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PENYURIHAN SINAR BERBILANG PELERAIAN UNTUK GEOMETRI 
BERASASKAN TITIK 

 
 

ABSTRAK 
 

 

Tumpuan utama di dalam tesis ini adalah kajian tentang integrasi teknik 

berbilang peleraian dengan penyurihan sinar di dalam menjanakan imej objek-

objek 3D berasas titik. Sejak kebelakangan ini, terdapat keperluan untuk model-

model 3D yang semakin meningkat kekompleksan geometrinya. Ini telah 

menyebabkan penggunaan yang lebih berleluasa teknologi pengimbasan 3D. 

Teknologi ini berupaya mengimbas sesuatu model fizikal yang kompleks untuk 

menghasilkan sesuatu set titik yang padat dan tidak berstruktur. Set ini 

mengandungi banyak maklumat. Walaubagaimanapun, kajian di dalam persepsi 

manusia menunjukkan tidak semua maklumat berkenaan dapat dilihat atau 

diproses oleh seseorang. Maka teknik berbilang peleraian menawarkan peluang 

untuk mengurangkan beban komputasi yang terlibat di dalam melakukan 

penyurihan sinar bagi set data berkenaan. Sumbangan pertama tesis ini di dalam 

perkara ini adalah penggunaan struktur data Hierarki Isipadu Kongkongan untuk 

tujuan penyurihan sinar. Struktur data yang digunakan mengawal tahap perincian 

yang digunakan di dalam penjanaan imej, menghapuskan permukaan terhadang 

dan menggunakan kombinasi isipadu berbentuk sfera dan berbentuk kotak untuk 

mencapai kelajuan penyurihan sinar yang lebih baik. Sumbangan yang kedua 

tesis ini adalah kajian tentang penggunaan teknik berbilang peleraian bersama-

sama dengan struktur data pokok kd yang dioptimakan kosnya. Struktur data 



 ix

yang terhasil berupaya meningkatkan prestasi penyurihan sinar dengan cara 

mengawal dengan efisien tahap perincian yang digunakan di dalam penjanaan 

imej dan menggunakan sesuatu varian yang baru skema persilangan sinar-

permukaan.   Hasil daripada kedua-dua kajian ini menunjukkan yang teknik-

teknik yang dipelopori berupaya menghasilkan imej yang berkualiti dan 

meningkatkan prestasi penyurihan sinar. 
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MULTIRESOLUTION RAY TRACING OF POINT-BASED GEOMETRY 
 
 

ABSTRACT  
 

 

The primary concern in this thesis is with the incorporation of multiresolution-

based optimization into ray tracing algorithms specially tailored for point-based 

geometry. In recent years, increasing demand for model complexity has led to an 

increasing use of 3D scanning technologies capable of digitizing a complex 

physical model into a dense, massive and unstructured point cloud. Despite the 

dense amount of information contained in this data set, work in human 

perception study has shown that not all of it will be perceptible by a human 

viewer. Hence multiresolution technique offers an opportunity to reduce the 

computational workload involved in ray tracing such data set. In this respect, the 

first contribution in this thesis is the adaptation and enhancement of a Bounding 

Volume Hierarchy data structure in order to allow for faster ray tracing. The 

resulting data structure incorporates an efficient Level-of-Detail control and 

backface-culling optimization, and uses a mixture of bounding spheres and 

boxes to enable faster ray tracing. The second contribution in this thesis is an 

approach for incorporating multiresolution-based optimization into a point-based 

geometry ray tracer that is already optimized by use of a cost-optimized kd-tree.  

The resulting data structure incorporates an efficient Level of Detail control and a 

new variant of ray-surface intersection scheme that improves the ray tracing 

performance. Both the image quality and the ray tracing performance obtained 



 xi

point to the effectiveness of the multiresolution techniques introduced in this 

thesis. 
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CHAPTER 1 

INTRODUCTION 

 

1.0. Overview 
 
In a number of works related to the perceptual aspect of 3D computer 

graphics system (Reddy 1997, Reddy 2001, Luebke and Hallen 2001, Howlett et al 

2004), it has been shown that the details frequently generated by current computer 

graphics technology are often much more than what users can perceive. 

