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SINTESIS DAN PENCIRIAN BEBERAPA HABLUR CECAIR KALAMITIK 
YANG MENGANDUNGI KOMPONEN KOLESTEROL, IMINA BERBENTUK 

ROD DAN BIFENIL-4-KARBOKSILAT 
 

ABSTRAK 
 
 

 Sebanyak tujuh siri hablur cecair kalamitik berjaya disintesis dan 

dicirikan. Kesemua hablur cecair tersebut dibahagikan kepada tiga jenis yang 

berlainan berdasarkan struktur teras masing-masing, sama ada komponen 

kolesterol, imina aromatik berbentuk rod atau bifenil-4-karbosilat. Secara 

umum, sebatian-sebatian ini disintesiskan melalui tindak balas pengalkilan, 

pengesteran dan kondensasi. Struktur sebatian yang disintesis ditentukan 

dengan menggunakan mikroanalisis CHN serta beberapa teknik spektroskopi 

seperti FTIR, 1D- dan 2D-NMR. Peralihan fasa dan tekstur hablur cecair 

diperhatikan melalui mikroskop optik terkutub, sementara suhu peralihan dan 

entalpi yang berkaitan ditentukan melalui analisis DSC. Siri pertama dan kedua 

masing-masing terdiri daripada tujuh homolog kolesteril 4-n-alkoksibenzoat 

(nOACh) dan tujuh homolog kolesteril 4-n-alkoksifenil-4’-benzoat (nOABCh). 

Pelbagai kumpulan alkoksi yang mengandungi karbon bernombor genap 

daripada julat enam sehingga lapan belas digunakan dalam kajian ini. Pelbagai 

teknik spektroskopi NMR yang digunakan menunjukkan bahawa O=C-O yang 

menghubungkan kumpulan fenil dan fragmen kolesteril didapati bengkok dan 

menyebabkan fragmen kolesteril membengkok ke atas. Konformasi yang unik 

ini ditemui untuk kali pertama dalam kolesteril ester. Kedua-dua siri ini 

menunjukkan bahawa homolog dengan bilangan karbon yang rendah lebih 

cenderung untuk mempamerkan fasa nematik kiral (N*), manakala homolog 

dengan bilangan karbon yang tinggi lebih cenderung untuk mempamerkan fasa 

smektik A (SmA). Siri ketiga, keempat, kelima dan keenam terdiri daripada 
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komponen imina aromatik berbentuk rod. Siri ketiga boleh dibahagikan kepada 

tiga subsiri iaitu, 2-hidroksi-4-metoksibenzilidena-4’-n-alkanoiloksianilina 

(nSBA), 2-hidroksi-3-metoksibenzilidena-4’-n-alkanoiloksianilina (nSBB) dan 3-

metoksi-4-n-alkanoiloksibenzilidena-4’-n-alkanoiloksianilina (nSBC). Setiap 

subsiri ini terdiri daripada empat ahli yang mempunyai panjang rantai 

alkanoiloksi yang berbeza. Homolog nSBA mempamerkan fasa enantiotropik 

nematik atau SmA, manakala homolog nSBC mempamerkan fasa monotropik 

smektik C (SmC). Namun demikian, homolog nSBB tidak mempamerkan 

sebarang mesofasa. Siri keempat, kelima dan keenam masing-masing terdiri 

daripada 2-hidroksi-4-n-heksadekanoiloksibenzilidena-4’-anilinatertukarganti 

(16OHA-R), N-[4-(4-n-heksadekanoiloksibenzoiloksi)benzilidena]-4-anilina-

tertukarganti (16AB-R) dan N-[4-(4-n-heksadekanoiloksibenzoloiksi)-2-hidroksi-

benzilidena]-4-anilinatertukarganti (16OHAB-R), dengan R ialah H,  F, Cl, Br, 

OCH3, CH3, C2H5, CN, OH, SH atau NO2. Sementara itu, sebatian 16OHA-R 

dengan penukar ganti R = H, F, Cl, Br, OCH3, CN, OH dan NO2 mempamerkan 

fasa SmA, manakala sebatian dengan penukar ganti R = CH3 dan C2H5 

mempamerkan fasa monotropik SmC dan sebatian dengan R = SH 

mempamerkan fasa monotropik nematik. Sebatian 16AB-R dan 16OHAB-R 

(dengan R = H, OCH3, CH3, C2H5, OH dan NO2) menunjukkan bukti fasa 

nematik, manakala sebatian 16AB-R dan 16OHAB-R (dengan R = F, Cl, Br 

dan CN) mempamerkan fasa SmA. Sebatian 16OHAB-SH mempamerkan fasa 

nematik manakala sebatian 16AB-SH tidak mempamerkan sebarang 

mesofasa. Molekul 16AB-R dan 16OHAB-R mempunyai kestabilan mesofasa 

yang lebih tinggi daripada molekul 16OHA-R kerana molekul-molekul dalam siri 

16AB-R dan 16OHAB-R adalah lebih panjang berbanding dengan molekul-
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molekul dalam siri 16OHA-R. Sifat mesomorfik sebatian-sebatian tersebut juga 

dipengaruhi oleh interaksi intramolekul dan intermolekul yang disebabkan 

kehadiran kumpulan orto-hidroksil. Siri ketujuh yang berteraskan bifenil-4-

karbosilat terdiri daripada empat homolog (S)-2-metilbutil 4’-(4”-n-alkanoiloksi-

benzoiloksi)bifenil-4-karbosilat (S-MB-OOCn). Kesemua homolog S-MB-OOCn 

mempamerkan fasa SmA dan smektik C kiral (SmC*).  

