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Abstract

We consider networks evolving over time within an inÞnite-horizon dynamic setting.
Transitions from one network to another are given by a stationary transition probability
matrix. We study the problem of fairly and efficiently allocating the value of a network at
any point in time among its participants, assuming that agents discount the future by some
common discount factor δ. An allocation rule is called component efficient if it distributes
the total value of a connected network among its participants and it is called expected fair if
for every direct connection both participants expect to loose or gain the same amount in the
future from breaking this connection at time zero. Our main result is that for every tran-
sition probability matrix and for almost every δ there exists a unique allocation rule which
is component efficient and expected fair. We provide a formula to compute this allocation
rule. In general, this allocation rule is different from a stage-wise application of the Myerson
value. We also provide a sufficient condition on the transition probability matrix such that
the component efficient and expected fair allocation rule is equal to the Myerson value.
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1. Introduction

We study situations in which network structures play an important role in the outcome of some
economic activity. For example, networks may determine how information about job openings
is spread among a population, they can represent a series of bilateral and binding contracts, or
they can be a mechanism for exchanging goods or services which are not traded in markets.

Consider a network consisting of several connected sub-networks, to which we refer as con-
nected components. Every connected component within a network has a value, which may be
interpreted as the total utility obtained by the participants in this component. The standard
model assumes that there are no externalities among connected components in a network. In
other words, the total value which can be distributed among the participants of a connected
component is independent of the network structure outside this component. In this work, we
allow the value of a component to depend on the network structure outside. For instance, as-
sume that agents represent Þrms in an industry. A network in this situation may consist of a
series of bilateral contracts between Þrms. A group of Þrms in a connected component can be
seen as a cartel. The value of a connected component is the total beneÞt achieved by the Þrms
participating in this component and this value will depend on the network structure outside this
component. Another example may be the case of job contact networks. Assume that job infor-
mation is spread along a network, and all connected components have a positive probability of
being informed about a vacancy in the economy. Therefore, if the network outside a component
is very connected, there is a high probability that many people outside the component will hear
about the vacancy. Thus, there will be more candidates for an open position and therefore the
probability that someone in the connected component gets a job is lower. This means that the
value of the connected component depends on the structure of the network outside1.

In this paper we assume that networks evolve over time within an inÞnite-horizon setting. For
instance, in the industry example above, Þrms may sign new contracts or dissolve existing ones.
At time zero there is an exogenously given network, and agents get their payoff from participating
in this network according to an allocation rule which is time-independent. Afterwards, the
transition to another network occurs according to a stationary transition probability matrix. At
the new network, all agents receive a payoff according to the previously mentioned allocation
rule. Afterwards, a transition to another network occurs, and so on. We assume that agents
discount the future by some common discount factor δ.

An allocation rule is said to be component efficient if it distributes the total value of a
connected network among its participants and it is said to be expected fair if for every direct
connection in the network both participants expect to loose or gain the same amount in the
future from breaking this connection at time zero. This concept may be interpreted as an equal-
gains or equal bargaining power principle in which agents take the future into account. In our
main result we show that for every transition probability matrix and for almost every discount
factor2 there exists a unique allocation rule which is component efficient and expected fair. As
a preparatory step for this result we prove a lemma which may have interest in itself, namely
that within a static context of networks with externalities there is always a unique allocation

1Calvo-Amengol and Jackson [4] analyse this situation, although using a different model than ours.
2�For almost every discount factor� means that the result holds for all but Þnitely many δ.
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rule which is component efficient and fair, thereby extending an earlier result by Myerson [9],
Feldman [5] and Jackson and Wolinsky [7]. This rule is referred to as the Myerson value.

Myerson [9] has deÞned fairness in a situation where the surplus from cooperation is given
by a TU game. An allocation rule is said to be fair3 if for every direct connection in the network,
both participants gain or loose the same amount from breaking this connection. In this model,
networks connecting the same group of agents have the same value. Jackson and Wolinsky
[7] extended this model to a situation where different networks connecting the same group of
agents may take different values. Feldman [5] extended the model deÞned by Myerson [9] to
situations where the surplus from cooperation is given by a game in partition function form.
Such games are an extension of TU games, where the value of a coalition may depend on the
coalition structure outside4. Neither the model by Jackson and Wolinsky [7] is a special case
of the model by Feldman [5], nor the opposite. Nevertheless, both papers have shown, in their
respective settings, that there is a unique allocation rule which is component efficient and fair,
extending the earlier result by Myerson [9].

We Þnally analyze two special classes of transition probability matrices. The Þrst class, the
class of �component dissolvable� transition probability matrices, enables us to provide a simpler
formula than in the general case. In the second class, containing transition probability matrices
satisfying the �sum-property�, the unique component efficient and expected fair allocation rule
is equal to the stage-wise application of the Myerson value.

At this stage we would like to discuss some related literature, mainly dealing with proba-
bilistic networks. Calvo et al. [3] extend the model of Myerson [9] to a situation where each
pair of players can directly communicate with some positive probability. These probabilities are
assumed to be independent. The probability that a certain graph is realized is thus binomial,
although different direct connections may have different probabilities. Their main result is the
following: the expected payoff to every player is component efficient5 and fair if and only if the
allocation rule at each realized graph coincides with the Myerson value.

Bala and Goyal [1] study the problem of strategic network formation. In their model the
allocation rule is Þxed and there is a constant probability that a direct connection fails to
transmit correct information. The models presented by Calvo et al. [3] and by Bala and Goyal
[1] satisfy the �sum-property� mentioned above.

