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PEMBANGUNAN DAN PENILAIAN MIKROSFERA TERBIODEGRADASI 
BERMUATAN TERBUTALIN SULFAT UNTUK PENGHANTARAN 
PULMONARI  
 
 

ABSTRAK 
 

Mikrosfera terbutalin sulfat (TBS) pelepasan tertahan dibangun menggunakan 

polimer PLA R 203H dan PLGA RG 504H. Mikrosfera disediakan menggunakan 

kaedah emulsi berganda pemeruapan pelarut dan amaun TBS terperangkap 

dalam mikrosfera ditentukan dengan spectrometer UV. Pengaruh surfaktan 

(PVA dan natrium oleat) dan gelatin di dalam fasa luar dan pH di dalam fasa 

internal ke atas ciri-ciri fizikal mikrosfera dikaji. PVA (0.5 and 5%), natrium oleat 

(0.1 and 0.5%) dan pH (4, 5.8 and 7.4) didapati mempengaruhi ciri-ciri fizikal 

(saiz, hasil, muatan drug dan kecekapan pemerangkapan) mikrosfera. 

Sebaliknya, gelatin (25, 50 and 100 mg) tidak ada kesan terhadap ciri-ciri fizikal 

mikrosfera PLA dan PLGA. Pada keadaan optimum (PVA 0.5%, natrium oleat 

0.1% and pH 7.4) muatan drug, kecekapan pemerangkapan, hasil dan purata 

saiz partikel adalah 0.85%, 34.99%, 87.11% dan 6.55 µm masing-masing untuk 

PLA dan 0.76 %, 31.17 %, 84.52% dan 8.64 µm masing-masing untuk PLGA. 

Profil terma DSC memperlihatkan Tg mikrosfera PLA dan PLGA berganjak ke 

nilai rendah. Tambahan pula, spectrum FTIR juga memperlihatkan anjakan ciri-

ciri puncak TBS di dalam mikrosfera. Ini menunjukkan interaksi molekul telah 

berlaku di antara TBS dengan polimer di dalam mikrosfera. Imbasan mikroskop 

electron memperlihatkan struktur permukaan mikrosfera PLA lebih berliang 

daripada PLGA. Tambahan pula, pelepasan drug dari mikrosfera PLA lebih 

cepat dari pada PLGA. Penambahan gelatin ke dalam formulasi didapati 

memanjangkan pelepasan drug dari mikrosfera. Pelepasan drug pada fasa 



cepat peringkat awal (6 jam) dari PLA dan PLGA tanpa gelatin masin-masing 

adalah 76.31% and 55.4% dan selebihnya dibebaskan dalam masa 24 jam and 

72 jam. Sebaliknya, pelepasan drug pada fasa cepat peringkat awal dari PLA 

dan PLGA dengan gelatin masing-masing adalah 35.4% and 22.4% dan 

selebihnya dibebaskan dalam masa 144 jam dan > 144 jam. Pelepasan drug 

dari mikrosfera PLA dan PLGA tanpa gelatin mengikut kinetik tertib pertama. 

Walaubagaimanapun, pelepasan drug dari PLA dan PLGA dengan gelatin 

masing-masing mengikut kinetik Higuchi dan bi-eksponential tertib pertama. 

Purata saiz aerosol (MMAD) PLA terhidrat semula (2.53 µm) dan PLGA 

terhidrat semula (3.50 µm) yang dihasilkan menggunakan nebulizer lebih kecil 

daripada MMAD PLA (11.10 µm) dan PLGA (11.47 µm) yang dihasilkan oleh 

Rotahaler. Sebagai tambahan, FPF dari PLA (49.54%) and PLGA (37.50%) 

yang dihasilkan oleh nebulizer lebih tinggi daripada FPF dari PLA (11. 89%) 

and PLGA (10.57%) yang dihasilkan oleh Rotahaler. Sebagai kesimpulan, 

mikrosfera bermuatan TBS adalah formulasi yang terbaik untuk TBS pelepasan 

tertahan penghantaran pulmonari menggunakan nebulizer.  