 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 xxxvi

SYNTHESIS AND CHARACTERIZATION OF SOME CALAMITIC LIQUID 
CRYSTALS CONSISTING OF CHOLESTEROL, ROD-LIKE IMINE AND 

BIPHENYL-4-CARBOXYLATE COMPONENTS 
 

ABSTRACT 
 
 

 Seven series of calamitic liquid crystals were successfully synthesized 

and characterized. These liquid crystals are categorized into three different 

types according to their core structure; either a cholesterol, rod-like aromatic 

imine or biphenyl-4-carboxylate component. The synthesis of these compounds 

basically involved alkylation, esterification and condensation reactions. The 

structures of the synthesized compounds were established by CHN 

microanalysis along with several spectroscopic techniques such as FTIR, 1D- 

and 2D-NMR. Whilst the phase transitions and liquid crystal textures were 

observed by using polarized optical microscope, the respective transition 

temperatures and associated enthalpies were determined by using DSC 

analysis. The first and second series which consist of seven homologues each, 

include cholesteryl 4-n-alkoxybenzoates (nOACh) and cholesteryl 4-(4-n-

alkoxyphenyl)benzoates (nOABCh). Various alkoxy groups consisting of even 

numbered carbons ranging from six to eighteen have been adopted throughout 

this study. The various NMR techniques which were employed revealed that 

the O=C-O bridging the phenyl group and the cholesteryl fragment was bent 

and led to the cholesteryl fragment to fold up. This unique conformation has 

been observed for the first time in cholesteryl esters. Both of the series showed 

that the lower members have a higher tendency to exhibit chiral nematic (N*) 

phase whereas the higher members showed a greater tendency to display the 

smectic A (SmA) phase. The third, fourth, fifth and sixth series each consists of 

a rod-like aromatic imine component. The third series is further divided into 
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three sub-series; 2-hydroxy-4-methoxybenzylidene-4’-n-alkanoyloxyanilines 

(nSBA), 2-hydroxy-3-methoxybenzylidene-4’-n-alkanoy-loxyanilines (nSBB) 

and 3-methoxy-4-n-alkanoyloxybenzylidene-4’-n-alkanoy-loxyanilines (nSBC). 

Each of them comprised four members which differed in the alkanoyloxy chain 

length. Whilst the nSBA homologues exhibited the enantiotropic nematic or 

SmA phase, the nSBC homologues displayed the monotropic smectic C (SmC) 

phase. However, the nSBB homologues did not exhibit any mesophase. The 

fourth, fifth and sixth series encompassed 2-hydroxy-4-n-

hexadecanoyloxybenzylidene-4’-substituted-anilines (16OHA-R), N-[4-(4-n-

hexadecanoyloxybenzoyloxy)benzylidene]-4-substituted-anilines (16AB-R) and 

N-[4-(4-n-hexadecanoyloxybenzoyloxy)-2-hydroxybenzylidene]-4-substituted-

anilines (16OHAB-R), in which R is H, F, Cl, Br, OCH3, CH3, C2H5, CN, OH, SH 

or NO2. While compounds 16OHA-R with the substituents R = H, F, Cl, Br, 

OCH3, CN, OH and NO2 exhibited SmA phase, those with the substituents R = 

CH3 and C2H5 showed monotropic SmC phase and finally the compound with R 

= SH displayed monotropic nematic phase. Compounds 16AB-R and 16OHAB-

R (where R = H, OCH3, CH3, C2H5, OH and NO2) showed evidence of nematic 

phase while compounds 16AB-R and 16OHAB-R (where R = F, Cl, Br and CN) 

exhibited SmA phase. Compound 16OHAB-SH exhibited nematic phase 

whereas compound 16AB-SH did not show any mesophase. The 16AB-R and 

16OHAB-R molecules have a higher mesophase stability compared to the 

16OHA-R molecules owing to their higher molecular length. The mesomorphic 

properties of these compounds were also influenced by the intermolecular and 

intramolecular interactions owing to the presence of the ortho-hydroxyl group. 