Jackson and Watts [6] analyze the stochastic evolution of networks. In their work, the
allocation rule is Þxed and the transition probabilities depend on that allocation rule. At
any point in time, a pair of players is chosen according to some predetermined probability
distribution. If they are directly connected in the actual graph, they can break this connection
and if they are not, they can choose to create it. Players are myopic and consider only the
improvement in their stage payoff at the new network relative to the current one. After a
decision is taken, there is a small probability of trembling, or making mistakes.

The model in our paper could be extended to a situation where the transition probabilities
are related to the allocation rule. It may be reasonable to assume that the probability of adding

3Jackson and Wolinsky [7] call this property Equal Bargaining Power.
4The deÞnition of a game in partition function form is due to Lucas and Thrall [8], and several allocation rules

have been deÞned in this context (see, for example, Myerson [10], Bolger [2] and Feldman [5]).
5With respect to the expected value of a component.
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(resp. deleting) a new (resp. present) direct connection to the existing graph is increasing in the
discounted expected gains from creating (resp. deleting) that link by the two players involved in
it. Such analysis is beyond the scope of this paper, although it may be an interesting application
for network formation problems.

This paper is organized as follows. In Section 2 the static model is presented, whereas
Section 3 deals with the dynamic model. Section 4 presents the main result. In Section 5 we
present some special cases of transition probability matrices and Þnally we provide an example
in Section 6.

2. Static Network Environments

Let N = {1, ..., n} be a Þnite set of players. A subset S ⊆ N is called a coalition. Let 2N be
the set of all possible coalitions in N . We will assume that there are network relations among
players in N , formally represented by an undirected graph. Here, an undirected graph g is a set
of unordered pairs (i, j), where i, j ∈ N , and i 6= j. Throughout the paper, each unordered pair
(i, j) will be referred to as a link.

Let gN be the set of all unordered pairs in N , that is, the full graph over N . Let g ∪ (i, j)
denote the graph resulting from adding the link (i, j) to the existing graph g, while g\ (i, j) de-
notes the graph resulting from deleting the link (i, j) from the graph g. We deÞne the restriction
of g to a coalition S as g|S = {(i, j) ∈ g : i ∈ S and j ∈ S}. Note that g|S ⊆ g and g|N = g.
A coalition T ⊆ S is called a connected component of S in g if: (1) for every two players in T ,
there is a path, that is, a set of consecutive links, in g|S connecting them, and (2) for any player
i in T and any player j not in T , there is no path in g|S which connects them. Let S|g be the
set of connected components of S in g. Note that S|g is a partition on S. Similarly, we may
deÞne N |g. Let G be the set of all possible graphs on N .

Now assume that for every graph g and every connected component S ∈ N |g, there is a
value w (S, g) which can be perfectly distributed among the agents in S. A function w, which to
every graph g and every component S in N |g assigns a value w (S, g), is called a value function.
The value which can be distributed among the players in N when the graph is g is thus given
by

P
S∈N |g

w (S, g). Notice that we allow for externalities between the connected components, for

w (S, g) may depend on the structure of g outside S. As we have said in the introduction, this
is different from the standard assumption. Myerson [9] restricts attention to value functions for
which w (S, g) does not depend on g. Jackson and Wolinsky [7] relaxed the previous restriction
by imposing that the value w (S, g) only depends on the network structure inside S. Formally,
w (S, g) = w (S, g0) for every pair of graphs g and g0 with g|S = g0|S. Feldman [5] extends the
model by Myerson [9] by assuming that the value w (S, g) only depends on the set of connected
components induced by g. That is, w (S, g) = w (S, g0) if N |g = N |g0. Neither Jackson and
Wolinsky [7] is a special case of Feldman [5] nor the opposite. By imposing no restrictions
on the value function, we assume that the value of a connected component S may vary if the
network structure inside varies, if the set of connected components N |g varies, or if the network
structure outside varies.
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From now on, the value function is assumed to be Þxed. An allocation rule is a function y
which assigns to every graph g ∈ G some payoff vector y (g) ∈ <n.

DeÞnition 2.1. An allocation rule y is called component efficient if for every graph g ∈ G and
every connected component S ∈ N |gX

i∈S
yi (g) = w (S, g) .

DeÞnition 2.2. An allocation rule y is called fair if for every graph g ∈ G and every link
(i, j) ∈ g

yi (g)− yi (g\ (i, j)) = yj (g)− yj (g\ (i, j)) .

By fairness we impose that for each link in a graph, both participants should gain or loose
the same amount from breaking this link.

We now present an extension of a result obtained by Myerson [9], Feldman [5] and Jackson
and Wolinsky [7] to the general case.

Theorem 2.3. For every value function w there is a unique component efficient and fair allo-
cation rule.

Proof of Theorem 2.3. Let y be an allocation rule. For the sequel, the allocation rule
y is considered to be a vector in <N×G. It is easily seen that if y is component efficient and
fair, then its elements have to satisfy a system of linear equations. Consider only the equations
corresponding to fairness and let yi,g be the payoff received by player i in graph g. Then, for
every graph g ∈ G and for every link (i, j) ∈ g we have the following fairness equation:

yi,g − yi,g\(i,j) − yj,g + yj,g\(i,j) = 0.

Let a cycle C ⊆ g be a path in g such that: (1) the number of links in the path is at least
three and (2) the Þrst and last player are the same. A cycle C ∈ g is a minimal cycle in g if no
subset of C forms a cycle in g. We show now that for every graph g and every minimal cycle C
in g, the fairness equations corresponding to the links in C are linearly dependent.

