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PENCIRIAN DAN SIFAT-SIFAT ADUNAN GETAH ASLI TEREPOKSIDA 

(ENR-50) / ETILENA VINIL ASETAT (EVA) 

 
ABSTRAK 

 
 

Kesan komposisi adunan, pemvulkanan dinamik, radiasi alur elektron dan 

gabungan radiasi serta agen sambung silang ke atas sifat-sifat adunan getah asli 

terepoksida/ etilena vinil asetat (ENR-50/EVA) telah dikaji.  Pemvulkanan dinamik 

disediakan menggunakan Sulphur dan Dikumil peroksida (DCP) sebagai agen 

sambung silang sementara trimethylolpropane triacrylate (TMPTA), tripropyleneglycol 

diacrylate (TPGDA) dan N,N-m pehylenebismaleimide (HVA-2) adalah agen sambung 

silang yang dipilih untuk digunakan bersama radiasi.  Adunan disediakan dengan 

menggunakan pencampur dalaman Haake Rheomix Polydrive R600/610 pada suhu 

120ºC dan kelajuan rotor 50 rpm.  Sistem adunan meliputi komposisi yang berbeza 

iaitu 0/100, 20/80, 40/60, 50/50, 60/40, 80/20 and 100/0  ENR-50/EVA.  Keputusan 

menunjukkan sifat-sifat tensil dan kestabilan terma meningkat dengan peningkatan 

komposisi EVA disebabkan oleh sifat-sifat EVA yang lebih baik berbanding ENR-50.  

Sifat-sifat mekanikal dinamik menunjukkan adunan adalah serasi untuk semua 

komposisi.  Sementara, pemvulkanan dinamik telah meningkatkan kekuatan tensil, 

sifat-sifat terma dan kandungan gel.  Keputusan ini mematuhi teori yang menyatakan 

bahawa pembentukan sambung silang meningkatkan kekusutan molekul di dalam fasa 

getah,   pembentukan fasa getah yang lebih kecil akibat sambung silang, membaiki 

kestabilan morfologi dan seterusnya meningkatkan sifat-sifat adunan tersebut.   

Walaubagaimanapun, dalam kes DCP, selain daripada pembentukan sambung silang 

dalam fasa getah, pemutusan rantai juga berlaku pada EVA.  Dengan mengenakan 

radiasi alur elektron ke atas adunan ENR-50/EVA (50/50) pada dos yang berbeza iaitu 

20,40,60 dan 100 kGy telah meningkatkan sambung silang adunan. Sambung silang 

yang dipengaruhi oleh radiasi meningkat dengan peningkatan dos radiasi dan 
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menyebabkan peningkatan pada sifat-sifat tensil, sifat-sifat terma dan keserasian 

adunan.  Penggunaan agen sambung silang seperti TMPTA, TPGDA dan HVA-2 telah 

meningkatkan lagi sambung silang ini dan menyebabkan peningkatan dalam kekuatan 

tensil, sifat-sifat terma dan sifat-sifat mekanikal dinamik.  TMPTA didapati paling 

berkesan dalam meningkatkan sambung-silang yang dipengaruhi oleh radiasi. 
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CARACTERIZATION AND PROPERTIES OF EPOXIDISED NATURAL 

RUBBER (ENR-50) / ETHYLENE VINYL ACETATE (EVA) BLENDS 

 
 

ABSTRACT 
 
 

The effect of blend ratio, dynamic vulcanization, electron beam irradiation and 

the combination of irradiation and crosslinking agent on the properties of epoxidised 

natural rubber/ ethylene vinyl acetate (ENR-50/EVA) blends were investigated.  The 

dynamic vulcanization were prepared using sulphur and dicumyl peroxide (DCP) as 

crosslink agent, while trimethylolpropane triacrylate (TMPTA), tripropyleneglycol 

diacrylate (TPGDA) and N,N-m pehylenebismaleimide (HVA-2) were crosslinking 

agents chosed to combined with irradiation.  Blends were prepared by melt mixing in 

an internal mixer, Haake Rheomix Polydrive R600/610 at temperature and rotor speed 

of 120ºC and 50 rpm respectively. Blend systems were covering various compositions 

viz. 0/100, 20/80, 40/60, 50/50, 60/40, 80/20 and 100/0 of ENR-50/EVA.  Results 

showed that the tensile properties and thermal stability increased with the increases in 

EVA content due to it superior properties than ENR-50.  Results on dynamic 

mechanical properties revealed that the blend was compatible at all blend ratios.  

