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PEMBANGUNAN SEBUAH SISTEM PENGLIHATAN BAGI PEMERIKSAAN 
BADAN KAPAL  

 
ABSTRAK 

 
 Penyelidikan ini memperkenalkan strategi pengawalan untuk memperbaiki 

prestasi pemeriksaan visual  badan kapal dengan menggunakan kenderaan dalam air. 

Kaedah yang dicadangkan bertujuan untuk membangunkan  sebuah sistem yang 

secara visualnya sentiasa kekal selari pada permukaan badan kapal. Terdapat empat 

komponen utama di dalam system ini iaitu kamera, penunjuk laser, platform pan & 

menyenget dan platform Cartesian. Kamera dan penunjuk laser adalah berkedudukan 

tetap pada posisi yang telah ditentukan. Sistem ini menyepadukan kaedah penjejakan 

pancaran laser dan kaedah navigasi bagi kenderaan di bawah air. Pada mulanya, 

kecerahan laser di jejaki dengan menggunakan kaedah  “Region of Interest (ROI)” 

secara anggaran dinamik. Kemudian, proses penyiaran sifat digunakan bagi 

mengenalpasti kedudukan setiap laser pada satah visual diikuti dengan kiraan jarak 

anggaran di antara kamera dan permukaan objek. Kaedah asal penyegitigaan laser 

untuk mengukur jarak telah diubahsuai untuk kegunaan system ini. Sistem kawalan 

suap balik telah dibangunkan untuk mengenalpasti kedudukan kamera dan permukaan 

objek. Algoritma untuk sistem kawalan tersebut telah dibangunkan dengan 

menggunkan Intel Open CV dan Visual C++. Platform Cartesian telah digunakan untuk 

mengaplikasikan sistem ini. Beberapa eksperimen menggunakan permukaan badan 

kapal yang dimodelkan telah dilaksanakan. Sistem jejakan ini boleh melakukan 

pergerakan secara mengufuk dan menegak pada jarak 17cm hingga 100cm daripada 

kamera  kepada permukaan objek dan bertindakbalas dalam masa 1-3s dari sebarang 

permukaan kepada permukaan yang selari di permukaan yang rata dan 2-4s ke atas 

permukaan yang melengkung. Kesimpulannya,  sistem yang diperkenalkan ini terbukti 

akan keupayaannya dan didapati amat praktikal dan mempunyai potensi untuk 

kegunaan teknologi pemeriksaan badan kapal di bawah air. 
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DEVELOPMENT OF A VISION SYSTEM FOR SHIP HULL INSPECTION 

 
ABSTRACT 

 
 

 This work introduces a strategy to improve the performance of visual ship hull 

inspection using a Remotely-Operated Vehicle (ROV) as its underwater vehicle 

platform. The proposed method is aimed at developing a system that will maintain the  

camera viewing angle parallel to the ship hull surface. This system consists of four 

main units, namely, camera, laser pointers, pan-tilt platform and Cartesian platform. 

The position of the camera and the laser pointers are fixed. The system integrates 

laser beam tracking and underwater vehicle guidance technique. Initially, the region of 

interest (ROI), based on laser intensity input, is tracked with dynamic ROI estimation 

technique. Then, the feature extraction process will acquire the position of each laser 

points in the frames, and calculate the distance of the laser source and the surface. 

The range measurement was performed using the modified laser triangulation 

technique. This application focuses on binary images with extension of gray level 

concept. A closed-loop control system has been developed to classify the camera 

positions. An algorithm for overall system control has also been developed, using Intel 

Open CV and Visual C++.  This system has been applied to the Cartesian platform. 

Several experiments using scaled-down ship hull structure are carried out. The test 

results are given and analyze to show its significant result The tracking system is able 

to perform horizontal and vertical slices within the range of 17 cm and 100 cm from the 

camera to the hull surface and the respond time is about 1 – 3s from the arbitrary 

surface to parallel surface on flat surface and 2 – 4s on curve surface. . In short, the 

system is found to be very practical and have great potential usefulness for ship hull 

inspection technology. 
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CHAPTER ONE 

INTRODUCTION 

 