 

 

 

 

 

 

 

 
 



 
 
 
 
DEVELOPMENT AND EVALUATION OF TERBUTALINE SULPHATE 
LOADED-BIODEGRADABLE MICROSPHERES FOR PULMONARY 
DELIVERY. 
 
 
 

ABSTRACT 

 

Sustained-release terbutaline sulphate (TBS) microspheres were developed 

using PLA R 203H and PLGA RG 504H polymers. The microspheres were 

prepared using the double emulsion solvent evaporation method and the 

amount of TBS entrapped in the microspheres was determined by UV 

spectrometry. The influence of surfactants (PVA and sodium oleate) and gelatin 

in the external phase and the pH in internal phase on the physical 

characteristics of the microspheres were investigated. PVA (0.5 and 5%), 

sodium oleate (0.1 and 0.5%) and pH (4, 5.8 and 7.4) were found to influence 

the physical characteristics (size, yield, drug loading and entrapment efficiency) 

of the microspheres. Conversely, gelatin (25, 50 and 100 mg) had no effect on 

the physical characteristics of both PLA and PLGA microspheres. At optimum 

level (PVA 0.5%, sodium oleate 0.1% and pH 7.4) the drug loading, entrapment 

efficiency, yield and mean particles size of PLA were 0.85%, 34.99 %, 87.11% 

and 6.55 µm while that of PLGA were 0.76%, 31.17%, 84.52% and 8.64 µm 

respectively. The DSC thermal profiles revealed that the Tg of PLA and PLGA 

microspheres shifted to a lower value when TBS incorporated into 

microspheres. Moreover, the FTIR spectra also showed a shift in the 

characteristic peak of TBS in microspheres. This indicates that molecular 



interaction had occurred between TBS and polymers within the microspheres. 

The scanning electron microscope revealed that the surface structure of PLA 

was more porous than that of PLGA microspheres. Furthermore, the release of 

drug from PLA microspheres was faster than from PLGA microspheres. An 

addition of gelatin to the formulation was found to prolong the release of drug 

from the microspheres. Drug release at the initial rapid phase (6 h) from PLA 

and PLGA without gelatin was 76.31% and 55.4% respectively while the 

remaining amount was released within 24 h and 72 h respectively. In contrast, 

drug release at the initial rapid phase from PLA and PLGA with gelatin was 

35.4% and 22.4% respectively while the remaining amount was released within 

144 h and >144 h respectively. The drug release from both PLA and PLGA 

microspheres without gelatin fitted first order release kinetics model. However, 

drug release from PLA and PLGA with gelatin followed the Higuchi and bi-

exponential first order release kinetics models respectively. The mean aerosols 

size (MMAD) of rehydrated PLA (2.53 µm) and rehydrated PLGA (3.50 µm) 

generated using nebulizer were smaller than the MMAD of PLA (11.10 µm) and 

PLGA (11.47 µm) produced by a Rotahaler. In addition, the fine particle fraction 

(FPF) of PLA (49.54%) and PLGA (37.50%) aerosolized by a nebulizer were 

higher than the FPF of PLA (11.89%) and PLGA (10.57%) produced by a 

Rotahaler. In conclusion, TBS- loaded PLA microspheres is a promising 

candidate for pulmonary delivery of sustained-release TBS using a nebulizer. 

 

 

 

 



CHAPTER 1: GENERAL INTRODUCTION 
 

1.1 RESPIRATORY SYSTEM 

The human respiratory system is a complicated organ system of very close 

structure-function relationships. The system consists of two regions: the 

conducting airway and the respiratory region. The airway is further divided into 

many folds: the nasal cavity and the associated sinuses; the nasopharynx, 

oropharynx, trachea, bronchi and bronchioles. The respiratory region consists of 

respiratory bronchioles, alveolar ducts and alveolar sacs (Travis et al., 1999).  

