

CPU USAGE PATTERN DISCOVERY
USING SUFFIX TREE FOR COMPUTATIONAL

RESOURCE ADVISORY SYSTEM

OOI BOON YAIK

UNIVERSITI SAINS MALAYSIA
2006

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Repository@USM

https://core.ac.uk/display/32600345?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

CPU USAGE PATTERN DISCOVERY USING SUFFIX TREE FOR
COMPUTATIONAL RESOURCE ADVISORY SYSTEM

by

OOI BOON YAIK

Thesis submitted in fulfilment of the
requirements for the degree

of Master of Science

JULY 2006

 iii

ACKNOWLEDGEMENTS

I do like to thank everyone who have helped and supported me to accomplish my

master degree at the Grid Lab in Computer Science faculty of Universiti Sains

Malaysia.

In particular I want to thank Dr. Chan Huah Yong for giving me a chance to pursue my

master degree under his supervision and I am very grateful to have all his support,

guidance, advice and encouragement through-out the entire postgraduate study.

I am also very grateful to my second supervisor, Dr. Fazilah Haron, for her guidance,

motivation and encouragement throughout the period of conducting this project. Her

moral support has kept me to continue the project till the end.

I thank Institute of Postgraduate Study (IPS), USM for allowing me to pursue my

postgraduate study and also having selected me under the Graduate Assistant

Scheme which provides me with financial security during the period study.

I would like to thank my colleagues especially Cheng Wai Khuen for providing

constructive criticism and valuable suggestions on my study.

Last but not least, special thanks to my parent, my two brothers and Chan Jer Jing for

their unconditional love and unlimited morale supports to me. Without their support and

understanding, I may not be able to accomplish this postgraduate study. Thank you.

 iv

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS ii

TABLE OF CONTENTS iii

LIST OF TABLES vii

LIST OF FIGURES viii

LIST OF ABBREVIATION x

ABSTRAK xi

ABSTRACT xiii

CHAPTER ONE : INTRODUCTION

1.0 Background 1

1.1 Overview of CPU Load 4

1.2 A Brief Overview of Prediction 5

1.3 Research Motivation, Objectives and Scope 7

1.4 Contributions 8

1.5 The Pattern Discovery and Prediction Model Overview 10

1.6 Outline of the Thesis 11

CHAPTER TWO : LITERATURE REVIEW

2.0

Introduction

13

2.1 A Survey of CPU load Prediction Approaches 13

 2.1.1 Last Value Predictor 13

 2.1.2 Linear Model Predictor 14

 2.1.3 Network Weather Service Predictor 15

 2.1.4 Homeostatic and Tendency Based Predictor 19

 2.1.5 Predicting Resource Availability Using Binary Values 23

 2.1.6 Heuristic Predictor 24

 2.1.7 Adaptive Multi-Resource Predictor 25

2.2 A Survey of Prediction Approaches 26

2.3 Pattern Discovery Using Suffix Tree 31

2.4 Discussion 34

 v

CHAPTER THREE : SYSTEM ARCHITECTURE AND DESIGN

3.0 Introduction 35

3.1 The Model Design 36

 3.1.1 The Data Preprocessing 37

 3.1.2 Pattern Discovery 41

 3.1.3 Pattern Reporting 45

 3.1.4 Pattern Prediction 46

3.2 Summary 54

CHAPTER FOUR : RESOURCE ADVISORY IMPLEMENTATION
DETAILS

4.0 Introduction 55

4.1 The Main Module 55

4.2 The DataKeeper Module 56

4.3 The DSAX Module 57

4.4 The TreeKeeper Module 58

4.5 The Predictor Module 61

4.6 The DisplayGraph Module 63

4.7 Summary 64

CHAPTER FIVE : EXPERIMENTATION AND DISCUSSION

5.0 Introduction 65

5.1 The Source of the Data Sets 65

5.2 Experiment 1: Functionality Assessment 67

 5.2.1 Case 1: Simple Periodic Sequence 67

 5.2.2 Case 2: Periodic Sequence 69

 5.2.3 Case 3: Sequence with Random Occurrences

Characteristic

70

5.3 Experiment 2: CPU Usage Pattern Discovery 72

5.4 Experiment 3: Predictability 77

 5.4.1 Non-Cyclic Pattern Prediction 78

 5.4.2 Cyclic Pattern Prediction 81

5.5 Experiment 4: Prediction Speed 87

5.6 Summary 88

CHAPTER SIX : CONCLUSION AND FUTURE WORK

6.0 Discussion 91

 vi

6.1 Revisiting Our Contributions 94

6.2 Future Work 95

REFERENCES 96

GENERAL REFERENCES 99

APPENDICES 101

Appendix A Prediction Speed 101

Appendix B Experiment data from the 10 Machines 102

LIST OF PUBLICATIONS 104

 vii

LIST OF TABLES

Page

2.1 Prediction methods in NWS 19

3.1 Confident level value with different number of points for
prediction

51

3.2 Conversion of the x̂ predicted discrete value back to actual
value

53

5.1 Machines and their Statistical Values 66

5.2 The Presence of Cyclic Pattern in different machines with
various lengths of CPU Usage Data sets

73

5.3 A frequent pattern report showing the first five of the dates and
times of the pattern (Figure 5.1) discovered in Comp1.