Meanwhile, dynamic vulcanization has increased tensile strength, thermal properties 

and gel content.  These findings follow the theory stated that the formation of 

crosslinking increases the molecular entanglement in the rubber phase.  Formation of 

finer vulcanized rubber particles due to the presence of crosslinks improved stability of 

the morphology and subsequently increased the blend properties.  However, in the 

case of DCP, apart from the crosslinking formation in rubber phase, the chain scission 

has also developed on ethylene vinyl acetate (EVA).  The introduction of electron beam 

irradiation on ENR-50/EVA (50/50) blends at different dosage viz. 20,40,60 and 100 

kGy has enhance the irradiation-induced crosslinking.  Irradiation-induced crosslinking 

increased with increase in irradiation dose and lead to the improvement in tensile 
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properties, thermal properties and compatibility of the blend.  The incorporation of 

crosslinking agents such as TMPTA, TPGDA and HVA-2 has further enhanced the 

irradiation-induced crosslinking and lead to the improvement of tensile strength, 

thermal and dynamic mechanical properties.  TMPTA was found to be the most 

effective in promoting irradiation-induced crosslinking of ENR-50/EVA blends. 
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CHAPTER 1 
INTRODUCTION 

 
1.1   Introduction 
 

Polymer blending was recognized in the last few decades as the most 

promising way to prepare new material with tailored individual properties.  Polymer 

blend are defined as a mixture of two or more polymers or copolymers. Blending of 

existing commodity or engineering polymers often can be implemented more rapidly 

and it is less expensive than realization of new polymer chemistry including 

development of monomer synthesis and polymerization technology.  Extensive studies 

have been carried out in the area of polymer blend.  This study includes rubber-rubber 

blend, rubber-plastic blend and plastic-plastic blend.   

 

A thermoplastic elastomer (TPEs) is a relatively new class of polymer blend.  

TPE can be prepared by mixing a thermoplastic and elastomer under high shearing 

action using standard plastic machinery above melting temperature of thermoplastic. It 

can be processed in the molten state as a thermoplastic and which has many of the 

performance characteristic of a thermoset rubber (Harper, 1992).   

 

The great variety of commercially available elastomer and thermoplastics offers 

huge opportunities for blending of TPEs.  There are many combination of elastomer 

and thermoplastic which are commercially available nowadays.  Among them are the 

combination of EPDM rubber with PP (Synnott et al., 1990), EPDM with EVA (Mishra et 

al., 1998a; Mishra et al., 1998b) blend of NBR with PVC (Watanabe, 1990), blend of 

NBR with EVA (Jansen & Soares, 2001) and blend of SBR with EVA (Radhakrishnan 

et al., 2004).  Other than synthetic rubber, natural rubber and it derivatives also been 

used in rubber plastics blend such as NR and ENR.  Among them are NR/PP blend 

(Elliott, 1990), NR/PE blend (Choudhury et al., 1990), ENR/PVC blend (Varughese and 
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De, 1989; Ratnam et al., 1999; Umaru, 1993), ENR/PMMA (Nakason et al., 2004) and 

etc.   

Currently Malaysian Rubber Board produces ENR with the trade name 

Epoxyprene. Two grades are available, namely ENR-25 and ENR-50, with 25, and 50 

mol % epoxidation, respectively. However the market and applications for ENR found 

to be limited. Thus attempts are being made to diversify the usage and application of 

this rubber, especially in advanced engineering field. As mention earlier, blending with 

other polymer is the easiest and the cheapest way to tailor the properties of ENR and 

at the same time reduces the material cost. Furthermore, the presence of oxirane 

group in ENR was found to be effective in causing specific interaction with a second 

polymer (Kallitsis and Kalfoglou, 1989).  

 

Ethylene vinyl acetate copolymers (EVA) are randomly structured polymers, 

which offer excellent ozone resistance, weather resistance, and excellent mechanical 

properties (Doak, 2004).  EVA is chosen to be blended with ENR-50 because of its 

excellence properties and halogen-free thermoplasticity. It is hoped that the blends of 

EVA and ENR will lead to the production of halogen-free materials, which may suit 

many applications that are currently dominated by plasticized PVC and the modification 

on the processing will enhance the tensile properties, thermal properties and 

compatibility of ENR-50/EVA blend. 

 

The main aim of blending rubber with thermoplastic (TPE), is to develop a 

compound with low specific gravity, as well as meeting high resilience, strength and 

modulus requirement.  However, one of the decisive factors governing the properties of 

the multi-component polymer is phase separation behaviour (compatibility between the 

phases).  This might due to the lack of adhesion between the component polymers, 

which make it difficult to produce blends with the desired properties by simple blending.  

Many researches have been carried out in the field of miscibility and compatibility of 
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ENR blends.  Kallitsis and Kalfouglou (1989) investigated the compatibility behaviour of 

ENR at two different degrees of epoxidation with hydroxyl-containing polymeric resins.  

Mallick et al. (1993) studied on the compatibility of polyacrylic acid (PAA) and ENR.  

Margaritis and Kalfouglou (1987) studied on the miscibility of ENR at two level of 

epoxidation (25 and 50 mol%) with polyvinyl chloride.    

 

Within a short period, this area of research has undergone rapid diversification. 

It ranges from the use of coupling agent, chemical modification of immiscible polymers 

to foster miscibility and compatibilization which facilitate the production of polymer 

alloy.  One of the latest blending technique, referred to as reactive blending, exploit 

both physical and chemical means.  All this has been done in order to produce a new 

range of polymer blend with it own speciallity.  