 

Beta2-adrenergic receptors exist throughout the airways such as on the 

epithelium, smooth muscle, alveoli and specialized cell types including on the 

Clara and mucus-secreting cells (Nijkamp, 1993). The existence of epithelial β2 

-receptors is of particular importance to respiratory function, as it mediates 

various functions in man and animals including smooth muscle relaxation, 

clearance of alveolar fluid, influence of ion fluxes, as well as modulating the 

release of bronchodilating mediators (Abraham et al., 2003).  

 

The respiratory system has very efficient defence and clearance mechanisms 

for foreign particles and infectious agents inhaled on inspiration. The nose traps 

almost all particles with an aerodynamic diameter of more than 5 µm (Fig 1.1). 

Aerodynamic diameter refers to the way particles behave in air rather than to 

their actual size. The mucociliary blanket of the airway epithelium disposes of 

particles with an aerodynamic diameter 3-5 µm. The ciliary beat drives the 

mucous blanket toward the trachea, and particles that land on the mucociliary  

 



 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
Figure 1.1 Deposition of particles in the respiratory tract (adapted from Travis 
et al., 1999).  
 
 



blanket of the airway epithelium are thus removed from the lungs and 

swallowed or coughed up. Alveolar macrophages protect the alveolar space by 

phagocytizing viable and non-viable particles which have aerodynamic diameter 

less than 2 µm. Very small particles that behave like gas are not phagocytosed 

but exhaled (Travis et al., 1999). Nevertheless, Everard (2003) reported that by 

generating airborne particles in 1-5 µm range they were able to exploit a relative 

weakness in the pulmonary defence mechanisms and deposit foreign materials 

relatively effectively in the lung. 

  
 
1.2 ASTHMA 
 
Asthma is a heterogeneous common chronic condition characterized by 

endobronchial inflammation with consequent bronchial hyperesponsiveness 

(Currie et al., 2005). This leads to variable airflow obstruction and typical 

symptoms such as cough, breathlessness, chest tightness, wheezing and 

reduced exercise tolerance. The precise aetiology of asthma remains uncertain, 

but genetic and environmental factors such as viruses, allergen exposure, early 

use of antibiotics, and the numbers of siblings have all been implicated in its 

inception and development (Sandford et al., 2000). 

 

1.2.1 Drugs used for treatment of asthma 

Beta2-adrenoceptor agonists and glucocoticoids are at present the most 

effective drugs for the treatment of airway obstruction and inflammation, with 

theophylline, leukotriene receptor antagonists and anticholinergics functioning 

as second- or third-line therapy. For decades, there has been no newly 

developed drug available to supplement or even replace beta2-adrenoceptor 



 

agonists or glucocorticoids (Rabe and Schmidt, 2001). However, a 

combination therapy consisting of inhaled corticosteroids and long acting 

beta2-adrenoceptor agonists (single-inhaler combination product) e.g. 

budesonide/formoterol and salmeterol/fluticasone can be considered as a new 

addition to the pharmacological management of asthma (Balanag et al., 

2006). Recently, efforts have been made to develop a dry powder inhalation 

system consisting of vasoactive intestinal peptide analogue (IK312532-DPI) to 

treat pulmonary diseases such as asthma (Ohmori et al., 2006). 

 

1.2.1(a) Bronchodilators 

Beta2-adrenoceptor agonists such as salbutamol and terbutaline have been 

the standard therapies for the symptomatic treatment of asthma (Mohammed 

et al., 2000). At present, good clinical and experimental experience with short 

(e.g. fenoterol, salbutamol and terbutaline) and long acting (e.g. salmeterol 

and formoterol) beta2-adrenoceptor agonists seems to suggest that it is rather 

unlikely that novel bronchodilators which are better tolerated and more 

effective will be developed. Beta2-adrenoceptor agonists are believed to 

cause airway smooth muscles to relax by increasing intracellular levels of 

cyclic adenosine monophosphate and opening potassium channels. Attempts 

have been made to imitate these effects with other substances such as 

nonselective phosphodiesterase inhibitors and potassium channel openers. 