1.0 Introduction 

 Remotely operated vehicle (ROV) is a machine powered by electric current. The 

current and data link are transported by wires in a long cable, called umbilical, which 

connects the underwater robot with its power source. ROV is directly controlled by a 

pilot above the water surface. A camera mounted on the ROV enables the pilot to see 

what the robot is countering underwater and thus effectively navigate and control the 

robot’s movements (Harry et. al., 1997). ROV can be effectively used for underwater 

applications, such as, drill, construction support and pipeline. Among the benefits of 

using these vehicles are; human safety, reduction in mission cost, and improved 

accuracy for repetitive and routine tasks. As the area of underwater robotics matures, 

ROV’s are also important in ship hull inspection process (Lynn et al., 1999; Cadiou et. 

al., 1998; Amat et. al., 1999). The main difficulty of ship hull inspection is the complex 

shape structure, such as the bowl (Figure 1), especially at the front structure and 

thruster engine area (David et. al., 2003). New sensors or techniques to inspect difficult 

access areas are needed.  

 

Figure 1.1 Example of a Ship Hull 
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 Another related issues reported by the International Federation of Robotics 

(IFR) in cooperation with the United Nations Economic Commission for Europe 

(UNECE), the underwater robotics system is highly in demand (World Robotics, 2005). 

With 5,320 units, underwater systems accounted for 21% of the total number of service 

robots for professional use installed until the end of 2004. The most expensive robots 

are underwater systems (from $300,000 to more than $1,000,000). There was a 

growing numbers of underwater robotics vehicles were installed all over the world. The 

results from this should be applied to innovation of existing underwater vehicles which 

the main concerns are specifically to enhance and to upgrade its capabilities.  

 

1.1 Ship Hull Inspection with an ROV 

 The attending inspector is generally limited to view the television (TV) monitor 

and video tapes, talking with the diver, observing (nondestructive testing) NDT 

procedures, reviewing any still photos, and reading the diver's survey report. The TV 

monitor should be located close to the diving supervisor's position to facilitate 

simultaneous viewing of the TV monitor and communication with the diver.  

  

 The diver's visual findings and commentary can be very beneficial. A 

knowledgeable inspection diver can provide greatly enhancing detail and description to 

the TV monitor. For example, wiping off sea growth to clear a picture of the weld or 

carrying a short ruler or a marked diving knife to give dimensions can be helpful to 

topside viewers. On the other hand, the camera used by the diver provides a small field 

of view. The view can be affected by water clarity, the diver's breathing bubbles, the 

diver's motion and speed of advance, glare from the diver's light as well as the amount 

of available light, etc. The diver's comments on the overall condition of the hull 

regarding sea growth, damages, and the coating system may prove to be helpful, but 

the inspector will maintain control of the inspection by requiring the diver to proceed at 

such a pace so that there is good visual acuity of the section of the hull being 
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photographed. The inspector may also have to direct the diver to adjust the attitude of 

the camera to reduce glare or to bring an item more into focus.  

 

 Practically, the most important process in underwater ship hull inspection is 

visual monitoring. The owner should provide a copy of the audiovisual tape and the 

written report by a diving company. Advantages and limitations of using underwater 

robot for ship hull inspection are discussed as follows. 

A. Advantages: 

Unmanned underwater video systems allow inspection of underwater structures at 

greater depths and for longer time durations than do conventional diver systems. In 

addition, underwater video systems can perform repeated inspection dives at greater 

depths without sacrificing the quality of each inspection dive.  

B. Limitations:  

Remotely operated underwater video systems (both manned and unmanned) that 

function independently of divers do not possess the maneuverability offered by 

conventional divers. Therefore, care should be exercised when an ROV is directed into 

areas of restricted space relative to the size of the ROV. Carelessness in such a 

situation could result in the ROV becoming entangled or even possibly lost. Even 

though some ROV include an extension arm-type attachment for grasping some items, 

the ability to manipulate these items is usually restricted. Finally, the umbilical limits 

excursion distance of ROV. 

 

 Ship hulls are built in many shapes and size. Some are flat surfaces while 

others are curved, but most ship hull has one thing in common- they need regular 

inspection either on-site or in the dry dock (Harris et al., 1999; Miller, 1996; Fiala et al., 

1996). Inspections are performed by sending divers or ROVs into the water 

surrounding the ship. More inspections are being done in water because the external 

hull is more accessible (Nicinski, 1983). Nowadays a lot of ROV and Autonomous 
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Underwater Vehicles (AUV) have been used to perform underwater ship hull inspection 

which was previously conducted by an expert diver. In order to avoid dry docking 

option, or to pre-plan the docking work package, it is desirable to perform a 

comprehensive underwater survey of the hull prior entering the dry dock (Carvalhoa et 

al., 2003).  