Multiresolution rendering is an attempt to exploit this fact to reduce the 

computational requirement of computer graphics application. In multiresolution 

rendering, one seek to render an image more efficiently by presenting to the user 

only what would be perceptible and thus saving computational resources that 

would otherwise have been wasted.  In implementing multiresolution rendering, 

one must be able to encode and to selectively retrieve different level of details 

(LoD) of a scene or object during a rendering pass. Intuitively, the idea is to select 

a high LoD for objects or surfaces whose details are likely to be seen well by the 

eye and to select a lower LoD for other objects or surfaces.  

 

Of course, multiresolution technique is inherently tied to work in human 

perception. Much of the perception issue relate to the selection of a LoD given a 

certain user state and the state of the scene or object being viewed. On the other 

hand, the focus in this thesis is on the algorithmic aspect of multiresolution 

technique. Specifically, the author is concerned with studying and designing 
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multiresolution-capable rendering algorithm specialized for ray tracing of point-

based geometry.  

 

A point-based geometry is an object that comprises of point samples. In this 

thesis, it will be interchangably refered to it as a point set. In fact, frequently in this 

thesis, a ray tracer specialized for point-based geometry shall be frequently refered 

to as a point set ray tracer, rather than a point-based geometry ray tracer.  

 

The author is interested in point-based representation as for a number of 

years now, points have been the representation of choice for models of very high 

geometric complexity or very high appearance granularity.  Typically these models 

are obtained from laser range and optical scanners (Levoy et al 2000), 

procedurally generated (Stamminger and Drettakis 2001) or sampled from a 

polygon-based geometry (Grossman and Dally 1998, Pfister et al  2000). With a 

point-based representation, the surface of a 3D object is described by a set of 

sample points without further topological information such as triangle mesh 

connectivity. It has been shown before that the lack of topological information leads 

to simpler and more efficient rendering (Grossman and Dally 1998, Rusinkiewicz 

and Levoy 2000), simplification (Pauly et al 2002), level-of-detail control 

(Rusinkiewicz and Levoy 2000, Chen and Nguyen 2001, Stamminger and Drettakis 

2001), and texturing (Pfister et al 2000) for very complex models. 

 

The approach commonly used to directly view a point-based geometry is 

splatting (Pfister et al 2000, Zwicker et al 2001). In splatting, the basic idea is to 
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iterate through the points in the point set and compute its projection onto the 

screen. A splatting-based point set viewer, examples of which include QSplat 

(Rusinkiewicz and Levoy 2000) and Pointshop (Zwicker et al 2002), can typically 

run at an interactive frame rate on a computer system with recent consumer 

graphics hardware. While, it is fast and easy to view a point-sampled geometry 

using splatting, it is nontrivial and expensive to use the technique to create 

advanced accurate lighting effects such as shadows and self-shadowing, 

reflection, and global illumination. On the other hand, ray tracing, being based on 

the simulation of light rays through a 3D environment, can quite easily model such 

effects.  

 

However, ray tracing tends to be slow. The reason is that while in splat-

based rendering, one projects from points onto the screen, in ray tracing, one 

projects from individual pixels in the screen onto the points. For each frame or 

image to be rendered, a ray is formed going through each pixel and intersected 

against the point set. Hence, while in splatting, one processes the list of points 

once per frame, in ray tracing, one processes it once per pixel. And since, a point-

based geometry can contain millions of points and for anti-aliasing more than one 

ray is casted per pixel, ray tracing of such a dense geometry can take up much 

computational resources. 

 

Still, animated movies (Toy Story, Over the Hedge, and virtually all others) 

and a great many video clips for computer games were all successfully created 

using methods based on ray tracing. Hence, much effort has been exerted 
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research-wise, to improve ray tracing speed and to bring the ray tracing technique 

closer to the realms of interactive real-time usage on an ordinary personal 

computer. 