Let C be a minimal cycle in g. For any link (i, j) ∈ C, C\ (i, j) is a path in g going from
player i to player j. Thus, C\ (i, j) = {(i1, i2) , (i2, i3) , ..., (iK−1, iK)}, with i1 = i and iK = j.
Note that every player ik in C is involved in exactly two links. Let l+ (ik) be (ik, ik+1) for all
k 6= K, let l− (ik) = (ik−1, ik) for all k 6= 1 and let l+ (iK) = l− (i1) = (iK , i1). For every l ∈ C
and �g ⊆ g, with l ∈ �g, deÞne the row vector f (�g, l) ∈ <N×G as f (�g, l) = £

fi,g0 (�g, l)
¤
i∈N,g0∈G,

where

fi,g0 (�g, l) =


1, if [l = l+ (i) and �g = g0] or [l = l− (i) and �g = g0 ∪ l]
−1, if [l = l+ (i) and �g = g0 ∪ l] or [l = l− (i) and �g = g0]
0, otherwise.
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Note that the fairness equation corresponding to graph �g and link l ∈ �g can be written as
f (�g, l)× y = 0.

We now prove that X
l∈C

X
�g⊆g
l∈�g

(−1)|�g| f (�g, l) = 0.

We therefore must show that X
l∈C

X
�g⊆g
l∈�g

(−1)|�g| fi,g0 (�g, l) = 0 (2.1)

for every player i and every graph g0 ∈ G. If player i is not in C or if graph g0 is not a subgraph
of g, then, fi,g0 (�g, l) = 0 for every graph �g ⊆ g and every link l in C. Therefore, the sum in
(2.1) above is zero. The only relevant cases are thus when i is a player in the minimal cycle C
and when g0 is a subgraph of g.

Fix a player i in C and a graph g0 ⊆ g. We distinguish four cases.
(1) Assume l+ (i) and l− (i) ∈ g0. Then, for every link l ∈ C and every graph �g ⊆ g with

l ∈ �g we have

fi,g0 (�g, l) =


1, if l = l+ (i) and �g = g0

−1, if l = l− (i) and �g = g0

0, otherwise.

Therefore, X
l∈C

X
�g⊆g
l∈�g

(−1)|�g| fi,g0 (�g, l) = (−1)|g
0| − (−1)|g0| = 0.

(2) Assume l+ (i) ∈ g0 and l− (i) /∈ g0. Then, for every link l ∈ C and every graph �g ⊆ g with
l ∈ �g we get

fi,g0 (�g, l) =

½
1, if [l = l+ (i) and �g = g0] or [l = l− (i) and �g = g0 ∪ l− (i)]
0, otherwise.

Thus, X
l∈C

X
�g⊆g
l∈�g

(−1)|�g| fi,g0 (�g, l) = (−1)|g
0| + (−1)|g0|+1 = 0.

(3) Assume l+ (i) /∈ g0 and l− (i) ∈ g0. Then, for every link l ∈ C and every graph �g ⊆ g with
l ∈ �g we obtain

fi,g0 (�g, l) =

½ −1, if [l = l− (i) and �g = g0] or [l = l+ (i) and �g = g0 ∪ l+ (i)]
0, otherwise.
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Again, X
l∈C

X
�g⊆g
l∈�g

(−1)|�g| fi,g0 (�g, l) = − (−1)|g
0| − (−1)|g0|+1 = 0.

(4) Assume l+ (i) and l− (i) /∈ g0. Then, for every link l ∈ C and every graph �g ⊆ g with
l ∈ �g it holds that

fi,g0 (�g, l) =


−1, if l = l+ (i) and �g = g0 ∪ l+ (i)
1, if l = l− (i) and �g = g0 ∪ l− (i)
0, otherwise.

Hence, X
l∈C

X
�g⊆g
l∈�g

(−1)|�g| fi,g0 (�g, l) = − (−1)|g
0|+1 + (−1)|g0|+1 = 0.

But this means that for any link l in C, the fairness equation corresponding to link l and
graph g is a linear combination of the fairness equations corresponding to all pairs (�g, l0) with
�g ⊆ g, l0 ∈ C and l0 ∈ �g.

Therefore, for any graph g with cycles we can do the following. First choose a minimal cycle
in g. As we have shown above, one equation corresponding to one link in this minimal cycle can
be deleted, say f (g, l1). Consider now the resulting system in which f (g, l1) has been deleted. If
g\l1 has cycles, we choose another minimal cycle in g\l1 and delete the equation corresponding
to one of the links in it, and so on. After a Þnite number of steps, the equations implied by
fairness in graph g which are left correspond to links in g which form a spanning forest of g.

By component efficiency we obtain the equationX
i∈S

yi (g) = w (S, g) ,

for any graph g and any connected component S ∈ N |g.
For every graph g in G select a spanning forest6 of g, say F (g). DeÞne the system of

equations Sf as a system which contains all equations f (g, l) such that l ∈ F (g) for every g in
G. It can be checked that all equations in Sf are linearly independent, and we have seen that
any fairness equation which is not in Sf can be written as a linear combination of the equations
in Sf . It is easily seen that the equations in Sf together with the component efficiency equations
are linearly independent, with the same number of equations as unknowns. Hence, the system
of equations deÞned by component efficiency and fairness has a unique solution. This completes
the proof of Theorem 2.3. ¤

Throughout the paper, this component efficient and fair allocation rule will be referred to as
the Myerson value and it will be denoted by m.

6 If g has no cycles, the unique spanning forest of g is trivially itself.
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We now provide an explicit formula for the Myerson value. In order to do so, we need the
following deÞnitions. Let Π (N) be the set of partitions of N . Thus, P = {S1, ..., Sk} ∈ Π (N) if
(1) Sr 6= ∅ for all r = 1, ..., k, (2)

kS
r=1

Sr = N and (3) Sr∩St = ∅ if r 6= t. An embedded coalition
is a pair (S, P ) where S ∈ P ∈ Π (N). Let E (N) be the set of all possible embedded coalitions
in N . Let |S| be the number of players in S and |P | the number of non-empty coalitions in P .

