SYNTHESIS AND CHARACTERIZATION OF SOME CALAMITIC LIQUID CRYSTALS CONSISTING OF CHOLESTEROL, ROD-LIKE IMINE AND BIPHENYL-4-CARBOXYLATE COMPONENTS

HA SIE TIONG

UNIVERSITI SAINS MALAYSIA 2006

SYNTHESIS AND CHARACTERIZATION OF SOME CALAMITIC LIQUID CRYSTALS CONSISTING OF CHOLESTEROL, ROD-LIKE IMINE AND BIPHENYL-4-CARBOXYLATE COMPONENTS

by

HA SIE TIONG

Thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy

ACKNOWLEDGEMENT

First of all, I would like to take this opportunity to thank my supervisor, Assoc. Prof. Dr. Yeap Guan Yeow, without the guidance, inspiration, support and help of whom this work couldn't be completed. I am also grateful to my cosupervisor, Prof. Dr. Boey Peng Lim for his encouragement and helpful suggestions throughout the course of this work. I would like to acknowledge the Dean of Institute of Graduate Studies (IPS) for giving me a chance to pursue my postgraduate studies in USM. Not forgetting, special thanks to the Dean of School of Chemical Sciences, Assoc. Prof. Dr. Wan Ahmad Kamil Mahmood for providing me with all of the assistance and facilities which ensured the success of my research.

I would like to thank the Ministry of Science, Technology and Innovation of Malaysia for awarding me with the National Science Fellowship (NSF) which covered my tuition fee and my allowance as well as IPS for awarding me with the Graduate Research Fund which enabled me to participate in the Singapore International Chemical Conference-4.

I am also grateful to Prof. M. M. Ito of Soka University, Japan and Dr. D. Takeuchi of Tokyo Institute of Technology, Japan for their help with the DSC analysis. I would like to thank Prof. V. Vill of University of Hamburg, Germany for allowing me to access his LiqCryst Database.

I would also like to thank Natural Oleochemicals Sdn. Bhd. and Acidchem International Sdn. Bhd. for kindly supplying me with the fatty acids for my research.

Next, I would like to acknowledge the technical staff of the School of Chemical Sciences in particular Mr. Aw Yeong, Mr. Ong Chin Hin, Mr. Khoo Kay Hock, Mr. Zahari bin Othman, Mr. Yee Chin Leng, Mr. Lim Chin Poh and Mr. Burhanuddin for their help during the term of this study.

I would like to forward my appreciation to my seniors; Dr. Yue Chen Son, Ooi Whui Shan, Goh Chia Keong and Lim Eng Khoon for their guidance and encouragement. Much thanks also goes to my colleagues; Tiang Chuan, Hooi Jiun, Phaik Leng, I-Phing, Seok Keik, Susanti, Wan Sinn and Chin Hin for their cooperation. Special thanks goes to Yasodha for her encouragement and fruitful discussions in my work. I would like to thank my group of friends; William, Vejay, Wendy, Chuan Wei, Boon Siew, Seok Yong, Sharon, Keng Yoon, Chin Mean, Nien Hing, Loo How and Bok Eng for the moral support that they have given me throughout this project. Finally, I would like to convey my love and deepest gratitude to my family members for being caring, loving and understanding throughout my candidature.

TABLE OF CONTENTS

			Page
Ackno	owledge	ment	ii
Table	of cont	ents	iv
List of	f tables		xiii
List of	f figures		xvii
List of	fplates		xxv
List of	f abbrev	riations	xxvii
List of	fappen	dices	xxix
Abstra	ak		xxxiii
Abstra	act		xxxvi
CHAF	PTER O	NE: INTRODUCTION	1
1.1	Introdu	uction to liquid crystals	1
1.2	History	of liquid crystals	2
1.3	Types	of liquid crystals	3
	1.3.1	Lyotropic liquid crystals	4
	1.3.2	Thermotropic liquid crystals	5
		1.3.2.1 Calamitic liquid crystals	5
		1.3.2.2 Discotic liquid crystals	5
1.4	Phase	structures of calamitic liquid crystals	7
	1.4.1	Nematic phase	7
	1.4.2	Smectic phase	7
1.5	Structi	ure of calamitic liquid crystals	8
	1.5.1	Connecting group (Z)	9

	1.5.2	Termina	I substituents (X, Y)	13
		1.5.2.1	Polar groups	14
		1.5.2.2	Straight alkyl/alkoxy chains	17
		1.5.2.3	Branched alkyl/alkoxy chains	19
1.6	Phase	structure	s of chiral calamitic liquid crystals	21
	1.6.1	Chiral ne	ematic (cholesteric) phase	21
	1.6.2	Chiral sr	mectic phase	22
CHA	PTER T	WO: LITE	RATURE SURVEY	23
2.1			consisting of cholesterol, rod-like imine and biphenylomponents	23
	2.1.1	Liquid cr	rystals consisting of cholesterol component	23
		2.1.1.1	Series 1: Cholesteryl 4-n-alkoxybenzoates	23
		2.1.1.2	Series 2: Cholesteryl 4-(4-n-alkoxyphenyl)benzoates	25
	2.1.2	Liquid cr	ystals consisting of rod-like imine component	26
		2.1.2.1	Series 3: 2-Hydroxy-4-methoxybenzylidene-, 2-hydroxy-3-methoxybenzylidene- and 3-methoxy-4-n-alkanoyloxybenzylidene-4'-n-alkanoyloxyanilines	26
		2.1.2.2	Series 4: 2-Hydroxy-4- <i>n</i> -hexadecanoyloxy-benzylidene-4'-substituted-anilines	27
		2.1.2.3	Series 5: <i>N</i> -[4-(4- <i>n</i> -Hexadecanoyloxybenzoyloxy)-benzylidene]-4-substituted-anilines	29
		2.1.2.4	Series 6: <i>N</i> -[4-(4- <i>n</i> -Hexadecanoyloxybenzoyloxy)-2-hydroxybenzylidene]-4-substituted-anilines	30
	2.1.3	Liquid c	rystals consisting of biphenyl-4-carboxylate ent	31
		2.1.3.1	Series 7: (S)-2-Methylbutyl 4'-(4"-n-alkanoyloxy-benzoyloxy)biphenyl-4-carboxylates	31
	2.1.4	Objectiv	es of the project	32

СНА	PTER T	HREE: M	ATERIALS AND METHODS	34
3.1	Chem	icals		34
3.2	Instru	ments		38
3.3	Synthe	esis and c	characterization	39
	3.3.1	Synthes benzoate	is and characterization of cholesteryl 4- <i>n</i> -alkoxy-es	39
		3.3.1.1	Synthesis of 4-n-alkoxybenzoic acids	39
		3.3.1.2	Synthesis of cholesteryl 4- <i>n</i> -hexyloxybenzoate, 6OACh	40
		3.3.1.3	Synthesis of compounds 80ACh, 100ACh, 120ACh, 140ACh, 160ACh and 180ACh	41
		3.3.1.4	Characterization of compounds nOACh (where n = 6, 8, 10, 12, 14, 16 or 18)	41
	3.3.2		sis and characterization of cholesteryl 4-(4- <i>n</i> -alkoxy- benzoates	43
		3.3.2.1	Synthesis of 4-(4-n-alkoxyphenyl)benzoic acids	44
		3.3.2.2	Synthesis of cholesteryl 4-(4- <i>n</i> -hexyloxyphenyl)-benzoate, 6OABCh	44
		3.3.2.3	Synthesis of compounds 80ABCh, 100ABCh, 120ABCh, 140ABCh, 160ABCh and 180ABCh	45
		3.3.2.4	Characterization of compounds nOABCh (where n = 6, 8, 10, 12, 14, 16 or 18)	45
	3.3.3	benzylic	sis and characterization of 2-hydroxy-4-methoxy-dene-, 2-hydroxy-3-methoxybenzylidene- and oxy-4- <i>n</i> -alkanoyloxy-	46
		3.3.3.1	Synthesis of 2-hydroxy-4-methoxybenzylidene-4'-n-alkanoyloxyanilines, nSBA	47
		3.3.3.2	Synthesis of 2-hydroxy-3-methoxybenzylidene-4'-n-alkanoyloxyanilines, nSBB	48
		3.3.3.3	Synthesis of 3-methoxy-4- <i>n</i> -alkanoyloxybenzylidene-4'- <i>n</i> -alkanoyloxyanilines, nSBC	49

	3.3.3.4	Characterization of compounds nSBA , nSBB and nSBC (where n = 12, 14, 16 or 18)	50
3.3.4	•	sis and characterization of 2-hydroxy-4- <i>n</i> -hexadeca- benzylidene-4'-substituted-anilines	51
	3.3.4.1	Synthesis of 2-hydroxy-4- <i>n</i> -hexadecanoyloxy-benzaldehyde, 160HAa	52
	3.3.4.2	Synthesis of 2-hydroxy-4- <i>n</i> -hexadecanoyloxy-benzylideneaniline, 160HA-H	52
	3.3.4.3	Synthesis of compounds 160HA-F, 160HA-CI, 160HA-Br, 160HA-OCH ₃ , 160HA-CH ₃ , 160HA-C ₂ H ₅ , 160HA-CN, 160HA-OH, 160HA-SH and 160HA-NO ₂	53
	3.3.4.4	Characterization of compounds 160HA-R (where R = H, F, Cl, Br, OCH ₃ , CH ₃ , C ₂ H ₅ , CN, OH, SH or NO_2)	53
3.3.5	•	sis and characterization of <i>N</i> -[4-(4- <i>n</i> -hexadecanoyloxy loxy)benzylidene]-4-substituted-anilines	54
	3.3.5.1	Synthesis of 4- <i>n</i> -hexadecanoyloxybenzoic acid, C16BA	55
	3.3.5.2	Synthesis of 4-(4- <i>n</i> -hexadecanoyloxybenzoyloxy)-benzaldehyde, 16ABa	55
	3.3.5.3	Synthesis of <i>N</i> -[4-(4- <i>n</i> -hexadecanoyloxybenzoyloxy)benzylidene]aniline, 16AB-H	56
	3.3.5.4	Synthesis of compounds 16AB-F, 16AB-CI, 16AB-Br, 16AB-OCH ₃ , 16AB-CH ₃ , 16AB-C ₂ H ₅ , 16AB-CN, 16AB-OH, 16AB-SH and 16AB-NO ₂	56
	3.3.5.5	Characterization of compounds 16AB-R (where R = H, F, Cl, Br, OCH ₃ , CH ₃ , C ₂ H ₅ , CN, OH, SH or NO_2)	57
3.3.6		sis and characterization of <i>N</i> -[4-(4- <i>n</i> -hexadecanoyloxy loxy)-2-hydroxybenzylidene]-4-substituted-anilines	58
	3.3.6.1	Synthesis of 4-(4- <i>n</i> -hexadecanoyloxybenzoyloxy)-2-hydroxybenzaldehyde, 160HABa	59
	3.3.6.2	Synthesis of <i>N</i> -[4-(4- <i>n</i> -hexadecanoyloxybenzoyloxy)-2-hydroxybenzylidene]aniline, 160HAB-H	59
	3.3.6.3	Synthesis of of compounds 160HAB-F, 160HAB-CI, 160HAB-Br, 160HAB-OCH ₃ , 160HAB-CH ₃ , 160HAB-C ₂ H ₅ , 160HAB-CN, 160HAB-OH, 160HAB-SH and 160HAB-NO ₂	60