 

Methods that have been reported in the past on improving the performance 

of ray tracing include using specialized spatial data structure (Glassner 1989, 

Havran 2001), exploiting ray coherence (Wald 2004, Reshetov et al 2005), tuning 

memory and cache performance (Yoon and Manocha 2006), and using parallel 

computation technology (Wald 2004). A spatial data structure partitions memory 

space into cells in order to speed up the process of traversing a ray to search for 

the closest intersection with a surface. Exploitation of ray coherence works 

because rays close together tends to hit the same portion of a surface, and hence 

they share parts of the computation involved. Tuning memory and cache 

performance can improve overall ray tracing performance especially when dealing 

with large data set, as if memory and cache are not managed wisely, the ensuing 

cache miss and disk crashing will tend to bog down any ray tracer. Finally, parallel 

computation is an attractive approach for speeding up ray tracing as the algorithm 

is quite well-known to be trivial to parallelize. 

 

Only as recently as 2003 has there been attempts to exploit multiresolution 

methods in ray tracing (Stoll et al 2006, Yoon et al 2006, Christensen 2003). 

Multiresolution ray tracing methods reported thus far have been tailored for 

polygonal scenes. However point-based geometry has a different demand as it is 

geometrically a different representation. Hence, the author’s primary motivation in 
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this thesis is to further improve the state-of-the-art in visualization of point-based 

geometry by investigating a multiresolution approach to its ray tracing. 

 

1.1. Research Scope 
 
It should be highlighted that in this thesis, the primary concern is with the 

algorithmic aspect of multiresolution ray tracing. As such, only a simple model for 

LoD selection, the aspect of the system that is most tied up to human perception 

study, is used. Hence, the author does not perform any human perception study. A 

survey of existing work in this concern is however provided in Section 2.3.1. 

 

Furthermore, as far as geometric representation is concerned, this thesis is 

focused on point-based geometry. Hence the methods investigated are specialized 

for point-based geometry. The author made neither substantive investigation nor 

strong claim as to whether the methods, results or conclusions to be reported in 

Chapter 3 and 4 apply for other geometrical representation such as polygonal 

meshes or NURBS surfaces. 

 

1.2. Research Objectives 
 

The work as presented in this thesis started out with a mission to improve 

the state of the art in ray tracing of point-based geometry. The general strategy is 

to improve the performance of existing data structures for ray tracing by employing 

multiresolution technique. Two data structures are selected. One is the bounding 

volume hierarchy (BVH), and the other is the kd-tree. The BVH is a simple data 

structure that is widely implemented in many ray tracers. On the other hand, the 
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kd-tree is widely considered to be the state-of-the-art data structures and is 

implemented in high-performance ray tracing engines such as the OpenRT (Wald 

2005). Hence, improving the performance of these two data structures for ray 

tracing would have significant impact in the area of ray tracing. 

 

The objectives for the work presented in this thesis can then be succinctly 

stated as follows: 

i) To improve the performance of BVH-based ray tracing of point-

based geometry by using multiresolution technique. 

ii) To improve the performance of cost-optimized kd-tree based ray 

tracing of point-based geometry by using multiresolution 

technique. 

 

1.3. Contributions 
 
Two general contributions are made in this thesis. First, it is shown how 

multiresolution method can be used to improve the performance of a BVH-based 

ray tracer. While the incorporation of multiresolution method into a BVH-based ray 

tracer is by itself a novelty, the author notes the following specific contributions: 

• Adaptation of a technique from splat-based rendering to compute the 

level-of-detail information stored in the nodes of the BVH  tree,  

• Adaptation of a technique from splat-based rendering to use the level-of-

detail information stored in the nodes of the BVH to perform backface 

culling, and  



 7 

• The use of non-spherical shapes to bound nodes which is unlikely to 

project to a pixel area on the screen smaller than a predefined threshold 

value. 