A game in partition function form (PFF) is a pair hN, vi where v is a function which assigns
to every (S,P ) ∈ E (N) a real number v (S, P ). Given the coalitional structure P , the real
number v (S,P ) is the value which can be perfectly transferred across players in S when the
coalitional structure is given by P . The function v is called a coalitional value function.

An allocation rule in this context is a function ϕ which assigns to every game in PFF hN, vi
a payoff vector ϕ (N, v) ∈ <n.

DeÞnition 2.4. The Myerson value7 for games in PFF is the allocation rule which to every
game in PFF hN, vi assigns the payoff vector ϕ (N, v) given by

ϕi (N, v) =
X

(S,P )∈E(N)
(−1)|P |−1 (|P |− 1)!


1

n
−
X
�S∈P
�S 6=S
i/∈�S

1

(|P |− 1)
³
n−

¯̄̄
�S
¯̄̄´
 v (S,P ) ,

for all players i.

For the sequel, the Myerson value for games in PFF will be denoted by ϕM .

Now we proceed to apply the deÞnitions mentioned above to the context of static networks
with externalities. Given a value function w and a graph g let the auxiliary game in PFF hN,Ugi
be given by

Ug (S, P ) =
X
R∈S|g

w (R, g|P ) ,

where g|P = S
T∈P

g|T .
We now present an explicit formula for the Myerson value in the general case.

Theorem 2.5. The Myerson value is the allocation rule which assigns to every graph g the
allocation ϕM (N,Ug).

The proof of this theorem is given in the appendix.

7This allocation rule was deÞned and axiomatically characterized by Myerson [10]. It is an extension of the
Shapley value to games in PFF.
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3. Dynamic Network Environments

Now assume that we have an inÞnite number of stages, and at each stage t there is a transition
probability from the existing graph gt to any other graph gt+1 in the following stage. If we
assume that these probabilities do not depend on the period t, the graph at each stage follows
an inÞnite stationary Markov chain with transition probabilities given by the matrix

P = [P (g1|g2)]g1,g2∈G ,
where P (g1|g2) is the probability of arriving at g1 conditional on g2 being the actual graph.

Assume that players receive some payoff at each stage according to some Þxed allocation
rule y. Suppose that players discount the future by a factor 0 < δ < 1, and deÞne

P δ,∞ =
∞X
t=0

δtP t.

Here, P δ,∞ (g1|g2) may be interpreted as the limit-discounted probability of reaching graph g1
when starting with graph g2.

For any allocation rule y, and any initial graph g, the discounted expected payoff for player
i is given by

xi (y, g, δ, P ) =
X
g0
P δ,∞

¡
g0|g¢ yi ¡g0¢ .

As is well known, the matrix (I − δP ) has an inverse, namely (I − δP )−1 = P δ,∞. Here, I is the
identity matrix. Let x (y, g, δ, P ) = [xi (y, g, δ, P )]i∈N . From now on, we simply write x (y, g)
instead of x (y, g, δ, P ), since P and δ are always Þxed.

DeÞnition 3.1. An allocation rule y is called expected fair if for every g ∈ G and every link
(i, j) ∈ g

xi (y, g)− xi (y, g\ (i, j)) = xj (y, g)− xj (y, g\ (i, j)) .

By expected fairness we restrict attention to allocation rules where for every link in a graph,
both players expect to gain or loose the same from breaking such a connection at time zero. It
is thus a forward-looking extension of the fairness property to situations where networks evolve
over time.

4. The Main Result

We show now that for all transition probability matrices P and for almost every δ, there exists
a unique allocation rule which is component efficient and expected fair. In order to state the
result we need the following deÞnitions.

Let x be the expected payoff vector induced by an allocation rule y. That is, x assigns to
every player i and every graph g some expected payoff xi,g. Let (P ◦ x) (i, g) =

P
g0
P (g0|g)xi,g0

9



be the expected payoff player i gets in the next period if the actual graph is g and the payoffs
are given by x.

Let (WP ◦ x) (S, g) =
P
i∈S
(P ◦ x) (i, g), for every S ∈ N |g. Note that the operator P trans-

forms an allocation rule x into another allocation rule P ◦x, and thatWP transforms an allocation
x into a value function WP ◦ x. Since (WP ◦ x) is a value function, we can compute its Myerson
value. Let (m ◦WP ) ◦x be the Myerson value applied to WP ◦x. It is easily seen that (WP ◦ x)
is linear in x. Furthermore, the function m is linear in the value function. Hence, (m ◦WP ) ◦ x
is linear in x. Note that (m ◦WP ) is an operator which transforms an allocation rule x into
another allocation rule (m ◦WP ) ◦ x.

Let I be the identity operator. Since P and (m ◦WP ) transform allocation rules into allo-
cation rules, so do the operators (I − δP ) and (I − δ (m ◦WP ))

−1 , if the latter exists.

Theorem 4.1. (1) The operator (I − δ (m ◦WP )) has an inverse for almost all δ, and (2) for
all these δ we have that there is a unique allocation rule f which is component efficient and
expected fair, and it is given by

f (g) =
³
(I − δP ) ◦ (I − δ (m ◦WP ))

−1 ◦m
´
(g) ,

for all graphs g.

Proof of Theorem 4.1. We proceed to prove (1) Þrst. Let A be the matrix associated with
the linear operator (m ◦WP ). Then, (I − δ (m ◦WP )) has an inverse if and only if |I − δA| 6= 0.
We have that |I − δA| = 0 if and only if 1δ is an eigenvalue of A. Therefore, the operator
(I − δ (m ◦WP )) has an inverse for every δ except for a (possibly empty) Þnite set of points.
This completes the proof of (1).