		3.3.0.4	(where R = H, F, Cl, Br, OCH ₃ , CH ₃ , C ₂ H ₅ , CN, OH, SH or NO_2)	60
	3.3.7	,	is and characterization of (S)-2-methylbutyl alkanoyloxybenzoyloxy)biphenyl-4-carboxylates	61
		3.3.7.1	Synthesis of 4- <i>n</i> -alkanoyloxybenzoic acid, CnBA (where n = 12, 14, 16 or 18)	63
		3.3.7.2	Synthesis of (S)-2-methylbutyl 4'-(4"-hydroxy-phenyl)benzoate, S-MB-OH	63
		3.3.7.3	Synthesis of (S)-2-methylbutyl 4'-(4"-n-dodecanoy-loxybenzoyloxy)biphenyl-4-carboxylate, S-MB-OOC12	64
		3.3.7.4	Synthesis of compounds S-MB-OOC14, S-MB-OOC16 and S-MB-OOC18	64
		3.3.7.5	Characterization of compounds S-MB-OOCn (where n = 12, 14, 16 or 18)	65
			SULTS AND DISCUSSION FOR SERIES 1:	66
4.1	Structu	ıre elucida	ation of cholesteryl 4-n-alkoxybenzoates	66
	4.1.1	FTIR sp	ectroscopy	69
	4.1.2	NMR Sp	pectroscopy	72
4.2	Liquid	crystalline	e properties of cholesteryl 4-n-alkoxybenzoates	90
	4.2.1	Optical a	and thermal studies	90
	4.2.2	Influence propertie	e of structural changes on the liquid crystalline es	94
CHAF	PTER FI	VE: RES	ULTS AND DISCUSSION FOR SERIES 2:	99
			7-ALKOXYPHENYL)BENZOATES	
5.1	Structu	ıre elucida	ation of cholesteryl 4-(4- <i>n</i> -alkoxyphenyl)benzoates	99
	5.1.1	FTIR sp	ectroscopy	101

5.2	Liquid benzo	crystalline properties of cholesteryl 4-(4- <i>n</i> -alkoxyphenyl)-ates	122
	5.2.1	Optical and thermal studies	122
	5.2.2	Influence of structural changes on the liquid crystalline properties	126
СНА	PTER S	IX: RESULTS AND DISCUSSION FOR SERIES 3:	130
2-HY	DROXY	-4-METHOXYBENZYLIDENE-, 2-HYDROXY-3-METHOXY-	
		NE- AND 3-METHOXY-4- <i>n</i> -ALKANOYLOXYBENZYLIDENE-	
4'- <i>n</i> -	ALKAN	OYLOXYANILINES	
6.1	2-hydr	ure elucidation of 2-hydroxy-4-methoxybenzylidene-, coxy-3-methoxybenzylidene- and 3-methoxy-4- <i>n</i> -alkanoyloxy-lidene-4'- <i>n</i> -alkanoyloxyanilines	130
	6.1.1	FTIR spectroscopy	135
	6.1.2	NMR spectroscopy	138
6.2	2-hydr	crystalline properties of 2-hydroxy-4-methoxybenzylidene-, coxy-3-methoxybenzylidene- and 3-methoxy-4- <i>n</i> -alkanoyloxy-lidene-4'- <i>n</i> -alkanoyloxyanilines	157
	6.2.1	Optical and thermal studies of compounds nSBA	160
	6.2.2	Optical and thermal studies of compounds nSBB	160
	6.2.3	Optical and thermal studies of compounds nSBC	161
	6.2.4	Influence of structural changes on the liquid crystalline properties	161
СНА	PTER S	EVEN: RESULTS AND DISCUSSION FOR SERIES 4:	165
2-HY	DROXY	-4- <i>n</i> -HEXADECANOYLOXYBENZYLIDENE-4'-	
SUB	STITUTI	ED-ANILINES	
7.1		ure elucidation of 2-hydroxy-4- <i>n</i> -hexadecanoyloxybenzylidene-stituted-anilines	165
	7.1.1	FTIR spectroscopy	169
	7.1.2	NMR spectroscopy	172

7.2		crystalline properties of 2-hydroxy-4- <i>n</i> -hexadecanoyloxy-dene-4'-substituted-anilines	188
	7.2.1	Optical and thermal studies	188
	7.2.2	Influence of structural changes on the liquid crystalline properties	192
СНА	PTER EIG	GHT: RESULTS AND DISCUSSION FOR SERIES 5:	199
-	•	ADECANOYLOXYBENZOYLOXY)BENZYLIDENE]-4- D-ANILINES	
306	3111016	D-AMILINES	
8.1	Structur benzylic	re elucidation of <i>N</i> -[4-(4- <i>n</i> -hexadecanoyloxybenzoyloxy)-dene]-4-substituted-anilines	199
	8.1.1	FTIR spectroscopy	203
	8.1.2	NMR spectroscopy	206
8.2	Liquid benzoy	crystalline properties of <i>N</i> -[4-(4- <i>n</i> -hexadecanoyloxy-loxy)benzylidene]-4-substituted-anilines	220
	8.2.1	Optical and thermal studies	220
	8.2.2	Influence of structural changes on the liquid crystalline properties	224
СНА	PTER NII	NE: RESULTS AND DISCUSSION FOR SERIES 6:	229
-	•	ADECANOYLOXYBENZOYLOXY)-2-HYDROXY-	
DEN	ZILIDEN	E]-4-SUBSTITUTED-ANILINES	
9.1	Structur 2-hydro	re elucidation of <i>N</i> -[4-(4- <i>n</i> -hexadecanoyloxybenzoyloxy)- xybenzylidene]-4-substituted-anilines	229
	9.1.1	FTIR spectroscopy	233
	9.1.2	NMR spectroscopy	236
9.2		crystalline properties of <i>N</i> -[4-(4- <i>n</i> -hexadecanoyloxy-loxy)-2-hydroxybenzylidene]-4-substituted-anilines	249
	9.2.1	Optical and thermal studies	249
	9.2.2	Influence of structural changes on the liquid crystalline properties	253

(<i>S</i>)-2-	PTER TEN: RESULTS AND DISCUSSION FOR SERIES 7: METHYLBUTYL 4'-(4"- <i>n</i> -ALKANOYLOXYBENZOYLOXY)- ENYL-4-CARBOXYLATES	257
10.1	Structure elucidation of (S)-2-methylbutyl 4'-(4"-n-alkanoyloxy-benzoyloxy)biphenyl-4-carboxylates	257
	10.1.1 FTIR spectroscopy	259
	10.1.2 NMR spectroscopy	261
10.2	Liquid crystalline properties of (S)-2-methylbutyl 4'-(4"-n-alkanoyloxy-benzoyloxy)biphenyl-4-carboxylates	274
	10.2.1 Optical and thermal studies	274
	10.2.2 Influence of structural changes on the liquid crystalline properties	278
CHAF	PTER ELEVEN: CONCLUSION	282
11.1	Series 1: Cholesteryl 4-n-alkoxybenzoates (nOACh)	282
11.2	Series 2: Cholesteryl 4-(4- <i>n</i> -alkoxyphenyl)benzoates (nOABCh)	283
11.3	Series 3: 2-Hydroxy-4-methoxybenzylidene-, 2-hydroxy-3-methoxybenzylidene- and 3-methoxy-4- <i>n</i> -alkanoyloxybenzylidene-4'- <i>n</i> -alkanoyloxyanilines	285
11.4	Series 4: 2-Hydroxy-4- <i>n</i> -hexadecanoyloxybenzylidene-4'-substituted-anilines (160HA-R)	287
11.5	Series 5: <i>N</i> -[4-(4- <i>n</i> -Hexadecanoyloxybenzoyloxy)benzylidene]-4-substituted-anilines (16AB-R)	289
11.6	Series 6: <i>N</i> -[4-(4- <i>n</i> -Hexadecanoyloxybenzoyloxy)-2-hydroxybenzylidene]-4-substituted-anilines (160HAB-R)	291
11.7	Series 7: (S)-2-Methylbutyl 4'-(4"-n-alkanoyloxybenzoyloxy)biphenyl-4-carboxylates (S-MB-OOCn)	293
11.8	Summary of phase transition data of the synthesized compounds	294
11.9	Recommendation for future research	304
REFE	RENCES	305

APP	APPENDICES	
LIST	OF PUBLICATIONS	373
A.	International refereed journals	373
B.	Papers presented at international and national conferences	374
USN	I BEST GRADUATE RESEARCH AWARD 2004	375

LIST OF TABLES

		Page
Table 1.1	Clearing temperatures (T _c) of compounds with various connecting groups (X) in 1,4-phenyl derivatives	11
Table 1.2	Transition temperatures and phase ranges (ΔT) of phenyl 4-(4-tetradecyloxybenzoyloxy)benzoate (compound 6) and 4-tetradecyloxyphenyl 4-benzoyloxybenzoate (compound 7) (Sakurai <i>et al.</i> , 1989)	12
Table 1.3	Structures and clearing temperatures $(T_{\rm c})$ of biphenyl analogous compounds with CN group (Ibrahim and Haase, 1981)	16
Table 4.1	Yields of compounds nOACh	67
Table 4.2	Analytical data of compounds nOACh	67
Table 4.3	FTIR spectral data (cm ⁻¹) of compounds nOACh	71
Table 4.4	¹ H NMR spectral assignments of cholesterol and compound 60ACh	81
Table 4.5	¹ H- ¹ H correlations as inferred from the 2D COSY, NOESY and ROESY experiments for compound 6OACh	81
Table 4.6	¹³ C NMR spectral assignments of cholesterol and compound 60ACh	82
Table 4.7	¹³ C- ¹ H correlations as inferred from the 2D HMQC and HMBC experiments for compound 6OACh	84
Table 4.8	Transition temperatures and associated enthalpy changes of compounds nOACh	91
Table 5.1	Yield of compounds nOABCh	100
Table 5.2	Analytical data of compounds nOABCh	100
Table 5.3	FTIR spectral data (cm ⁻¹) of compounds nOABCh	103
Table 5.4	¹ H NMR spectral assignments of cholesterol and compound 10OABCh	113
Table 5.5	¹ H- ¹ H correlations as inferred from the 2D COSY, NOESY and ROESY experiments for compound 10OABCh	113
Table 5.6	¹³ C NMR spectral assignments of cholesterol and compound 10OABCh	114

Table 5.7	¹³ C- ¹ H correlations as inferred from the 2D HMQC and HMBC experiments for compound 10OABCh	116
Table 5.8	Transition temperatures and associated enthalpy changes of compounds nOABCh	123
Table 6.1	Yields of compounds nSBA, nSBB and nSBC	131
Table 6.2	Analytical data of compounds nSBA, nSBB and nSBC	132
Table 6.3	FTIR spectral data (cm ⁻¹) of compounds nSBA , nSBB and nSBC	137
Table 6.4	¹ H NMR spectral assignments of compound 14SBA	139
Table 6.5	¹³ C NMR spectral assignments of compound 14SBA	140
Table 6.6	¹ H NMR spectral assignments of compound 14SBC	141
Table 6.7	¹³ C NMR spectral assignments of compound 14SBC	142
Table 6.8	¹ H NMR spectral assignments of compound 14SBB	143
Table 6.9	¹ H- ¹ H correlations as inferred from the 2D COSY experiment for compound 14SBB	144
Table 6.10	¹³ C NMR spectral assignments of compound 14SBB	145
Table 6.11	¹³ C- ¹ H correlations as inferred from the 2D HMQC and HMBC experiments for compound 14SBB	146
Table 6.12	Transition temperatures and associated enthalpy changes of compounds nSBA , nSBB and nSBC	158
Table 7.1	Yields of compounds 160HA-R	166
Table 7.2	Analytical data of compounds 160HA-R	167
Table 7.3	FTIR spectral data (cm ⁻¹) of compounds 160HA-R	171
Table 7.4	¹ H NMR spectral assignments of compound 160HA-CH ₃	180
Table 7.5	¹ H- ¹ H correlations as inferred from the 2D COSY experiment for compound 160HA-CH ₃	181
Table 7.6	¹³ C NMR spectral assignments of compound 160HA-CH ₃	182
Table 7.7	¹³ C- ¹ H correlations as inferred from the 2D HMQC and HMBC experiments for compound 16OHA-CH ₃	183
Table 7.8	Transition temperatures and associated enthalpy changes of compounds 160HA-R	189
Table 8.1	Yield of compounds 16AB-R	200