 

Secondly, a method is presented for integrating multiresolution method into 

a ray tracer that has already been accelerated by use of a cost-optimized kd-tree. 

While this integration is by itself a novelty, the author notes the following specific 

contributions: 

• Adaptation of a technique from splat-based rendering to compute the 

level-of-detail information stored in the nodes of the kd-tree,  and 

• A new variant of ray-surface intersection scheme that is faster compared 

to existing methods.  

 

1.4. Thesis Organization 
 

The rest of this thesis is organized as follows: In Chapter 2, a sampling of 

related background material is provided. In Chapter 3, work on integrating 

multiresolution capability into a ray tracer based on bounding volume hierarchy is 

discussed. In Chapter 4, a study on integrating the capability into a ray tracer 

already accelerated by a cost-optimized kd-tree is presented. Finally in Chapter 5, 

the overall work is discussed and the thesis concluded. 
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CHAPTER 2 
BACKGROUND 

 
 
2.0. Introduction 

 

In this chapter, a sampling of background materials relevant to work on 

multiresolution ray tracing of point-based geometry is provided. In particular, the 

author presents in this chapter an overview of point-based representation, an 

overview of the ray tracing algorithm, and that of multiresolution technique.  

 

2.1. Point Based Geometry 
 

The idea of using points as the basis geometric representation dates back 

even before the age of 3D scanning technologies. Points became popular in 

particular with the introduction of particle systems. Early works involving this 

primitive include the modeling of smoke (Csuri et al 1979), clouds (Blinn 1982), fire 

(Reeves 1983), and trees (Smith 1984). In 1985, Levoy and Whitted (1985) 

proposed points as a universal modeling primitive and presented algorithms 

allowing for anti-aliased rendering. The use of points for non-fuzzy models, 

however, reemerges in recent years, and this is especially attributed to the need to 

deal with massive data set gathered from 3D scanning devices.  These 3D 

scanning devices use various technologies to digitize a physical object. These 

technologies are reviewed in the following subsection. 
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2.1.1. 3D Model Digitization 
 

There exist a variety of approaches to digitize the shape of an object. 

Whatever the approach, the shape is typically acquired as a set of coordinates 

corresponding to points on the object's surface. These coordinates measure the 

distance or depth of the point from a measuring device, and are called range 

values. The measuring device is accordingly called a rangefinder and the data 

acquired is called range data. Three dominant classes of acquisition technologies 

will be briefly discussed: stereo imaging, Coordinate Measuring Machines (CMM) 

and optical triangulation. 

 

In stereo imaging (Szeliski 1999), the idea is to capture 2D images of 

objects from different viewpoints and to use the known camera coordinates in each 

case to reconstruct the shape of the objects from the photographs. Automatic 

reconstruction addresses issues like finding corresponding objects in different 

images (correspondence), telling objects apart from each other (segmentation), 

identification of similar areas (region detection) and identification of boundaries 

(edge detection). 

  

CMM (Bosch 1995) on the other hand, takes a brute force approach by 

having mounted, movable touch probes scan the entire surface of an object. The 

movement of the probe with respect to a reference point is tracked, so that the 

location of a contact point can be calculated. CMMs are precise and accurate. 

These have, in fact, led to it being the industry standard for manufacturing 

applications. However, the machinary needs a human operator, the handling 
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clumsy, and the scanning process is typically slow. 

 

In optical triangulation (Venuvinod et al 2003), a light source, typically laser, 

projects light onto a surface. A sensor then catches the reflected light rays and 

determines their direction. As the positions of the light source, the sensor, and the 

direction of projection are known, the point of intersection of the projected and 

reflected rays can be found. The intersection point gives the range value for the 

surface point that the projected ray hit. By translating or rotating the surface 

through the beam, or by sweeping the beam across the surface, one can then 

acquire the range data for the entire object. 