The seventh series with a biphenyl-4-carboxylate core consists of four (S)-2-
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methylbutyl 4’-(4”-n-alkanoyloxybenzoyloxy)biphenyl-4-carboxylate (S-MB-

OOCn) homologues. All the S-MB-OOCn homologues exhibited the chiral 

smectic C (SmC*) and SmA phases.  
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CHAPTER ONE 

INTRODUCTION 

 

1.1     Introduction To Liquid Crystals 

 The liquid crystal (LC) phase is a well-known state of matter, which lies 

between the solid and isotropic liquid phases. By definition, the LC state 

(mesomorphic or mesogenic state) is characterized by having a long-range 

orientational order and possible partial positional order. To specify 

quantitatively the amount of orientational order in the LC phase, the scalar 

order parameter S is commonly used (0 < S < 1). In a perfectly oriented 

system, S = 1 but in an isotropic liquid state where there is no orientational 

order, S = 0 (Singh, 2000). 

 

In the crystal phase, the molecules have a high degree of order 

occupying fixed positions in the lattice, which is characterized by translation of 

the unit cell. Therefore, the molecules are positioned in fixed orientations with 

no translational freedom. Conversely, in the isotropic liquid phase, only a short-

range order dominates. Since the molecular axes are able to tumble freely, the 

molecules are mobile and have no orientation with respect to each other. The 

LC phase (mesophase) shares properties of both the crystal and liquid phases. 

It possesses an intermediate molecular order between the perfect three-

dimensional long-range positional and orientational order found in crystals and 

the absence of long-range order found in isotropic liquids. Although the 

molecules are not constrained within a lattice, the molecular axes tend to be 

oriented in a preferred direction, on average, defined as the director (n) (Singh, 
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2000). Hence, throughout the LC phase, the mesogens (materials able to 

sustain mesophases) are fluids and at the same time, have anisotropic physical 

properties which are known as tensor properties due to their dependence on 

the orientation. Some examples of anisotropic properties are birefringence, 

alignment in electric and magnetic fields (electrical permittivity and magnetic 

susceptibility), elasticity, viscosity and conductivity (Photinos, 2001).  

 

1.2   History Of Liquid Crystals 

 The discovery of LCs in the year 1888 was attributed to the Austrian 

botanist F. Reinitzer. Reinitzer observed a “double melting” behaviour for 

cholesteryl benzoate (Figure 1.1). The crystals of this material melted at 145.5 

oC into a cloudy fluid, which upon further heating to 178.5 oC became clear. 

Further investigations of this phenomenon were carried out in the year 1900 by 

a German physicist, O. Lehmann who first named this mesomorphic state as 

liquid crystal state (Collings and Hird, 1998).  

 

C

O

O

 

Figure 1.1: Structure of the first liquid crystal, cholesteryl benzoate. 

 

Following these observations and discoveries, scientists in the relevant 

fields turned their attention towards a growing number of compounds, which 

displayed liquid crystalline properties. In order to establish a relationship 

between molecular structure and the exhibition of liquid crystalline properties, 

systematic modifications of the structures of mesogens were undertaken in 
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1973, leading to the discovery of the most technologically and commercially 

important class of LCs to date: the 4-alkyl-4’-cyanobiphenyl (CB) of which an 

example, 4-pentyl-4’-cyanobiphenyl (5CB) is illustrated in Figure 1.2 (Gray et 

al., 1973).  

 

NC5H11

5CB

Cr N I24 oC 35 oC

 

Figure 1.2: Structure and phase transition of 4-pentyl-4’-cyanobiphenyl 
(5CB) (Gray et al., 1973). 

 

These materials still constitute the simple common displays found in 

calculators or mobile phones. Since numerous and increasingly sophisticated 

applications which rely on the use of liquid crystalline materials require such 

complex superior properties to achieve improved device performance, the 

quest for ever new LCs has grown enormously over the last three decades. 

Nowadays, LCs play a dominant role in a large part of the display technology.  

 

1.3  Types Of Liquid Crystals 

 Different types of molecules can form liquid crystalline phases. The two 

most important types are:  

i. thermotropic LCs, whose mesophase formation are temperature dependent, 

and  

ii. lyotropic LCs, whose mesophase formation are concentration and solvent 

dependent.  
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This research focused on calamitic thermotropic LCs. However a brief 

discussion on lyotropic LCs is also given in the following section. 

 

1.3.1  Lyotropic Liquid Crystals 

Lyotropic LCs are two-component systems where an amphiphile is 

dissolved in a solvent. Thus, lyotropic mesophases are concentration and 

solvent dependent. The amphiphilic compounds are characterized by two 

distinct moieties, a hydrophilic polar “head” and a hydrophobic “tail”. Examples 

of these kinds of molecules are soaps [Figure 1.3 (a)] and various 

phospholipids like those present in cell membranes [Figure 1.3 (b)] (Belloni, 

2002).  

 

 
(a) 

 

 
(b) 

 
 Figure 1.3:  (a) Illustration of sodium dodecylsulfate (soap) forming  
  micelles. 
 (b) Illustration of phospholipids (lecithine) forming bilayer  
  lyotropic liquid crystal as present in cell membranes  
  (Belloni, 2002). 