Table 8.2	Analytical data of compounds 16AB-R	201
Table 8.3	FTIR spectral data (cm ⁻¹) of compounds 16AB-R	205
Table 8.4	¹ H NMR spectral assignments of compound 16AB-Br	213
Table 8.5	¹ H- ¹ H correlations as inferred from the 2D COSY experiment for compound 16AB-Br	214
Table 8.6	¹³ C NMR spectral assignments of compound 16AB-Br	215
Table 8.7	¹³ C- ¹ H correlations as inferred from the 2D HMQC and HMBC experiments for compound 16AB-Br	216
Table 8.8	Transition temperatures and associated enthalpy changes of compounds 16AB-R	221
Table 9.1	Yields of compounds 160HAB-R	230
Table 9.2	Analytical data of compounds 160HAB-R	231
Table 9.3	FTIR spectral data (cm ⁻¹) of compounds 160HAB-R	235
Table 9.4	¹ H NMR spectral assignments of compound 160HAB-CI	242
Table 9.5	¹ H- ¹ H correlations as inferred from the 2D COSY experiment for compound 160HAB-CI	243
Table 9.6	¹³ C NMR spectral assignments of compound 160HAB-CI	244
Table 9.7	¹³ C- ¹ H correlations as inferred from the 2D HMQC and HMBC experiments for compound 16OHAB-CI	245
Table 9.8	Transition temperatures and associated enthalpy changes of compounds 16OHAB-R	250
Table 10.1	Yields of compounds S-MB-OOCn	258
Table 10.2	Analytical data of compounds S-MB-OOCn	258
Table 10.3	FTIR spectral data (cm ⁻¹) of compounds S-MB-OOCn	259
Table 10.4	¹ H NMR spectral assignments of compound S-MB-OOC12	267
Table 10.5	¹ H- ¹ H correlations as inferred from the 2D COSY experiment for compound S-MB-OOC12	268
Table 10.6	¹³ C NMR spectral assignments of compound S-MB-OOC12	269
Table 10.7	¹³ C- ¹ H correlations as inferred from the 2D HMQC and HMBC experiments for compound S-MB-OOC12	270

Table 10.9	Average smectic thermal stabilities of compounds S-MB-OOCn, S-MB-An and S-MB-Bn	280
Table 10.8	Transition temperatures and associated enthalpy changes of compounds S-MB-OOCn	274

LIST OF FIGURES

		Page
Figure 1.1	Structure of the first liquid crystal, cholesteryl benzoate	2
Figure 1.2	Structure and phase transition of 4-pentyl-4'-cyanobiphenyl (5CB) (Gray <i>et al.</i> , 1973)	3
Figure 1.3	 (a) Illustration of sodium dodecylsulfate (soap) forming micelles (b) Illustration of phospholipids (lecithine) forming bilayer lyotropic liquid crystal as present in cell membranes (Belloni, 2002) 	4
Figure 1.4	General shape of calamitic liquid crystals, where L>>B	5
Figure 1.5	Structure of the first series of discotic LCs discovered: the benzene-hexane- <i>n</i> -alkanoate derivatives (Chandrasekhar <i>et al.</i> , 1977)	6
Figure 1.6	General shape of discotic liquid crystals, where D>>T	6
Figure 1.7	Structure of nematic phase	7
Figure 1.8	Structures of (a) SmA and (b) SmC phases	8
Figure 1.9	General structural templates for calamitic mesogens	8
Figure 1.10	Connecting groups and their common names (Neubert, 2001a)	10
Figure 1.11	Structure of compounds containing benzathiazol unit (Belmar, 1999a)	13
Figure 1.12	Structures of (a) <i>p</i> -phenylene di- <i>p</i> -aminobenzoate and (b) <i>p</i> -phenylene di- <i>p</i> -hydroxybenzoate (Schroeder and Schroeder, 1974)	14
Figure 1.13	Intramolecular hydrogen bonding in 2-hydroxy-4- <i>n</i> -alkyloxy-benzylidene-4'-hydroxyanilines (Sakagami and Takase, 1995)	15
Figure 1.14	Possible associates in polar biphenyl analogous compounds. (a) Two different types of possible dimerization for compound 8.	17
	(b) The possible dimerization for compound 9.(c) The possible dimerization for compound 10.	
Figure 1.15	Illustration of the terminal and lateral attractions between molecules	18

Figure 1.16	Structure of 2-methoxyethyl [4-(4'-n-alkoxybenzoyloxy)-phenylazo]-4"-benzoates (Prajapati and Pandya, 2005)	18
Figure 1.17	Structure of 2-methylbutyl 4-(4- <i>n</i> -decyloxybenzylidene-amino)cinnamate (Meyer <i>et al.</i> , 1975)	19
Figure 1.18	Common biphenylene groups that are present in FLCs. (a) Biphenylene group only. (b) Biphenylene group attached to a phenylene group by a carboxylate group.	20
Figure 1.19	 (a) Structure of 1-methylalkyl 4'-(4"-n-decyloxybenzoyloxy)-biphenyl-4-carboxylates (Goodby et al., 1992) (b) Structure of 4-(1-alkylheptyloxycarbonyl)phenyl 4'-n-octyloxybiphenyl-4-carboxylates (Ouchi et al., 1995) 	20
Figure 1.20	Helical structure of the chiral nematic phase (Belloni, 2002)	21
Figure 1.21	Helical macrostructure of the chiral smectic phase (Belloni, 2002)	22
Figure 2.1	Structure of cholesteryl 4-n-alkoxybenzoates (nOACh)	24
Figure 2.2	Structure of cholesteryl 4-(4- <i>n</i> -alkoxyphenyl)benzoates (nOABCh)	25
Figure 2.3	Definition of molecular length-breadth ratio (d)	25
Figure 2.4	Structure of compounds nSBA , nSBB and nSBC	27
Figure 2.5	Structure of 4- <i>n</i> -octadecanoyloxybenzylidene-4'-substituted-anilines (18A-R) (Yeap <i>et al.</i> , 2002 and Ooi, 2003)	28
Figure 2.6	Structure of 2-hydroxy-4- <i>n</i> -hexadecanoyloxybenzylidene-4'-substituted-anilines (160HA-R)	28
Figure 2.7	Structure of <i>N</i> -[4-(4- <i>n</i> -hexadecanoyloxybenzoyloxy)-benzylidene]-4-substituted-anilines (16AB-R)	29
Figure 2.8	Structure of <i>N</i> -[4-(4- <i>n</i> -hexadecanoyloxybenzoyloxy)-2-hydroxybenzylidene]-4-substituted-anilines (160HAB-R)	30
Figure 2.9	Phase behaviour of (S) -(-)-2-methylbutyl 4-[4-(d_{13})-hexyloxyphenyl]benzoate (S-MB-d ₁₃) and (S) -(-)-2-methylbutyl 4-[4-(d_{17})-octyloxyphenyl]benzoate (S-MB-d ₁₇) (Yeap <i>et al.</i> , 2000b)	32
Figure 2.10	Structure of (S)-2-methylbutyl 4'-(4"-n-alkanoyloxy-benzoyloxy)biphenyl-4-carboxylates (S-MB-OOCn)	32
Figure 3.1	Synthetic route towards the formation of the intermediates and the targeted compounds, nOACh	40

Figure 3.2	Synthetic route towards the formation of the intermediates and the targeted compounds, nOABCh	43
Figure 3.3	Synthetic routes towards the formation of the intermediates and the targeted compounds, nSBA , nSBB and nSBC	46
Figure 3.4	Synthetic routes towards the formation of the intermediate and the targeted compounds, 160HA-R	51
Figure 3.5	Synthetic routes towards the formation of the intermediate and the targeted compounds, 16AB-R	54
Figure 3.6	Synthetic routes towards the formation of the intermediate and the targeted compounds, 160HAB-R	58
Figure 3.7	Synthetic routes towards the formation of the intermediates and the targeted compounds, S-MB-OOCn	62
Figure 4.1	Synthetic route towards the formation of compounds nOACh (where $n = 6, 8, 10, 12, 14, 16 \text{ or } 18$)	66
Figure 4.2	Structure with numbering scheme for compound 60ACh	68
Figure 4.3	FTIR spectrum of compound 60ACh	70
Figure 4.4	Structure with numbering scheme for cholesterol	72
Figure 4.5	¹ H NMR spectrum of compound 6OACh	74
Figure 4.6	¹ H- ¹ H COSY NMR spectrum of compound 60ACh	75
Figure 4.7	¹ H- ¹ H NOESY NMR spectrum of compound 60ACh	76
Figure 4.8	¹ H- ¹ H ROESY NMR spectrum of compound 60ACh	77
Figure 4.9	¹³ C NMR spectrum of compound 60ACh	78
Figure 4.10	¹³ C- ¹ H HMQC NMR spectrum of compound 60ACh	79
Figure 4.11	¹³ C- ¹ H HMBC NMR spectrum of compound 60ACh	80
Figure 4.12	Probable conformation of compound 60ACh in solution (CDCl ₃) state and selected ¹ H- ¹ H relationships and intramolecular interactions via HMBC experiment (Yeap <i>et al.</i> , 2004a)	88
Figure 4.13	Structure of cholesteryl 4-n-alkoxybenzoates (nOACh)	89
Figure 4.14	DSC trace of compound 120ACh during heating scan	90
Figure 4.15	Plot of the transition temperatures and phase (SmA and N*) range upon heating cycle of compounds nOACh as a function of the number of carbons in the <i>n</i> -alkoxy chain	95

Figure 4.16	Comparison of the phase transition temperatures between current and previous (Dave and Vora, 1970) data of the compounds nOACh	98
Figure 5.1	Synthetic route towards the formation of compounds nOABCh (where $n = 6, 8, 10, 12, 14, 16 \text{ or } 18$)	99
Figure 5.2	Structure with numbering scheme for compound 100ABCh	101
Figure 5.3	FTIR spectrum of compound 100ABCh	102
Figure 5.4	Structure with numbering scheme for cholesterol	104
Figure 5.5	¹ H NMR spectrum of compound 10OABCh	106
Figure 5.6	¹ H- ¹ H COSY NMR spectrum of compound 10OABCh	107
Figure 5.7	¹ H- ¹ H NOESY NMR spectrum of compound 10OABCh	108
Figure 5.8	¹ H- ¹ H ROESY NMR spectrum of compound 10OABCh	109
Figure 5.9	¹³ C NMR spectrum of compound 10OABCh	110
Figure 5.10	¹³ C- ¹ H HMQC NMR spectrum of compound 10OABCh	111
Figure 5.11	¹³ C- ¹ H HMBC NMR spectrum of compound 10OABCh	112
Figure 5.12	Probable conformation of compound 100ABCh in solution (CDCl ₃) state and selected ¹ H- ¹ H relationships and intramolecular interactions via HMBC experiment (Yeap <i>et al.</i> , 2004b)	120
Figure 5.13	Structure of cholesteryl 4-(4- <i>n</i> -alkoxyphenyl)benzoates (nOABCh)	121
Figure 5.14	DSC trace of compound 100ABCh during heating scan	122
Figure 5.15	Plot of the clearing temperatures (T_c) of compounds nOACh and nOABCh as a function of the number of carbons in the n -alkoxy chain	127
Figure 5.16	Plot of the transition temperatures and phase (SmA and N*) range upon heating cycle of compounds nOABCh as a function of the number of carbons in the n -alkoxy chain	128
Figure 6.1	Synthetic route towards the formation of compounds nSBA , nSBB and nSBC (where n = 12, 14, 16 or 18)	131
Figure 6.2	EI-MS spectrum of compound 12SBA showing its molecular ion peak, M ⁺	133
Figure 6.3	EI-MS spectrum of compound 18SBB showing its molecular ion peak, M ⁺	134