 

1.2 Objective of Research 

 The main objective of this research is to develop an efficient ship hull inspection 

system using a Remotely-Operated Vehicle (ROV) as its underwater vehicle platform. 

The Inspection will be based on visual input from camera on a pan and tilt platform. 

There are several goals has been identified in order to achieve the main objective; 

 To develop a visual inspection system for dynamic and uncertain environments 

that is flexible and easy to use. The system is able to positioned itself in 

reference to a surface with minimum supervision by the operator.  

 To build the real time image processing and controller that deals with the 

physical control of the inspection system, so that the vehicle is able to perform 

necessary motion during the operation. This task requires the inspection system 

to track a particular area on the surface and positioned its viewing angle always 

parallel to the surface.  

 The system is able to measure a particular object dimensions. This additional 

feature is purposely to extend the usage of the laser device itself. 

 

Supporting processes required in achieving the above objective and goals are:  

 

 To study the usage of an ROV for underwater inspection especially on ship hull 

inspection, including the main challenge and other related technologies. 

 To study any related issues regarding control and guidance techniques for 

underwater vehicles. 
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 To study the usage of a laser for underwater application including; the 

characteristic of laser light over the undersea turbidity, and feature extraction 

techniques. 

 To learn how to realize the design into a working prototype. This process 

includes simulating the design with computer aided design tool (Solidworks™). 

 To develop a program with C programming command lines, and to explore any 

other software that is relevant to image processing development and calibration 

analysis. 

 

1.3 Scope of the Research 

 This research will focus on one aspect of underwater hull inspection, the 

monitoring of hull structure with vision-based inspection system. Due to time 

constraints, this research will not cover in detail the validations and proofs of concept of 

using the inspection system in actual underwater environment. Cartesian platform has 

been used to replace an ROV. However, the main concept and constraints have been 

studied in order to visualize the situation. Modeling and predicting laser beam 

performance for underwater application can be categorized into few aspects; types of 

laser, underwater penetration characteristic, turbidity effect, back scattering effect, peak 

detection algorithm and polarization filtering. No consideration will be made to external 

underwater disturbance to the performance of the developed inspection system. The 

ship hull is assumed to be stationary. 
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1.4 Organization of Thesis 

 This chapter presented the overview information about ROV technology, ship 

hull inspection process, underwater inspection techniques and the motivation for the 

research effort. The main objective of this research is also presented. 

 
 In chapter two, the previous research and existing problems that relates to the 

ship hull inspection application is presented. An overview of the underwater laser 

image processing, control and guidance techniques are also discussed. 

 
 Chapter three discusses the theoretical basis for the research. It includes the 

system design, underwater laser triangulation, laser scaling system, adaptive region of 

interest estimation and centroid searching, parallel surface tracking, object locking and 

performance criteria.  

 
 Chapter four presents the method and implementation for the whole project. 

This includes the designing stage, research approach, parameters, software and 

hardware development, control architecture, algorithms, programming. A prototype of 

ship hull surface is also presented. 

 
 Chapter five outlines the experimental results obtained from the study. This 

chapter report on the results obtained during the test explained in chapter three and 

four respectively. 

 
 Finally, chapter six concludes the works of this research. This chapter also 

summarizes the limitations of the system and several suggestions for further works. 

  
 Appendices in this thesis comprises of the hardware and software specification 

and Visual C++ programming. 
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CHAPTER TWO 

LITERATURE REVIEW 

2.0 Introduction  

The need for inspection of ship’s hull for maintenance and damage is becoming 

increasingly prevalent. This task is presently performed by divers or a remotely 

operated vehicle (ROV). Both methods require significant personal and deck support 

equipment. Ship hulls, as well as bridges, port dock pilings, dams, and various 

underwater structures need to be inspected for periodic maintenance and repair. ROVs 

are suitable platforms for the development of an automated inspection system, but they 

require integration with appropriate sensor technologies (Negahdaripour et al., 2005; 

Vaganay et al. , 2005; Lynn, 1999;  Nicinski, 1983). 