 
 
 
1.2        Objective and Organization of the Thesis 

1.2.1 Objective 

The main objective of this study is to investigate the possibility of producing a 

new thermoplastic elastomer material from the blend of epoxidised natural rubber 

(ENR-50) and ethylene vinyl acetate (EVA).  The studies on the effect of blend ratios 

and some process modification such as dynamic vulcanization (with sulphur and 

dicumyl peroxide), electron beam (EB) irradiation and irradiation with the existence of 

crosslinking agent/coagent (TPGDA, TMPTA and HVA-2) on the characteristic and 

properties of ENR-50/EVA blend will be evaluated. 

The activities of this work are: 

• To study the process development of ENR-50/EVA blends at different blend 

ratios.  This is important since the process development gives the information 

on the effect of blend ratios and different additives used on the processability of 

the blends. 

 3



• To measure the tensile properties of ENR-50/EVA blends in order to assess the 

performance of the end product. 

• To determine the dynamic mechanical properties of ENR-50/EVA blends in 

order to gather the information of the viscoelastic behavior of the materials and 

at the same time, determine the glass transition temperature (Tg) of blend 

materials which could be correlate with the degree of crosslinking and 

compatibility of the blends. 

• To determine the morphology and measure the degree of crosslinking through 

gel content of ENR-50/EVA blends, which is the factors that influence the 

tensile properties, dynamic mechanical properties and thermal properties of the 

blends. 

• To evaluate the thermal stability of ENR-50/EVA blends.  This thermal behavior 

is important since the degradation is a major problem in the development of the 

materials and the service life temperature is important to determine the suitable 

application for these blend materials.  

 

 

1.2.2 Organization of the Thesis 

There are eight chapters in the thesis and each chapter gives information 

related to the research interest. 

• Chapter 1 contain the introduction of the thesis.  It is covers a brief introduction 

about research background, a problem statement, objective of the project and 

organization of the thesis.  

• Chapter 2 contain the review of the literature.  It is covers the fundamental of 

polymer blends and thermoplastic elastomer and also a general overview about 

the process modification on the polymer blends.  
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• Chapter 3 contain the information about the materials specification, equipment 

and experimental procedures used in this study. 

• Chapter 4 discusses the effect of blend ratios on ENR-50/EVA blend. 

• Chapter 5 discusses the effect of different curing system on the dynamically 

vulcanized ENR-50/EVA blend. 

• Chapter 6 discusses the effect of different irradiation dose on the irradiation-

induced crosslink of ENR-50/EVA blend. 

• Chapter 7 discusses the effect of TMPTA and TPGDA on the irradiated ENR-

50/EVA blend. 

• Chapter 8 discusses the effect of HVA-2 on the irradiated ENR-50/EVA blend. 

• Chapter 9 concludes the above findings and assessment was made to evaluate 

the achievement of the objectives. 
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CHAPTER 2 
LITERATURE REVIEW 

 
 

2.1  Polymer Blends 

 Polymer blend constitute of 36 wt% of the total polymer consumption, and their 

pertinence continues to increase.  About 65% of polymer alloy and blend are produced 

by polymer manufacturer, 25% by compounding companies and the remaining 10% by 

the transformer (Utracki, 2002) 

 

In general polymer blend can benefit in term of: (i) Providing materials with full 

set of desired properties at the lowest price. (ii) Extending the engineering resins 

performance. (iii) Improving specific properties. (iv) Offering the means for industrial 

and/or municipal plastics waste recycling.  Blend also benefits manufacturer by 

offering: (i) Improved processability, product uniformity, and scrap reduction. (ii) Quick 

formulation changes. (iii) Plant flexibility and high productivity. (iv) Reduction of the 

number of grades that need to be manufactured and stored. (v) Inherent recyclability, 

etc. (Utracki, 2002)  

 

2.1.1 Definition  

Utracki (1990) defined polymer blend as a mixture of at least two polymers or 

copolymer.  Later, Utracki (2002) defined polymer blend as a mixture of at least two 

macromolecular substances, polymer or copolymer, in which the ingredient content is 

above 2 wt%.  Kumar and Gupta (2003) termed polymer blend as a physical mixtures 

of two or more polymers and are commercially prepared by mechanical mixing, which 

is achieved through screw compounders and extruders.  On the other hand Paul and 

Newman (1978) defined polymer blend as a means of combining the useful properties 

of different molecular species, but blend allow to be done through physical rather than 

chemical means.  From overall definition, we can conclude that polymer blend is a 
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mixture of two or more homopolymer or copolymer, obtained through various 

processes and technique. 

 

2.1.2 Method of Blending 

In plastic processing the terms mixing, blending and compounding have 

different meanings.  Mixing indicates the physical act of homogenization, blending 

usually indicates preparation of polymer blend and alloys, while compounding is the 

incorporation of additives into polymeric matrix, viz. antioxidants, lubricants, pigments, 

fillers, or reinforcements (Utracki and Shi, 2002).  