Figure 6.4	FTIR spectrum of compound 14SBB	136
Figure 6.5	Structure with atomic numbering scheme for compound 14SBA	139
Figure 6.6	Structure with atomic numbering scheme for compound 14SBC	141
Figure 6.7	Structure with atomic numbering scheme for compound 14SBB	143
Figure 6.8	¹ H NMR spectrum of compound 14SBB	148
Figure 6.9	¹ H- ¹ H COSY NMR spectrum of compound 14SBB	149
Figure 6.10	¹³ C NMR spectrum of compound 14SBB	151
Figure 6.11	¹³ C- ¹ H HMQC NMR spectrum of compound 14SBB	152
Figure 6.12	¹³ C- ¹ H HMBC NMR spectrum of compound 14SBB	153
Figure 6.13	Structure of 2-hydroxy-4-methoxybenzylidene-4'-n-alkanoy-loxyanilines (nSBA)	156
Figure 6.14	Structure of 2-hydroxy-3-methoxybenzylidene-4'- <i>n</i> -alkanoy-loxyanilines (nSBB)	156
Figure 6.15	Structure of 3-methoxy-4- <i>n</i> -alkanoyloxybenzylidene-4'- <i>n</i> -alkanoyloxyanilines (nSBC)	156
Figure 6.16	(a) DSC trace of compound 14SBA during heating scan.(b) DSC trace of compound 14SBB during heating scan.(c) DSC trace of compound 14SBC during heating scan.	157
Figure 6.17	Plots of the clearing temperatures (T_c) of the homologous series nSBA , nSBB and nSBC as a function of the number of carbons in the n -alkanoyloxy chain	162
Figure 7.1	Synthetic route towards the formation of the compounds 160HA-R (where R = H, F, Cl, Br, OCH ₃ , CH ₃ , C ₂ H ₅ , CN, OH, SH or NO_2)	165
Figure 7.2	EI-MS spectrum of compound $\textbf{16OHA-CH}_3$ showing its molecular ion peak, M^+	168
Figure 7.3	FTIR spectrum of compound 160HA-CH₃	170
Figure 7.4	¹ H NMR spectrum of compound 160HA-CH ₃	173
Figure 7.5	¹ H- ¹ H COSY NMR spectrum of compound 160HA-CH₃	174
Figure 7.6	¹³ C NMR spectrum of compound 160HA-CH₃	175

Figure 7.7	 (a) Full region of ¹³C-¹H HMQC NMR spectrum of compound 16OHA-CH₃. (b) Aromatic region of ¹³C-¹H HMQC NMR spectrum of compound 16OHA-CH₃. 	176 177
	(c) Azomethine region of ¹³ C- ¹ H HMQC NMR spectrum of compound 160HA-CH ₃ .	178
Figure 7.8	¹³ C- ¹ H HMBC NMR spectrum of compound 160HA-CH ₃	179
Figure 7.9	Structure with atomic numbering scheme for compound 160HA-CH ₃	180
Figure 7.10	Structure of 2-hydroxy-4- <i>n</i> -hexadecanoyloxybenzylidene-4'-substituted-anilines (160HA-R)	187
Figure 7.11	 (a) DSC trace of compound 160HA-CI during heating scan. (b) DSC trace of compound 160HA-Br during heating scan. (c) DSC trace of compound 160HA-OCH₃ during heating scan. 	188
Figure 7.12	Intramolecular hydrogen bonding in the 160HA-R molecules	193
Figure 7.13	Plot of clearing temperatures ($T_{\rm c}$) of compounds 160HA-R as a function of various <i>para</i> -substituents (R) in the aniline fragment	194
Figure 7.14	Possible associates for compound 160HA-CN . (a) Interaction between cyano groups. (b) Interaction between a cyano group and a benzene ring. (c) Interaction between a cyano group and a carboxylate group.	196
Figure 8.1	Synthetic route towards the formation of compounds 16AB-R (where R = H, F, Cl, Br, OCH ₃ , CH ₃ , C ₂ H ₅ , CN, OH, SH or NO ₂)	199
Figure 8.2	EI-MS spectrum of compound $\textbf{16AB-CH}_3$ showing its molecular ion peak, \textbf{M}^{+}	202
Figure 8.3	FTIR spectrum of compound 16AB-F	204
Figure 8.4	¹ H NMR spectrum of compound 16AB-Br	207
Figure 8.5	¹ H- ¹ H COSY NMR spectrum of compound 16AB-Br	208
Figure 8.6	¹³ C NMR spectrum of compound 16AB-Br	209
Figure 8.7	 (a) Aromatic region of ¹³C-¹H HMQC NMR spectrum of compound 16AB-Br. (b) Azomethine region of ¹³C-¹H HMQC NMR spectrum of compound 16AB-Br. 	210 211
Figure 8.8	¹³ C- ¹ H HMBC NMR spectrum of compound 16AB-Br	212

Figure 8.9	Structure with atomic numbering scheme for compound 16AB-Br	213
Figure 8.10	Structure of <i>N</i> -[4-(4- <i>n</i> -hexadecanoyloxybenzoyloxy)-benzylidene]-4-substituted-anilines (16AB-R)	219
Figure 8.11	(a) DSC trace of compound 16AB-F during heating scan.(b) DSC trace of compound 16AB-CI during heating scan.(c) DSC trace of compound 16AB-Br during heating scan.	220
Figure 8.12	Plot of clearing temperatures (T_c) of compounds 160HA-R and 16AB-R as a function of various <i>para</i> -substituents in the aniline fragment	225
Figure 9.1	Synthetic route towards the formation of compounds 160HAB-R (where R = H, F, Cl, Br, OCH ₃ , CH ₃ , C ₂ H ₅ , CN, OH, SH or NO_2)	229
Figure 9.2	EI-MS spectrum of compound $\textbf{16OHAB-CH}_3$ showing its molecular ion peak, \textbf{M}^+	232
Figure 9.3	FTIR spectrum of compound 160HAB-CI	234
Figure 9.4	¹ H NMR spectrum of compound 160HAB-CI	237
Figure 9.5	¹ H- ¹ H COSY NMR spectrum of compound 160HAB-CI	238
Figure 9.6	¹³ C NMR spectrum of compound 160HAB-CI	239
Figure 9.7	¹³ C- ¹ H HMQC NMR spectrum of compound 16OHAB-CI	240
Figure 9.8	¹³ C- ¹ H HMBC NMR spectrum of compound 16OHAB-CI	241
Figure 9.9	Structure with atomic numbering scheme for compound 160HAB-CI	242
Figure 9.10	Structure of <i>N</i> -[4-(4- <i>n</i> -hexadecanoyloxybenzoyloxy)-2-hydroxybenzylidene]-4-substituted-anilines (16OHAB-R)	248
Figure 9.11	(a) DSC trace of compound 16OHAB-F during heating scan.(b) DSC trace of compound 16OHAB-CI during heating scan.(c) DSC trace of compound 16OHAB-Br during heating scan.	249
Figure 9.12	Plot of the clearing temperatures (T _c) of compounds 160HA-R , 16AB-R and 160HAB-R as a function of various <i>para</i> -substituents in the aniline fragment	254
Figure 10.1	Synthetic route towards the formation of compounds S-MB-OOCn (where n = 12, 14, 16 or 18)	257
Figure 10.2	FTIR spectrum of compound S-MB-OOC12	260
Figure 10.3	¹ H NMR spectrum of compound S-MB-OOC12	262

Figure 10.4	¹ H- ¹ H COSY NMR spectrum of compound S-MB-OOC12	263
Figure 10.5	¹³ C NMR spectrum of compound S-MB-OOC12	264
Figure 10.6	¹³ C- ¹ H HMQC NMR spectrum of compound S-MB-OOC12	265
Figure 10.7	¹³ C- ¹ H HMBC NMR spectrum of compound S-MB-OOC12	266
Figure 10.8	Structure with atomic numbering scheme for compound S-MB-OOC12	267
Figure 10.9	Structure of (S)-2-methylbutyl 4'-(4"-n-alkanoyloxy-benzoyloxy)biphenyl-4-carboxylates (S-MB-OOCn)	273
Figure 10.10	DSC trace of compound S-MB-OOC12 during heating scan	276
Figure 10.11	Structure of (S)-2-methylbutyl 4- <i>n</i> -alkanoyloxybiphenyl-4'-carboxylates, S-MB-An (Goodby <i>et al.</i> , 1987)	277
Figure 10.12	Structure of (S)-2-methylbutyl 4'-[(4"-n-alkoxyphenyl)-propioloxy]biphenyl-4-carboxylates (S-MB-Bn) (Waugh <i>et al.</i> , 1992)	277
Figure 10.13	Plot of the transition temperatures and phase (SmC* and SmA) range upon heating cycle of compounds S-MB-OOCn as a function of the number of carbons in the <i>n</i> -alkanoyloxy chain	279

LIST OF PLATES

			Page
Plate 4.1	(a)	Optical photomicrograph of compound 100ACh exhibiting N* phase with oily streak textures.	92
	(b)	Optical photomicrograph of compound 120ACh exhibiting	
	(c)	N* phase with fan-shaped textures. Optical photomicrograph of compound 140ACh exhibiting	
	(d)	SmA phase with fan-shaped textures. Optical photomicrograph of compound 160ACh exhibiting SmA phase with fan-shaped and homeotropic (dark area) textures.	
Plate 5.1	(a)	Optical photomicrograph of compound 100ABCh exhibiting	124
	(b)	SmA phase with fan-shaped textures. Optical photomicrograph of compound 6OABCh exhibiting	
	(c)	N* phase with fan-shaped textures. Optical photomicrograph of compound 80ABCh exhibiting N* phase with oily streak textures.	
Plate 6.1	(a)	Optical photomicrograph of compound 16SBA exhibiting nematic phase with <i>schlieren</i> textures (Yeap <i>et al.</i> , 2006a).	159
	(b)		
	(c)	Optical photomicrograph of compound 12SBC exhibiting SmC phase with broken fan-shaped textures (Yeap <i>et al.</i> , 2006a).	
Plate 7.1	(a)	Optical photomicrograph of compound 160HA-CI exhibiting	190
	(b)	SmA phase with fan-shaped textures (Yeap <i>et al.</i> , 2004c). Optical photomicrograph of compound 160HA-Br exhibiting SmA phase with ellipsed textures (Yeap <i>et al.</i> , 2004c).	
	(c)	,	
Plate 8.1	(a)	Optical photomicrograph of compound 16AB-C₂H₅ exhibiting nematic phase (Yeap <i>et al.</i> , 2006c).	222
	(b)	Optical photomicrograph of compound 16AB-F exhibiting SmA with fan-shaped and homeotropic (dark area) textures (Yeap <i>et al.</i> , 2006c).	
Plate 9.1	(a)	Optical photomicrograph of compound 160HAB-OH exhibiting nematic phase with droplet textures.	251
	(b)		

- Plate 10.1 (a) Optical photomicrograph of compound S-MB-OOC12 275 exhibiting SmA phase with fan-shaped textures.
 - (b) Optical photomicrograph of compound S-MB-OOC12 exhibiting SmC* phase with helical textures.