 

 

 



 5

1.3.2  Thermotropic Liquid Crystals 

The essential requirement for a molecule to be a thermotropic LC is a 

structure consisting of a rigid central core (often aromatic) and a flexible 

peripheral moiety (generally aliphatic groups). These structural requirements 

lead to two general classes of LCs which are calamitic and discotic LCs. 

 

1.3.2.1  Calamitic Liquid Crystals 

Calamitic or rod-like LCs are mesomorphic compounds that possess 

an elongated shape as depicted in Figure 1.4. The result of the molecular 

length (L) being significantly greater than the molecular breadth (B) is 

responsible for the anisotropy of the structure (Collings and Hird, 1998).  

 

Rigid Core B

L

Aliphatic Chains

 

Figure 1.4: General shape of calamitic liquid crystals, where L>>B. 

 

1.3.2.2  Discotic Liquid Crystals 

In the year 1977, a second type of mesomorphic structure based on a 

discotic (disc-shaped) structure was discovered. The first series of discotic 

compounds to exhibit mesophase belonged to the hexa-substituted benzene 

derivatives (Figure 1.5) reported by Chandrasekhar et al. (1977). 
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Similar to calamitic LCs, discotic LCs possess a general structure 

comprising a rigid planar (usually aromatic) central core surrounded by a 

flexible periphery, represented by pendant chains (usually four, six, or eight), as 

illustrated in Figure 1.6. As can be seen, the molecular diameter (D) is much 

greater than the disc thickness (T), imparting the anisotropy to the structure.  

 

O

O

R

R

OO

O

O R

R

O

O

O O

R

O

O

R

 

where R = C4H9 to C9H19 

 Figure 1.5:  Structure of the first series of discotic LCs discovered:  
                    the benzene-hexane-n-alkanoate derivatives  
                              (Chandrasekhar et al., 1977).  

 

Rigid 

Core
T

D

Aliphatic Chains
 

Figure 1.6: General shape of discotic liquid crystals, where D>>T. 
 

Discotic LCs can show several types of mesophases with varying 

degrees of organization. The two principle mesophases are nematic discotic 

and columnar phases.  
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1.4    Phase Structures Of Calamitic Liquid Crystals 

Two types of mesophases commonly exhibited by calamitic LCs are 

the nematic and smectic phases. 

 

1.4.1  Nematic Phase 

The least ordered mesophase (the closest to the isotropic liquid state) 

is the nematic (N) phase, where the molecules only have an orientational order. 

The long molecular axis points on average in one favoured direction referred to 

as the director (Figure 1.7) (Singh, 2000). A classical example of a LC 

displaying a nematic mesophase is 5CB (Figure 1.2). 

 

 
Note: The arrow points to the director, n 

 

Figure 1.7:  Structure of nematic phase.  
 

1.4.2  Smectic Phase 

The next level of organization is classified as smectic (Sm), whereby in 

addition to the orientational order the molecules possess positional order, such 

that the molecules organize in layered structures.  
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Generally, the smectic phase which is characterized by the least order 

is the orthogonal smectic A (SmA) phase, where the layers are perpendicular to 

the director [Figure 1.8 (a)]. When the director is tilted at an angle () other than 

0o to the normal [layer (z)], the result is the smectic C (SmC) phase [Figure 1.8 

(b)] (Singh, 2000). 

 

         
(a) (b) 
 

Note: The arrow points to the director, n 
 

Figure 1.8: Structures of (a) SmA and (b) SmC phases. 
 

1.5  Structure Of Calamitic Liquid Crystals 

LCs derived from rod-like molecules have been comprehensively 

studied. The general templates which are used to describe the structure of 

calamitic mesogens are illustrated in Figure 1.9 (Collings and Hird, 1998). 

 

ZR1 R2X Y

A B
 

where Z = connecting group 
R1 and R2 = ring systems 

X and Y = terminal substituents 
A and B = lateral substituents 

Figure 1.9: General structural templates for calamitic mesogens. 
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These rod-like structures consist of a rigid rod formed by two rings (R1 

and R2) that are joined together by a connecting group Z, with two tails (X and 

Y) called the terminal groups or chains placed in such a position (usually para 

to the central group) to give a linear molecule. Usually, at least one of the 

terminal groups must be a flexible chain. A lateral substituent (A or B) is 

attached to the core of a mesogen, mostly to the ring (R1 or R2), in a position 

that is not along the molecular axis. Usually, the lateral substituent depresses 

both the melting and clearing temperatures by broadening the core of the 

mesogen (Neubert, 2001a).  

  

In the following sections, the effect exerted by the connecting group, Z 

and the terminal groups, X and Y of the molecules on their mesogenic 

properties will be discussed. 

 

1.5.1  Connecting group (Z) 

Numerous functional groups have been used as connecting groups. 

Some of the more common examples are shown in Figure 1.10 (Neubert, 

2001a).  