Polymer blend, in general has been prepared commercially by melt mixing, 

solution blending and latex blending.    

 

2.1.2  a) Melt Mixing 

Melt mixing technique is an easy and economical way of blending different 

polymers to avoid problems of contamination, solvent or water removal and etc.  Mixing 

can be accomplished on heated roll mills. However, this is not very practical since the 

plastic have high melting points.  Mixing on an open mill in air at elevated temperatures 

induces oxidative degradation.  Internal mixers, mixing extruder, and twin-screw 

extruder are more efficient and their use gives less oxidative degradation.  An internal 

mixer is a batch mixer, whereas a twin-screw extruder is a continuous mixer (Coran, 

2001). 

 

2.1.2  b) Solution Blending 

 Due to the experimental difficulties in mixing and measuring highly viscous 

polymer blends, it is a frequently laboratory practice to attain intimate mixing by 

dissolving the two polymers in a common solvent then drying them.  However, the 

morphology of polymer alloy and blend prepared by solvent casting depends on the 

solvent, temperature, time, concentration and etc (Utracki, 1990).  
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2.1.2  c) Latex Blending 

The latex blends were used either directly, for example, as paint, adhesives or 

sealants, or they were spray dried or palletized.  Spray drying has been the most 

frequently used method.  Since emulsion polymerization was able to produce either a 

fine dispersion of homo or copolymer, or alternatively large drop aggregates, 

comparable to those generated in suspension polymerization.  The latex blending 

offered not only a wide range of composition but also diverse morphologies.  The 

disadvantage of the latex blending was high content of contaminants such as 

emulsifiers, residuals of the initiators, chain transfers, stabilizers and etc (Utracki and 

Shi, 2002). 

 

2.1.3 Classification of Polymer Blends 

Polymer blends can be classified in various ways using different indicators such 

as compatibility (compatible and incompatible blends), production methods 

(mechanical blend or chemical blends), nature of polymer architecture (block and graft 

polymers), number of constituent polymers (binary blends, ternary blends and etc) and 

the types of constituent polymers.  Based on the latest parameter, polymer blends can 

be broadly classified into three main groups as follows: i) rubber-rubber blends, ii) 

plastic-plastic blends and iii) rubber-plastic blends (TPE) (Susantha, 2002). 

 

The important of rubber-rubber blends become manifest when we realize that 

nearly every major rubber component in a tire constitutes a blend of two or more of 

these rubbers, Styrene butadiene rubber (SBR), Natural polyisoprene rubber (NR), 

Synthetic polyisoprene rubber (IR), Polybutadiene rubber (BR), Butyl rubber (IIR) and 

Ethylene propylene rubber (EPDM or EPM).  The reasons of producing rubber-rubber 

blend are: (a) the compound cost may be lowered, (b) easy fabricated in the complex 

shaping, forming and building operations, (c) the final product performance can be 

modified beneficially (McDonel et al., 1978).   
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Polyolefin form the largest group of commercial thermoplastic.  They constitute 

a group of polymer of complex macromolecular structure, wide molecular weight 

distribution that are diverse in shape, substantial short and long chain branching and 

high crystallinity.  Their density is the lowest among polymers and strongly influences 

performance characteristics.  The characteristic of plastic-plastic blend are: exellent 

dielectric properties, water repellence, nonpolarity, high melt viscosities that respond 

weakly to temperature change but strongly to shear rate or stress changes, high melt 

elasticity and melt strength.  Most of the studies on plastic-plastic blending used in 

production of films, profiles and containers, molding and insulation and jackets for 

cables.(Plochocki, 1978).  

 

Rubber-plastic blend or known as thermoplastic elastomer (TPE) blends is a 

relatively new class of polymer that are processable as a melt at elevated temperature 

but exhibit properties similar to a vulcanized elastomer at use temperature.  

Thermoplastic elastomer blends exhibit stress-strain characteristics that fall between 

the low modulus crosslink elastomers (curve c Figure 2.1) and the high modulus 

yielding materials that undergo a high degree of plastic deformation (curve b, Figure 

2.1) (Kresge, 1978).   
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Figure 2.1:  Three typical types of stress-strain curves: a) high modulus plastic, b)high 
modulus with yielding and poor recovery on return cycle, c)low-modulus rubbery 

(Kresge, 1978). 
 
 
2.2    Thermoplastic Elastomer (TPEs) Blends 

TPE form a relatively new class of materials, which possess the processing 

characteristics of plastics and the physical properties of vulcanised elastomers 

simultaneously.  They need no separate vulcanisation step.  Scrap and rejects of these 

materials can be recycled without significant inferior effect on the properties and hence 

show the environmentally friendly behaviour.  TPEs are capable of being molded like 

thermoplastics in injection moulding and extrusion at suitable processing temperatures. 

They have a measure of resilience, recovery and flexibility associated with vulcanised 

elastomers at the normal service temperature (Walker and Rader, 1988; De and  

Bhowmick, 1990).  Some advantage and disadvantage of TPEs are summarized in 

Table 2.1. 
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Table 2.1: Advantages and disadvantages of TPEs (De and Bhowmick, 1990; Harper, 
1992). 