 
 Review of a few related topics which are considerably important factors to 

develop this system are presented in order to fulfill the design requirements. Four topic 

are discussed, i.e. ROV’s and underwater inspection technologies, control and 

guidance techniques for underwater vehicles, underwater inspection technologies, and 

underwater laser triangulation techniques. The basic concepts are described and 

general comparisons are made on each topic. 
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2.1 ROV’s and underwater inspection technologies  

According to Canadian Shipping Act (2004), Japanese Ship Safety Law (2004), 

and US Coast Guard (2004), at least once every three years, the Marine Facilities 

Division shall carry an examination of each marine terminal to determine whether the 

structural integrity of the terminal, the oil transfer operations system and the safety 

equipment are designed and being maintained in a safe working condition. This law 

and regulation are to ensure that the seaworthiness of vessels and to protect lives. The 

objective of the inspection is not only to document and assess the criticality of 

deficiencies, but also to enhance reliability, safety and structural integrity of the terminal 

and its operation. The inspection is to be carried out by a qualified technician with 

adequate knowledge of hull structure inspection under the surveillance of a surveyor. 

The surveyor shall be satisfied with the method of live pictorial representation and the 

method of positioning of the technician on the structure (Kelly, 1999) 

 
 Underwater hull inspection involves the examination of the exterior underwater 

hull and components to determine the condition and needs for maintenance, repair and 

routine inspection. Underwater hull inspection can only be done by a qualified divers or 

an ROV. The inspection report must includes, general examination of the underwater 

hull plating, detailed examination of all hull welds, propellers, tail shafts, rudders, hull 

appurtenances, thickness gauging results, bearing clearances, a copy of the audio and 

video recordings, sea chests condition, and  remove and inspect all sea valves. The 

Marine Inspector will evaluate the hull examination report and grant a credit hull exam if 

satisfied with the condition of the vessel. If approved the ship owner may receive a 

credit hull exam up to 36 months (with divers) and 60 months (with ROV) (US Coast 

Guard, 2004). 
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2.1.1 The need of an ROV for inspection 

The important of ship hull inspection with an ROV has been mentioned before in 

previous chapter, in section 1.1. Among the ROVs used for this purpose can be found 

widely on the web, for examples; 

 
 SubNet Services Ltd (Norwich), http://www.subnetservices.com/  

 VideoRay LLC (USA), http://www.videoray.com/ 

 Pro-Dive Marine Services (Canada), http://www.prodive.ca/rov_services.htm 

 Navigation Eng. Services Ltd, (UK) http://www.underwaterinspection.co.uk/ 

 Nova Ray, Inc. (USA), http://www.novaray.com/ 

  
 All these ROVs are not only focus for ship hull inspection. Other services that 

can be done by an ROV are for instance; diver monitoring, drill rig support, subsea 

intervention, aquaculture facility inspection, dam inspection, salvage operations, under-

ice survey and operations and police and rescue squad search and recovery operation. 

 
Generally, underwater inspections method can be classified into four types; 

CCTV, photographic, Non-destructive test (NDT) and diver physical inspection. An 

underwater inspection is not just to record the video and save the data; it is an activity 

where the inspector probes and searches for signs, which may lead to future problems 

or any other possible damage and threat. In order to save the cost and minimize the 

loss time while performing ship hull inspection, ROV used as alternative. According to 

Lynn (2000), the ROV-based hull surveys can collect all the necessary information 

within a short period of time on the hull systems and allowing the US Navy to refine 

their work packages far ahead of the dry-docking. The US Navy spends about 

$300M/year to dry-dock ships, of which $80M is for paint removal and replacement. 

 
However this procedure required a supervision of expertise. The ROV operator 

and the expertise will make decision base on what they observed and data measured. 
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But the visual data is not 100% accurate especially on the extreme curve surface. ROV 

cannot maintain its static position because of the underwater condition. Inconsistency 

in ROV’s movement and the difficulty of ROV’s operator to guide and control the 

camera at the same time resulted in the visual inspection error. Due to these factors, 

relative tracking control to perform XY positioning maneuver must be done. This feature 

may guide the ROV so that the vehicle is always perpendicular or relative to the ship 

hull surface. 

 
2.1.2 Visual monitoring 

In general, the underwater ship hull inspection technique can be classified into 

two; visual (using camera/sonar or human eye) and non-visual (using NDT or human 

touch). Both techniques are carried out by an expert diver or an ROV. This thesis 

intensively explores the visual monitoring improvement which will indirectly improve the 

NDT measurement as well. In another word, if the ROV can maintain its static position 

with respect to the ship hull, the NDT devices also could get advantage of it. ROV 

should provide a high quality of video and data measured of the hull and acquires a 

more complete picture of corrosion, coating condition, structural defects and hull form 

anomalies that simply are not available with traditional method (Harris et al., 1999). 