 

To be successful in facilitating mesophase generation, a connecting 

group must maintain the linearity of the core, whilst increasing the length and 

polarizability of the core (Collings and Hird, 1998). Thus, with an alkene (Z = 

C=C) where two isomers (cis and trans) can exist, only the trans isomer is 

mesogenic. Even if the trans isomer is prepared, it can convert to the cis 

isomer under certain conditions such as heat. For the same reason, connecting 
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groups with an odd number of atoms such as -O- and -CH2- do not produce 

mesophases. Generally, fairly rigid connecting groups give the best mesogens, 

but the more flexible groups such as -OCH2- and -CH2CH2- do show 

mesomorphic properties (Neubert, 2001a).  

 

(CH2)n C=C

alkane olefin                 
(trans isomer)  
or alkene        

C C

acetylene,
alkyne, 
tolane

CH2

O
ether

C=C-C

O

O
cinnamate 
(trans isomer)

C=N

anils,               
Schiff base

N=N

azo

N=N

O
azoxy

C

O

O S
ester thioester

C=N-N=C
azine

C C C C

diacetylene

C

O

N
C

O

amide

N=C

O
nitrone

-CONH-NH-
hydrazide

 
 

Figure 1.10: Connecting groups and their common names  
                    (Neubert, 2001a). 
 

 

An example of the effect of a connecting group on the mesomorphic 

properties is illustrated by 1,4-phenyl derivatives containing butylsulfanyl and 

cyano groups with various linking groups (Seed et al., 1995a and Seed et al., 

1995b and Cross et al., 2000). The clearing temperatures (Tc) (temperature 

when the compound turns into isotropic liquid or known as clearing point) of the 

1,4-phenyl derivatives are displayed in Table 1.1. 
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Table 1.1: Clearing temperatures (Tc) of compounds with various connecting  
      groups (X) in 1,4-phenyl derivatives  

 

NXC4H9S

 

Compound Connecting group, X TC / oC Reference 

1 - 64.8 Seed et al., 1995a 

2 -CH=CH- 96.7 Cross et al., 2000 

3 -C≡C- 80.3 Cross et al., 2000 

4 -COO- 82.2 Seed et al., 1995b 

5 -C≡C-COO- 78.4 Cross et al., 2000 

 

Table 1.1 shows that the Tc of compounds 2 to 5 are higher than 

compound 1. For compound 2 to compound 5, each of the connecting group 

consists of at least one sp or sp2 hybridized atom that which allows conjugation 

interaction with the aromatic rings. For compound 1, the two aromatic rings in 

core center are linked together by a single bond without any bridging group. 

The presence of an additional connecting group in compounds 2 to 5 increases 

the molecular length as well as the molecular polarizability, hence increasing 

the Tc of compounds 2 to 5. In conclusion, the geometry of the connecting 

group affects the stability of the mesophase. 

 

Another factor that could influence mesomorphic properties is the 

conjugative interaction between the connecting group, the core and the 

terminal groups. Two mesogens containing two carboxyl groups are compared 

in Table 1.2 (Sakurai et al., 1989). Phenyl 4-(4-tetradecyloxybenzoyloxy)-

benzoate (compound 6) and 4-tetradecyloxyphenyl 4-benzoyloxybenzoate 

(compound 7) differ only in the orientation of the COO groups. If the oxygen 
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atom of the alkoxy group in a mesogen has the chance to come into 

conjugative interaction with the C=O of the ester group, the mesogen will have 

the more stable mesophase. This interaction caused the polarity of the carbonyl 

oxygen to increase. It can be apparently seen from Table 1.2 that compound 6 

has a wider mesophase length and a higher clearing point in comparison to 

compound 7 owing to the conjugative interaction. In addition, compound 6 

possessed more ordered mesophase properties than compound 7 wherein 

compound 6 exhibited the more ordered SmA phase and compound 7 exhibited 

the less ordered nematic phase. 

 

Table 1.2:  Transition temperatures and phase ranges (T) of phenyl                 
4-(4-tetradecyloxybenzoyloxy)benzoate (compound 6) and                      
4-tetradecyloxyphenyl 4-benzoyloxybenzoate (compound 7) 
(Sakurai et al., 1989) 

 

X YC14H29O

 

 

Compound 

 

X 

 

Y 

Transition temperature/ oC  

T/ oC Cr-Ma Ma-I 

6 COO COO 113 133 20 

7 OOC OOC 117 120 3 

 
       a compound 6: M = SmA phase, compound 7: M = nematic phase 
 

Influence of the polarity of a connecting group can also be inferred 

from the three series of benzathiazol unit–containing compounds reported by 

Belmar (1999a). The structures of the compounds are shown in Figure 1.11. 

Compounds in Series A and C showed very similar mesomorphic behaviour 

wherein these compounds exhibited nematic and smectic phases. However, 

only smectic phase was observed for the compounds in Series B. These 
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observations can be explained by taking into account the formation of 

intermolecular hydrogen bonding by the NHCO group. The hydrogen bonding 

caused the molecules to arrange in a parallel order and this arrangement in 

turn would encourage smectic mesomorphism as both positional and 

orientational orders were established. 