 
 Advantages 

1 Processing is simpler and involves fewer steps (little or no compounding 

steps). 

2 Shorter fabrication cycles, which are on order of seconds compared to the 

several minutes long vulcanisation and fabrication cycle of thermoset rubber. 

3 Improved quality of the articles, due to higher level of compositional 

consistency.  

4 Low energy consumption due to fewer and simple processing steps. 

5 Recyclability of scraps and rejects.  

6 Reduction of significance of environmental problems associated with above (5).

7 Improvement in dimensional stability. 

8 Lower specific gravity than comparable thermoset rubber containing various 

additives such as fillers (valid only for unfilled TPEs). 

9 Economic benefits associated with all above advantages. 

 Disadvantages 

1 Unfamiliar technology and processing equipments to most of thermoset 

processors, though the technique is familiar to thermoplastic processors. 

2 Drying requirement, before moulding.  

3 Limited number of low hardness TPEs. 

4 Melting at elevated temperatures. 

 

The TPEs discussed here is mainly focused on TPEs prepared by melt mixing, 

other types of TPEs and their developments are also summarised in order to 

distinguish them from melt mixed TPEs.  TPEs can be categorised into five major 

classes (Harper, 1992).  They are: 

1. Thermoplastic polyurethanes (TPUs) 
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2. Styrenic block copolymers (SBS) 

3. Elastomeric alloy  

4. Copolyester (COPs) 

5. Polymer blends (i) rubber-polyolefin blends (TPOs) 

                              (ii) thermoplastic vulcanisates (TPVs) 

 

The first four groups of TPEs are based on block polymers consist of elastomer and 

thermoplastic components and exist as two distinct phases which are, however, 

chemically bonded.  The end blocks of thermoplastic agglomerate into plastic 

dominants, which are then dispersed in a continuous rubber phase.  However, the 

production of TPEs of first four groups involves with complex chemistry compared with 

TPEs obtained from simple melt mixing of elastomer and plastics. 

 

2.3    Thermoplastic Elastomer Olefins (TPOs). 

 The blending of two or more polymers has gained considerable importance in 

recent years because the blend may give rise to certain properties that cannot be 

attained by other means or from individual components.  Thus thermoplastic elastomer 

can be prepared by mixing a thermoplastic (such as PP, PE or PVC) and an elastomer 

(such as EPDM, NR, ENR or NBR) under high shearing action.  Besides having low 

cost, these blends have certain advantages over other types of TPEs.  In This class, 

the desired properties can be achieved by suitable selection of both rubber and plastics 

and their ratio in the blend.  For example, thermoplastic blends of hardness ranging 

from 60 Shore A to 60 Shore D can be prepared by adjustment of the plastic and 

rubber components.  Since the properties are derived from the phase structure and 

crystallinity of the plastics, the properties can be manipulated by variation of the above 

parameters.  Moreover, preparation of these blends is carried out by using standard 

plastic machinery at a high temperature (above melting point of the plastics).  The 
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properties are also affected by introduction of filler, crosslinkers, interfacial agents, etc 

(Bowmick & De, 1990) 

 

2.3.1 Thermoplastic 

 Molecules in a thermoplastic are held together by relatively weak intermolecular 

forces so that the material softens when exposed to heat and then returns to its original 

condition when cooled. Thermoplastic polymers can be repeatedly softened by heating 

and then solidified by cooling, a process similar to the repeated melting and cooling of 

metals. These behaviors occur due to the non existing chemical crosslinking in this 

polymer. Most linear and slightly branched polymers are thermoplastic. All the major 

thermoplastics are produced by chain polymerization (Progelhof & Throne, 1993; 

Crawford, 1981).  The examples of thermoplastic polymers are PE, PP, PS, PET and 

etc.    

 

2.3.1 a) Ethylene Vinyl Acetate (EVA)  

 The large number of PE usage is the results of the enormous number of 

variations possible in the molecular structure of homopolymers and polar copolymers.  

Polar copolymers usually exhibit lower crystallinity and yield strength.  They are used 

for application requiring flexibility, toughness, stress-cracking resistance and adhesion 

to coatings, co-extruded film and laminates.  One of the PE copolymer is the one 

containing vinyl acetate known as ethylene vinyl acetate (EVA).   

  

 Crystallinity in EVA copolymer is low, but not density (0.922-0.943 g/cm3), 

because the vinyl acetate (VA) groups increase the density of the amorphous phase. 

Copolymer containing up to 20 wt% of VA are used in various extrusion and molding 

applications.  Copolymer containing 2-5% VA behave similarly to PE, but have better 

clarity, higher impact strength, better low temperature flexibility and lower heat seal 
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temperatures.  Copolymer containing 7.5-12% VA have still greater flexibility, higher 

puncture resistance and exceptional impact strength.  They are used in high 

performance film applications.  Copolymer containing 15-18% VA are now available 

and some are almost rubbery in nature (Doak, 2004). 