 
Examples of research efforts conducted which are similar to the one covered by 

this thesis are given.  Firstly, a hull-based relative tracking and control system which is 

primarily based on a Doppler Velocity Log (DVL), developed by Vaganay et al. (2005). 

In this approach, a 1200 kHz DVL, mounted on a tilt actuator, is used to control the 

Hovering Autonomous Underwater Vehicle (HAUV’s) distance and bearing with respect 

to the hull and to keep track of its path as it travels along the hull by integration of the 

relative velocity. The Dual Frequency Identification Sonar (DIDSON) is mounted on its 

own tilt actuator which allows the vehicle to point it at the desired grazing angle with 

respect to the hull for good imaging. Figure 2.1 shows the positions of the HAUV, DVL 

beams and DIDSON beam while performing horizontal and vertical slices 
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Figure 2.1.  Inspection by horizontal and vertical slices. Vaganay et al. (2005). 
 

When navigating with respect to the hull, the vehicle bearing and the DVL pitch 

with respect to the vehicle are controlled so as to keep the DVL pointed normal to the 

hull. On small curvature hulls, this condition corresponds to the four beam reporting 

nearly identical ranges. The four DVL ranges allow computation of the distance 

between the vehicle and the hull, the bearing (α) of the vehicle relative to the hull and 

the pitch of the DVL axis with respect to the hull (β) which equal to 0º (Figure 2.2). For 

reference, the six Degree of Freedom (DOF) of underwater vehicle is described in 

section 2.2. 

 

Figure 2.2.  Definition of α and β. Vaganay et al. (2005) 
 
 

DIDSON can be used at the front-end of an ROV and Autonomous Underwater 

Vehicles (AUV) as forward-looking sonar for obstacle avoidance and filling the gap not 
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covered by left and right side-looking sonar. This device can gives near video quality 

images for inspection and identification of objects underwater. Figure 2.3 shows the 

DIDSON device and ridged casing images captured with DIDSON (Underwater 

structure inspection, 2006). 

 

 

Figure 2.3.  DIDSON device (left); ridged casing images taken with DIDSON 

(right) 

 
Without considering the cost factors, the sonar system are very good system to 

use. However according to Michel et al. (2002), the two-axis Imagenex system used in 

their tests costs approximately USD $18,000, while a DIDSON system is about USD 

$80,000. The DIDSON image quality is significantly better than the Imagenex.  

 
Meanwhile, Negahdaripour (2005) has developed a vision system for hull ship 

inspection based on computing the necessary information from stereo images. In 

stereographic technique, binocular cues are critical in resolving a number of complex 

visual artifacts that hamper monocular vision in shallow water conditions. The vehicle 

has demonstrated its ability to perform XY positioning maneuver. This stereographic 

technique is also based on the triangulation method. Object measurement result with 

this technique is almost equivalent to a monocular vision guided with laser device. If 

the turbidity level is getting higher, the image quality is decreasing. In this state, the 

laser triangulation method could provide better measurement compare with the 

stereographic technique. Additionally, processing time of a single camera is 

comparatively faster than two cameras. 
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 In short, in order to measure a small component such as a crack surface, sonar 

and laser can be used for underwater application. But in term of video data requirement 

and high precision accuracy with inexpensive equipment, laser application is 

preferable. In general, a rough rule of thumb is that laser systems can operate at 2-4 

times the range of optical vision (Kocak, 2005). The classical advantage of using laser 

beam in a computer vision system is that the image processing is easier. The visual 

servoing, with laser beam allows not only non-textured objects to be treated but also to 

optimize the closed loop control. 

 
 In order to fulfill the main objective, a few works related to the system 

requirement has been studied including the permeation characteristics of visible light in 

water, turbidity effects, laser beam detection for underwater applications and 

underwater laser triangulations.  
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2.2 Control and guidance techniques of underwater vehicles 

 As discussed in Fossen (1994) and Massimo (2003), the motion of marine 

vehicle is usually described with respect to an ROV earth-fixed inertial reference frame 

and a moving body-fixed reference frame (u,v,w) for ROV linear speed (surge, sway, 

heave) and (p,q,r) for ROV angular speed (roll, pitch and yaw rates) whose origin 

coincides with the center of gravity of the vehicle. Thus, position and orientation of the 

vehicle are described relative to the inertial reference frame, while linear and angular 

speeds are expressed relative to the body-fixed reference frame. Figure 2.4 shows the 

six Degree of Freedom (DOF) for an underwater vehicle. 