 

S

N
Y O-CnH2n+1

C10H21-O
 

where n = 6 to 10 
 

Series A:  Y =  N=CH 
Series B:  Y =  NHCO 
Series C:  Y =  N=N 

 
Figure 1.11: Structure of compounds containing benzathiazol unit  
                    (Belmar, 1999a). 

 

1.5.2  Terminal Substituents (X, Y)                                                                                       

The core of a mesogen, by establishing the primary shape of the 

molecule and its rigidity, determines (i) the approximate temperature range 

where mesophases will occur and (ii) the types of mesophases which are 

possible. However, a rod-like rigid core rarely produces mesophases. Thus, 

terminal substituents are needed to balance this rigidity with flexibility (Neubert, 

2001a). In standard systems with two rings, mesogens are rarely observed 

even when one of the substituent is an aliphatic chain and the other one is 

simply a hydrogen atom. However, the addition of another benzene ring, such 

as in the esters (R-C6H4COOC6H4C6H5 where R = aliphatic chain) can produce 

mesophases (Sadashiva, 1979). Replacing the hydrogen atom with a polar 

substituent can also lead to the emergence of mesogenic properties. 
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Terminal substituents tend to be used to fine-tune mesomorphic 

properties wherein they are used to raise or lower transition temperatures (for 

example, alkoxy or branched chains), create dipoles along or across the 

molecular axis (for example, CN or F substituents), produce chiral mesogens 

(for example, chiral branched chains) or enhance the preference for a specific 

mesophase (for example, short alkyl chain favours nematic). 

 

1.5.2.1 Polar Groups 

It has been claimed that mesogens must consist of a terminal polar 

group (Kelker and Hatz, 1980). However, compounds with terminal groups 

such as OH and NH2 do not have the tendency to form mesophases. These 

groups tend to form polymeric hydrogen bonding that increases the melting 

point (Gray, 1962). Nevertheless, Schroeder and Schroeder (1974) reported 

that both p-phenylene di-p-aminobenzoate and p-phenylene di-p-hydroxy-

benzoate exhibited mesomorphic properties. The structures of the compounds 

are shown in Figure 1.12.   

 

OC

O

O C

O

NH2 NH2

 

(a) 

 

OC

O

O C

O

OH OH

 

(b) 

Figure 1.12: Structures of (a) p-phenylene di-p-aminobenzoate and                 
                    (b) p-phenylene di-p-hydroxybenzoate (Schroeder and  

         Schroeder, 1974). 
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Schroeder and Schroeder (1974) also suggested that phenolic 

compounds must have three benzene rings in order to exhibit mesomorphic 

properties. Another criterion is the molecules must be able to form 

intramolecular hydrogen bonding. Sakagami and Takase (1995) also supported 

the claim but in addition, they also claimed that phenolic compounds with two 

benzene rings (Figure 1.13) could also exhibit mesomorphic properties.  

However, an additional OH group must be present at the ortho position of the 

aldehyde moiety so that the formation of zwitterions via intramolecular 

hydrogen bonding can occur. 

 

OH

OH

CnH2n+1-O CH=N

 
where n = 1-18 

 
Figure 1.13: Intramolecular hydrogen bonding in 2-hydroxy-4-n- 
                    alkyloxybenzylidene-4’-hydroxyanilines (Sakagami  

         and Takase, 1995). 
 

 Compounds containing certain polar groups show tendency to form 

dimers. Through dimerization, the length of the molecule is increased. It is 

known that the length to breadth ratio controls the clearing point of a mesogen 

(Collings and Hird, 1998). The correlation between the molecular length to 

breadth ratio and the clearing point can be substantiated by a study of three 

biphenyl analogous compounds with CN as the terminal substituent (Ibrahim 

and Haase, 1981). The structures and their clearing temperatures are shown in 

Table 1.3. 
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Table 1.3: Structures and clearing temperatures (Tc) of biphenyl analogous  
      compounds with CN group (Ibrahim and Haase, 1981) 

 
Compound Structure Tc/ 

oC 

 

8 NC7H15

 

 

42.2 

 

9 C7H15 N

 

 

56.8 

 

10 C7H15C7H15 N

 

 

83.3 

 

As can be seen in Table 1.3, compounds 8-10 differ in their core 

structure, giving rise to different types of dimers. The cyclohexane ring differs 

from the benzene ring by being more bulky in shape and being non-aromatic. 

These in turn caused a strong decrease in the intermolecular interaction. The 

sketches of the possible dimers in order to illustrate the different effective 

length to breadth ratio are shown in Figure 1.14. The dimerization occurs either 

by the interaction of a CN group with a benzene ring [Figure 1.14 (a) and (b)] or 

the interaction of two CN groups [Figure 1.14 (c)]. Comparison among 

compounds 8 to 10 showed that compound 10 has the highest length to 

breadth ratio and therefore, has the highest clearing point. 
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C7H15 N

C7H15N

C7H15 N

C7H15N
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C7H15
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N
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(b) 

 

C7H15

C7H15

N

N

 

(c) 

 Figure 1.14:  Possible associates in polar biphenyl analogous  
  compounds.  
 (a) Two different types of possible dimerization for  
     compound 8.  
 (b) The possible dimerization for compound 9.  
 (c) The possible dimerization for compound 10. 