(2) Assume that δ is such that the operator (I − δ (m ◦WP )) has an inverse. Let x∗ be the
allocation rule given by

x∗ (g) =
³
(I − δ (m ◦WP ))

−1 ◦m
´
(g) ,

for all g. We shall prove the following three steps. First, that the allocation rule f in Theorem
4.1 generates x∗ as the expected payoff vector, i.e., x∗ (g) = x (f, g). Second, we prove that
an allocation rule y is component efficient with respect to w and expected fair if and only if
the induced discounted expected payoff vector x (y) is the Myerson value of an auxiliary value
function Wx(y). Finally, we show that x∗ is the unique solution to x = m (Wx) , where m (Wx)
is the Myerson value applied to the value function Wx. For the sequel, whenever m is written it
is assumed to be m (w), i. e., the Myerson value applied to the value function w.

Claim 1. The allocation rule

f = (I − δP ) ◦ (I − δ (m ◦WP ))
−1 ◦m

generates x∗ as the expected payoff vector.
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Proof of Claim 1. By deÞnition, P δ,∞ = (I − δP )−1 = I + δPP δ,∞. Therefore, for any
allocation rule y and its induced discounted expected vector x (y) we have

x (y) = y + δP ◦ x (y) ,

which yields

y = (I − δP ) ◦ x (y) .

Since

f = (I − δP ) ◦ x∗,

it follows that f generates x∗ as discounted expected payoff vector. This completes the proof of
Claim 1.

Let x be an allocation rule. Given x, we can deÞne the following value function:

Wx (S, g) = w (S, g) + δ (WP ◦ x) (S, g) ,

for all g and for all S ∈ N |g. Let m (Wx, g) be the Myerson value for Wx at graph g.
Claim 2. The allocation rule y is component efficient with respect to w and expected fair if

and only if x (y) = m
¡
Wx(y)

¢
.

Proof of Claim 2. We show Þrst that if y is component efficient and expected fair, then
x (y) = m

¡
Wx(y)

¢
. Let x = x (y). Since P δ,∞ = I + δPP δ,∞,

xi (g) = yi (g) + δ
X
g0
P
¡
g0|g¢xi ¡g0¢ ,

for all graphs g and all players i.
If y is component efficient with respect to w, thenX

i∈S
xi (g) = w (S, g) + δ

X
g0
P
¡
g0|g¢X

i∈S
xi
¡
g0
¢
=Wx (S, g) ,

for all S ∈ N |g. In other words, if y is component efficient with respect to w, then x is component
efficient with respect to Wx.

On the other hand, if y is expected fair, then x is fair. But, there is only one allocation rule
which is component efficient with respect to Wx and fair, namely m (Wx).

Now we prove that if m (Wx, g) = x (g) for all graphs g, then the allocation rule y which
induces x is component efficient and expected fair. If m (Wx, g) = x (g) for all graphs g, then,
for all graphs g and all S ∈ N |g,X

i∈S
xi (g) =Wx (S, g) = w (S, g) + δ

X
g0
P
¡
g0|g¢X

i∈S
xi
¡
g0
¢
,

11



and X
i∈S

yi (g) =
X
i∈S

xi (g)− δ
X
g0
P
¡
g0|g¢X

i∈S
xi
¡
g0
¢
= w (S, g) .

Therefore, the allocation rule y which generates x is component efficient. On the other hand,
the allocation rule y generating x is also expected fair, for x is fair. This completes the proof of
Claim 2.

Claim 3. There is a unique allocation rule x such that x = m (Wx), namely

x∗ = (I − δ (m ◦WP ))
−1 ◦m.

Proof of Claim 3. By deÞnition ofWx above and by linearity of the Myerson value, m (Wx) =
m+ δ (m ◦WP ) ◦ x. As we have seen before, (m ◦WP ) is linear in x. Thus, if there is an x such
that x = m (Wx), then it has to satisfy the linear equation

(I − δ (m ◦WP )) ◦ x = m.

Note that if δ is such that (I − δ (m ◦WP )) has an inverse, the solution to such equation is
unique, namely x∗ = (I − δ (m ◦WP ))

−1 ◦m. This completes the proof of Claim 3.

By Claims 2 and 3, the allocation rule which generates x∗ = (I − δ (m ◦WP ))
−1 ◦ m as

discounted expected payoff vector is the unique allocation rule which is component efficient and
expected fair. By Claim 1, the unique allocation rule which generates x∗ is f and therefore it
is the unique allocation rule which is component efficient and expected fair. This completes the
proof of (2) and therefore it completes the proof of Theorem 4.1. ¤

Note that Theorem 4.1 implies that there always exists a δ̄ ∈ (0, 1) such that for every δ in¡
δ̄, 1
¢
there is a unique allocation rule which is component efficient and expected fair, namely

the allocation rule f given by

f (g) =
³
(I − δP ) ◦ (I − δ (m ◦WP ))

−1 ◦m
´
(g) ,

for all graphs g.

5. Special Dynamic Processes

We consider now two types of dynamic processes for which an easier formula to compute the
unique component efficient and expected fair allocation rule can be provided.

For any graph g ∈ G, let the component closure of g, denoted by cl (g), be cl (g) = S
S∈N |g

gS ,

where gS stands for the full graph over S.

DeÞnition 5.1. The transition probability matrix P is said to be component dissolving if for
every pair of graphs g0, g ∈ G, P (g0|g) > 0 only if g0 ⊆ cl (g).

12



Component dissolvability thus implies that the only new connections which are allowed are
the ones between players who already belonged to the same component. Notice that with this
assumption P ({∅} | {∅}) = 1.