LIST OF ABBREVIATIONS

Fourier-Transform Infrared = FTIR

Electron-Ionization Mass Spectrometry = EI-MS

Nuclear Magnetic Resonance = NMR

ppm = part per million

TMS = trimethylsilane

s = singlet

d = doublet

t = triplet

q = quartet

dd = double doublets

qt = quintet

st = sextet

m = multiplet

brd = broad

COSY = Correlated Spectroscopy

NOESY = Nuclear Overhauser Enhancement Spectroscopy

ROESY = Rotating-Frame Nuclear Overhauser Effect Spectroscopy

DEPT = Distortionless Enhancement by Polarization Transfer

HMQC = Heteronuclear Multiple Quantum Correlation

HMBC = Heteronuclear Multiple Bond Correlation

Liquid Crystal = LC

Polarized optical microscope = POM

Differential scanning calorimetry= DSC

Cr, Cr_1 , Cr_2 or Cr_3 = crystal

N = nematic

N* = chiral nematic or cholesteric

Sm = smectic

SmA = smectic A

SmC = smectic C

SmC* = chiral smectic C

I = isotropic

 T_{m} = melting temperature

 T_c = clearing temperature

 ΔH = associated enthalpy

 ΔT = phase range

LIST OF APPENDICES

		Page
Appendix A-1	DEPT45 NMR spectrum of compound 60ACh	313
Appendix A-2	DEPT90 NMR spectrum of compound 60ACh	314
Appendix A-3	DEPT135 NMR spectrum of compound 60ACh	315
Appendix A-4	¹ H and ¹³ C NMR spectral assignments and the proposed structure of compound 80ACh	316
Appendix A-5	¹ H and ¹³ C NMR spectral assignments and the proposed structure of compound 10OACh	317
Appendix A-6	¹ H and ¹³ C NMR spectral assignments and the proposed structure of compound 12OACh	318
Appendix A-7	¹ H and ¹³ C NMR spectral assignments and the proposed structure of compound 14OACh	319
Appendix A-8	¹ H and ¹³ C NMR spectral assignments and the proposed structure of compound 16OACh	320
Appendix A-9	¹ H and ¹³ C NMR spectral assignments and the proposed structure of compound 18OACh	321
Appendix B-1	DEPT45 NMR spectrum of compound 100ABCh	322
Appendix B-2	DEPT90 NMR spectrum of compound 100ABCh	323
Appendix B-3	DEPT135 NMR spectrum of compound 100ABCh	324
Appendix B-4	¹ H and ¹³ C NMR spectral assignments and the proposed structure of compound 6OABCh	325
Appendix B-5	¹ H and ¹³ C NMR spectral assignments and the proposed structure of compound 80ABCh	326
Appendix B-6	¹ H and ¹³ C NMR spectral assignments and the proposed structure of compound 12OABCh	327
Appendix B-7	¹ H and ¹³ C NMR spectral assignments and the proposed structure of compound 140ABCh	328
Appendix B-8	¹ H and ¹³ C NMR spectral assignments and the proposed structure of compound 16OABCh	329
Appendix B-9	¹ H and ¹³ C NMR spectral assignments and the proposed structure of compound 18OABCh	330

Appendix C-1	¹ H and ¹³ C NMR spectral assignments and the proposed structure of compound 12SBA	331
Appendix C-2	¹ H and ¹³ C NMR spectral assignments and the proposed structure of compound 16SBA	332
Appendix C-3	¹ H and ¹³ C NMR spectral assignments and the proposed structure of compound 18SBA	333
Appendix C-4	¹ H and ¹³ C NMR spectral assignments and the proposed structure of compound 12SBB	334
Appendix C-5	¹ H and ¹³ C NMR spectral assignments and the proposed structure of compound 16SBB	335
Appendix C-6	¹ H and ¹³ C NMR spectral assignments and the proposed structure of compound 18SBB	336
Appendix C-7	¹ H and ¹³ C NMR spectral assignments and the proposed structure of compound 12SBC	337
Appendix C-8	¹ H and ¹³ C NMR spectral assignments and the proposed structure of compound 16SBC	338
Appendix C-9	¹ H and ¹³ C NMR spectral assignments and the proposed structure of compound 18SBC	339
Appendix D-1	¹ H and ¹³ C NMR spectral assignments and the proposed structure of compound 16OHA-H	340
Appendix D-2	¹ H and ¹³ C NMR spectral assignments and the proposed structure of compound 16OHA-F	341
Appendix D-3	¹ H and ¹³ C NMR spectral assignments and the proposed structure of compound 16OHA-CI	342
Appendix D-4	¹ H and ¹³ C NMR spectral assignments and the proposed structure of compound 16OHA-Br	343
Appendix D-5	¹ H and ¹³ C NMR spectral assignments and the proposed structure of compound 16OHA-OCH ₃	344
Appendix D-6	¹ H and ¹³ C NMR spectral assignments and the proposed structure of compound 16OHA-C₂H ₅	345
Appendix D-7	¹ H and ¹³ C NMR spectral assignments and the proposed structure of compound 16OHA-CN	346
Appendix D-8	¹ H and ¹³ C NMR spectral assignments and the proposed structure of compound 16OHA-OH	347
Appendix D-9	¹ H and ¹³ C NMR spectral assignments and the proposed structure of compound 160HA-SH	348

Appendix D-10	¹ H and ¹³ C NMR spectral assignments and the proposed structure of compound 160HA-NO ₂	349
Appendix E-1	¹ H and ¹³ C NMR spectral assignments and the proposed structure of compound 16AB-H	350
Appendix E-2	¹ H and ¹³ C NMR spectral assignments and the proposed structure of compound 16AB-F	351
Appendix E-3	¹ H and ¹³ C NMR spectral assignments and the proposed structure of compound 16AB-CI	352
Appendix E-4	¹ H and ¹³ C NMR spectral assignments and the proposed structure of compound 16AB-OCH ₃	353
Appendix E-5	¹ H and ¹³ C NMR spectral assignments and the proposed structure of compound 16AB-CH ₃	354
Appendix E-6	¹ H and ¹³ C NMR spectral assignments and the proposed structure of compound 16AB-C₂H ₅	355
Appendix E-7	¹ H and ¹³ C NMR spectral assignment and the proposed structure of compound 16AB-CN	356
Appendix E-8	¹ H and ¹³ C NMR spectral assignments and the proposed structure of compound 16AB-OH	357
Appendix E-9	¹ H and ¹³ C NMR spectral assignments and the proposed structure of compound 16AB-SH	358
Appendix E-10	¹ H and ¹³ C NMR spectral assignments and the proposed structure of compound 16AB-NO ₂	359
Appendix F-1	¹ H and ¹³ C NMR spectral assignments and the proposed structure of compound 160HAB-H	360
Appendix F-2	¹ H and ¹³ C NMR spectral assignments and the proposed structure of compound 160HAB-F	361
Appendix F-3	¹ H and ¹³ C NMR spectral assignments and the proposed structure of compound 160HAB-Br	362
Appendix F-4	¹ H and ¹³ C NMR spectral assignments and the proposed structure of compound 160HAB-OCH ₃	363
Appendix F-5	¹ H and ¹³ C NMR spectral assignments and the proposed structure of compound 160HAB-CH ₃	364
Appendix F-6	¹ H and ¹³ C NMR spectral assignments and the proposed structure of compound 160HAB-C₂H ₅	365
Appendix F-7	¹ H and ¹³ C NMR spectral assignments and the proposed structure of compound 160HAB-CN	366

Appendix F-8	¹ H and ¹³ C NMR spectral assignments and the proposed structure of compound 160HAB-OH	367
Appendix F-9	¹ H and ¹³ C NMR spectral assignments and the proposed structure of compound 160HAB-SH	368
Appendix F-10	¹ H and ¹³ C NMR spectral assignments and the proposed structure of compound 160HAB-NO₂	369
Appendix G-1	¹ H and ¹³ C NMR spectral assignments and the proposed structure of compound S-MB-OOC14	370
Appendix G-2	¹ H and ¹³ C NMR spectral assignments and the proposed structure of compound S-MB-OOC16	371
Appendix G-3	¹ H and ¹³ C NMR spectral assignments and the proposed structure of compound S-MB-OOC18	372

SINTESIS DAN PENCIRIAN BEBERAPA HABLUR CECAIR KALAMITIK YANG MENGANDUNGI KOMPONEN KOLESTEROL, IMINA BERBENTUK ROD DAN BIFENIL-4-KARBOKSILAT

ABSTRAK

Sebanyak tujuh siri hablur cecair kalamitik berjaya disintesis dan dicirikan. Kesemua hablur cecair tersebut dibahagikan kepada tiga jenis yang berlainan berdasarkan struktur teras masing-masing, sama ada komponen kolesterol, imina aromatik berbentuk rod atau bifenil-4-karbosilat. Secara umum, sebatian-sebatian ini disintesiskan melalui tindak balas pengalkilan, pengesteran dan kondensasi. Struktur sebatian yang disintesis ditentukan dengan menggunakan mikroanalisis CHN serta beberapa teknik spektroskopi seperti FTIR, 1D- dan 2D-NMR. Peralihan fasa dan tekstur hablur cecair diperhatikan melalui mikroskop optik terkutub, sementara suhu peralihan dan entalpi yang berkaitan ditentukan melalui analisis DSC. Siri pertama dan kedua masing-masing terdiri daripada tujuh homolog kolesteril 4-n-alkoksibenzoat (**nOACh**) dan tujuh homolog kolesteril 4-n-alkoksifenil-4'-benzoat (**nOABCh**). Pelbagai kumpulan alkoksi yang mengandungi karbon bernombor genap daripada julat enam sehingga lapan belas digunakan dalam kajian ini. Pelbagai teknik spektroskopi NMR yang digunakan menunjukkan bahawa O=C-O yang menghubungkan kumpulan fenil dan fragmen kolesteril didapati bengkok dan menyebabkan fragmen kolesteril membengkok ke atas. Konformasi yang unik ini ditemui untuk kali pertama dalam kolesteril ester. Kedua-dua siri ini menunjukkan bahawa homolog dengan bilangan karbon yang rendah lebih cenderung untuk mempamerkan fasa nematik kiral (N*), manakala homolog dengan bilangan karbon yang tinggi lebih cenderung untuk mempamerkan fasa smektik A (SmA). Siri ketiga, keempat, kelima dan keenam terdiri daripada komponen imina aromatik berbentuk rod. Siri ketiga boleh dibahagikan kepada 2-hidroksi-4-metoksibenzilidena-4'-n-alkanoiloksianilina tiga subsiri iaitu. (nSBA), 2-hidroksi-3-metoksibenzilidena-4'-n-alkanoiloksianilina (nSBB) dan 3metoksi-4-n-alkanoiloksibenzilidena-4'-n-alkanoiloksianilina (nSBC). Setiap subsiri ini terdiri daripada empat ahli yang mempunyai panjang rantai alkanoiloksi yang berbeza. Homolog nSBA mempamerkan fasa enantiotropik nematik atau SmA, manakala homolog nSBC mempamerkan fasa monotropik smektik C (SmC). Namun demikian, homolog nSBB tidak mempamerkan sebarang mesofasa. Siri keempat, kelima dan keenam masing-masing terdiri daripada 2-hidroksi-4-*n*-heksadekanoiloksibenzilidena-4'-anilinatertukarganti N-[4-(4-n-heksadekanoiloksibenzoiloksi)benzilidena]-4-anilina-(160HA-R), tertukarganti (16AB-R) dan N-[4-(4-n-heksadekanoiloksibenzoloiksi)-2-hidroksibenzilidena]-4-anilinatertukarganti (160HAB-R), dengan R ialah H, F, Cl, Br, OCH₃, CH₃, C₂H₅, CN, OH, SH atau NO₂. Sementara itu, sebatian **16OHA-R** dengan penukar ganti R = H, F, Cl, Br, OCH₃, CN, OH dan NO₂ mempamerkan fasa SmA, manakala sebatian dengan penukar ganti R = CH₃ dan C₂H₅ mempamerkan fasa monotropik SmC dan sebatian dengan R = SH mempamerkan fasa monotropik nematik. Sebatian 16AB-R dan 16OHAB-R (dengan R = H, OCH₃, CH₃, C₂H₅, OH dan NO₂) menunjukkan bukti fasa nematik, manakala sebatian 16AB-R dan 16OHAB-R (dengan R = F, Cl, Br dan CN) mempamerkan fasa SmA. Sebatian 160HAB-SH mempamerkan fasa nematik manakala sebatian 16AB-SH tidak mempamerkan sebarang mesofasa. Molekul 16AB-R dan 16OHAB-R mempunyai kestabilan mesofasa yang lebih tinggi daripada molekul 160HA-R kerana molekul-molekul dalam siri 16AB-R dan 16OHAB-R adalah lebih panjang berbanding dengan molekulmolekul dalam siri **16OHA-R**. Sifat mesomorfik sebatian-sebatian tersebut juga dipengaruhi oleh interaksi intramolekul dan intermolekul yang disebabkan kehadiran kumpulan *orto*-hidroksil. Siri ketujuh yang berteraskan bifenil-4-karbosilat terdiri daripada empat homolog (*S*)-2-metilbutil 4'-(4"-*n*-alkanoiloksi-benzoiloksi)bifenil-4-karbosilat (**S-MB-OOCn**). Kesemua homolog **S-MB-OOCn** mempamerkan fasa SmA dan smektik C kiral (SmC*).