 

1.5.2.2  Straight Alkyl/Alkoxy Chains 

Other common terminal substituents are the alkyl and alkoxy groups. 

The length of the carbon chain in both of the groups affects the mesomorphic 

properties. As the length of the alkyl chain is increased, the lateral attraction is 

increased. However, the terminal attraction becomes relatively weaker or 

remains unchanged. The illustration for both of the attractions is shown in 
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Figure 1.15. As a result, the nematic property decreases but the tendency of a 

compound to exhibit smectic phase increases as a particular series ascends 

(Collings and Hird, 1998). 

 

Lateral attraction

Terminal attraction

represents a molecule
 

Figure 1.15: Illustration of the terminal and lateral attractions between  
         molecules. 

 

As an example, Prajapati and Pandya (2005) have synthesized                 

2-methoxyethyl [4-(4’-n-alkoxybenzoyloxy)phenylazo]-4”-benzoates (Figure 

1.16) and found that for the lower members (n = 1 to 8), the azomesogens 

showed nematic phase while for the higher members (n = 10 to 16), the 

azomesogens displayed both nematic and smectic phases.  

 

  

COO N N COO C2H4
_OCH3CnH2n+1O

 

where n = 1-8, 10, 12, 14 and 16 

 Figure 1.16: Structure of 2-methoxyethyl [4-(4’-n-alkoxybenzoyloxy)- 
                     phenylazo]-4”-benzoates (Prajapati and Pandya, 2005). 

 

 

 

 

 



 19

1.5.2.3  Branched Alkyl/Alkoxy Chains 

The discussion in Section 1.5.2.2 only focused on straight carbon 

chains. There are many compounds with branched terminal substituents, 

particularly chiral materials. Since the ferroelectric liquid crystal (FLC),                     

2-methylbutyl 4-(4-n-decyloxybenzylideneamino)cinnamate (Figure 1.17) was 

reported by Meyer et al. (1975), and a bistable and fast switching electro-

optical device based on the properties of FLCs was reported by Clark and 

Lagerwall (1980), the synthesis of optically active smectic liquid crystal 

materials for display applications has received considerable interests (Maltase, 

1992 and Walba, 1995). 

 

CH=N CH=CHCOOCH2CC10H21O
H

CH3

C2H5
*

 
where * denotes the chiral centre 

Figure  1.17:  Structure of 2-methylbutyl 4-(4-n-decyloxybenzylidene- 
amino)cinnamate (Meyer et al., 1975). 

 

 A FLC material used in a display should exhibit smectic phase over a 

wide temperature range, including room temperature (Adams and Sinta, 1989). 

General guidelines have been established for the synthesis of FLC materials 

and the primary requirement is the materials must exhibit tilted chiral smectic 

phases such as chiral smectic C (SmC*) (Goodby and Gray, 1978). Besides 

that, FLC mesogens must consist of at least two rigid aromatic groups. A 

biphenylene group is preferred in comparison to a phenylene group. The 

structures of the common biphenylene groups that are present in FLCs are 

shown in Figure 1.18 (Chiellini et al., 1993).  
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(a) 

 

COO
 

(b) 

 Figure 1.18: Common biphenylene groups that are present in FLCs.               
                     (a) Biphenylene group only. 
                     (b) Biphenylene group attached to a phenylene group by a  
                                    carboxylate group. 

 

A few examples of FLCs comprising these skeletons                     

are 1-methylalkyl 4’-(4”-n-decyloxybenzoyloxy)biphenyl-4-carboxylates [Figure 

1.19 (a)] and 4-(1-alkylheptyloxycarbonyl)phenyl 4’-n-octyloxybiphenyl-4-

carboxylates [Figure 1.19 (b)]. 

 

C CH2 C CnH2n+1

CH3

H

OC10H21 OC

O

where n = 2, 3, 4, 5 or 6

O

O

 
(a) 

 
 

C6H13
OC

O

OC

O

where n = 1, 2, 3, 4, 5 or 6

OC8H17 C

CnH2n+1

H

 
(b) 

 
Figure 1.19: (a) Structure of 1-methylalkyl 4’-(4”-n-decyloxybenzoyloxy)- 
                          biphenyl-4-carboxylates (Goodby et al., 1992). 
           (b) Structure of 4-(1-alkylheptyloxycarbonyl)phenyl 4’-n- 

               octyloxybiphenyl-4-carboxylates (Ouchi et al., 1995). 
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1.6  Phase Structures Of Chiral Calamitic Liquid Crystals  

Chiral calamitic LCs can exhibit two common types of mesophases; 

chiral nematic (cholesteric) and chiral smectic phases. 