A special case of component dissolvability is the case of dissolving networks, in which no
new links can be built.

Let the value function W be given by

W (S, g) =
X

g0⊆cl(g)
P δ,∞

¡
g0|g¢ X

R∈S|g0
w
¡
R, g0

¢
,

for every graph g and every S ∈ N |g. Note that, since S ∈ N |g and g0 ⊆ cl (g), every R ⊆ S
with R ∈ S|g0 satisÞes R ∈ N |g0.
Theorem 5.2. Let the transition probability matrix P be component dissolving. Then, for
every δ there is a unique allocation rule f which is component efficient and expected fair,
namely

f = (I − δP ) ◦m (W ) .
Before stating the proof, we would like to mention the following. Note that this formula is eas-

ier than the one presented in Theorem 4.1, since computing the expression (I − δ (m ◦WP ))
−1◦m

is a more complex task than computing m (W ). In order to compute m (W ), we need to Þnd
out W, which is the discounted expected value of w, and compute its Myerson value. On the
other hand, in the general formula, we need to compute Þrst the composed operator m ◦WP

and, secondly, once (I − δ (m ◦WP )) is obtained, we must take the inverse and apply it to m.

Proof of Theorem 5.2. We proceed to prove Þrst that if the transition probability matrix
is component dissolving and if an allocation rule y is component efficient and expected fair, then
x (y) = m (W ). Let x = x (y). Then,

xi (g) =
X
g0
P δ,∞

¡
g0|g¢ yi ¡g0¢ ,

for all graphs g and all players i.
If y is component efficient with respect to w, thenX
i∈S

xi (g) =
X
g0
P δ,∞

¡
g0|g¢X

i∈S
yi
¡
g0
¢
=

X
g0⊆cl(g)

P δ,∞
¡
g0|g¢ X

R∈S|g0
w
¡
R, g0

¢
=W (S, g) ,

for all S ∈ N |g. In other words, if y is component efficient with respect to w, then x is component
efficient with respect to W .

On the other hand, if y is expected fair, then x is fair. Since the unique allocation rule which
is component efficient with respect to W and fair is m (W ) it follows that x = m (W ).

Given that the allocation rule

f = (I − δP ) ◦m (W )
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is the unique allocation rule which generates m (W ) as expected discounted vector, it remains to
prove that f as deÞned above is indeed component efficient and fair. Since P δ,∞ = I+δPP δ,∞,

W (S, g) = w (S, g) + δ
X

g0⊆cl(g)
P
¡
g0|g¢ X

R∈S|g0
W
¡
R, g0

¢
,

for all graphs g and all S ∈ N |g.
By deÞnition of the allocation rule f and by component efficiency of m (W ) ,X

i∈S
fi (g) =

X
i∈S

mi (W,g)− δ
X

g0⊆cl(g)
P
¡
g0|g¢X

i∈S
mi
¡
W,g0

¢
=

= W (S, g)− δ
X

g0⊆cl(g)
P
¡
g0|g¢ X

R∈S|g0
W
¡
R, g0

¢
= w (S, g) .

Therefore, the allocation rule f is indeed component efficient. On the other hand, the
allocation rule f generating m (W ) is also expected fair, for m (W ) is fair. This completes the
proof of Theorem 5.2 ¤

We shall now provide a condition under which the unique component efficient and expected
fair allocation rule is equal to the Myerson value.

DeÞnition 5.3. The probability transition matrix P is said to satisfy the sum-property if for
every graph g1, g2 ∈ G and every link (i, j) /∈ (g1 ∪ g2)

P (g1|g2) + P (g1 ∪ (i, j) |g2) = P (g1|g2 ∪ (i, j)) + P (g1 ∪ (i, j) |g2 ∪ (i, j)) .
Theorem 5.4. Let P satisfy the sum-property. Then, for every δ there is a unique allocation
rule f which is component efficient and expected fair, namely f (g) = m (g), for all graphs g.

Proof of Theorem 5.4. Let P satisfy the sum-property. We will show that if f is compo-
nent efficient and expected fair, then it is the Myerson value of w. Let

xi (f, g) =
X
g0
P δ,∞

¡
g0|g¢ fi ¡g0¢ = fi (g) + δX

g0
P
¡
g0|g¢xi ¡f, g0¢ ,

for every player i and every graph g ∈ G. By deÞnition,

xi (f, g)− xj (f, g) = fi (g)− fj (g) + δ
X
g0
P
¡
g0|g¢ £xi ¡f, g0¢− xj ¡f, g0¢¤ , (5.1)

and

xi (f, g\ (i, j))− xj (f, g\ (i, j)) = fi (g\ (i, j))− fj (g\ (i, j)) +
+δ
X
g0
P
¡
g0|g\ (i, j)¢ £xi ¡f, g0¢− xj ¡f, g0¢¤ . (5.2)
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From (5.1),

xi (f, g)− xj (f, g) = fi (g)− fj (g) + δ
X

g1:(i,j)∈g1
P (g1|g) [xi (f, g1)− xj (f, g1)]

+δ
X

g2:(i,j)/∈g2
P (g2|g) [xi (f, g2)− xj (f, g2)] .

For every g1 there is exactly one g2 such that g2 = g1\ (i, j). By expected fairness of f we
have that for every such g1 and g2,

xi (f, g1)− xj (f, g1) = xi (f, g2)− xj (f, g2)

and thus

xi (f, g)− xj (f, g) = fi (g)− fj (g) +
+δ

X
g03(i,j)

£
P
¡
g0|g¢+ P ¡g0\ (i, j) |g¢¤ £xi ¡f, g0¢− xj ¡f, g0¢¤ .