  

 Ethylene vinyl acetate copolymers (EVA) are randomly structured polymers 

which offer excellence ozone resistance, weather resistance and excellence 

mechanical properties (Doak, 2004). Ethylene vinyl acetate (EVA) is one of the widely 

used polymers for cable insulates. It is also frequently used as a long-lasting-life 

plasticizer to improve the mechanical and processing properties of PVC.  EVA is 

available as a plastic, thermoplastic elastomer, and rubber depending on the vinyl 

acetate (VA) content in the copolymer. EVA containing 28% VA is a thermoplastic 

elastomer, and 50% VA is a rubber (Shifeng et al., 2004).  Figure 2.2 shows the unit 

structure of EVA. 

 

 

Figure 2.2: Unit structure of EVA (Dutta et al., 1996). 

 

 The incorporation of VA in the ethylene chain imparts flexibility, toughness and 

clarity as compared to LDPE.  Other important features include toughness at low 

temperature and intrinsically good processability.  Because of these important 

properties, EVA copolymers have found several applications in sheeting, wire and 
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cable coating,  flexible tubing, shoe soles and food packaging.  They also represent a 

good partner for polymer blends as an impact modifier. 

 

 Beside their good properties, EVA copolymer can be easily converted into 

compatibilizing agents for EVA based polymer blends.  Chemical modification of 

preformed polymers may be very profitable when functional groups are already present 

along the backbone.  The presence of acetate groups facilitates the generation of free 

radical along the backbone, which enables promotion of grafting reactions in the 

presence of several monomers.  Such graft copolymers can be prepared in situ during 

the blend preparation.  Chemical modification of EVA by introducing a functional group 

that can act as a chain transfer agent is another elegant pathway for the synthesis of 

EVA-based graft copolymer (Souza et al., 1999).    

 

2.3.2 Elastomer 

 Terminology of elastomer is defined by Fisher in 1939 as a natural or synthetic 

product that can be vulcanized, where it shows elastic behavior after crosslinked and 

could be stretch at least double the original length at room temperature and will return 

to original length after release it (Heinisch, 1966).  Elastomers are rubbery polymers 

that can be stretched easily to several times their unstretched length and which rapidly 

return to their original dimensions when the applied stress is released. Elastomers are 

crosslinked, but have a low cross-link density. The polymer chains still have some 

freedom to move, but are prevented from permanently moving relative to each other by 

the crosslinks. To stretch, the polymer chains must not be part of a rigid solid. An 

elastomer must be above its glass transition temperature, Tg, and have a low degree of 

crystallinity (http://www.lasalle.edu/academ/chem/ms/ 

polymersRus/Resources/Classification.htm#thermoplastics, 2000). 
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2.3.2 a) Epoxidised natural Rubber  

 Epoxidised natural rubber (ENR) is a derivative of natural rubber produced by 

chemical modification.  It was not until the mid 1980s that pure samples of ENRs were 

prepared and their properties fully recorded (Gelling, 1999).  The mechanical properties 

of natural rubber (NR) are generally superior to those of synthetic rubbers.  However, 

NR cannot compete with the specialty synthetic elastomers with regards to such 

properties as gas permeability and oil resistance.  The epoxidation reactions 

established criteria for the chemical modification of NR, which lead to the development 

of clean Epoxidised natural rubber (ENR).  These new polymer have improved oil 

resistance and decrease gas permeability, whilst retaining many of the properties of 

NR and also exhibiting some novel features. 

 

Table 2.2: Typical properties of ENR and SMR L (Ismail, 2004). 

Properties SMR L ENR 10 ENR 25 ENR 50 

Glass transition temperature, Tg (ºC) -69 -60 -45 -25 

Specific gravity 0.93 0.94 0.97 1.03 

Mooney viscosity, ML, 1+4 (100ºC) 50-70 90 110 140 

 

 The epoxide content of ENR-25 and ENR-50 is within 1-2% of the quoted 

values as determined by a combination of elemental oxygen analysis and proton 

nuclear magnetic resonance (NMR).  The distribution of epoxide groups along the 

polymer backbone determine the physical properties of the ENR concerned.  The 

epoxide group sequences of both ENR-25 and ENR-50 have been measured by NMR 

spectroscopy and the observed sequences agree with those calculated for a totally 

random epoxidation.  Epoxidised NRs are thus randomly Epoxidised cis-1, 4-

polyisoprenes.  
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 Both ENR-25 and ENR-50 have mooney viscosities in the range 75-90 on 

production.  Epoxidation of NR increases the polarity, and thus the solubility of ENR 

depends on the level of epoxidation and the nature of the solvent.  For every 1 mol% 

epoxidation, the glass transition temperature (Tg) increases by approximately 1ºC thus 

ENR-25 has a Tg of -47ºC and ENR-50 a Tg of -22ºC.  ENR vulcanizates show that 

these materials undergo strain cryatallization.  Beyond 50 mol% epoxidation rapid 

decrease strain crystallization was observed.  The polarity of ENR increases with rise 

in epoxide content.  At high epoxidation levels, these materials become more resistant 

to hydrocarbons but their resistance to polar solvents decreases (Baker & Gelling, 

1987).  

