, and could thus be described as an object-

space circular disk. To better deal with the curved surfaces, elliptical splats, instead

of circular splats, are used. Figure 2.2 illustrates both circular splat and elliptical

splat. The two attributes defining an elliptical splat are namely its two tangential

axes u and v and the respective radii. If the two axes coincide with the principal

curvature directions of the underlying surface, and the radii are inversely

proportional to the minimum and maximum curvatures, then the local

approximation attained is optimal.

Kobbelt and Botsch (2004) discussed a number of properties of splat-based

surface representation. They drew from differential geometry to note that elliptical

splats form the best local approximant to a smooth surface. They further compared

between splat-based and triangle mesh representation. A splat-based

representation is similar to a triangle mesh representation in that each individual

splat is a piecewise linear surface primitive. Hence, a splat-based representation

provides the same quadratic approximation order as a triangle mesh

representation. Further, just as for a triangle mesh representation, the sampling

Figure 2.2: a) Circular Splats and b) Elliptical Splats

a) b)

n

r

u
v

 17

density for a splat-based representation of a surface can be adjusted according to

the surface curvature. This adjustment is such that highly detailed regions are

sampled with a higher density of splats, while flat surface regions are sampled

more sparsely. A notable difference between a splat-based representation and a

triangle mesh representation is that a triangle mesh representation has C0

continuity while a splat-based representation need not be so. A splat-based

representation however, is C1 continuous. Hence, it is able to approximate a

surface and yet at the same time provides the same topological flexibility as pure

point clouds. In all, Kobbelt and Botsch (2004) noted that elliptical splat-based

representation is a form of surface representation better than triangle meshes.

A primary limitation of splats is in representing sharp features, such as

edges or corners in an engineering model. For splat-sampled surfaces, insufficient

sampling lead to alias artifacts, and in many cases, such artifacts cannot be

removed by simply increasing the sampling density (Kobbelt and Botsch 2001).

Kobbelt and Botsch (2001) presented a way to solve the problem by aligning the

sampling with the principal curvature directions of the underlying surface. Pauly et

al (2003) further showed that if surface splats are to represent a sharp feature, all

splats that sample the feature have to be clipped against one clipping line if the

feature to be represented is an edge or two clipping lines if the feature to be

represented is a corner.

Another approach to the aliasing problem is by using the moving least-

squares (MLS) technique proposed by Levin (1998). The MLS technique

 18

interpolates a given set of point samples using local higher order polynomials and

has been applied to point-based methods by Alexa et al. (2001). An MLS surface is

defined by using a projection operator that projects points from a vicinity B of the

MLS surface onto the surface itself.

MLS surfaces can be used to define a smooth surface from a set of points,

and have been shown by Alexa et al (2001) to be versatile as a tool to generate

additional sample points on a point sampled surface, e.g., for up- or down-

sampling a model, for low-pass filtering it, or for mapping points back onto the

initial surface after local restructuring. However, rendering them, for example by

up-sampling, is quite involved and does not map to graphics hardware.

A point-based geometry contains a certain amount of noise. For such

geometry, a rendering method proposed by Kalaiah and Varshney (2001) may be

more suitable than a splat-based approach. They build a hierarchy over a given set

of point using Principal Component Analysis (PCA) of the geometry attributes,

followed by k-means clustering. Each node in the hierarchy represents a set of

points. To render the data set, points in viewable nodes are generated using quasi-

random sampling. The viewable nodes are then rendered by splatting the

generated points.

 19

2.2. Ray Tracing

The idea of using ray shooting for computing images is as old as 1968,

beginning with the work of Arthur Appel (Appel 1968). Appel introduced it as an

alternative method for solving the hidden surface problem in rendering solid

objects. Ray tracing is now an important technique for the creation of photorealistic

images given a synthetic scene or model description. In ray tracing, as illustrated in

Figure 2.3, one follows the path of a ray as it travels from the eye point through a

pixel in the viewing window to the objects in the scene and on to the light sources

illuminating the scene.

Algorithmically, ray tracing takes on the form as shown in the following

pseudocode:

Objects

Light source

screen

Figure 2.3: The Ray Tracing Concept

 20

The key part in the ray tracing algorithm is where one intersects a ray

against the objects in a scene. There are two basic problems in doing such

intersection. First of all, one needs to know how to compute the intersection

between a ray and an object. The way in which this is to be done depends on the

geometric primitives involved. It will be explained in the next subsection on how

this intersection can be done for a point-based geometry. Secondly, one needs to

search for the closest point or cluster of points that is intersected by the ray. One

could do so in an exhaustive brute-force manner by simply iterating through the list

of points in an input point-based scene and finding which is the closest to the ray

origin along the ray direction. However, given that there could be millions of point

primitives in a scene, it is important for the search to be done in an efficient

manner.