Applying the same procedure to (5.2) we get that

xi (f, g\ (i, j))− xj (f, g\ (i, j)) = fi (g\ (i, j))− fj (g\ (i, j)) +
+δ

X
g03(i,j)

£
P
¡
g0|g\ (i, j)¢+ P ¡g0\ (i, j) |g\ (i, j)¢¤ £xi ¡f, g0¢− xj ¡f, g0¢¤ .

If P satisÞes the sum-property, then,

P
¡
g0|g¢+ P ¡g0\ (i, j) |g¢ = P ¡g0|g\ (i, j)¢+ P ¡g0\ (i, j) |g\ (i, j)¢

for every g0 with (i, j) ∈ g0.
Since f is expected fair, we have

xi (f, g)− xj (f, g) = xi (f, g\ (i, j))− xj (f, g\ (i, j)) ,

and hence,

fi (g)− fj (g) = fi (g\ (i, j))− fj (g\ (i, j)) .

Therefore, if P satisÞes the sum-property, then an allocation rule is expected fair if and only
if it is fair. But there is only one allocation rule which is component efficient and fair, namely
the Myerson value. Hence, the unique allocation rule which is component efficient and expected
fair is equal to the Myerson value, if P satisÞes the sum property. This completes the proof of
Theorem 5.4. ¤
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6. An Example

The following example shows that if the transition probability matrix P does not satisfy the
sum-property, then the component efficient and expected fair allocation rule may be different
from the Myerson value for all δ ∈ (0, 1).

Example 1. Let N = {1, 2, 3}. The set of all possible graphs on N is given by

G =



g1 = g
N = {(1, 2) , (1, 3) , (2, 3)}

g2 = {(1, 3) , (2, 3)}
g3 = {(1, 2) , (2, 3)}
g4 = {(1, 2) , (1, 3)}
g5 = {(1, 3)}
g6 = {(2, 3)}
g7 = {(1, 2)}
g8 = {{∅}}

Let w be equal to

w (S, g) =


0, if |S| = 1
1, if |S| = 2
3, otherwise.

Let the transition probability matrix P be as follows.

P (gh|gk) =
½
1, if [h = k 6= 2] or [h = 1 and k = 2],
0, otherwise.

Hence, the only non-trivial transition that occurs is from g2 to g1, with probability 1.
Notice that

P (g1|g2) + P (g4|g2) 6= P (g1|g5) + P (g4|g5) ,

with g1 = g4 ∪ (2, 3) and g2 = g5 ∪ (2, 3). Thus, the matrix P above does not satisfy the sum-
property. We will show that there is a unique component efficient and expected fair allocation
rule which is different from Myerson value. The reader may check that the unique component
efficient and expected fair allocation rule satisÞes

f1 (g2) =
5− 6δ
6 (1− δ) =

5

6
− δ

6 (1− δ) ,

f2 (g2) =
5− 6δ
6 (1− δ) =

5

6
− δ

6 (1− δ) ,

f3 (g2) =
4− 3δ
3 (1− δ) =

4

3
+

δ

3 (1− δ) ,

whereas the Myerson value yields m (g2) =
¡
5
6 ,
5
6 ,
4
3

¢
. Hence, players 1 and 2 get less in f than

in the Myerson value, whereas for player 3 it is the opposite.
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The intuition is the following. Assume that we start from graph g2 and consider the payoffs
assigned to players 1 and 3. Notice that in the case of fairness, we only compare the stage payoffs
in g2 with the stage payoffs players get in g2\ (1, 3), which is the graph g6. If link (1, 3) is not
present, in other words, if the actual structure is given by graph g6 player 3 will get a payoff of
1
2 and player 1 will get 0. By imposing expected fairness, we take into account the following. If
link (1, 3) is not present, the difference in payoffs is 1

2 from now on, discounted by δ. On the
other hand, if (1, 3) is present, players will move in the next stage to graph g1, and stay there
forever. In g1 the difference in payoffs is 0. Thus, fairness requires that

m3 (g2)−m1 (g2) = 1

2
,

whereas expected fairness requires

f3 (g2)− f1 (g2) + δ × 0 + δ2 × 0 + δ3 × 0... = 1

2
+ δ × 1

2
+ δ2 × 1

2
+ δ3 × 1

2
...,

which means

f3 (g2)− f1 (g2) = 1

2

1

1− δ .

We therefore observe that the difference in payoffs when we consider expected fairness goes
to the difference in the Myerson value when δ tends to zero, and it goes to inÞnity when δ goes
to 1.

7. Appendix

Proof of Theorem 2.5. By Theorem 2.3, there is a unique allocation rule which is component
efficient and fair. It thus suffices to show that the allocation rule y (g) = ϕM (N,Ug) for all
g is indeed component efficient and fair. In order to do so, we need the following axiomatic
characterization for ϕM provided by Myerson [10].

DeÞnition 7.1. An allocation rule ϕ is called efficient if for every game in PFF hN, viX
i∈N

ϕi (N, v) = v (N, {N}) .

DeÞnition 7.2. An allocation rule ϕ is called additive if for every two games hN, v1i and hN, v2i

ϕ (N, v1 + v2) = ϕ (N, v1) + ϕ (N, v2) .

Let π be a permutation on the set of players. Let π (S) = {π (i) : i ∈ S} and π (P ) =
{π (S1) , ...,π (Sr)}, where {S1, ..., Sr} = P . For any coalitional value function v and permutation
π we deÞne the coalitional value function π ◦ v as (π ◦ v) (π (S) ,π (P )) = v (S, P ) , for any pair
(S, P ) ∈ E (N).
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DeÞnition 7.3. An allocation rule ϕ is symmetric if for any permutation π, any coalitional
value function v and any player i ∈ N,

ϕπ(i) (N,π ◦ v) = ϕi (N, v) .