 

Figure 2.4 Degree of Freedom (DOF) for underwater vehicle 

 
The vehicle kinematics nomenclatures are as follows: 

[x,y,z] T : ROV position relative to the earth-fixed reference frame 

[ψ,ө,Φ] T : ROV roll, pitch and yaw angles relative to the earth-fixed reference frame 

[u,v,w] T : ROV linear speed (surge, sway, heave) relative to the vehicle-fixed 

  reference frame. 

[p,q,r] T : ROV angular speed (roll, pitch and yaw rates) relative to the vehicle fixed 

  reference frame. 

z – vertical 
     (heave) 

y – horizontal 
      (sway) 

Ψ(x) - roll
ө(y) - pitch 

Φ(z) - yaw 

x – optical axis 
      (surge) 

Gravity 
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2.2.1 Guidance techniques for underwater vehicles 

 The classical autopilots for underwater vehicle are designed by controlling the 

heading or course angle in the control loop. By including an additional loop in the 

control system with position feedback from the sensors, a guidance system can be 

designed. The guidance system generates reference trajectories to be followed by the 

vehicle utilizing the data gathered by the navigation system (Naeem et al., 2003). 

Figure 2.5 shows some important guidance laws given by Naeem et al. (2003) as well.  

 

Figure 2.5.  Guidance techniques for underwater vehicles 

 
 Although there a few guidance techniques are available for underwater 

vehicle, the main interest in this thesis is only the vision-based guidance due to the 

design requirement as described on section 2.1.  The rest of the techniques are 

suitable for AUV application. In general, there are two basic approaches to vision-

based control: position-based (PB) and image-based (IB). The advantages and 

disadvantages of these techniques has been described by Sanderson (1980) and 

Corke (2000). In PB systems, features are detected in an image and are used to 

generate a 3D model of the environment. An error is then computed in the Cartesian 

task space, and it is this error that is used by the control system. In IB, an error signal is 
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measured in the image and is mapped directly to actuator commands. IB systems 

enjoy several advantages over PB systems. They are robust to calibration errors and 

do not require a full 3D reconstruction of the environment. It is also a simple matter to 

regulate the trajectory of image features, for instance preventing them from leaving the 

field of view.  

  
 However, IB has its own weaknesses. Certain control tasks can lead to 

singularities in the interaction matrix (or image Jacobian), resulting in system failure. IB 

systems also surrender direct control of the Cartesian velocities. Thus, while the task 

error may be quickly reduced to zero, complicated and unnecessary motions may be 

performed. This is particularly problem when operating in a physically limited or 

hazardous environment. Finally, the Jacobian is dependent on feature point depth, 

which may be unavailable or difficult to estimate accurately.   

 
 Combination of image-based and position-based formed another method 

called 2 ½ Dimension visual servoing (Malis et al., 1999). This technique sharing both 

benefits as mentioned previously. Another uncommon method called frameworks 

based which is based on linear approximations (Cipolla et al., 1997).  This method 

required a several calibration due to low robustness on environment.  

 
2.2.2 Vehicle control 
 
 The ROV’s operator relies on the visual information in order to navigate the 

vehicle. However in order to minimize the task of an operator, vision based guidance 

are used. The basic idea underlying these schemes is that, the feature to be tracked 

introduces a particular geometric feature in the image captured by the CCD camera ( 

Gaskett et al., 1999; Balasuriya et al., 1998; Briest et al., 1997; Rock et al., 1992). The 

vision processor then labels these features, extracts their location in the image and 

interprets the appearance into a guidance parameter. For example, an underwater 

cable introduces a line feature in the image and the edges of a cylinder introduce a 
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rectangle. The vision processor derives the equation of the line representing the cable 

in the image plane given by Equation 1, which gives the direction ‘q’ and position ‘r’ 

parameters. 

r = x cos(q) + y sin(q)                                                     (1.1) 
 

where (x,y) are the co-ordinates of the straight line equation. In the case of a cylindrical 

object, the co-ordinates of the centroid of the object (rectangle) in the image plane and 

the area covered by the object are derived. These parameters are then fused with 

other sensory parameters to determine the control references for the underwater 

vehicle. 