75

5.4 The Comparison of the Mean Square Error (MSE) of our
predictor, NWS and Tendency Based (minute scale).

79

5.5 The Comparison of the Mean Square Error (MSE) of our
predictor, NWS and Tendency Based (hour scale).

79

5.6 The results of the Mean Square Error (MSE) of our predictor,
NWS and Tendency Based (minute scale) after incorporating
the last value method

80

5.7 The results of the Mean Square Error (MSE) of our predictor,
NWS and Tendency Based (hour scale) after incorporating the
last value method

80

5.8 The MSE for one week of CPU Usage Data sets 83

5.9 The MSE for two weeks of CPU Usage Data sets 83

5.10 The MSE for three weeks of CPU Usage Data sets 84

 viii

LIST OF FIGURES

Page

1.1 The contribution of this thesis in relation to existing approach. 9

1.2 The prediction approach of this thesis in relation to existing
works.

10

2.1 Survey of Available Prediction Approaches 32

2.2 Computer generated (left) vs. human constructed bits and their
augmented suffix trees.

34

3.1 The overview of our model in a distribute environment 35

3.2 The Process Flow of the CPU Usage Pattern Discovery Model 36

3.3 Example of time series normalisation 39

3.4 The difference between static and dynamic breakpoints 40

3.5 The process of discretizing and symbolizing a time series 41

3.6 The process of encoding a discreted time series into a suffix
tree

42

3.7 The overview of the two step pattern discovery process 44

3.8 Non-Cyclic Patten Prediction 47

3.9 Cyclic Patten Prediction 52

3.10 Prediction with upper and lower bank 53

3.11 Difference between Multi-Step Prediction and n-Step
Prediction

54

4.1 The overview of the model structure 55

4.2 The flow of the system 56

4.3 The model suffix tree storing process flow 60

5.1 Sequence of the first scenario 68

5.2 The discovered frequent pattern and its occurrences in the
data.

68

5.3 Cyclic pattern prediction 69

5.4 Non-Cyclic pattern prediction (Multi-step-ahead prediction) 69

5.5 Sequence of the second scenario 69

5.6 The discovered frequent pattern and its occurrences in the
data.

70

5.7 Cyclic pattern prediction 70

5.8 Non-Cyclic pattern prediction (Multi-step-ahead prediction) 70

5.9 Sequence with random occurrences characteristic 71

5.10 The minimum threshold values for each of the patterns to be
discovered as frequent patterns from the third case scenario
sequence

71

5.11 Cyclic pattern prediction 71

5.12 Non-Cyclic pattern prediction (Multi-step-ahead prediction) 72

 ix

5.13 A Non-cyclic pattern prediction, only 3 points were used to
perform prediction.

72

5.14 A frequent pattern report generated by our model, showing
pattern discovered from Comp1 (hour data set).

74

5.15 A frequent pattern report generated by our model, showing
pattern discovered from Comp2 (hour data set).

75

5.16 A report shows pattern discovered from Comp5 (hour data set). 76

5.17 The region which is used to produce NWS and Tendency
Based n-step-ahead prediction’s from their multi-step-ahead
prediction

82

5.18 Prediction of the CPU usage going to be lower than the current
usage.

85

5.19 Prediction of the CPU usage going to be higher than the
current usage

86

5.20 Prediction of the CPU usage going to be the same with current
usage

86

5.21 Prediction of a pattern that did not occur. 87

5.22 The prediction speed of different models 88

 x

LIST OF ABBREVIATION

ACF Autocorrelation function

ADAPT_AVG Adaptive Average

AR Autoregression

ARFIMA Autoregression Factionally Integrated Moving Average

ARMA Autoregression and Moving Average

ARIMA Autoregression Intergrated Moving Average

CPU Central Processing Unit

DFT Discrete Fourier Transform

DWT Discrete Wavelet Transform

HMM Hidden Markov Model

MA Moving Average

MModel Multi-Resource Prediction Model

MSE Mean Square Error

MPE Mean Percentage Error

NWS Network Weather Services

PAA Piecewise Aggregation Approximation

RUN_AVG Running Average

SAX Symbolic Aggregation Approximation

SVD Singular Value Decomposition

SW_AVG Sliding Window Average

XCF Cross-correlation Function

 xi

PENCARIAN CORAK PENGGUNAAN CPU MENGGUNAKAN PEPOHON
SUFIX UNTUK SISTEM PENASIHAT PENGGUNAAN SUMBER

PENGKOMPUTERAAN

ABSTRAK

Dalam alam pengkomputeraan grid, sumber pengkomputeraan yang boleh diguna

sentiasa berubah dari masa ke masa. Penjadual memerlukan aktiviti ramalan supaya

ia dapat berfungsi dengan cekap. Setiap keputusan penjadual sumber

pengkomputeraan perlu ditentukan sebelum penghantaran sesuatu kerja. Pemilihan

dan gabungan sumber pengkomputeraan yang sesuai adalah penting untuk mencapai

kecekapan yang boleh diterima oleh pengguna. Kebanyakkan teknik ramalan sumber

pengkomputer yang direka hanya berobjektif untuk mencapai ramalan yang lebih tepat,

tetapi mereka tidak dapat memenuhi keperluan kes-kes yang memerlukan tempoh

ramalan yang lebih jauh ke masa depan. Contohnya, kerja yang memerlukan tempoh

beberapa hari dan tidak boleh bertolak ansur dengan gangguan. Oleh demikian,

ramalan penggunaan CPU pada jam atau hari yang berikutnya adalah lebih berguna

dari ramalan pada saat seterusnya.

Tesis ini mencadangkan model penasihat penggunaan CPU untuk mencari corak

penggunaan CPU melalui sejarah penggunaannya melalui pepohon sufix. Ia dapat

memberi laporan corak and ramalan penggunaan sumber pengkomputeraan untuk

pengguna supaya lebih memahami sumber tersebut. Mklumat tersebut juga berguna

kepada penjadual sumber pengkomputeran untuk meningkatkan keupayaan penjadual

serta proses pencarian peluang untuk menggunakan sumber pengkomputeraan. Model

ini memproses CPU data sebagai satu sesiri masa dan diproses secara berperingkat

seperti ”data reduction”, ”normalisation”, ”discretisation” dan pencarian corak

penggunaan. Dalam proses pencarian corak, pepohon sufix telah digunakan.

 xii

Penemuan corak penggunaan dalam sumber pengkomputeraan dalam memberi

keupayaan kepada kami melakukan ramalan yang lebih jauh ke masa depan, jika

dibandingkan dengan teknik ramalan yang sedia ada. Maklumat seperti bila sesuatu

sumber yang boleh digunakan dan tempoh yang boleh digunakan dapat diperolehi

dengan corak penggunaan yang ditemui. Kami juga memperkenalkan satu strategi

ramalan dengan menggunakan anggapan bahawa corak penggunaan yang ditemui

akan berulang pada masa depan. Jika perulangan corak dapat ditentukan, maka

ramalan yang lebih jauh ke masa depan dapat dilakukan. Dua cara untuk

melaksanakan strategi ramalan ini telah diggunakan. Penggunaan corak ”cyclic”

dilakukan dengan mencari tempoh selang masa perulangan corak tersebut dan

menggunakan tempoh tersebut untuk meramalkan perulangan corak tersebut pada

masa hadapan. Manakala ramalan dengan corak ”non-cyclic” dilakukan dengan

memadankan perubahan penggunaan CPU dengan corak penggunaan yang ditemui.