 

 The epoxide groups in ENR have also been investigated as routes to new 

crosslinking systems and rubber bound antidegradants and as intermediates for further 

chemical modification (Gelling, 1999).  Figure 2.3 shows the structure of epoxidised 

natural rubber (ENR). 

 

Figure 2.3: Structure of Epoxidised Natural Rubber (ENR) (Ratnam et al., 2001b). 

 

2.4 Thermoplastic Vulcanisates (TPVs)   

 This type of TPE is produced by dynamic vulcanization, defined as the process 

of intimate melt mixing of a rubbery polymer and a thermoplastic to vulcanize the 

rubbery polymer and thus generate a TPE with properties closer to those of a 

thermoset rubber than those of a comparable unvulcanized composition.  Upon melt 

mixing of the thermoplastic and rubbery polymers under high shear, the less viscous 
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thermoplastic will tend to become the continuous phase with the more viscous rubber 

dispersed in it.  The dispersed rubber particles will be vulcanized, forming a three 

dimensional polymer network within each particles, and become trapped since they 

cannot recombine into larger aggregates (Rader, 1988; Coran, 2001). 

 

The morphology of the TPV is best understood as a dispersion of very small, 

highly crosslink elastomer particles in a continuous phase of hard thermoplastic (Figure 

2.4).  The size of the elastomer phase particles is a key to the performance of the TPV.  

As the size of these particles decreases, the ultimate tensile properties of the TPV 

increase.  The second key to TPV performance is the degree of crosslinking of soft 

elastomeric phase.  Highly crosslinking the elastomeric phase gives good properties 

and allows the TPV to capture many of the application previously devoted to a 

thermoset rubber (Rader, 1988).   

 

Figure 2.4: Phase Morphology of TPV (Katbab et al., 2000) 

 

2.4.1 Dynamic Vulcanization 

Dynamic vulcanization is the process of vulcanizing the elastomer during its 

melt mixing with molten plastic.  Dynamic vulcanization is a route to new thermoplastic 

elastomers which have properties as good or even in some cases better than those of 

block copolymer.  Elastomer and thermoplastic is first melt mixed.  After sufficient melt 

mixed in the internal mixer to form well mixing blend, vulcanizing agents (curatives, 

crosslinker) are added.  Vulcanization then occurs while mixing continues.  The more 

rapid the rate of vulcanization, the more rapid the mixing must be to ensure good 
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fabricability of the blend composition.  It is convenient to follow the progress of 

vulcanization by monitoring the mixing torque or mixing energy requirement during 

mixing (Coran, 1987; Coran, 2001). 

 

The change in morphology that occurs during dynamic vulcanization is 

Schemeally represented in Figure 2.5.  During dynamic vulcanization, a co-continuous 

morphology may be transferred to a matrix and dispersed phase morphology, there 

may be some possibility of phase inversion, or the crosslink rubber phase may become 

finely and uniformly dispersed in the plastic matrix.  During the process of dynamic 

vulcanization, the viscosity of the rubber phase increases because of crosslinking and 

the rubber domains can no longer be sufficiently deformed by the local shear stress 

and are eventually broken down into small droplets (John et al., 2003).  

 

There is much commercial interest in dynamic vulcanization since the 

introduction of proprietary product (e.g. SANTOPRENE thermoplastic elastomer) 

prepared by the dynamic vulcanization of blends of olefin rubber with polyolefin resin.  

If the elastomer particles of such a blend are small enough and if they are fully 

vulcanized, then the properties of the blend are greatly improved.  Examples of the 

improvements are as follows (Coran, 1987): 

1. Reduced permanent set, 

2. Improved ultimate mechanical properties, 

3. Improve fatigue resistance, 

4.  Greater resistance to attack by fluids (hot oil), 

5. Improved high temperature utility, 

6. Greater stability of phase morphology in the melt, 

7. Greater melt strength and 

8. More reliable thermoplastic fabricability 
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Figure 2.5: Scheme representation of dynamic vulcanization (John et al., 2003) 

  

In short, dynamic vulcanization can provide compositions which are very 

elastomeric in their performance characteristics.  However, these same thermoplastic 

vulcanizate compositions can be rapidly fabricated into finished parts in thermoplastic 

processing equipment.  The best elastomer thermoplastic vulcanizates are those in 

which the surface energies of the plastic and elastomer are matched.  When the 

entanglement molecular length of the elastomer is low and when the plastic is 15-30% 

crystalline.  
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2.4.2 Sulphur vulcanization 

Sulphur was the first agent used to vulcanize the first commercial elastomer, 

natural rubber (NR).  Accelerated sulphur vulcanization is suitable for the following 

types of elastomer (Rodger, 1979): 

1. General purpose - natural rubber (NR), synthetic isoprene rubber 

(IR), polybutadiene rubber (BR), styrene/butadiene rubber (SBR). 