2.2.1. Ray-Surface Intersection

This section considers ray-surface intersection in the context of point-based

For each pixel in image,

Form a ray that passes through the pixel

Intersect the ray against each object in the scene

If there is an intersection

 Color the pixel according to intersection surface property

Else

 Color the pixel with a background color

Pseudocode 2.1: The Ray Tracing Algorithm

 21

geometry. A point-based geometry comprises of a set of point samples. There is a

fundamental issue in applying ray tracing to a point set. A point, mathematically,

has neither volume nor area. A ray is thin. Hence, the chance of a thin ray hitting a

mathematical point is practically nil. To deal with this problem in a practical

manner, previous works point to a few options:

1) consider each point as defining a small surface area (Schaufler and

Jensen 2000)

2) consider using a thick ray, instead of a thin one (Wand et al 2003)

3) use the original points to define a continuous surface (Adamson and

Alexa 2003, Wald and Seidel 2005).

Option 1

The first option is the simplest and fastest among existing approaches, and

hence is the first approach that the author implemented in his ray tracer. This shall

be referred to as the Schaufler-Jensen (SJ) approach. Corresponding naturally to

the way in which a 3D digitizer scans a physical surface, one associates a disk with

each point Pi, 0 ≤ i ≤ n, where n+1 is the number of points in the input geometry.

The disk has a certain normal, Ni, and radius, ri, associated with it. The disk is

centered at the point Pi at location pi. The equation of a plane covering the disk is

given by:

0=+++ DzNyNxN zyx ……………….. Equation 2.3

 22

where x, y, and z are the free variables of the equation, Nx, Ny and Nz are the

components of the normal Ni, and D is a real number which is unique for a given

plane.

The parametric form of a ray r is given by:

ttdotr ≤+= 0,)(……………….. Equation 2.4

where o is the ray's origin, d the direction vector, and t the parameter.

The standard ray-plane intersection calculation computes t as follows:

zzyyxx

zzyyxx

dNdNdN

DoNoNoN
t

++

+++−
=

)(
……………….. Equation 2.5

Substituting t into the parametric form of the ray, one obtains a positional

value, I. One then check the distance, s, between I and pi. If s < ri, the ray does

intersect with the disk representing the point P. Otherwise, there is no intersection.

Figure 2.4 illustrates an example intersection.

 pi

ri

l
s

disk

ray

Figure 2.4: Ray-Disk Intersection

 23

Considering points as disk results in a simple and fast ray-surface

intersection computation. However, if one intersects with only a single disk, in the

rendered image, disks may be seen sticking out, especially at curved area. The

cause of this problem is that the area representing each point actually overlaps, as

shown in Figure 2.5.

To alleviate the problem, one intersects the ray with each of the point

primitives. From each intersection, the corresponding attributes (eg. position,

normal), attribi, are then interpolated according to the following weighing scheme

used by Schaufler and Jensen (2000):

∑
∑

−

−∗
=

i i

ii i

pI

pIattrib
attrib

||||

||||
 ……………….. Equation 2.6

The computed intersection point is slightly dependent on the direction of the

incoming ray. But this, in the author’s experience and as also reported by Schaufler

and Jensen (2000), is not perceptually visible. However in casting shadow rays,

Figure 2.5: Points as Overlapping Disks

 24

this must be taken into account, and a shadow offset must be used. Similar

adjustments are also required for reflected and transmitted ray.

Option 2

The second option, reported by Wand et al (2003), is more expensive than

the first, as its focus is on anti-aliased ray tracing of polygonal scene rather than

fast ray tracing of point-based geometry. Points are used to accelerate the ray

tracing process. The approach will only be briefly described here.

To obtain the intersection between a point sample p and a cone ray r, as

described by Wand et al (2003), one first expresses the point in ray coordinates.

To do this, the vector, d, between p and the ray origin is computed. Note that the

vector d here does not describe the actual ray direction. Instead, it describes the

direction from the ray origin to the point p. The scalar product between d and the

ray orthogonal coordinates nr, ur and vr (see Figure 2.6) expresses the point

coordinates in ray coordinates.

 Figure 2.6: Ray Coordinate System

nr

ur

vr ray cone boundary

ray cone boundary

	My PhD Cover Page
	Nordin PhD ToC and Abstracts Final
	Nordin PhD Main Body Final
	Nordin PhD Appendix C Final