Jika perubahan penggunaan CPU mirip kepada permulaan sesuatu corak

penggunaan, maka bahagian corak seterusnya tersebut akan diramalkan berulang.

 Model ini telah dibangunkan dan diuji dengan 20 set data penggunaan CPU

dari 10 mesin yang berlainan. Keputusan yang diperolehi adalah positif. Corak

penggunan CPU sememangnya wujud dalam CPU data. Terdapat juga corak

penggunaan CPU yang ditemui padan dengan sifat penggunanya. Corak penggunaan

CPU boleh digunakan untuk melakukan ramalan. Kebanyakan corak yang digunakan

untuk ramalan merupakan satu garisan melintang yang bererti tiada perubahan

penggunaan. Ini adalah kerana, semasa CPU yang aktif digunakan kurang corak

penggunaan dapat sama akan ditemui dalam tempoh tersebut. Teknik ramalan kami

berupaya meramalan jauh ke masa depan berbanding dengan teknik seperti ”Network

Weather Services” dan ”Tendency-based”. Ramalan dengan corak penggunaan dapat

memberi ramalan yang lebih baik semasa penggunaan CPU mengalami perubahan

yang ketara.

 xiii

CPU USAGE PATTERN DISCOVERY USING SUFFIX TREE FOR
COMPUTATIONAL RESOURCE ADVISORY SYSTEM

ABSTRACT

In grid computing environment, resource availability often changes from time to

time. Thus, schedulers require resource prediction help to make effective scheduling

decision. This is because the decision for each job submission must be made prior to

submitting a job. The selection of suitable combination of resources is essential to

obtain acceptable application performance level. Most of the resource prediction

methods were designed with the objective of getting the prediction as accurate as

possible. However, there are cases where longer term of prediction is preferred. For

example, a job that requires days to complete and has less tolerance to interruption.

Therefore, estimation of the average CPU usage for the next few hours or days is

going to be more useful than CPU usage prediction at a single future point in time.

This thesis devises a CPU usage advisory model to discover CPU usage patterns

from its usage data history using suffix tree. The model produces pattern reports and

CPU usage predictions to allow users to understand the CPU usage better, provide

extra information to enhance scheduling decision and help to find opportunities for

exploiting the available CPU resources. CPU usage data is treated as a time series

and processed with a series of steps namely data reduction, normalisation

discretisation and pattern discovery. In the pattern discovery process, a suffix tree

constructed and used to reveal usage pattern in the CPU data.

The discovery of usage patterns allows us to perform more step-ahead predictions

as compared to the conventional CPU usage prediction methods. Information such as

the time when a resource is usually available and how long will this resource continue

 xiv

to be available could be derived from the discovered patterns. We introduce a CPU

usage prediction strategy that assumes a frequent pattern will reoccur in the future and

implemented this strategy with two approaches. If the reoccurrences of a frequent

pattern is known in advance, then a longer term prediction is feasible. The cyclic

pattern prediction approach captures the reoccurrence cycle of a pattern and performs

prediction by estimating the reoccurrence of the next cycle. The non-cyclic frequent

pattern approach performs prediction when the CPU usage pattern shows some

similarity to the starting part of a segment of a frequent pattern.

This model is implemented and evaluated with 20 sets of CPU usage data from 10

different machines. The experimental results are promising. Frequent patterns do exist

in CPU usage data. We discovered that some patterns could be related to the CPU

owner’s usage behaviour. CPU frequent patterns can be used to perform prediction.

Most of the patterns used for prediction are horizontal line which indicates no usage

changes. This is because the usage of an active CPU changes dynamically and rarely

exhibit similar patterns. Our pattern prediction approach is capable of providing longer

term prediction compared to Network Weather Services and Tendency-based

predictors. Pattern prediction approach is able to provide better estimation especially

when the CPU usage changes drastically.

 1

CHAPTER 1
INTRODUCTION

1.0 Background

Grid computing has emerged as a new paradigm for high performance computing.

The advancement of the Internet and growing availability of inexpensive and powerful

networking hardware has facilitated the growth of grid computing. According to I. Foster

[5] “A grid consists of a large collection of interconnected heterogeneous and

distributed computational resources that provides dependable, consistent, pervasive,

and inexpensive access to high-end computational capabilities”. Computational

resources in a grid environment could be processors, storage, sensors, software

applications and data. In this thesis, the term computational resource refers to

processing power. Grid computing can be used to serve many purposes such as

exploiting under utilised resources, access to additional resources, parallel computing,

data collaboration and application sharing.

One of the initial objectives of grid computing is to enable users to access remote

resources and pool computers for large-scale computational process. Therefore, a grid

environment is also known as a multi-user time-shared environment. A computational

resource is often loaded with unknown workloads introduced by other users. All

applications that use the same resource have to share and compete with one another.

As a result, it will cause the load and resource availability to vary over time. Besides

that, resource owners have the ultimate local control over their resources. Resource

owners have unlimited authorization on accessing their resources and may modify or

upgrade the type and quantity of resources that are available. The lack of centralized

control and demanding end-to-end quality of service has made resource allocation a

very challenging problem [32].