For any two partitions P , P 0 on N , we deÞne the partition P ∧ P 0 on N as

P ∧ P 0 = ©S ∩ S0|S ∈ P , S0 ∈ P 0 and S ∩ S0 6= ∅ª .
For hN, vi given, a coalition S ⊆ N is a carrier of hN, vi if for all embedded coalitions (T,P )
v (T,P ) = v (T ∩ S,P ∧ {S,N\S}).

DeÞnition 7.4. An allocation rule ϕ satisÞes the carrier property if for every hN, vi and every
coalition S, if S is a carrier of hN, vi, thenX

i∈S
ϕi (N, v) = v (N, {N}) .

Proposition 7.5. (Myerson [10]) There is a unique allocation rule which is efficient, additive,
symmetric and satisÞes the carrier property, namely ϕM .

Claim 1. The allocation rule ϕM (N,Ug) is component efficient.
Proof of Claim 1. Following Feldman [5], we can deÞne for every connected component

T ∈ N |g a game in PFF N,uTg ® as follows. For every (S, P ) ∈ E (N)
uTg (S,P ) =

X
R∈(S∩T )|g

w (R, g|P ) .

We show now that T is a carrier in the game

N,uTg

®
. In order to do so, we need to prove

that g|P = g| (P ∧ {T,N\T}). Choose any R ∈ P . Note that for every pair of players i and j in
R, with i ∈ T and j /∈ T the link (i, j) /∈ g. Therefore, (i, j) /∈ g|R, for g|R is always a subgraph
of g. It thus follows that

g|R = [g| (R ∩ T )] ∪ [g| (R ∩ (N\T ))] = g|R0 ∪ g|R00,

where R0 ∪ R00 = R and R0 = R ∩ T , R00 = R ∩ (N\T ). Notice R0 and R00 ∈ P ∧ {T,N\T}
whenever they are non empty.

But this means that[
R∈P

g|R =
[
R∈P

¡
g|R0 ∪ g|R00¢ = [

�R∈P∧{T,N\T}
g| �R,

and thus g|P = g| (P ∧ {T,N\T}). Therefore, for any T ∈ N |g

uTg (S,P ) = u
T
g (S, P ∧ {T,N\T}) = uTg (S ∩ T,P ∧ {T,N\T}) .
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In other words, T is a carrier of

N, uTg

®
. By the carrier property of ϕM , for any S ∈ N |g

X
i∈S

ϕMi
¡
N, uTg

¢
=

½
uTg (N, {N}) , if S = T

0, otherwise.

On the other hand, note that N |g denotes a partition on N . Furthermore, any two players
which are not connected in g will not be connected either in g|S, for any S. Thus,

Ug (S,P ) =
X
T∈N |g

uTg (S, P ) .

By linearity of ϕM , for any S ∈ N |gX
i∈S

ϕMi (N,Ug) =
X
T∈N |g

X
i∈S

ϕMi
¡
N,uTg

¢
= uSg (N, {N}) .

By deÞnition, uSg (N, {N}) =
P

R∈(S∩N)|g
w (R, g| {N}) = w (S, g), for any S ∈ N |g. Thus, the

allocation rule ϕM is component efficient, which completes the proof of Claim 1.

Claim 2. The allocation rule ϕM (N,Ug) is fair.
Proof of Claim 2. Fix a graph g. For every (i, j) ∈ g deÞne the game in PFF N,Vg,(i,j)®,

where Vg,(i,j) = Ug − Ug\(i,j). We will show that ϕMi
¡
N,Vg,(i,j)

¢
= ϕMj

¡
N,Vg,(i,j)

¢
, which by

linearity of ϕM implies that ϕM (N,Ug) is fair.
Note that Vg,(i,j) (S,P ) = 0 for any partition (S,P ) ∈ E (N) such that players i and j are

in different sets in the partition P . Therefore, only the embedded coalitions (S,P ) such that
players i and j belong to the same set in P , say Sij ∈ P , have a non zero value. Thus,

ϕMi
¡
N,Vg,(i,j)

¢− ϕMj ¡N,Vg,(i,j)¢ = X
(S,P )∈E(N)
(i,j)⊆Sij∈P

(−1)|P |−1 (|P |− 1)!×

×


X
�S∈P
�S 6=S
j /∈ �S

1

(|P |− 1)
³
n−

¯̄̄
�S
¯̄̄´ −X

�S∈P
�S 6=S
i/∈ �S

1

(|P |− 1)
³
n−

¯̄̄
�S
¯̄̄´
Vg,(i,j) (S,P ) . (7.1)

Notice that if players i and j belong to the same coalition Sij ∈ P , the setsn
�S : �S ∈ P, �S 6= S and i /∈ �S

o
and n

�S : �S ∈ P, �S 6= S and j /∈ �S
o
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are both equal to the set n
�S : �S ∈ P, �S 6= S and �S 6= Sij

o
.

This means that X
�S∈P
�S 6=S
j /∈ �S

1

(|P |− 1)
³
n−

¯̄̄
�S
¯̄̄´ −X

�S∈P
�S 6=S
i/∈ �S

1

(|P |− 1)
³
n−

¯̄̄
�S
¯̄̄´ = 0, (7.2)

for any (S, P ) ∈ E (N), with players i and j belonging to the same coalition Sij ∈ P . From
(7.1) and (7.2) we obtain that ϕMi

¡
N,Vg,(i,j)

¢ − ϕMj ¡N,Vg,(i,j)¢ = 0. This completes the proof
of Claim 2.

By Claims 1 and 2 we have shown that the allocation rule ϕM (N,Ug) is component efficient
and fair. This completes the proof of Theorem 2.5. ¤
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