However, these drugs were shown to be far less effective as bronchodilators 

compared to beta2-adrenoceptor agonists, and their application at higher 

doses in order to cause smooth muscle relaxation was limited with marked 

side-effects (Rabe and Schmidt, 2001).  



 

1.2.1(b) Anti-inflammatory drugs  

Airway tissue inflammation is considered to be the main mechanism in the 

development and maintenance of asthma. So, limiting exposure to 

inflammatory  

triggers and reducing the inflammatory process using anti-inflammatory drugs 

are the main thrusts in the management of asthma. The first-line anti-

inflammatory drugs of inhaled corticosteroids (e.g. budesonide, 

beclometasone dipropionate, flunisolide and fluticasone), may be adequate to 

fully control symptoms in mild cases (Sears and Lotvall, 2005). However, for 

many patients, additional drug therapy, typically long acting beta2-

adrenoceptor agonists that relax the smooth muscle in the airway, is needed 

for long term treatment of moderate to severe asthma (Barnes, 2006; Sin and 

Paul Man, 2006). 

 

1.2.1(c) Cromones and other drugs  

Cromones including disodium cromoglycate and nedocromil have been used 

in the treatment of asthma for many years. Clinical trials in children and adults 

with asthma have shown that inhaled corticosteroids (such as fluticasone 

propionate) and cromones (such as nedocromil) alleviate asthma symptoms, 

lung dysfunction and decrease nonspecific bronchial hyperreponsiveness 

(Vatrella et al., 2002). In addition, other drugs such as methylxanthines, 

leukotriene receptor antagonists, anti-cholinergics and antihistamines have 

also been used in the treatment of asthma. 

 

 



 

1.2.2 TREATMENT OF ASTHMA VIA INHALATION AEROSOLS 

Aerosols are an effective method to deliver therapeutic agents to the 

respiratory tract (Sham et al., 2004). Nebulizers, metered dose inhalers, or dry 

powder inhalers are commonly used for this purpose (Cohn et al., 2003; Dalby 

and Suman, 2003). 

 

1.2.2(a) Nebulizers 

A nebulizer is a device designed for the purpose of producing an aerosol (Fig 

1.2).  The device works by converting liquid asthma medication into aerosol 

droplets. The droplets are then inhaled into the lower respiratory tract through 

a mask worn over the nose and mouth of a patient. Nebulizers can be 

classified into two categories namely, jet nebulizers and ultrasonic nebulizers. 

Several advantages of nebulizers have been reported:  

 Some patients like infants, young children and elderly patients cannot 

master the coordinated effort needed to correctly use the metered dose 

inhaler, or dry powder inhalers (O´Driscoll, 1997).  

 Some patients feel more comfortable using nebulizers, enjoying the 

way the mist feels in their lungs (Win and Hussain, 2005).  

 The inhaled droplets produced by nebulizers may alter the mucus 

viscosity in the airways and a nebulized drug or saline solution may 

help patients with bronchiectasis to expectorate (Sutton et al., 1988). 

 

Although the use of nebulizers is encouraging, nebulizers exhibit certain 

disadvantages in that they are cumbersome to use and costly.  

 



 

 

 
 

Figure 1.2 Example of an Air jet nebulizer (adapted from Dalby and Suman,  
2003). 
 

 
 

 

 

 

 

 

 

 

 



 

1.2.2(b) Metered dose inhalers (MDIs) 

Metered dose inhalers are a well-known dosage form for treatment of 

respiratory diseases (Fig 1.3). Aerosolized beta agonists and anti-allergic 

compounds were first formulated as pharmaceutical aerosols in 1956 using 

chlorofluorocarbons (CFCs). The MDI formulation comprises an active 

ingredient and one or more propellants. In addition, it may also contain 

formulation additives, such as surfactants and co-solvents. The propellant 

system is the main ingredient in MDI formulations and serves as a solvent and 

dispersion medium for drug substance and other excipients. It also serves as 

an energy source for generating an aerosol cloud on actuation while the dose 

is emitted from the metering valve (Williams et al., 1998). 