 2

In grid environments, job schedulers and resource allocators, regardless software

or human must choose the suitable combination of resources to obtain acceptable

application performance level. The performance and availability characteristics of each

individual resource in a grid environment changes from time to time and the scheduling

decision for each job submission must be made before the job is submitted to a remote

resource. These have made grid scheduling process requires resource prediction

activity to be effective. Therefore, prediction of system performance and resource

availability is necessary for efficient use of resources in such dynamic environments

[36]. As a result, there are numerous techniques being proposed to perform prediction

on grid resource performance and availability.

CPU load data is often viewed as continuous or ordered values; many series

modeling techniques have been investigated and applied on CPU load prediction. Time

series modeling has been studied widely in other areas such as financial,

manufacturing and seismology. In the area of CPU load prediction, the suitability of

different linear models on CPU load prediction was investigated by Peter A. Dinda [25].

They showed that simpler AR model is the best model to perform CPU prediction

because of its good predictive power and low overhead.

Network Weather Services (NWS) is one of the most well known resource

prediction system [31]. It provides one-step-ahead prediction for any time-series fed to

its predictor module. It uses a list of statistical models for the prediction of one resource

and then chooses the model that provides prediction with the lowest mean square error

for the next prediction. The list of statistical models for prediction can be categorized

into three categories, namely mean-based, median-based and autoregressive

methods.

 3

Other than statistical models, there are also other prediction techniques that are

being used to perform CPU load prediction. For example, the last value predictor has

been shown to be a very useful prediction technique for CPU load by M. Harchol-Balter

et al. [18]. It uses the last measured value as the next predicted value. The advantages

of this technique implementation are simplicity and low computation overhead.

The Homeostatic and Tendency-based predictors were introduced by Lingyun

Yang et al. [13] to predict CPU load. Both predictors use various ways to weight recent

data for the next value prediction. According to their experiments, between the two

families, the tendency-based predictor’s performance is better. It predicts the future by

assuming the next value will change according to the tendency of the changes of the

previous value. The model requires no model fitting; it has low computation and

storage overhead.

Besides using a single resource to perform prediction, there are also prediction

techniques that use cross correlation between two different types of resources to

achieve higher prediction accuracy, shown by Jin Liang et al. [11] and M. Swany et al.

[19].

However, estimation of average CPU load experienced by an application during

execution is going to be more useful for a scheduler then CPU information at a single

future point in time [14]. For example, a predictor is able to provide a single or multiple-

step-ahead prediction, this information is a good estimation for that particular time but it

will be a less-effective prediction if an application requires longer execution time. From

our study, we found that most of the CPU load prediction methods being used are

designed with the objective of getting their prediction as close as possible to the actual

value. However, there are cases where by a longer term prediction is preferred [14,

30].

 4

1.1 Overview of CPU Load

CPU load information is represented by a load index which quantifies the measure

of a CPU’s load. A load index usually takes a zero value if the resource is idle, and

increasing the value as the load increases. In our study, we found that there is a wide

variety of load indices, such as CPU queue length and CPU utilization. A comparative

study of different load indices has been done by Domenico et al.. [3] and it is reported

that CPU load information based upon the CPU queue length does much better in load

balancing compared to CPU utilization. The reason CPU queue length did better is

because when a host is heavily loaded, its CPU utilization is likely to be close to 100%

and unable to reflect the exact load level of the utilization. In contrast, CPU queue

lengths can directly reflect the amount of load on a CPU. As an example, both

resources with different average queue length, one with 3 and the other with 6 probably

have utilizations close to 100% while they are obviously different. In this study, we use

“CPU usage” as a general term to represent the indices. CPU load readings need to be

done periodically because the CPU load changes dynamically. However, the length of

this period has to be carefully selected, this is because too frequent updates may

consume a significant amount of computational power, and infrequent updates may

cause the CPU load indices to be insensitive to changes.

In order to better understand the CPU usage’s predictability, a study on the

statistical properties of CPU load over a large number of machines has been done by

Peter A. Dinda [23]. The study showed that CPU load traces show strong correlation

over time. Therefore historical-based prediction methods seem feasible but linear

models could have difficulty. Self similarity characteristic is also discovered in CPU

load and self-similarity is often a symptom of unpredictable and chaotic series. Besides

that, CPU load display epochal behaviour and they suggested that the problem of

predicting load could be able to be decomposed into smaller problems.

 5

In another study made by Rich Wolski et al.. [30], they also discovered the self-

similarity characteristic in CPU load, but their results show that self-similarity does not

necessarily imply short-term unpredictability. According to Peter A. Dinda [23], the

epochal behaviour displayed in CPU load is different from the seasonality in time series

analysis. Seasonality in a time series can be identified as regularly spaced peaks or

valleys, which occur at reasonably stable with respect to timing, direction and

magnitude. Further in the study, they also concluded that it is unreasonable to expect

seasonality, because the examination of the power spectrums and autocorrelations of

the traces show that CPU load does not exhibit seasonality. However, the explanation

given to other works that discover seasonality in CPU load example by Mutka, M. W.

[20] is that the changes in CPU load simply insufficient to qualify as seasonality in the

strict time series sense. Therefore, the self-similarity and non-seasonality properties

that are being discovered in CPU load do not mean that our approach to mine CPU

usage patterns from its historical usage data in order to perform prediction is invalid.

1.2 A Brief Overview of Prediction

According to JiaWei Han et al.. [10], prediction is a form of data analysis that can

be used to determine future data trends and make intelligent decisions. Prediction

problems can be divided into two major categories, namely classification and

regression. Classification is used to predict discrete values where as regression is used

to predict continuous values. Prediction can be viewed as a process of constructing

and use of a model to assess the value or value ranges of an attribute in a given

sample is likely to have. Data that is being used to construct the model is known as

training data set. The constructed model is then being tested for prediction accuracy by

using the test data set. Test data could be samples taken randomly from training data

set or new data that has not been encountered by the model. Accuracy of different type

of the test data set has different implication. Test data taken from the training data set

is usually used to evaluate the accuracy of a model fits the data, where as the test data

 6

from previously unseen data is used to evaluate the model prediction accuracy. There

are some prediction systems which require domain knowledge while some do not.