 

Whatsoever the method deployed in digitization, one has to note that 

conceptually, in the same way that pixels form the digital elements of 2D images, 

the point samples acquired are the atomic units that collectively describes object 

geometry and appearance. In fact, a point set is, mathematically, a piecewise 

constant surface approximant. What this means is that the point set approximates 

a surface in a linear way, and that the quality of the approximation is proportional to 

the average spacing h between the point samples pi. Hence, the approximation 

error of a point set is of the order O(h) (Davis 1975). Consequently, the number of 

point samples required to cover a surface is proportional to the surface area.  
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2.1.2. Computing Local Neighborhood 
 

For a number of modeling and rendering operations, information on the local 

neighborhood of each sample point in a point set is needed. For example, to 

compute the normal vector for a sample point, one needs to gather information 

about points in its local neighborhood. There is, however, no connectivity 

information explicitly stored in a point-sampled geometry. Hence, given a sample 

point, one cannot directly compute its neighbors. 

 

There two possible approaches in which these local neighborhoods may be 

constructed; using Euclidean neighborhoods or using k-nearest neighbors. In the 

first approach, all the point samples within a certain radius around a query point 

are defined to be its neighbors. The output from this method is however dependent 

on the sampling density of the surface, as noted by Amenta et al (1998). There 

may be too many or too few neighbors found within a particular region of a surface. 

Furthermore, as also noted by Amenta et al (1998), the neighborhood estimate 

would be erroneous if two separate surfaces or regions of a surface were located 

spatially close to each other. 

 

On the other hand, if the surface is sufficiently dense, and the sampling 

satisfies certain sampling criteria, especially adaptation to the local feature size, 

the second approach - k-nearest neighbors - provides reliable neighborhood 

information. In fact, Amenta et al (1998) provides a formal proof for the stability of 

the neighborhood estimate if the sampling criteria is fulfilled.  
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The k-nearest neighborhood can be computed efficiently by using a 

hierarchical space partitioning technique such as kd-tree. The kd-tree in this 

context is a multidimensional search tree for points in k dimensional space. For the 

purpose of ray tracing, the value of k is 3. One may understand the kd-tree data 

structure to be an extension of the binary search tree. In a traditional binary search 

tree, records are defined by only one key. In a kd-tree for point based geometry, 

records are defined by 3 keys, corresponding to the x,y and z coordinates of point 

samples within the geometry. Similar to a traditional binary search trees, records 

are inserted and returned using relational operators namely less than (<) and 

greater than (≥) operators. However, in searching through the kd-tree, the key that 

determines the subtree to use (i.e. left or right) varies with the level in the tree. At 

level L, key number L mod 3 + 1 is used, where the root is at level 0. Therefore, the 

first key (x coordinate) is used at the root, the second key (y coordinate) at level 1, 

and the third key (z coordinate) at level 2. The search process reverts to the first 

key at every 3 levels. 

 

2.1.3. Computing Normal Orientation 
 

The normal vector of a point on a surface indicates the orientation of the 

surface at that point. This vector is needed, for example, when computing the 

amount of light reflected from the point in consideration. Hence, it is important to 

consider how one would compute normal vectors for points in a point-based 

geometry. 
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The mechanics of computing the normal vector for points or vertices in a 

triangle mesh is well-known. Given a vertex in a triangle mesh, the first step is to 

compute the normals of the triangles adjacent to it. The normal of a triangle is 

computed by taking the cross product of two non-collinear vectors on its plane. The 

second step is to compute the normal vector for the vertex in concern by taking a 

weighted average of the normal vectors of the adjacent triangles. 

 

For a point-sampled geometry, there is no edge connectivity information as 

is the case for a triangle mesh. Instead one first computes the local neighborhood 

of a point and then one applies Principal Component Analysis based on 

information in that neighborhood to derive the normal vector for that point. Let po 

be a sample point and {p1, …, pk} its nearest neighbors. The covariance matrix is 

given by 

 

33
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The covariance matrix C is symmetric and positive semi-definite. A 

symmetric matrix, A, is a square matrix that satisfies: 
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TAA =      ………………..  Equation 2.2   

  

where AT is the transpose of A. 