 

CFC propellants possess several desirable characteristics that have made 

them an excellent choice for use as metered dose inhaler propellants. They 

are chemically stable and as a result, are not metabolized but are instead 

rapidly re-emitted into the atmosphere when the patient exhales. CFC 

propellants offer the additional advantage of extremely low toxicity and are not 

flammable at atmospheric pressure and temperatures (Kempsford et al., 

2005). Moreover, they are inexpensive to produce and have been widely 

available since the 1970s. However, scientific research has unearthed 

substantial evidence that CFCs and other chlorine-containing chemicals 

contribute to the depletion of the stratospheric ozone layers (Molina and 

Rowland, 1974). CFCs production in the United States came to a virtual stop 

on January 1, 1996, when the use of CFC in air-conditioning, refrigeration and  



 

 

 

Figure 1.3 Basic components of a pMDI (adapted from Smyth, 2003). 

 

 

 

 

 

 

 

 

 

 

 



 

production of foam was phased out. However, production of pharmaceutical-

grade CFCs for use in MDIs, has continued. This is because MDIs are 

considered essential for the health of patients with asthma and chronic 

obstructive pulmonary disease. Efforts have been made to consider an 

alternative to ozone-depleting CFC using other classes of environmental 

friendly propellant such as hydrofluroalkanes (HFAs). For instance, HFAs 

propellants (e.g. HFA-133a and HFA-227) have been recommended to be 

used in the delivery of inhaled medication. This is because in most cases, 

HFAs meet safety standards and are found to be as effective as their 

predecessor, the CFC propellant. As a result, many MDIs containing CFC 

were replaced by HFAs for example salmeterol (Chopra et al., 2005).  

 

1.2.2(c) Dry powder inhalers (DPIs) 

The requirement to replace ozone-depleting CFCs propellants, has led to the 

pharmaceutical industry re-evaluating the potential of dry powder inhalers. 

However, the delivery efficiency of DPI currently is not high, as in some cases 

only 7-30% of the inhaled dose of the drug are deposited in the lung 

depending upon the devices or brands used (i.e. Spinhaler®, Diskhaler®, 

Rotahaler® (Fig 1.4), Turbuhaler® and Novolizer®) (O´connor, 2004). The site 

of deposition and deposition patterns of the inhaled aerosol from DPIs are 

influenced by two major interdependent factors: (a) the patient (anatomical 

and physiological aspects of the respiratory tract as well as mode of 

inhalation) and (b) the physical properties of the aerosol cloud (Timsina et al., 

1994). However, dry powder inhaler posses several advantages over other 

delivery methods. They are propellant-free, portable, easy to operate and low-  



 

 

 

 

 

 

Figure 1.4 Schematic diagram of the Rotahaler device (adapted from Chew et 
al., 2002). 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

cost devices. Moreover, the stability of the formulation is improved as a result 

of the dry state (Bosquillon et al., 2001). 

 

1.3 ADVANTAGES OF PULMONARY DRUG DELIVERY 

The pulmonary route of drug administration delivers adequate therapeutic 

levels of potent bronchodilators in respiratory tract and provides a better 

clinical response whilst reducing their distribution to other organs (Lai et al., 

1993). This route provides an excellent example of targeted drug therapy. 

Indeed, aerosol delivery has long been viewed as a promising technique in 

the treatment of lung cancer (Koshkina et al., 2003).  

 

The lung has a large surface area (up to 100 m²), thin absorptive barrier, low 

enzymatic metabolic activity, and good blood supply. These characteristics 

make the lung an attractive target for the non-invasive administration of 

aerosolized systemically-active peptide and protein drugs (Yamamoto et al., 

2005).  