SYNTHESIS AND CHARACTERIZATION OF SOME CALAMITIC LIQUID CRYSTALS CONSISTING OF CHOLESTEROL, ROD-LIKE IMINE AND BIPHENYL-4-CARBOXYLATE COMPONENTS

ABSTRACT

Seven series of calamitic liquid crystals were successfully synthesized and characterized. These liquid crystals are categorized into three different types according to their core structure; either a cholesterol, rod-like aromatic imine or biphenyl-4-carboxylate component. The synthesis of these compounds basically involved alkylation, esterification and condensation reactions. The structures of the synthesized compounds were established by CHN microanalysis along with several spectroscopic techniques such as FTIR, 1Dand 2D-NMR. Whilst the phase transitions and liquid crystal textures were observed by using polarized optical microscope, the respective transition temperatures and associated enthalpies were determined by using DSC analysis. The first and second series which consist of seven homologues each, include cholesteryl 4-n-alkoxybenzoates (nOACh) and cholesteryl 4-(4-nalkoxyphenyl)benzoates (nOABCh). Various alkoxy groups consisting of even numbered carbons ranging from six to eighteen have been adopted throughout this study. The various NMR techniques which were employed revealed that the O=C-O bridging the phenyl group and the cholesteryl fragment was bent and led to the cholesteryl fragment to fold up. This unique conformation has been observed for the first time in cholesteryl esters. Both of the series showed that the lower members have a higher tendency to exhibit chiral nematic (N*) phase whereas the higher members showed a greater tendency to display the smectic A (SmA) phase. The third, fourth, fifth and sixth series each consists of a rod-like aromatic imine component. The third series is further divided into

sub-series; 2-hydroxy-4-methoxybenzylidene-4'-n-alkanoyloxyanilines three 2-hydroxy-3-methoxybenzylidene-4'-n-alkanoy-loxyanilines and 3-methoxy-4-*n*-alkanoyloxybenzylidene-4'-*n*-alkanoy-loxyanilines (**nSBC**). Each of them comprised four members which differed in the alkanoyloxy chain length. Whilst the nSBA homologues exhibited the enantiotropic nematic or SmA phase, the **nSBC** homologues displayed the monotropic smectic C (SmC) phase. However, the **nSBB** homologues did not exhibit any mesophase. The fifth series fourth, and sixth encompassed 2-hydroxy-4-*n*hexadecanoyloxybenzylidene-4'-substituted-anilines (160HA-R), N-[4-(4-nhexadecanoyloxybenzoyloxy)benzylidene]-4-substituted-anilines (16AB-R) and N-[4-(4-n-hexadecanoyloxybenzoyloxy)-2-hydroxybenzylidene]-4-substitutedanilines (160HAB-R), in which R is H, F, Cl, Br, OCH₃, CH₃, C₂H₅, CN, OH, SH or NO₂. While compounds **160HA-R** with the substituents R = H, F, Cl, Br, OCH₃, CN, OH and NO₂ exhibited SmA phase, those with the substituents R = CH₃ and C₂H₅ showed monotropic SmC phase and finally the compound with R = SH displayed monotropic nematic phase. Compounds 16AB-R and 16OHAB-**R** (where R = H, OCH_3 , CH_3 , C_2H_5 , OH and NO_2) showed evidence of nematic phase while compounds **16AB-R** and **16OHAB-R** (where R = F, Cl, Br and CN) exhibited SmA phase. Compound 160HAB-SH exhibited nematic phase whereas compound 16AB-SH did not show any mesophase. The 16AB-R and 160HAB-R molecules have a higher mesophase stability compared to the **160HA-R** molecules owing to their higher molecular length. The mesomorphic properties of these compounds were also influenced by the intermolecular and intramolecular interactions owing to the presence of the ortho-hydroxyl group. The seventh series with a biphenyl-4-carboxylate core consists of four (S)-2methylbutyl 4'-(4"-*n*-alkanoyloxybenzoyloxy)biphenyl-4-carboxylate (**S-MB-OOCn**) homologues. All the **S-MB-OOCn** homologues exhibited the chiral smectic C (SmC*) and SmA phases.

CHAPTER ONE

INTRODUCTION

1.1 Introduction To Liquid Crystals

The liquid crystal (LC) phase is a well-known state of matter, which lies between the solid and isotropic liquid phases. By definition, the LC state (mesomorphic or mesogenic state) is characterized by having a long-range orientational order and possible partial positional order. To specify quantitatively the amount of orientational order in the LC phase, the scalar order parameter S is commonly used (0 < S < 1). In a perfectly oriented system, S = 1 but in an isotropic liquid state where there is no orientational order, S = 0 (Singh, 2000).

In the crystal phase, the molecules have a high degree of order occupying fixed positions in the lattice, which is characterized by translation of the unit cell. Therefore, the molecules are positioned in fixed orientations with no translational freedom. Conversely, in the isotropic liquid phase, only a short-range order dominates. Since the molecular axes are able to tumble freely, the molecules are mobile and have no orientation with respect to each other. The LC phase (mesophase) shares properties of both the crystal and liquid phases. It possesses an intermediate molecular order between the perfect three-dimensional long-range positional and orientational order found in crystals and the absence of long-range order found in isotropic liquids. Although the molecules are not constrained within a lattice, the molecular axes tend to be oriented in a preferred direction, on average, defined as the director (n) (Singh,

2000). Hence, throughout the LC phase, the mesogens (materials able to sustain mesophases) are fluids and at the same time, have anisotropic physical properties which are known as tensor properties due to their dependence on the orientation. Some examples of anisotropic properties are birefringence, alignment in electric and magnetic fields (electrical permittivity and magnetic susceptibility), elasticity, viscosity and conductivity (Photinos, 2001).

1.2 History Of Liquid Crystals

The discovery of LCs in the year 1888 was attributed to the Austrian botanist F. Reinitzer. Reinitzer observed a "double melting" behaviour for cholesteryl benzoate (Figure 1.1). The crystals of this material melted at 145.5 °C into a cloudy fluid, which upon further heating to 178.5 °C became clear. Further investigations of this phenomenon were carried out in the year 1900 by a German physicist, O. Lehmann who first named this mesomorphic state as liquid crystal state (Collings and Hird, 1998).

Figure 1.1: Structure of the first liquid crystal, cholesteryl benzoate.

Following these observations and discoveries, scientists in the relevant fields turned their attention towards a growing number of compounds, which displayed liquid crystalline properties. In order to establish a relationship between molecular structure and the exhibition of liquid crystalline properties, systematic modifications of the structures of mesogens were undertaken in

1973, leading to the discovery of the most technologically and commercially important class of LCs to date: the 4-alkyl-4'-cyanobiphenyl (**CB**) of which an example, 4-pentyl-4'-cyanobiphenyl (**5CB**) is illustrated in Figure 1.2 (Gray *et al.*, 1973).

$$C_5H_{11} \longrightarrow SCB$$

$$Cr \xrightarrow{24 \, ^{\circ}C} N \xrightarrow{35 \, ^{\circ}C} I$$

Figure 1.2: Structure and phase transition of 4-pentyl-4'-cyanobiphenyl (**5CB**) (Gray *et al.*, 1973).

These materials still constitute the simple common displays found in calculators or mobile phones. Since numerous and increasingly sophisticated applications which rely on the use of liquid crystalline materials require such complex superior properties to achieve improved device performance, the quest for ever new LCs has grown enormously over the last three decades. Nowadays, LCs play a dominant role in a large part of the display technology.

1.3 Types Of Liquid Crystals

Different types of molecules can form liquid crystalline phases. The two most important types are:

- thermotropic LCs, whose mesophase formation are temperature dependent,
 and
- ii. lyotropic LCs, whose mesophase formation are concentration and solvent dependent.

This research focused on calamitic thermotropic LCs. However a brief discussion on lyotropic LCs is also given in the following section.

1.3.1 Lyotropic Liquid Crystals

Lyotropic LCs are two-component systems where an amphiphile is dissolved in a solvent. Thus, lyotropic mesophases are concentration and solvent dependent. The amphiphilic compounds are characterized by two distinct moieties, a hydrophilic polar "head" and a hydrophobic "tail". Examples of these kinds of molecules are soaps [Figure 1.3 (a)] and various phospholipids like those present in cell membranes [Figure 1.3 (b)] (Belloni, 2002).

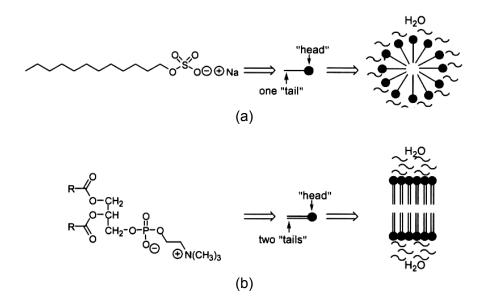


Figure 1.3: (a) Illustration of sodium dodecylsulfate (soap) forming micelles.

(b) Illustration of phospholipids (lecithine) forming bilayer lyotropic liquid crystal as present in cell membranes (Belloni, 2002).

1.3.2 Thermotropic Liquid Crystals

The essential requirement for a molecule to be a thermotropic LC is a structure consisting of a rigid central core (often aromatic) and a flexible peripheral moiety (generally aliphatic groups). These structural requirements lead to two general classes of LCs which are calamitic and discotic LCs.

1.3.2.1 Calamitic Liquid Crystals

Calamitic or rod-like LCs are mesomorphic compounds that possess an elongated shape as depicted in Figure 1.4. The result of the molecular length (L) being significantly greater than the molecular breadth (B) is responsible for the anisotropy of the structure (Collings and Hird, 1998).

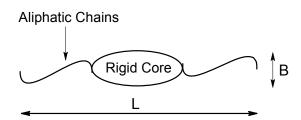


Figure 1.4: General shape of calamitic liquid crystals, where L>>B.

1.3.2.2 Discotic Liquid Crystals

In the year 1977, a second type of mesomorphic structure based on a discotic (disc-shaped) structure was discovered. The first series of discotic compounds to exhibit mesophase belonged to the hexa-substituted benzene derivatives (Figure 1.5) reported by Chandrasekhar *et al.* (1977).