 

A positive semidefinite matrix is a square matrix satisfying certain properties 

and whose eigenvalues are all nonnegative. For a detailed exposition of this 

concept, the reader is referred to (Lang 1997). For the purpose of this thesis, it 

suffices to say that the properties of the matrix C is such that the eigenvector 

corresponding to its smallest eigenvalue gives an estimate for the normal direction, 

and hence the normal vector.  

 

Note that this determines the normal vector up to its sign only – the normal 

vector may be oriented either inward or outward.  A consistent orientation over all 

sample points may be constructed by propagation along a minimum-spanning tree 

as done in (Hoppe et al. 1992). 

 

2.1.4. Splatting Point Samples 

 
An important task in point-based Computer Graphics is that of rendering a 

point-based geometry so that it appears to comprise of smooth continuous 

surfaces rather than a discrete collection of points. 

 

The focus in this section is on rendering via splatting. The simplest possible 

approach to splat is to simply render the point set as a collection of closely spaced 
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point primitives viewed orthographically. This can be done using a programming 

library such as OpenGL. Dense sampling is required due to the insufficient object-

space approximation power of purely point-based representations.  

 

The earliest systematic account of how one may render points for objects 

traditionally represented by polygons is that by Levoy and Whitted (1986). Levoy 

and Whitted delved into detailed discussion on the concept of ‘splatting’. They 

noted that splatting – the projection of point samples onto the image plane – 

require that each projected point contributes to more than one pixel.  

 

Not much was heard again about the work of Levoy and Whitted until 1998, 

when Grossman and Dally again proposed the idea of decomposing 3D models 

into point samples. Instead of a completely unorganized point cloud, they used a 

set of depth images that are orthogonally sampled from a given input geometry, as 

illustrated in Figure 2.1. Each pixel in each depth image is a surface sample 

containing geometric position and (view independent) surface color. To prevent 

gaps in images rendered due to the discrete nature of the point samples, 

Grossman and Dally (1998) proposed the use of a multi-layered depth buffer. 

 

 

 

 

 

 

depth 

image 

projection 

 

Figure 2.1: Grossman and Dally (1998) Point Samples Projection 
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Zwicker et al (2001) visited again the concept of splatting. They called points 

on the surface of the sampled geometry a surface splat. In the basic form, a point p 

has a normal vector n and a radius r, and could thus be described as an object-

space circular disk. To better deal with the curved surfaces, elliptical splats, instead 

of circular splats, are used. Figure 2.2 illustrates both circular splat and elliptical 

splat. The two attributes defining an elliptical splat are namely its two tangential 

axes u and v and the respective radii. If the two axes coincide with the principal 

curvature directions of the underlying surface, and the radii are inversely 

proportional to the minimum and maximum curvatures, then the local 

approximation attained is optimal.  

 

 

 

 

 

 

Kobbelt and Botsch (2004) discussed a number of properties of splat-based 

surface representation. They drew from differential geometry to note that elliptical 

splats form the best local approximant to a smooth surface. They further compared 

between splat-based and triangle mesh representation. A splat-based 

representation is similar to a triangle mesh representation in that each individual 

splat is a piecewise linear surface primitive. Hence, a splat-based representation 

provides the same quadratic approximation order as a triangle mesh 

representation. Further, just as for a triangle mesh representation, the sampling 

Figure 2.2: a) Circular Splats and b) Elliptical Splats  

a) b) 

n 

r 

u 
v 
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density for a splat-based representation of a surface can be adjusted according to 

the surface curvature. This adjustment is such that highly detailed regions are 

sampled with a higher density of splats, while flat surface regions are sampled 

more sparsely. A notable difference between a splat-based representation and a 

triangle mesh representation is that a triangle mesh representation has C0 

continuity while a splat-based representation need not be so.  A splat-based 

representation however, is C1 continuous. Hence, it is able to approximate a 

surface and yet at the same time provides the same topological flexibility as pure 

point clouds. In all, Kobbelt and Botsch (2004) noted that elliptical splat-based 

representation is a form of surface representation better than triangle meshes. 