  

The pulmonary delivery route as well as nasal, rectal, and oral routes, have 

attracted much attention, in attempts to improve the quality of patients lives, 

because no repeated injections are required (Kawashima et al., 1999). 

Contrary to the oral route of drug administration, pulmonary inhalation is not 

subject to first pass metabolism. Therefore, expensive biotechnology drugs 

like toxic chemotherapeutics are ideal drug candidates for local pulmonary 

administration (Sharma et al., 2001).  

 



 

The main advantage of the treatment of the respiratory tract diseases via 

inhalation aerosols therapy is that a relatively low drug concentration reaches 

systemic circulation. Consequently, the intensity and incidence of the side 

effects of inhaled drugs is, in many instances, markedly reduced compared to 

administration via the oral route (Tsapis et al., 2003).  

 

Several drugs such as bronchodilators, anti inflammatory agents, mucolytics, 

anti viral agents, antibiotics agents, and pentamidine are all routinely given as 

aerosolized formulations (BNF 43, 2002). In addition, a number of drugs for 

example insulin, cyclosporin, interferon, antitrypsin, protease inhibitors, 

deoxyribonucleases, recombinant adenoviruses and others have been 

reported to have high potential for delivery via the respiratory route (Waldrep 

et al., 1998; Karathanasis et al., 2005). 

 

1.4 SUSTAINED RELEASE MICROSPHERES FOR PULMONARY DRUG  

       DELIVERY  

The advantages of sustained release drug delivery to the respiratory tract are 

numerous. They include extended duration of action, reduction in drug use, 

improved management of therapy, improved compliance and reduction in side 

effects (Zeng et al., 1995). Moreover, lower dosage regimens may provide 

considerable cost savings especially those that involve expensive therapeutic 

agents (Saks and Gardner, 1997). A number of methods have been 

investigated as potential pulmonary sustained release systems for short acting 

drugs. These include the incorporation of drugs in liposomes and other 

biodegradable microspheres (Zeng et al., 1995).    



 

The efficacy of a liposomal sustained release delivery system to the 

respiratory tract has been proven by Juliano and McCullough (1980). They 

showed that the chemotherapeutic agent, arabinoside entrapped within 

liposomes had a longer half-life of release in the lungs than did a free drug (8 

versus 1 h, respectively).  

 

Furthermore, retention of liposomes within the lung provided more specific 

pharmacological activity and minimized systemic exposure (reduced 

gastrointestinal and myelotoxic side-effects). In another study, Taylor et al. 

(1989) showed that liposomal disodium cromoglycate administered to healthy 

human volunteers were still detectable at 25 h, whereas an equivalent dose of 

drug inhaled as a solution was not detected within the same period. This 

investigation clearly shows the applicability of liposome-mediated pulmonary 

sustained release in humans. Nebulisation of liposomes, however, can cause 

its structural disruption with the resultant release of the encapsulated drug. 

Even at low temperatures, liposomes are unstable during storage thus limiting 

their practicality as commercial formulations (Taylor et al., 1993).  However, 

dry liposome powders containing corticosteroids have been developed for 

inhalation and they have been observed to have improved stability (Darwis 

and Kellaway, 2001). 

 

1.4.1 Biodegradable microspheres as drug delivery systems 

Microspheres are defined as homogeneous, monolithic particles measuring 

about 0.1-1000 µm and are widely used as drug carriers for controlled 

release. Microspheres have significant importance in biomedical applications 



 

as the administration of drugs in the form of microspheres usually improves 

treatment through the localization of active substance at the site of action thus 

enabling prolonged drug release. Furthermore, sensitive drugs such as 

peptides and proteins may be protected against chemical and enzymatic 

degradation when entrapped in microspheres (Crotts and Park, 1997).  

 

Biodegradable microspheres produced from natural and synthetic polymers 

have been extensively investigated as drug transporters via a number of 

different routes. A number of these particles have many desirable 

characteristics for ensuring both targeted and sustained drug release. Another 

characteristic is that biodegradable microspheres can be prepared over a 

wide range of particle sizes, which is a decisive factor in the in vivo deposition 

of particulate carriers. Accordingly, biodegradable microspheres can be used 

to deliver drugs to various organs, such as the liver, the kidney, the 

reticuloendothelial system and the lungs.  