 

1.6.1  Chiral Nematic (Cholesteric) Phase 

The simplest chiral mesophase is the chiral nematic (N*) phase  

(Figure 1.20) where the local molecular ordering is similar to that of the nematic 

phase (only orientational order) and additionally the molecules pack to form 

helical macrostructures in the direction perpendicular to the director. The 

helicicty depends on the absolute configuration (enantiomer R or S) of the 

molecules (Collings and Hird, 1998).  

 

                        
                          

Figure 1.20: Helical structure of the chiral nematic phase (Belloni, 2002). 
 

 

 

Molecules 

Spiralling 
orientational 
ordering of the 
molecules 

Note: 

 
 
The director (n) lies in the xy plane, 
perpendicular to the direction of the helix 
(z), and rotates in the plane that defines 
the helical structure. 

Half 
pitch 
length 
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1.6.2  Chiral Smectic Phase 

Chiral smectic phases comprise enantiomerically pure (or at least the 

concentration of one enantiomer is greater than the other) molecules, which 

express the chirality in the bulk material by a helical arrangement of the layered 

structure. The most important chiral smectic phase is the chiral smectic C 

(SmC*). Here the chiral molecules, like in the SmC phase, are tilted at an angle 

θ to the normal [the layer (z)] and form spontaneously polarized layers (due to 

their inherent asymmetry), which additionally give rise to a helical 

macrostructure (Figure 1.21) (Collings and Hird, 1998).  

 

 However, the helical structure of the layers results in the overall 

polarization (P) being averaged to zero in the bulk.  

 

              

Figure 1.21: Helical macrostructure of the chiral smectic phase                
                    (Belloni, 2002). 

 

 

 

Pitch 
length of 
the 
helical 
structure 

Molecules 
Note: 

 
The chiral molecule represented 
in its layer plane (xy) with its 
polarization (P) due to the 
inherent asymmetry. The layers 
rotate around the normal (z), 
forming a helical macrostructure. 
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CHAPTER TWO 

LITERATURE SURVEY 

 

2.1 Liquid Crystals Consisting Of Cholesterol, Rod-Like Imine And 

Biphenyl-4-Carboxylate Components 

In the current project, three types of calamitic liquid crystals, each with 

a different core structure were targeted based on the literature review carried 

out. These include compounds with the cholesterol (Series 1 and 2, in Section 

2.1.1), rod-like imine (Series 3 to 6, in Section 2.1.2) and biphenyl-4-

carboxylate (Series 7, in Section 2.1.3) components. Altogether, a total of sixty-

three compounds were synthesized and characterized. The objectives of this 

research are outlined in Section 2.1.4. 

 

2.1.1   Liquid Crystals Consisting Of Cholesterol Component 

 
2.1.1.1  Series 1: Cholesteryl 4-n-Alkoxybenzoates 

In the year 1888, the Austrian botanist Reinitzer discovered the first 

liquid crystal known as cholesteryl benzoate (Figure 1.1). Later, Dave and Vora 

(1970) made an expansion of cholesteryl benzoate through the preparation of 

cholesteryl 4-n-alkoxybenzoates (CnH2n+1OC6H4COOCh or nOACh where Ch 

represents the cholesteryl moiety). Dave and Vora characterized thirteen 

members of the nOACh homologous series (where n = 1-10, 12, 16 or 18) by 

using only elemental analysis. Later, a Russian research group carried out             

X-ray diffraction analysis on these compounds. They determined the crystal 

structures of compounds 1OACh, 2OACh (Polishchuk et al., 1988), 4OACh, 

5OACh (Polishchuk et al., 1985b), 6OACh (Polishchuk et al., 1986a), 8OACh 
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(Polishchuk et al., 1985a) and 16OACh (Polishchuk et al., 1990) in solid state. 

In addition, Yakubov (1999) also studied the structure of compounds nOACh in 

solid state by using infrared spectroscopy. Apart from that, nuclear magnetic 

resonance (NMR) is also considered as one of the tools for structure 

elucidation and conformation studies. NMR spectroscopy characterization of 

these compounds in solution in a common organic solvent which has not been 

reported in the literature prior to this work was carried out in the current 

research. The structures of the compounds which were studied are shown in 

Figure 2.1. 

 

CnH2n+1O C

O

O

 

where n = 6, 8, 10, 12, 14, 16 or 18 

Figure 2.1: Structure of cholesteryl 4-n-alkoxybenzoates (nOACh). 
 

Dave and Vora (1970) also reported the mesomorphic properties of 

these compounds which were merely based on the liquid crystal textures 

observed using polarizing optical microscope (POM). Since differential 

scanning calorimetry (DSC) is another essential method for studying the 

properties of liquid crystals, the mesomorphic properties of compounds 

6OACh, 8OACh, 10OACh, 12OACh, 14OACh, 16OACh and 18OACh were 

revised in the current research by using POM with the support of DSC data. 
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