Similar to calamitic LCs, discotic LCs possess a general structure comprising a rigid planar (usually aromatic) central core surrounded by a flexible periphery, represented by pendant chains (usually four, six, or eight), as illustrated in Figure 1.6. As can be seen, the molecular diameter (D) is much greater than the disc thickness (T), imparting the anisotropy to the structure.

where $R = C_4H_9$ to C_9H_{19}

Figure 1.5: Structure of the first series of discotic LCs discovered: the benzene-hexane-*n*-alkanoate derivatives (Chandrasekhar *et al.*, 1977).

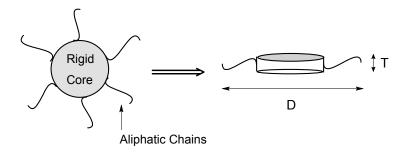
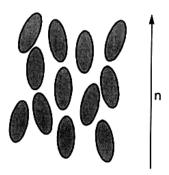


Figure 1.6: General shape of discotic liquid crystals, where D>>T.


Discotic LCs can show several types of mesophases with varying degrees of organization. The two principle mesophases are nematic discotic and columnar phases.

1.4 Phase Structures Of Calamitic Liquid Crystals

Two types of mesophases commonly exhibited by calamitic LCs are the nematic and smectic phases.

1.4.1 Nematic Phase

The least ordered mesophase (the closest to the isotropic liquid state) is the nematic (N) phase, where the molecules only have an orientational order. The long molecular axis points on average in one favoured direction referred to as the director (Figure 1.7) (Singh, 2000). A classical example of a LC displaying a nematic mesophase is **5CB** (Figure 1.2).

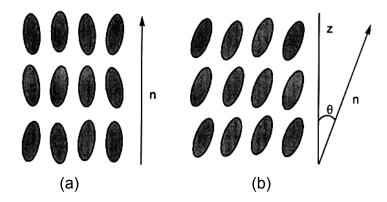
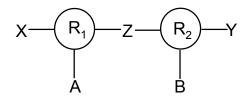

Note: The arrow points to the director, **n**

Figure 1.7: Structure of nematic phase.

1.4.2 Smectic Phase

The next level of organization is classified as smectic (Sm), whereby in addition to the orientational order the molecules possess positional order, such that the molecules organize in layered structures.

Generally, the smectic phase which is characterized by the least order is the orthogonal smectic A (SmA) phase, where the layers are perpendicular to the director [Figure 1.8 (a)]. When the director is tilted at an angle (θ) other than 0° to the normal [layer (z)], the result is the smectic C (SmC) phase [Figure 1.8 (b)] (Singh, 2000).



Note: The arrow points to the director, **n**

Figure 1.8: Structures of (a) SmA and (b) SmC phases.

1.5 Structure Of Calamitic Liquid Crystals

LCs derived from rod-like molecules have been comprehensively studied. The general templates which are used to describe the structure of calamitic mesogens are illustrated in Figure 1.9 (Collings and Hird, 1998).

where Z = connecting group R₁ and R₂ = ring systems X and Y = terminal substituents A and B = lateral substituents

Figure 1.9: General structural templates for calamitic mesogens.

These rod-like structures consist of a rigid rod formed by two rings (R_1 and R_2) that are joined together by a connecting group Z, with two tails (X and Y) called the terminal groups or chains placed in such a position (usually *para* to the central group) to give a linear molecule. Usually, at least one of the terminal groups must be a flexible chain. A lateral substituent (A or B) is attached to the core of a mesogen, mostly to the ring (R_1 or R_2), in a position that is not along the molecular axis. Usually, the lateral substituent depresses both the melting and clearing temperatures by broadening the core of the mesogen (Neubert, 2001a).

In the following sections, the effect exerted by the connecting group, Z and the terminal groups, X and Y of the molecules on their mesogenic properties will be discussed.

1.5.1 Connecting group (Z)

Numerous functional groups have been used as connecting groups. Some of the more common examples are shown in Figure 1.10 (Neubert, 2001a).

To be successful in facilitating mesophase generation, a connecting group must maintain the linearity of the core, whilst increasing the length and polarizability of the core (Collings and Hird, 1998). Thus, with an alkene (Z = C=C) where two isomers (*cis* and *trans*) can exist, only the *trans* isomer is mesogenic. Even if the *trans* isomer is prepared, it can convert to the *cis* isomer under certain conditions such as heat. For the same reason, connecting

groups with an odd number of atoms such as -O- and -CH₂- do not produce mesophases. Generally, fairly rigid connecting groups give the best mesogens, but the more flexible groups such as -OCH₂- and -CH₂CH₂- do show mesomorphic properties (Neubert, 2001a).

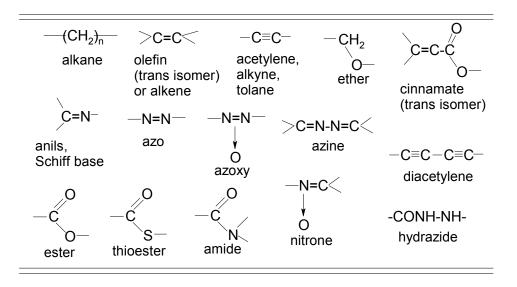


Figure 1.10: Connecting groups and their common names (Neubert, 2001a).

An example of the effect of a connecting group on the mesomorphic properties is illustrated by 1,4-phenyl derivatives containing butylsulfanyl and cyano groups with various linking groups (Seed *et al.*, 1995a and Seed *et al.*, 1995b and Cross *et al.*, 2000). The clearing temperatures (T_c) (temperature when the compound turns into isotropic liquid or known as clearing point) of the 1,4-phenyl derivatives are displayed in Table 1.1.

Table 1.1: Clearing temperatures (T_c) of compounds with various connecting groups (X) in 1,4-phenyl derivatives

Compound	Connecting group, X	T _C / °C	Reference
1	-	64.8	Seed <i>et al.</i> , 1995a
2	-CH=CH-	96.7	Cross et al., 2000
3	-C≡C-	80.3	Cross et al., 2000
4	-COO-	82.2	Seed <i>et al.</i> , 1995b
5	-C≡C-COO-	78.4	Cross et al., 2000

Table 1.1 shows that the T_c of compounds 2 to 5 are higher than compound 1. For compound 2 to compound 5, each of the connecting group consists of at least one sp or sp^2 hybridized atom that which allows conjugation interaction with the aromatic rings. For compound 1, the two aromatic rings in core center are linked together by a single bond without any bridging group. The presence of an additional connecting group in compounds 2 to 5 increases the molecular length as well as the molecular polarizability, hence increasing the T_c of compounds 2 to 5. In conclusion, the geometry of the connecting group affects the stability of the mesophase.

Another factor that could influence mesomorphic properties is the conjugative interaction between the connecting group, the core and the terminal groups. Two mesogens containing two carboxyl groups are compared in Table 1.2 (Sakurai *et al.*, 1989). Phenyl 4-(4-tetradecyloxybenzoyloxy)-benzoate (compound **6**) and 4-tetradecyloxyphenyl 4-benzoyloxybenzoate (compound **7**) differ only in the orientation of the COO groups. If the oxygen

atom of the alkoxy group in a mesogen has the chance to come into conjugative interaction with the C=O of the ester group, the mesogen will have the more stable mesophase. This interaction caused the polarity of the carbonyl oxygen to increase. It can be apparently seen from Table 1.2 that compound 6 has a wider mesophase length and a higher clearing point in comparison to compound 7 owing to the conjugative interaction. In addition, compound 6 possessed more ordered mesophase properties than compound 7 wherein compound 6 exhibited the more ordered SmA phase and compound 7 exhibited the less ordered nematic phase.

Table 1.2: Transition temperatures and phase ranges (△T) of phenyl 4-(4-tetradecyloxybenzoyloxy)benzoate (compound 6) and 4-tetradecyloxyphenyl 4-benzoyloxybenzoate (compound 7) (Sakurai *et al.*, 1989)

$$C_{14}H_{29}O$$
 — X — X — Y —

			Transition temperature/ °C		
Compound	Χ	Υ	Cr-M ^a	M ^a -I	<i>_ ∆T</i> / °C
6	COO	COO	113	133	20
7	OOC	OOC	117	120	3

^a compound **6**: M = SmA phase, compound **7**: M = nematic phase

Influence of the polarity of a connecting group can also be inferred from the three series of benzathiazol unit-containing compounds reported by Belmar (1999a). The structures of the compounds are shown in Figure 1.11. Compounds in Series A and C showed very similar mesomorphic behaviour wherein these compounds exhibited nematic and smectic phases. However, only smectic phase was observed for the compounds in Series B. These

observations can be explained by taking into account the formation of intermolecular hydrogen bonding by the NHCO group. The hydrogen bonding caused the molecules to arrange in a parallel order and this arrangement in turn would encourage smectic mesomorphism as both positional and orientational orders were established.

$$C_{10}H_{21}$$
-O- C_nH_{2n+1}

where n = 6 to 10

Series A: Y = N=CH
Series B: Y = NHCO
Series C: Y = N=N

Figure 1.11: Structure of compounds containing benzathiazol unit (Belmar, 1999a).

1.5.2 Terminal Substituents (X, Y)

The core of a mesogen, by establishing the primary shape of the molecule and its rigidity, determines (i) the approximate temperature range where mesophases will occur and (ii) the types of mesophases which are possible. However, a rod-like rigid core rarely produces mesophases. Thus, terminal substituents are needed to balance this rigidity with flexibility (Neubert, 2001a). In standard systems with two rings, mesogens are rarely observed even when one of the substituent is an aliphatic chain and the other one is simply a hydrogen atom. However, the addition of another benzene ring, such as in the esters ($R-C_6H_4COOC_6H_4C_6H_5$ where R = aliphatic chain) can produce mesophases (Sadashiva, 1979). Replacing the hydrogen atom with a polar substituent can also lead to the emergence of mesogenic properties.

Terminal substituents tend to be used to fine-tune mesomorphic properties wherein they are used to raise or lower transition temperatures (for example, alkoxy or branched chains), create dipoles along or across the molecular axis (for example, CN or F substituents), produce chiral mesogens (for example, chiral branched chains) or enhance the preference for a specific mesophase (for example, short alkyl chain favours nematic).

1.5.2.1 Polar Groups

It has been claimed that mesogens must consist of a terminal polar group (Kelker and Hatz, 1980). However, compounds with terminal groups such as OH and NH₂ do not have the tendency to form mesophases. These groups tend to form polymeric hydrogen bonding that increases the melting point (Gray, 1962). Nevertheless, Schroeder and Schroeder (1974) reported that both *p*-phenylene di-*p*-aminobenzoate and *p*-phenylene di-*p*-hydroxybenzoate exhibited mesomorphic properties. The structures of the compounds are shown in Figure 1.12.

Figure 1.12: Structures of (a) *p*-phenylene di-*p*-aminobenzoate and (b) *p*-phenylene di-*p*-hydroxybenzoate (Schroeder and Schroeder, 1974).

Schroeder and Schroeder (1974) also suggested that phenolic compounds must have three benzene rings in order to exhibit mesomorphic properties. Another criterion is the molecules must be able to form intramolecular hydrogen bonding. Sakagami and Takase (1995) also supported the claim but in addition, they also claimed that phenolic compounds with two benzene rings (Figure 1.13) could also exhibit mesomorphic properties. However, an additional OH group must be present at the *ortho* position of the aldehyde moiety so that the formation of zwitterions via intramolecular hydrogen bonding can occur.

$$C_nH_{2n+1}$$
-O-CH=N-OH

Where n = 1-18

Figure 1.13: Intramolecular hydrogen bonding in 2-hydroxy-4-*n*-alkyloxybenzylidene-4'-hydroxyanilines (Sakagami and Takase, 1995).