Prediction systems that require domain knowledge are systems that need to acquire

knowledge from human; domain expert and the system uses the expert’s methodology

and knowledge to perform predictions. Systems that do not required domain knowledge

are systems that are capable of learning and generalize knowledge from a given set of

data [15].

Prediction has been used in a wide range of application domains. The following are

some of the area that uses prediction. Credit approval and risk assessment system has

been developed to help in assessing the credit quality of borrowers and assist in

making accurate leading decisions. Lenders need to quickly assess the

creditworthiness of prospective borrowers to reduce the probability of issuing bad loans

while attempting to maintain profitability. Those decisions are actually predictions on

whether the borrowers are capable to repay the loan in the future based on the

analysis of hundred of variables [43]. In medical domain, association rules analysis has

been applied to discover heart disease prediction rules. It uses a real data set

containing records of patients who suffer heart disease to create a set of association

rules that can be used for predicting an absence or existence of heart disease [1].

Besides that, prediction is also being used in drug design, protein structure prediction

[34]. Weather and earth prediction is also one of the most popular domains for

prediction. In general, predicting the weather and earth changes is very difficult. The

weather and earth prediction is done by constructing a model and predicts the next

movement using computer simulations [16, 38]. Stock prediction refers to the forecast

of financial markets based on price movements. It uses the assumption that the price

movement of a share reflects all information about that share. Therefore, stock

predictors model the historical price movement to perform prediction [22].

 7

1.3 Research Motivation, Objectives and Scope

Motivation:

In this thesis, we study various CPU usage prediction techniques to analyze the

characteristics of existing solutions and we found that most of the CPU usage

prediction techniques only perform estimation of CPU load at a single future point in

time. In our opinion, long-term predictions would be more useful in resource

management context compare to short-term predictions. This observation has

motivated us to devise a model to enable user to understand a CPU usage and

perform better resource selection and allocation.

Previous efforts that made by Peter A. Dinda [23] indicated that CPU load is

strongly collated over time when studied using the statistical properties of CPU load

over large number of systems. This implies that history-based prediction techniques

are possible to predict CPU load. Another study made by Mutka, M. W. [20] shows that

availability of computing resources change regularly over the hours of the working day

and the days of the working week. Therefore, it is feasible to mine for CPU usage

patterns from its historical usage data to perform prediction.

Scope:

According to Rich Wolski et al.. [33], a grid resource monitoring and predicting

system that support resource allocation based on performance should have monitoring,

predicting and reporting components. In this thesis, our resource advisory model

components are slightly different. Our model has the following four components.

 Monitoring - responsible for gathering data from a set of distributed resources.

The data includes CPU load, network latency and memory usage.

 8

 Pattern Discovering - responsible for discovering frequent patterns from the

gathered data. It also includes all the data preprocessing processes such as

data reduction and discretization.

 Reporting - responsible for reporting the discovered patterns to user.

 Predicting - responsible for predicting the future performance using the

discovered frequent patterns. It also known as the forecasting engine.

In this study, our concentration is on discovering frequent pattern, generating

reports for user to better understand a CPU usage and performing prediction on the

CPU usage future state by using frequent discovered patterns.

Objectives:

The objective of this thesis is to find a way to discover frequent CPU usage

patterns from its historical usage data and explore the solution of using frequent pattern

discovery to find opportunities for exploiting the available CPU resources. Frequent

pattern reports and predictions on the CPU usage future state are generated to help

user to better understand a CPU usage. We intended to create a model which is

capable of providing usage advices to user based on the analysis and discovered

frequent CPU usage pattern.

1.4 Contribution

The contribution of this thesis is that we explored an alternative solution to find

opportunities for exploiting the available CPU resources. We successfully designed and

implemented a model that is capable of discovering frequent CPU usage pattern and

perform CPU usage prediction which is capable of providing advice to user based on

the analysis and discovered frequent CPU usage pattern. This is the difference

between our model and the conventional CPU usage prediction model, which only

perform estimation of CPU usage at a single future point in time. From the discovered

 9

frequent patterns, this model could be able to discover when a resource is available

and helps user to understand the opportunities for exploiting the idle resource. Besides

that, discovered frequent patterns could also help user to monitor a resource better

compare to monitor raw CPU usage data. The capabilities of discovering frequent CPU

usage patterns and performing longer-term prediction could provide essential

information to allow job schedulers and resource allocators to perform a better choice

of combination of resources to obtain acceptable application performance level. Figure

1.1 shows the contribution of our work in relation to existing approach.

Figure 1.1: The contribution of this thesis in relation to existing approach.

In most CPU usage prediction techniques, accuracy is the main factor to determine

the superiority of a prediction technique over the others. However, in our opinion, there

are also other useful features needed and would be more useful in the resource

management context such as discovering CPU usage pattern to enable user to have

an overview of a CPU usage and longer term of prediction. In this model, we introduce

two approaches to perform CPU usage prediction with discovered frequent patterns,

 10

cyclic pattern and non-cyclic pattern prediction. This model prediction uses the

assumption that a frequent pattern will reoccur. If the reoccurrences of a frequent

pattern can be known, CPU usage prediction could be made from those discovered

frequent patterns. Figure 1.2 shows the prediction approach proposed in this thesis in

relation to existing approaches.

Figure 1.2: The prediction approach of this thesis in relation to existing works.

1.5 The Pattern Discovery and Prediction Model Overview.

We propose a model to discover CPU usage frequent patterns. These patterns

could allow us to understand a CPU usage behaviour. Our CPU usage pattern

discovery technique was inspired by an earlier works done by Jessica Lin et al.. [8].