 

1.4.2 Biodegradable polymers for microspheres formulation  

A wide variety of natural and synthetic biodegradable polymers have been 

investigated for use in drug targeting or prolonged drug release. Natural 

polymers remain attractive primarily because they are natural products of 

living organisms readily available, relatively inexpensive and capable of a 

multitude of chemical modifications. The majority of investigations into the use 

of natural polymers as matrices in drug delivery systems have centered on 

proteins (e.g. collagen, gelatin, and albumin) and polysaccharides (e.g. starch, 

dextran, inulin, cellulose and hyaluronic acid) (table 1.1) (Hincal and Calis, 



 

2000). Collagen has unique structural properties, therefore, it has been 

fabricated into wide variety of forms including crosslinked films, meshes, fibres 

and sponges. However, certain properties of collagen have adversely 

influenced its use as a drug delivery vehicle. These properties include poor 

dimensional stability due to swelling in vivo, poor in vivo mechanical strength 

and low elasticity, possible occurrence of an antigenic response, tissue 

irritation due to residual aldehyde crosslinking agents, and variability in drug 

release kinetics (Sinha et al., 2003). Apart from this, non-collagenous proteins 

like albumin, gelatin, casein, fibrinogen in the form of microspheres and 

nanoparticles continue to be exploited as drug delivery systems. The 

development of collagen has been some what overshadowed by advances 

made in both synthetic absorbable polymers (e.g. poly lactide and poly 

glycolide) and non-absorbable polymers such as silicone rubber and 

hydrogels. The most widely used and studied class of biodegradable polymers 

has been polyesters, including poly(lactic acid) (PLA) which was investigated 

as a drug delivery material as early as 1971,  poly(glycolic acid) (PGA), first 

marketed in 1970 as a biodegradable suture, and poly(lactide-co-glycolide) 

(PLGA). By varying the monomer ratios in polymer processing conditions, the 

resulting polymer can exhibit drug release capabilities for months or even 

years (Matschke et al., 2002). PGA is the most hydrophilic member of the poly 

(α-ester) series and is insoluble in organic solvents. In contrast, PLA is 

amorphous and more hydrophobic than PGA, owing to the extra methyl group 

in its structure (Fig 1.5) and is thus a good candidate for drug matrix release. 

It is available in the form of D(-), L(+), and racemic (DL) (Conti et al., 1992). 

Ramachandani and Robinson (1998) reported that PLGA had been  



 

 

 

Table 1.1.  EXAMPLES OF BIODEGRADABLE POLYMERS USED IN DRUG     

                    DELIVERY SYSTEMS 

 
               Natural polymers 
 

 
                        Synthetic polymers 
 

            (i) Animal  (ii) Plant                  (i) Animal (ii) Plant 
Proteins Polysaccharides 

 
Polysaccharid
es 
 

Proteins Polysaccharides 
 

Polysaccharides 
 

Albumin Chitin Starch Poly(lactic/gly
colic  acid) 

Poly(ε-
caprolactone) 

Polyalkylcyanoacr
ylate 

Collagen Chitosan Dextrin  Polyanhydrides  
Gelatin Hyaluronic acid   Dextran    
Fibrinoge
n 

Poly(β-
hdroxybutyric acid)    

 Alginic acid    

Casein  Poly(ortho 
esters) 

   

Fibrin      
Poly(lacti
c acid) 

     

 
 
 
 
 
 

 

 

 

 

 

 

 

 

 



 

   

extensively used in biomaterial applications such as tracheal replacement, 

ligament reconstruction, surgical dressings, and dental repairs as well as 

functioning as transporters in drug delivery systems. Various classes of drugs 

such as anticancer agents (Hussain et al., 2002), antibiotics (Atkins et al., 

1998; Gavini et al., 2004), antimalarials (Schlicher et al., 1997), and local 

anesthetics Le Corre et al., 1997) have been incorporated into poly(lactic acid) 

or poly(lactide-co-glycolide). 
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Figure1.5. Chemical structure of (a) poly(lactic acid) and (b) poly(glycolic acid) 

(adapted from Hincal and Calis, 2000). 