Compounds containing certain polar groups show tendency to form dimers. Through dimerization, the length of the molecule is increased. It is known that the length to breadth ratio controls the clearing point of a mesogen (Collings and Hird, 1998). The correlation between the molecular length to breadth ratio and the clearing point can be substantiated by a study of three biphenyl analogous compounds with CN as the terminal substituent (Ibrahim and Haase, 1981). The structures and their clearing temperatures are shown in Table 1.3.

Table 1.3: Structures and clearing temperatures (T_c) of biphenyl analogous compounds with CN group (Ibrahim and Haase, 1981)

Compound	Structure	T₀/ °C
8	C_7H_{15}	42.2
9	C_7H_{15}	56.8
10	C_7H_{15} \longrightarrow N	83.3

As can be seen in Table 1.3, compounds **8-10** differ in their core structure, giving rise to different types of dimers. The cyclohexane ring differs from the benzene ring by being more bulky in shape and being non-aromatic. These in turn caused a strong decrease in the intermolecular interaction. The sketches of the possible dimers in order to illustrate the different effective length to breadth ratio are shown in Figure 1.14. The dimerization occurs either by the interaction of a CN group with a benzene ring [Figure 1.14 (a) and (b)] or the interaction of two CN groups [Figure 1.14 (c)]. Comparison among compounds **8** to **10** showed that compound **10** has the highest length to breadth ratio and therefore, has the highest clearing point.

Figure 1.14: Possible associates in polar biphenyl analogous compounds.

- (a) Two different types of possible dimerization for compound **8**.
- (b) The possible dimerization for compound 9.
- (c) The possible dimerization for compound 10.

1.5.2.2 Straight Alkyl/Alkoxy Chains

Other common terminal substituents are the alkyl and alkoxy groups. The length of the carbon chain in both of the groups affects the mesomorphic properties. As the length of the alkyl chain is increased, the lateral attraction is increased. However, the terminal attraction becomes relatively weaker or remains unchanged. The illustration for both of the attractions is shown in

Figure 1.15. As a result, the nematic property decreases but the tendency of a compound to exhibit smectic phase increases as a particular series ascends (Collings and Hird, 1998).

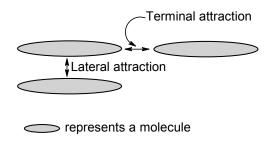


Figure 1.15: Illustration of the terminal and lateral attractions between molecules.

As an example, Prajapati and Pandya (2005) have synthesized 2-methoxyethyl [4-(4'-n-alkoxybenzoyloxy)phenylazo]-4"-benzoates (Figure 1.16) and found that for the lower members (n = 1 to 8), the azomesogens showed nematic phase while for the higher members (n = 10 to 16), the azomesogens displayed both nematic and smectic phases.

$$C_nH_{2n+1}O$$
 — COO— N=N— COO- C_2H_4 -OCH₃

where n = 1-8, 10, 12, 14 and 16

Figure 1.16: Structure of 2-methoxyethyl [4-(4'-*n*-alkoxybenzoyloxy)-phenylazo]-4"-benzoates (Prajapati and Pandya, 2005).

1.5.2.3 Branched Alkyl/Alkoxy Chains

The discussion in Section 1.5.2.2 only focused on straight carbon chains. There are many compounds with branched terminal substituents, particularly chiral materials. Since the ferroelectric liquid crystal (FLC), 2-methylbutyl 4-(4-*n*-decyloxybenzylideneamino)cinnamate (Figure 1.17) was reported by Meyer *et al.* (1975), and a bistable and fast switching electro-optical device based on the properties of FLCs was reported by Clark and Lagerwall (1980), the synthesis of optically active smectic liquid crystal materials for display applications has received considerable interests (Maltase, 1992 and Walba, 1995).

$$\begin{array}{c} \text{C}_{10}\text{H}_{21}\text{O} & \begin{array}{c} \text{H} \\ \text{CH=CHCOOCH}_2\overset{\text{L}^*}{\text{C}^*}\text{C}_2\text{H}_5 \\ \text{CH}_3 \end{array}$$
 where * denotes the chiral centre

Figure 1.17: Structure of 2-methylbutyl 4-(4-*n*-decyloxybenzylidene-amino)cinnamate (Meyer *et al.*, 1975).

A FLC material used in a display should exhibit smectic phase over a wide temperature range, including room temperature (Adams and Sinta, 1989). General guidelines have been established for the synthesis of FLC materials and the primary requirement is the materials must exhibit tilted chiral smectic phases such as chiral smectic C (SmC*) (Goodby and Gray, 1978). Besides that, FLC mesogens must consist of at least two rigid aromatic groups. A biphenylene group is preferred in comparison to a phenylene group. The structures of the common biphenylene groups that are present in FLCs are shown in Figure 1.18 (Chiellini *et al.*, 1993).

Figure 1.18: Common biphenylene groups that are present in FLCs.

- (a) Biphenylene group only.
- (b) Biphenylene group attached to a phenylene group by a carboxylate group.

A few examples of FLCs comprising these skeletons are 1-methylalkyl 4'-(4"-*n*-decyloxybenzoyloxy)biphenyl-4-carboxylates [Figure 1.19 (a)] and 4-(1-alkylheptyloxycarbonyl)phenyl 4'-*n*-octyloxybiphenyl-4-carboxylates [Figure 1.19 (b)].

$$C_{10}H_{21}-O$$
 $C_{10}H_{21}-O$ $C_{10}H_{21}-O$ $C_{10}H_{21}-O$ $C_{10}H_{21}-O$ $C_{10}H_{21}-O$ $C_{10}H_{21}-O$ $C_{10}H_{21}-O$ $C_{10}H_{21}-O$ $C_{11}H_{21}-O$ $C_{11}H_{21}-O$ where n = 2, 3, 4, 5 or 6 (a)

Figure 1.19: (a) Structure of 1-methylalkyl 4'-(4"-*n*-decyloxybenzoyloxy)-biphenyl-4-carboxylates (Goodby *et al.*, 1992).

(b) Structure of 4-(1-alkylheptyloxycarbonyl)phenyl 4'-*n*-octyloxybiphenyl-4-carboxylates (Ouchi *et al.*, 1995).

1.6 Phase Structures Of Chiral Calamitic Liquid Crystals

Chiral calamitic LCs can exhibit two common types of mesophases; chiral nematic (cholesteric) and chiral smectic phases.

1.6.1 Chiral Nematic (Cholesteric) Phase

The simplest chiral mesophase is the chiral nematic (N*) phase (Figure 1.20) where the local molecular ordering is similar to that of the nematic phase (only orientational order) and additionally the molecules pack to form helical macrostructures in the direction perpendicular to the director. The helicity depends on the absolute configuration (enantiomer R or S) of the molecules (Collings and Hird, 1998).

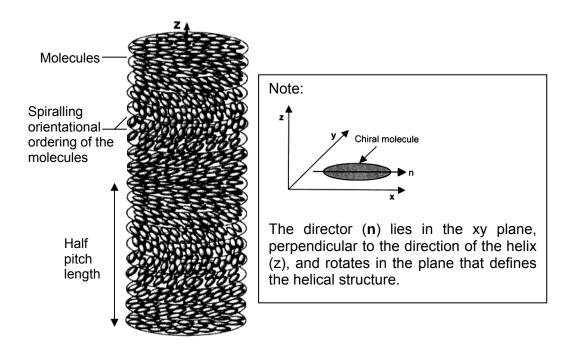


Figure 1.20: Helical structure of the chiral nematic phase (Belloni, 2002).

1.6.2 Chiral Smectic Phase

Chiral smectic phases comprise enantiomerically pure (or at least the concentration of one enantiomer is greater than the other) molecules, which express the chirality in the bulk material by a helical arrangement of the layered structure. The most important chiral smectic phase is the chiral smectic C (SmC*). Here the chiral molecules, like in the SmC phase, are tilted at an angle θ to the normal [the layer (z)] and form spontaneously polarized layers (due to their inherent asymmetry), which additionally give rise to a helical macrostructure (Figure 1.21) (Collings and Hird, 1998).

However, the helical structure of the layers results in the overall polarization (P) being averaged to zero in the bulk.

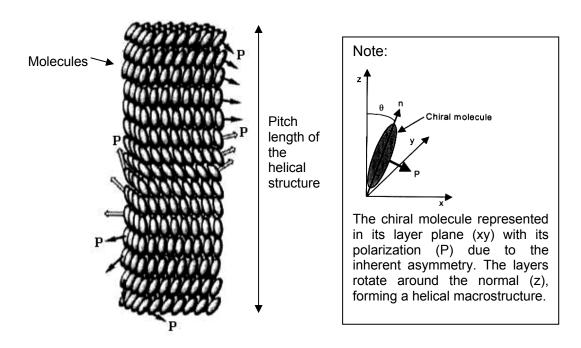


Figure 1.21: Helical macrostructure of the chiral smectic phase (Belloni, 2002).

CHAPTER TWO

LITERATURE SURVEY

2.1 Liquid Crystals Consisting Of Cholesterol, Rod-Like Imine And Biphenyl-4-Carboxylate Components

In the current project, three types of calamitic liquid crystals, each with a different core structure were targeted based on the literature review carried out. These include compounds with the cholesterol (Series 1 and 2, in Section 2.1.1), rod-like imine (Series 3 to 6, in Section 2.1.2) and biphenyl-4-carboxylate (Series 7, in Section 2.1.3) components. Altogether, a total of sixty-three compounds were synthesized and characterized. The objectives of this research are outlined in Section 2.1.4.

2.1.1 Liquid Crystals Consisting Of Cholesterol Component

2.1.1.1 Series 1: Cholesteryl 4-*n*-Alkoxybenzoates

In the year 1888, the Austrian botanist Reinitzer discovered the first liquid crystal known as cholesteryl benzoate (Figure 1.1). Later, Dave and Vora (1970) made an expansion of cholesteryl benzoate through the preparation of cholesteryl 4-*n*-alkoxybenzoates (C_nH_{2n+1}OC₆H₄COOCh or **nOACh** where Ch represents the cholesteryl moiety). Dave and Vora characterized thirteen members of the **nOACh** homologous series (where n = 1-10, 12, 16 or 18) by using only elemental analysis. Later, a Russian research group carried out X-ray diffraction analysis on these compounds. They determined the crystal structures of compounds **1OACh**, **2OACh** (Polishchuk *et al.*, 1988), **4OACh**, **5OACh** (Polishchuk *et al.*, 1986a), **8OACh**

(Polishchuk *et al.*, 1985a) and **16OACh** (Polishchuk *et al.*, 1990) in solid state. In addition, Yakubov (1999) also studied the structure of compounds **nOACh** in solid state by using infrared spectroscopy. Apart from that, nuclear magnetic resonance (NMR) is also considered as one of the tools for structure elucidation and conformation studies. NMR spectroscopy characterization of these compounds in solution in a common organic solvent which has not been reported in the literature prior to this work was carried out in the current research. The structures of the compounds which were studied are shown in Figure 2.1.

$$C_nH_{2n+1}O$$
 where n = 6, 8, 10, 12, 14, 16 or 18

Figure 2.1: Structure of cholesteryl 4-*n*-alkoxybenzoates (**nOACh**).

Dave and Vora (1970) also reported the mesomorphic properties of these compounds which were merely based on the liquid crystal textures observed using polarizing optical microscope (POM). Since differential scanning calorimetry (DSC) is another essential method for studying the properties of liquid crystals, the mesomorphic properties of compounds 6OACh, 8OACh, 10OACh, 12OACh, 14OACh, 16OACh and 18OACh were revised in the current research by using POM with the support of DSC data.