They used suffix tree as a time series visualization technique. This technique is able to

visually summarize both the global and local structures of time series data to enable

humans to discover frequently occurring patterns and perform anomaly pattern

detection. At a glance, our methodology is similar to the work of Jessica Lin et al.. [9] in

the sense that it also uses a suffix tree to perform pattern discovery. However, in our

 11

model, there are several extensions made to enable the suffix tree to discover variable

length patterns and perform predictions.

Our prediction strategy assumes that a frequent pattern will reoccur. In order to

know when a frequent pattern going to reoccur, we introduce two approaches. The first

approach is known as the non-cyclic pattern prediction; the main idea is that when the

current CPU data has shows some similarity to the beginning segment of a frequent

pattern, it will predict that the remaining segment of the pattern may have the possibility

of reoccurring. The second approach is known as the cyclic pattern prediction, this

model analyze each discovered frequent pattern reoccurring timing to predict a

pattern’s next occurrence. The basis of the second approach is that constant

reoccurring pattern will constantly reoccur again.

Our model design incorporated a series of processes such as data reduction,

normalisation, discretized, pattern discovery and prediction engine. From the

experimental results, the model shows a promising result. Our model is capable of

discovering frequent patterns and performs CPU usage prediction. We evaluate our

model by using ten sets of different machines’ CPU data; each of the CPU data set

consists of a minute set of 28 days long traces taken from two different types of

operating system, Windows and Linux. The predictability of this model is then

compared with NWS and Tendency Based predictors.

1.6 Outline of the Thesis

This thesis consist of six chapters, chapter 1 covers the background, motivation,

objectives and scope of the research.

In chapter 2, we present our study on various prediction techniques and available

CPU load prediction techniques. This allows us to understand the characteristics of

 12

different existing solutions. The motivation and overview of these prediction strategies

have provided us the direction for constructing our ideas.

Chapter 3 presents the design of our proposed CPU usage frequent pattern

discovery and prediction model. The design incorporates a series of processes such as

data reduction, normalisation, discretized, pattern discovery and prediction engine.

In chapter 4, we present the implementation detail of our model. The

implementation of each module is presented in this chapter.

In chapter 5, we present all the experiments and results that have been used to

evaluate our model. Our model is compared with the two well known methods Network

Weather Services and Tendency Based predictors.

Finally, in chapter 6 we conclude this thesis. In this chapter, besides the

conclusion, we also present some direction for future work pertaining to this research.

 13

CHAPTER 2
LITERATURE REVIEW

2.0 Introduction

In this chapter, we first present various CPU usage prediction techniques and

analyze the characteristics of existing solutions. The overview of different prediction

strategies will provide us the motivation and direction for our study. Then, we present a

survey on the general prediction approaches. A comprehensive survey of techniques

will provide us with sufficient knowledge to achieve the objectives that we have stated

in the previous chapter. At the end of the chapter, we explain the background and the

justification of our chosen approach that is pattern discovery using suffix tree.

2.1 A Survey of CPU Load Prediction Approaches

From our study, there are several works that have been done on resource

performance and availability prediction. Although these approaches differ in

computational complexity and ability to adapt to dynamic changes, but their aim are

similar that is to provide accurate resource performance predictions.

2.1.1 Last Value Predictor

A previous work done by M. Harchol-Balter et al.. [18] shows the last value

predictor is a good CPU load predictor. From their observation, the probability that a

process that uses 1 second CPU time has 1/T probability to use T seconds of total

CPU time and process that uses less then 1 second (T < 1) has greater than 0.5

probability to use another T second. Therefore, the last value predictor uses the last

measurement only to predict the next value. It can be expressed by the following

equation.

 14

TT VP 1

Where T = current time, P = predicted value and V = current value.

The advantages of this approach are low computing power consumption and low

storage overhead.

2.1.2 Linear Model Predictor

A detailed study using linear models to perform host load prediction has been done

by Peter A. Dinda [24,25]. These linear models are Box-Jerkins models and

Autoregression Fractionally Integrated Moving Average (ARFIMA). The Box-Jerkins

model consists of Autoregression (AR), Moving Average (MA), Autoregression and

Moving Average (ARMA) and Autoregression Integrated Moving Average (ARIMA)

models. According to their study:-

 The class of AR models is highly desirable because they can perform fitting

in a deterministic amount of time.

 The class of MA models is much more difficult to use because MA models

takes a nondeterministic amount of time to perform fitting.

 The class of ARMA models combining the AR and MA models hopes to

reduce computation so that it is possible to fit more models in shorter time.

However, similar to MA models, it requires a nondeterministic amount of

time to perform fitting.

 The class of ARIMA models allows modeling for non stationary sequences;

sequences range can vary over an infinite value and have no natural mean.

Although CPU load does not vary infinitely, but it does not have a natural

mean either.

Equation 2.1

 15

 The class of AFRIMA models is fractionally integrated ARMA models. This

class of models is being used because the CPU load statistical properties

exhibit self-similarity.

Their conclusion was that AR models of order 16 or higher are sufficient for

predicting 1 Hz data up to 30 seconds in the future with low overhead. The other more

complex linear models are expensive to fit and are difficult to use in a dynamic such as

resource prediction

2.1.3 Network Weather Service (NWS)

Network Weather Service (NWS) system [30] is one of the most popular resource

prediction methods. NWS was developed for the use of scheduler in a networked

computational environment. In the design, NWS uses a series of forecasting methods

to forecast a resource performance and then chooses the method that yields the lowest

mean square error (MSE) or lowest mean percentage error (MPE) to perform prediction

for the next value. The following are the MSE and MPE equations.

t

i
ff ierr

t
tMSE

0

2))((
1

)(

t

i
ff xivalueierr

t
MPE

0

100))(/|)(((|
1

where)1()()(tpredictiontvalueterr ff

They believe that a resource may conform to the assumptions of one prediction

method for a period of time and change to conform to other prediction method over

time due to the dynamic behaviour of the resource. Instead of choosing one predictor in

the beginning, they dynamically choose the best of the predictors to perform

Equation 2.2

Equation 2.3

 16

predictions. The predictors used in NWS can be categorized into 3 categories, mean-

based predictor, median-based predictor and AR model-based predictor. The following

is the detail of each category.