2. Speciality – Nitril rubber (NBR), butyl rubber (IIR), chloro butyl 

rubber (CIIR), bromo butyl rubber (BIIR) and 

ethylene/propylene/diene modified rubber (EPDM).  

 

Table 2.3: The basic recipe for the sulphur vulcanization system (Rodger, 1979) 

Ingredient Amount 

Zinc oxide 2-10 phr 

Stearic acid 1-4 phr 

Sulphur 0.5-4 phr 

Accelerator 0.5-10 phr 

phr-parts per 100 parts of rubber 

 

Table 2.3 shows the basic recipe for the sulphur vulcanization system.  Zinc oxide and 

stearic acid comprise the common activator system where the zinc ions are made 

soluble by salt formation between the acid and the oxide.  The part of the vulcanization 

system that offers the most opportunity for variation is the sulphur level and type and 

level of organic accelerator.  Accelerated sulphur vulcanization is thought to proceed by 

the following steps: 

1. The accelerator reacts with sulphur to give monomeric polysulphide of the type 

Ac-Sx-Ac, where Ac is an organic fragment derived from the accelerator.  

Certain initiating species may be necessary to start the reaction, which then 

appears to be autocatalytic. 
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2. The polysilphides can interact with rubber to give polymeric polysilphides of the 

type rubber-Sx-Ac. During this reaction, the formation of mercaptobenzothiazole 

(MBT) was observed when an accelerator derived from MBT had been used.  

When MBT itself is used, it first disappears, and then appears during the 

formation of rubber polysulphides. 

3. The rubber polysulphides then react, either directly or through a reactive 

intermediate, to give crosslink or rubber polysulphides of the type rubber-Sx-

rubber. 

In general accelerated sulphur vulcanization can be divided into three systems 

depending on the relative amount of sulphur, activators and accelerator used.  These 

systems are known as conventional vulcanization (CV), Semi-efficient vulcanization 

(Semi-EV) and efficient vulcanization (EV) (Table 2.4).  

 

Table 2.4: Sulphur vulcanization system (Ismail & Hashim, 1998). 

System Amount sulphur 
(phr) 

Amount accelerator 
(phr) 

 

E value 

CV 2.0-3.5 1.0-0.5 
 

8-25 

Semi-EV 1.0-2.0 
(or sulphur donor) 

2.5-1.0 4-8 

EV 0.3-1.0 
(or sulphur donor) 

6.0-2.0 1.5-4 

 

E value is defined as total amount of sulphur atom in one crosslinked that have been 

produced. The lower E value shows the more efficient of sulphur as a crosslink agent.  

Semi-EV or EV type cure systems have been found to be the most satisfactory for 

ENR.  Examples of such systems ere recorded in Table 2.5. 
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Table 2.5:  Compounding formulation for ENR (Baker & Gelling, 1987) 

 Semi-EV 
(phr) 

EV 
(phr) 

 
ENR 100 100 100 
Base 0.3-5   
Filler As required 
Aromatic oil 5 5 5 
Zinc oxide 5 5 5 
Stearic acid 2 2 2 
Antioxidant 2 2 2 
Sulphur 1.5 0.3 0.8 
MBS 1.5 2.4 3.0 
TMTD - 1.6 - 
CTP 0.2 0.2 0.2 
 

2.4.3 Peroxide vulcanization 

The use of organic peroxide as crosslinking agents for natural rubber was first 

investigated by Ostromislensky, who used benzoyl peroxide, in 1915.  However, it is 

only since dicumyl peroxide (DCP) become available that this method of vulcanization 

has been employed commercially (Elliott, 1979).  DCP is today the most used peroxide 

for crosslinking of polyolefin. 

 

Peroxide (ROOR) form reactive radicals under the influence of heat.  They 

decompose in accordance with a first-order reaction.  In presence of the polymer the 

peroxide radicals abstract hydrogens from the hydrocarbon chain.  By combination of 

alkyl radicals, carbon-carbon crosslinks are formed as in Scheme 2.1.   Where ROOR 

is an organic peroxide, RH, represents polymer and R-R represents crosslinked 

polymer. 
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Scheme 2.1:  The mechanism of peroxide vulcanization (Elliott, 1979; Sultan & 

Borealis, 1996). 

 

The polymer radicals formed by hydrogen abstraction will, in addition to the 

combination reaction, also undergo a number of side reactions.  The most important 

are, beta-scission (chain cleavage) (Scheme 2.2), disproportionation (Scheme 2.3), 

intermolecular recombination (ring formation) (Scheme 2.4), recombination with 

radicals originating from peroxide decomposition (Scheme 2.5) and reaction with 

antioxidants (Scheme 2.6).  The chain cleavage reaction takes place particularly at the 

methyl branch points, but also at secondary radicals, specially at high temperatures 

(Sultan & Borealis, 1996).  

 

 

Scheme 2.2 

 

 

Scheme 2.3 
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