 
 Rock et al., (1992) developed a vision based system to track a dot of light 

generated by a laser. The hardware consists of two cameras, one of which is used to 

locate the target. The vision system works by scanning the image from the last known 

location of the target, or from the centre of the screen if the target is not previously in 

the view. The pixels are examined row by row, expanding outward towards the edge. If 

a target is found, its angle and elevation with respect to the centre of the image is 

evaluated and transmitted to the vision processor, while range can be found using 

successive images from both cameras. In general the close loop guide and control a 

vehicle can be illustrated as Figure 2.6. 

  

Figure 2.6. Closed loop guide and control a vehicle 

 The design and implementation of an advanced low cost system for the 

inspection of underwater structures based on a ROV has been developed by Rui et al. 

(2003). The system integrates a maneuver and control structures for an ROV in the 
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context of the developments of “IES - Inspection of Underwater Structures” project. The 

maneuver encodes the logic required to control the vehicle to execute autonomously or 

assisted by the operator a complex operation. The vehicle supervisor supervises the 

execution of each maneuver and the plan supervisor supervises the execution of a 

mission plan Rui et al. (2003). 

 
2.3 Underwater surface tracking inspection with laser device 

Practically there are only three types of structured light triangulation with laser 

beam used, namely, single point projection, single line projection (light sectioning) and 

multiple line projection. The detail implementation of these techniques for underwater 

vehicle guidance and others related issue will be discussed in this section. 

 
2.3.1 Light sectioning 

Another related work introduced by Kondo (2004) has proposed profiling a system 

to determine the continuous shape of the target objects over a wide area by the light 

sectioning method. Sakai et al. (2004) have proposed an efficient mosaicing system of 

underwater images using AUV mounting the video camera with the line laser. They 

have shown that it is preferable to take a video from the same direction by a constant 

distance as much as possible to make an accurate mosaicing image efficiently.  

 
In this technique, it is necessary to extract laser line information from the image 

taken by the video camera to calculate the position of AUV. In addition, the value of the 

coordinate of extended straight line on extracted laser line at both ends of image needs 

to be acquired. Therefore, the source image is binarized, and the straight line is 

extracted from this image. 
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2.3.2 Single point projection 

Yu et al. (2001) and Kondo (2001, 2002, 2004) proposes an autonomous 

investigation method of underwater structures using AUVs that is implemented by 

initially detecting the target objects, localizing them, then approaching them by taking 

video images while closely tracing their shape. A laser ranging system and a tracking 

method based on the relative position with respect to the target objects are introduced 

to realize this behavior. The image-based active sensing system, consisting of a color 

CCD camera and laser pointing devices, is introduced to overcome sensing difficulties. 

  

In the matter of the visibility of water around the watertight structure, the 

reflection points of laser beams can be detected only up to 2m distance because of the 

higher turbidity in the warm season. The dynamic range of the laser ranging system 

becomes very limited and creates difficulty in finding the target object. In this case, 

dead reckoning error is required to be smaller than the visible range. Once the vehicle 

finds the target, the method works well. Uniform lighting condition is desirable for image 

processing. When the vehicle cruises at relatively greater depths in which the ambient 

lighting is not affected by the natural sunlight, the laser ranging system works very well. 

But in the case of very shallow water, strong and variable natural sunlight seriously 

disturbs the ranging system (Kondo, 2003). 

 
2.3.3 Other related issues 

The Lamp Ray inspection system is described by Harris et al. (1999). The 

inspection process includes taking the user through system calibration, deployment, 

hull form mapping and hull condition survey. An underwater survey should not provide 

the owner with any less information regarding the structural integrity of the in-water 

portion of the hull than is available in dry dock. Through the use of innovative 

technology, much of it developed in the nuclear and defense industries, it is possible to 
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image the hull structure with greater detail and at far less expense than in a traditional 

dry dock setting. 

 
 ROV aided dam inspection developed by Batlle et al. (2003) reported that they 

had a problem with the thrusters configuration. In this instant, the ROV cannot move 

laterally (heave movement) while keeping a constant heading. This turned out to be a 

problem when trying to inspect the dam while keeping a constant distance to it. Some 

solutions are taken into account in order to solve this drawback. This includes changing 

the configuration of the thrusters or adding two more thrusters to the vehicle. Another 

important improvement will be the addition of forward-oriented sonar. In this way, the 

ROV can position itself at a constant distance with respect to the wall. Thruster’s 

configuration and pan-tilt camera are also important in this application besides the laser 

beam technique itself. 

 

2.4 Underwater Laser Triangulation techniques 

 There a few criteria have to be taken into account in order to get the best 

measurement result, namely, laser device selection, hardware manipulation and 

feature extraction algorithm.  