Mean-Based Predictor – this class of predictors uses arithmetic averaging over a

number of historical data to perform prediction for the next value. In the implementation

of NWS, running average, sliding average, last value, adaptive average, and stochastic

gradient predictors are in this category. The running average uses the average from

previous measurements until the measurement taken at time t as the prediction for the

next value. Its equation is defined as the following.

t

i

ivalue
t

tAVGRUN
0

)(
1

1
)(_

Instead of using all the previous measurements to perform prediction, sliding average

uses the average taken from a fixed length of previous measurements to predict the

next value. Its strategy is that recent values could predict the next value better. The

following is its equation.

t

Kti

ivalue
K

KtAVGSW)(
1

1
),(_

The number of previous measurements to be taken for prediction from time t is

specified as K. Instead of using a number of previous measurements, the last value

predictor only uses one last measurement as the prediction for the next value. It can be

represented using the sliding average equation where K = 0.

)0,(_)(tAVGSWtLAST

Equation 2.4

Equation 2.5

Equation 2.6

 17

According to Rich Wolski [29], it is difficult to choose the value for K because it could

be different for each resource and may vary over time. In order to set K dynamically,

they employed a gradient-decent strategy to adapt to the measurement change and

presented another predictor called adaptive average (ADAPT_AVG). Mean Square

Error is consistently calculated for each prediction and the K value is adjusted

frequently to the value that yields the lowest error. In their experiments, the K value is

restricted to change between 5 and 50 to limit the computational complexity.

Besides that, they also uses stochastic gradient. According to Rich Wolski [28],

stochastic gradient predictors are powerful predictive techniques with recursive

formulation. It will oscillate randomly about a time series to estimate the mean value of

the time series until it converges to a stable estimate. The computation complexity to

continuously converge is high as the mean of a time series moves over time.

Therefore, they empirically decide appropriate parameters before they successfully

identify a dynamic method to perform adaptation.

Median-Based Predictor – this class of predictors uses the median over a number

of recent measurements as the prediction for the next value. The median predictors are

interesting because they could remove the effect of outlier. In the implementation of

NWS, median, sliding median and α-trimmed mean predictors are in this category. The

median predictor is defined as the following.

If K is odd then)2/)1((),(KSortKtMEDIAN K

Else if K is even then
2

)12/()2/(
),(

KSortKSort
KtMEDIAN KK

where KSort = a sorted sequence of K measurement values and)(jSortK = the jth

value in the sorted sequence.

Equation 2.7

 18

The K represents the number of measurements to be taken for prediction. In order

to dynamically adjust the value of K, adaptive median (ADAPT_MED) uses similar

technique that is being employed in ADAPT_AVG. According to Rich Wolski [28],

median predictions come with a considerable amount of jitter because they lack

smoothing power and it is possible to combine with mean-based predictors to have the

advantages of both type of predictors. The α-trimmed mean, instead of just using

ADAPT_MED, averages the central of sliding windows to perform prediction.

Autoregressive Predictor – the objective of this class of predictors is to describe the

relationship between variables by finding the equation that represents the relationship.

However, fitting these models could require high computational power. Therefore, in

NWS implementation, they use purely autoregressive (AR) model which is strictly for

linear system and can be solved recursively. The following is a general form of pth-

order autoregressive model.

p

oi
i itvalueaptAR)(),(

The ia sequence minimizes the overall error. The sequence can be determined using

the following equation if the time series is stationary where jir , is the autocorrelation

function for the series of N measurements. The value p should be set according to the

decay of the autocorrelation function.

N

i
jii ra

0
, 0 j=1, 2… N

According to Rich Wolski [28], the algorithm that is being implemented in NWS takes O

(p.N) for N measurements to be fitted into an AR model. Therefore, it is unsuitable to

Equation 2.8

Equation 2.9

 19

use the entire time series of AR fitting. NWS implemented AR over a sliding window of

K recent measurements. The choices of parameters depend on the computational

complexity that NWS is willing to tolerate. In NWS, the value of parameters p=15 and

K=60 was preset in order to estimate the values using autocorrelation function which

could be computationally expensive. Table 1 shows the summary of prediction

methods that are being implemented in NWS.

Table 2.1: Prediction methods in NWS

Predictor Parameters
Running Average (avg.)

Sliding Window avg. K = 20
Last Measurement

Adaptive Window avg. max = 50, min = 5
Median filter K = 20

Adaptive Window median max = 50, min = 5
α- trimmed mean α = 0.1

Stochastic gradient g = 0.05
Autoregression K = 60, p = 15

2.1.4 Homeostatic and Tendency-Based Predictor

Homeostatic and tendency Based Predictors were introduced by Lingyun Yang et

al.. [13]. Both of these predictors are one-step-ahead and low-overhead predictors

which use different strategy to predict CPU load. Homeostatic and tendency-based

predictors use different approaches to weight recent data to perform predictions. The

homeostatic predictors’ strategy assumes that CPU load to be self-correcting and will

return to the mean of the history value. According to Lingyun Yang et al.. [13], the

strategy can be described by the following.

 20

The increment and decrement values could be static (fix for all prediction steps) or

dynamic (adapted according previous measurements) and the values could be

independent value or a relative value which is proportional to the current measurement.

As a result, four different homeostatic prediction strategies were investigated. The

following is the description of each strategy.

Independent static homeostatic predictor – this predictor generates a prediction by

increasing and decreasing the current value with a constant value. According to

Lingyun Yang et al.. [13], this constant value can be set between 0.05 and 1. This

predictor can be expressed by the following expression.