 

A primary limitation of splats is in representing sharp features, such as 

edges or corners in an engineering model. For splat-sampled surfaces, insufficient 

sampling lead to alias artifacts, and in many cases, such artifacts cannot be 

removed by simply increasing the sampling density (Kobbelt and Botsch 2001). 

Kobbelt and Botsch (2001) presented a way to solve the problem by aligning the 

sampling with the principal curvature directions of the underlying surface. Pauly et 

al (2003) further showed that if surface splats are to represent a sharp feature, all 

splats that sample the feature have to be clipped against one clipping line if the 

feature to be represented is an edge or two clipping lines if the feature to be 

represented is a corner. 

 

Another approach to the aliasing problem is by using the moving least-

squares (MLS) technique proposed by Levin (1998). The MLS technique 



 18 

interpolates a given set of point samples using local higher order polynomials and 

has been applied to point-based methods by Alexa et al. (2001). An MLS surface is 

defined by using a projection operator that projects points from a vicinity B of the 

MLS surface onto the surface itself.  

 

MLS surfaces can be used to define a smooth surface from a set of points, 

and have been shown by Alexa et al (2001) to be versatile as a tool to generate 

additional sample points on a point sampled surface, e.g., for up- or down-

sampling a model, for low-pass filtering it, or for mapping points back onto the 

initial surface after local restructuring. However, rendering them, for example by 

up-sampling, is quite involved and does not map to graphics hardware. 

 

A point-based geometry contains a certain amount of noise. For such 

geometry, a rendering method proposed by Kalaiah and Varshney (2001) may be 

more suitable than a splat-based approach. They build a hierarchy over a given set 

of point using Principal Component Analysis (PCA) of the geometry attributes, 

followed by k-means clustering. Each node in the hierarchy represents a set of 

points. To render the data set, points in viewable nodes are generated using quasi-

random sampling. The viewable nodes are then rendered by splatting the 

generated points. 
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2.2. Ray Tracing 
 

The idea of using ray shooting for computing images is as old as 1968, 

beginning with the work of Arthur Appel (Appel 1968). Appel introduced it as an 

alternative method for solving the hidden surface problem in rendering solid 

objects. Ray tracing is now an important technique for the creation of photorealistic 

images given a synthetic scene or model description. In ray tracing, as illustrated in 

Figure 2.3, one follows the path of a ray as it travels from the eye point through a 

pixel in the viewing window to the objects in the scene and on to the light sources 

illuminating the scene.   

 

 

 

 

 

 

 

 

 

 

 

Algorithmically, ray tracing takes on the form as shown in the following 

pseudocode: 

 

Objects 

Light source 

screen 

Figure 2.3: The Ray Tracing Concept 
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The key part in the ray tracing algorithm is where one intersects a ray 

against the objects in a scene. There are two basic problems in doing such 

intersection. First of all, one needs to know how to compute the intersection 

between a ray and an object. The way in which this is to be done depends on the 

geometric primitives involved. It will be explained in the next subsection on how 

this intersection can be done for a point-based geometry. Secondly, one needs to 

search for the closest point or cluster of points that is intersected by the ray. One 

could do so in an exhaustive brute-force manner by simply iterating through the list 

of points in an input point-based scene and finding which is the closest to the ray 

origin along the ray direction. However, given that there could be millions of point 

primitives in a scene, it is important for the search to be done in an efficient 

manner.  

 

2.2.1. Ray-Surface Intersection 
 

This section considers ray-surface intersection in the context of point-based 

For each pixel in image, 

Form a ray that passes through the pixel 

Intersect the ray against each object in the scene 

If there is an intersection 

 Color the pixel according to intersection surface property 

Else 

 Color the pixel with a background color 

Pseudocode 2.1: The Ray Tracing Algorithm 
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geometry. A point-based geometry comprises of a set of point samples. There is a 

fundamental issue in applying ray tracing to a point set. A point, mathematically, 

has neither volume nor area. A ray is thin. Hence, the chance of a thin ray hitting a 

mathematical point is practically nil.  To deal with this problem in a practical 

manner, previous works point to a few options: 

 

1) consider each point as defining a small surface area (Schaufler and 

Jensen 2000) 

2) consider using a thick ray, instead of a thin one (Wand et al 2003) 

3) use the original points to define a continuous surface (Adamson and 

Alexa 2003, Wald and Seidel 2005). 