 

1.4.3 Microspheres preparation 

Several processes are available for the preparation of drug-loaded, 

biodegradable microparticulates. The selection of the technique depends on 

the nature of the polymer, the drug and the intended use. In preparing for the 

controlled release microspheres, the choice of the optimal method to use is of 

utmost importance to ensure efficient entrapment of the active substance in 



 

microspheres (Hincal and Calis, 2000). Some pharmaceutically acceptable 

microencapsulation techniques using hydrophobic biodegradable polymers 

such as poly(lactide-co glycolide) and  poly(lactic acid) as matrix materials for 

microspheres preparation include emulsion solvent evaporation and solvent 

extraction process, phase separation (coacervation) and spray drying (Jain, 

2000). 

 

1.4.3.1 Emulsion solvent evaporation methods 

The emulsion solvent evaporation method is the most common process for 

microspheres preparation as it is simple, reproducible and economical (Goto 

et al., 1984). The method consist of single emulsion solvent evaporation and 

double emulsion solvent evaporation procedures.  

  

1.4.3.1(a) Single emulsion solvent evaporation procedure 

 Single or simple emulsions are classified according to the nature of their 

continuous or dispersed phase, i.e. as either water-in-oil (w/o) or oil-in-water 

(o/w) emulsions. An emulsifier is present in each system (w/o or o/w) to 

stabilize the emulsion. The procedure consists of dissolving the polymer in a 

volatile organic solvent such as methylene chloride. The drug to be 

encapsulated into the microspheres is then either dissolved or suspended in 

the same solution. The mixture is then emulsified in an aqueous phase 

containing an emulsifier that does not solubilize the polymer. Various types of 

ionic surfactants e.g. sodium oleate, and non ionic surfactants e.g. Span 80, 

Tween 80, and polyvinyl alcohol are used as emulsifiers. Lipophilic (oil-

soluble, low HLB) surfactants are used to stabilized w/o emulsions whereas 



 

hydrophilic (water-soluble, high HLB) surfactants are used to stabilize o/w 

emulsions. As the w/o or o/w emulsion is formed, the solvent is allowed to 

evaporate from the microparticles formed, leaving behind solid microparticles 

containing the drug.  Ultimately, the microparticles are isolated by 

centrifugation or filtration and are subsequently lyophilized (Jalil and Nixon, 

1989; Jalil and Nixon, 1990; Atkins et al., 1998).  

 

1.4.3.1(b) Double emulsion solvent evaporation procedure  

Double emulsions have promising applications in the food, cosmetic, and 

pharmaceutical industries, as well as in other fields like agriculture and 

microsphere production (van der Graaf et al., 2005). There are two main types 

of double emulsion: water-in-oil-in-water (W/O/W) emulsions, and oil-in-water-

in-oil (O/W/O) emulsion. W/O/W emulsion is more common than O/W/O 

emulsion. The technique comprises four steps: (1) primary emulsification: an 

aqueous solution of the active agent (internal water phase, W1) is emulsified 

into an organic solution containing the biodegradable polymer and lipophilic 

surfactant (oil phase, O); (2) re-emulsification: the primary emulsion (W1 / O) 

is further emulsified into a second aqueous phase containing a stabilizer 

(external water phase, W2) to form a W1/ O/ W2 double emulsion; (3) 

solidification: the organic solvent is removed by evaporation or extraction and 

solid microparticles are formed; (4) separation and purification: the 

microparticles are collected by centrifugation or filtration and are subsequently 

lyophilized (Meng et al., 2003). 

 

 