DecrementValue = DecrementConstant

IncrementValue = IncrementConstant

Independent dynamic homeostatic predictor - this predictor generates a prediction by

increasing and decreasing the current value with a dynamic amount. The increment

and decrement constants are adapted to predict the next value and the degree of

If (VT > Mean T) then
PT+1 = VT - DecrementalValue;
[DecrementalValue is optional depends on the adaptation process]

If (VT < Mean T) then
PT+1 = VT + IncrementalValue;
[IncrementalValue is optional depends on the adaptation process]

Else
PT+1 = VT;

Where Mean T= (
N

V
N

i
i

0)

 21

adaptation is adjusted between 0 and 1. This predictor’s adaptation process can be

expressed by the following expression.

DecrementConstant(t+1)=DecrementConstant(t)+(ActualChange(t)-

DecrementConstant(t))*AdaptDegree

IncrementConstant(t+1)= IncrementConstant (t)+(ActualChange(t)-

IncrementConstant(t))*AdaptDegree

Where ActualChange(t) = | (value(t) – value(t-1)) |

Relative static homeostatic prediction strategy – this predictor adjust the increment and

decrement values proportionally to the current value instead of using constant value to

perform a prediction. This strategy assumes that larger load is more likely to change

compare to smaller load. According to Lingyun Yang et al.. [13], the increment and

decrement factors can be set between 0.05 and 1. This predictor can be expressed by

the following expression.

DecrementValue = V(t) x DecrementFactor

IncrementValue = V(t) x IncrementFactor

Relative dynamic homeostatic prediction strategy – this predictor adjust the increment

and decrement values similar to the relative static homeostatic prediction strategy but it

allows the increment and decrement factor to be adapted dynamically. The adaptation

process is similar to independent dynamic homeostatic prediction strategy.

The approach used by tendency based predictors to perform prediction is different

from homeostatic predictors. The Tendency-based prediction strategy assumes that

 22

the next value will increase if the current value increases and if the current value

decreases, it will predicts that the next value will also decrease. The strategy can be

described by the following algorithm.

According to Lingyun Yang et al.. [13], the tendency based strategies have extra

possible source of error. This is because tendency based predictors are unable to

predict when a CPU load going to change direction, from decreasing to increasing or

vice-versa. If the variation of the direction changes is large, a large prediction error

could occur. In order to minimize this kind of error, the variation of direction change

must be minimize. Therefore, they use a basic idea that if a value increases to a very

high value or decreases to a very low value, the possibility that a turning point is about

to occur is high. The variation of tendency based predictors is similar to homeostatic

predictors. From their observation, independent tendency prediction strategy predicts

better during the increment and the relative tendency prediction strategy generally

performs better during the decrement. This mix variation predictor can be expressed by

the following.

DecrementValue=V(t)*DecrementFactor

IncrementValue=IncrementConstant

If (VT -VT-1 < 0) then
Tendency = “Decrease”;

Else If (VT-1 - VT < 0) then
Tendency = “Increase”;

If (Tendency = “Decrease”) then

PT+1 = VT - DecrementalValue;
[DecrementalValue is optional depends on the adaptation process]

Else If (Tendency = “Increase”) then
PT+1 = VT + IncrementalValue;
[IncrementalValue is optional depends on the adaptation process]

 23

In their experiments, they concluded that tendency prediction strategies outperform

other prediction strategies. The mix variation strategy gives better performance on

average.

Modification were made to the tendency based method were made by Yuanyuan

Zhang et al.. [44] to achieve higher accuracy of prediction. Instead of making prediction

based on the increases or decreases of one previous measurement, they use several

measurements. The next predicted value is produced with multi-order polynomial

fitting. In order to reduce the turning point error, it predicts the next possible turning

point based on the information of previous similar patterns. For example, after the time

series increases successively for several times and one turning point happened and it

continuously decrease for a number of times before another turning point happened is

considered as a pattern. It was shown that this prediction approach is better then its

predecessor.

2.1.5 Predicting Resource Availability Using Binary Values

It is useful to predict the availability of a resource and the duration of the available

state. Availability is represented in a series of binary values, 1 indicates available and 0

indicates unavailable at a particular time. A study made by Mutka, M. W. [20], shows

that CPU load was low during evening and night, and changed often during the day in a

university environment. The basic idea of Mutka, M. W. [20] is that a resource is

available for sharing only when the owner leaves the resource. Therefore, by analyzing

the usage patterns of resource owners enable them to discover the opportunities for

exploiting idle resources. After observing the resources capacity over a period of time,

they introduced a method of predicting resource availability called adaptive prediction.

Adaptive prediction strategy predicts the amount of available resources for any

particular hour in a day to be the same amount as was available for the same hour on

 24

the previous day. However, it is obvious that there are cases where adaptive prediction

cannot handle, such as anomalies in usage patterns. Besides that, they also noticed

that the usage patterns on weekdays are significantly different from weekends. In order

to solve and take the advantages of such characteristics, they applied two strategies. In

order to reduce the amount of prediction error due to anomalies, in the first strategy,

the prediction for the next day is made not only according to the day’s actual availability

but also the day’s predicted value. In the second strategy, in order to improve the

quality of prediction, the number of prediction periods was increased. This means that

besides considering the hour of the day prediction, they also consider the day of the

week and distinguish weekdays from weekends. For example, if it is a weekend,

besides considering the availability of the day before, it will also consider the availability

the weekend before.

2.1.6 Heuristic Predictor

Heuristic predictor was introduced by Suntae Hwang et al.. [39]. This predictor is

designed to perform prediction on machine with consistent usage pattern such as

computers in a teaching lab in a university. This is because the policies of the lab’s

availability to whom and when can use the machines made the usage pattern

consistently reoccur. With this assumption they employed a heuristic rule that usage

pattern will repeat over a certain period of time such as weekly basis. In heuristic

prediction, they predict this week usage according to the usage patterns in the previous

two weeks. For example the CPU usage that had happened on the Monday of the first

week and second week is the same; the CPU usage on the Monday of the third week

will be predicted to be the same as what happened in the previous Monday.

Besides introducing this heuristic predictor, they also used Hidden Markov Model

(HMM) to model the CPU usage. The comparison between the heuristic and HMM

predictor was done and the results showed that the heuristic approach is able to out