 

Option 1 

The first option is the simplest and fastest among existing approaches, and 

hence is the first approach that the author implemented in his ray tracer. This shall 

be referred to as the Schaufler-Jensen (SJ) approach. Corresponding naturally to 

the way in which a 3D digitizer scans a physical surface, one associates a disk with 

each point Pi, 0 ≤ i ≤ n, where n+1 is the number of points in the input geometry. 

The disk has a certain normal, Ni, and radius, ri, associated with it. The disk is 

centered at the point Pi at location pi. The equation of a plane covering the disk is 

given by:  

0=+++ DzNyNxN zyx                     ……………….. Equation 2.3 

           

 



 22 

where x, y, and z are the free variables of the equation, Nx, Ny and Nz are the 

components of the normal Ni, and D is a real number which is unique for a given 

plane. 

 

The parametric form of a ray r is given by: 

ttdotr ≤+= 0,)(                               ……………….. Equation 2.4 

where o is the ray's origin,  d the direction  vector, and t the parameter. 

 

The standard ray-plane intersection calculation computes t as follows: 

zzyyxx

zzyyxx

dNdNdN

DoNoNoN
t

++

+++−
=

)(
……………….. Equation 2.5 

  

Substituting t into the parametric form of the ray, one obtains a positional 

value, I. One then check the distance, s, between I and pi.  If s < ri, the ray does 

intersect with the disk representing the point P. Otherwise, there is no intersection. 

Figure 2.4 illustrates an example intersection. 

 

 

 
   pi 

ri 

l 
s 

disk 

ray 

 

Figure 2.4: Ray-Disk Intersection 
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Considering points as disk results in a simple and fast ray-surface 

intersection computation. However, if one intersects with only a single disk, in the 

rendered image, disks may be seen sticking out, especially at curved area.  The 

cause of this problem is that the area representing each point actually overlaps, as 

shown in Figure 2.5. 

 

 

 

 

 

 

 

To alleviate the problem, one intersects the ray with each of the point 

primitives. From each intersection, the corresponding attributes (eg. position, 

normal), attribi, are then interpolated according to the following weighing scheme 

used by Schaufler and Jensen (2000): 

 

∑
∑

−

−∗
=

i i

ii i

pI

pIattrib
attrib

||||

||||
         ……………….. Equation 2.6 

 

The computed intersection point is slightly dependent on the direction of the 

incoming ray. But this, in the author’s experience and as also reported by Schaufler 

and Jensen (2000), is not perceptually visible. However in casting shadow rays, 

Figure 2.5: Points as Overlapping Disks 
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this must be taken into account, and a shadow offset must be used. Similar 

adjustments are also required for reflected and transmitted ray. 

 

Option 2 

The second option, reported by Wand et al (2003), is more expensive than 

the first, as its focus is on anti-aliased ray tracing of polygonal scene rather than 

fast ray tracing of point-based geometry.  Points are used to accelerate the ray 

tracing process. The approach will only be briefly described here. 

 

To obtain the intersection between a point sample p and a cone ray r, as 

described by Wand et al (2003), one first expresses the point in ray coordinates.  

To do this, the vector, d, between p and the ray origin is computed. Note that the 

vector d here does not describe the actual ray direction. Instead, it describes the 

direction from the ray origin to the point p. The scalar product between d and the 

ray orthogonal coordinates nr, ur and vr (see Figure 2.6) expresses the point 

coordinates in ray coordinates. 

 

 

 

 

 

 

 

 Figure 2.6: Ray Coordinate System 
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