 
2.4.1 The characteristic of laser light over the undersea turbidity 

 The penetration of laser light and its characteristic over the undersea turbidity 

has been developed by Hoshino et al. (2004). They found that, the effect of wavelength 

of the light on the attenuation characteristic is huge and only the blue light (650nm 

wavelength) can penetrates the water up to the depth of 55m. The extinction coefficient 

increases in proportion to the increase of the turbidity. It becomes possible that, the 

laser device is also suitable for the undersea measurement system. Furthermore, the 

permeability condition does not change by the output of the laser and that the power of 

the penetrating laser in turbid water attenuates exponentially. 
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2.4.2 Hardware manipulation 

 In terms of hardware manipulation, range-gated imaging system is one of the 

advance techniques used to enhance image quality and visibility in turbid conditions. It 

is normally preferred not just due to its high range and high resolutions performance, 

but also because of its robustness in terms of motion insensitivity. The range-gated is 

well known for its capability to avoid backscattering effect from turbid medium. It 

basically consists of a pulsed laser system, a control and synchronous logics and a 

high-speed gated camera. The camera gate time is synchronously matched with the 

laser system, in order to discriminate backscattering noise from the actual reflected 

target irradiance (Tan et al., 2005) 

 

2.4.3 Feature extraction techniques for centroid searching 

 By selecting the best laser device that can penetrate deeply with range-gated 

imaging system, the measurements are not complete without a proper feature 

extraction technique. There are several methods available to define the centroid of the 

laser beam. One of those method is by the detection of circles in the image using the 

Hough Transform technique. But this technique also has its limitation since the 

Gaussian has very weak derivatives, meaning it is difficult to extract the centroid of the 

laser beam (Hsin-Hung Chen et al., 2004).  

 
 The mean location (centroid) within the search window of the discrete 

probability image is found using moments (Horn, (1986); Freeman et al., 1996; Bradski, 

1998). Problems with centroid computation for face tracking have been identified (John 

et al., 2003; Bradski, 1998; McKenna et al., 1999; Comaniciu et al., 2003). The direct 

projection of the model histogram onto the new frame is known to introduce a large 

bias in the estimated location of the target and the measurement is known to be scale 

variant.  
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 Although the proposed system is mainly depending on the laser, there are some 

disadvantages of using laser device has to be taken into consideration. For instance, 

light is absorbed by water (which may also be useful) and by the debris produced 

during processing. Furthermore, light may be scattered by the water surface, 

suspensions and bubbles, and possible power loss due to water cooling (Kruusing, 

2002).  

  
 In brief, this section had discussed the factors that contribute to the accuracy in 

laser range measurement technique. As a preliminary study, the theoretical explanation 

in this section will be tested.  

 

2.5 Summary 

 In this chapter, the ship hull inspection technology, underwater laser and 

underwater guidance and control have been reviewed. Since underwater laser 

application has undergone several positive developments recently, small issue 

regarding its weakness as mentioned in previous section can be neglected. However 

the main challenge is to perform high speed loop control respond and precision in 

measurement as well. Selection of proper hardware devices and programming 

technique may overcome this problem. In order to develop the system, the need of the 

particular goals have been taken into consideration. Among the key design issues 

addressed are Cartesian platform as an ROV, pan-tilt camera, laser device positions, 

feature extraction techniques, real time programming language, calibration methods, 

controller, ship hull prototype and underwater environment. These subjects will be 

discussed in details throughout the thesis.  



 24

CHAPTER THREE 

THEORY 

 

3.0 Introduction 

 A theoretical explanation of the research is discussed in details in this chapter. 

A Cartesian platform is used to emulate the ROV’s movement. It is similar to setup 

which had been done by Lots et al. (2001) to emulate the six DOF of the ROV. 

Assuming the underwater environment characteristics are known, this research will 

focuses on how to develop the vision-based tracking system itself. The permeation 

characteristics of visible light in water, turbidity effects, laser beam detection for 

underwater applications and underwater laser triangulations, are also discussed in this 

chapter.   

 

 Scaled-down ship hull section is developed and used as the target object, 

painted with the actual anticorrosion paint (dark maroon). Grids of 10cm x 10cm are 

marked on the ship hull model surface so that it can provide some mean for the visual 

observation, measurement and analysis. Finally, this research adopts a set of metrics 

and performance criteria from feedback control theory to characterize the dynamic 

performance of the tracking system. 
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