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KAJIAN TENTANG REKABENTUK DAN EKSPERIMEN KE ATAS SALUTAN  
MULTI LAPISAN UNTUK APPLIKASI DEDALAM  

PERANTI PEMANCAR CAHAYA  
GALLIUM NITRIDA 

 
ABSTRAK 

 
 Dalam projek ini, cermin dan mikrorogga untuk peningkatan cahaya ultra-unggu 

(UV) telah dibuat dan dikaji. Kerja yang dilakukan membincang kaedah rekabentuk dua 

jenis cermin; jenis pertama ialah cermin pemantul Bragg teragih DBR (Al0.4Ga0.6N/ 

GaN) dan jenis kedua cermin dielektrik DBR (TiO2/SiO2, ZrO2/SiO2 dan HfO2/SiO2). 

Sofwer MATLAB dan analisis teori berdasarkan kaedah Pindah Matriks (TMM) 

digunakan untuk mengaji pantulan yang disebabkan ralat dalaman di mana ini berlaku 

semasa penumbuhan filem, nombor lapisan, jenis substrak dan sudut tuju. Kami 

anggap bahawa 10% ralat dalaman wujud pada bahan-bahan dengan indeks yang 

rendah dan tinggi. Keputusan simulasi kami menunjukkan ralat dalaman menyebabkan 

anjakan jalur pemantul sebanyak 36nm bagi struktur DBR semikonduktor dan 20nm 

bagi struktur DBR dielektrik. Sifat-sifat optik Al0.11Ga0.89N, Al0.03Ga0.97N, dan GaN 

tumbuh pada batu nilam dikajikan. Ukuran elipsometri beroperasi pada jarak 

gelombang 632.8nm memperolehi   penukaran amplitud relative bagi pengutuban p 

dan s,   anjakan fasa relatif di antara dua arah pengutuban dan indeks pemantulan, 

parameter-parameter yang penting  untuk memajukan model bagi GaN dan substrak 

Al2O3. Kami telah menunjukkan peningkatan kecekapan ektrasi cahaya sebanyak 1.3 – 

1.6 kali ganda dengan penggunaan epoksi rata dan kubah sebagai bahantara luar 

banding dengan udara. Keputusan simulasi menunjukkan bahawa penggunaan HfO2 

dan MgF2 dapat meningkatkan ekstrasi cahaya dengan  membelau cahaya dalaman 

dengan sudut pepejal yang besar ke dalam kon cahaya peleposan Tiga jenis 

mikrorongga telah dibuat dengan penggunaan cermin logam dan DBR dielektrik untuk 

peningkatan dan perencatan fotoluminescence pendarkilau (PL) dalam GaN. Struktur 

GaN/nilam sebagai lapisan aktif dikapitkan di antara dua cermin pemantul logam 
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perak. Lapisan GaN pada nilam menunjukkan puncak PL di sekitar 364 nm. 

Pengukuran PL menunjukkan peningkatan 2 dan 16 kali ganda  pada separuh rongga 

cermin perak dan cermin DBR dielektrik, masing-masing. Di rongga penuh sampel, PL 

amplitud di tingkatkan sebanyak 10 kali bila 50 nm perak digunakan sebagai cermin 

hadapan. Peningkatan hebat yang melebihi 16 kali ganda diperolehi dengan 

penggunaan cermin perak setebal 25 nm sebagai cermin hadapan. Selain daripada itu, 

peningkatan hebat juga didapati dengan lubang kecil 4 mm2 dibuat di hadapan cermin 

dengan tebal 50 nm.  
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DESIGN AND EXPERIMENTAL STUDIES OF MULTILAYER 
 COATING FOR APPLICATIONS IN 

 GALLIUM NITRIDE LIGHT 
 EMITTING DEVICES 

 

ABSTRACT 

In this work mirrors and microcavties for GaN-UV light enhancement were 

fabricated and studied. This work discusses methods of designing two types of mirror: 

first is the semiconductor distributed Bragg reflector (DBR) (Al0.4Ga0.6N/GaN) mirrors 

and second is the dielectric DBR (TiO2/SiO2, ZrO2/SiO2, and HfO2/SiO2) mirrors. 

MATLAB software and theoretical analysis based on Transfer Matrix Method (TMM) 

are used to investigate reflection due to depth errors that occur in films growth, number 

of layers, type of substrate and incidence angle. We assume that there is 10% depth 

error in high and low index materials. Our simulation results showed that the depth 

error caused the reflective band shift about 36nm for semiconductor DBR structure and 

20nm for dielectric DBR structure. The optical properties of Al0.11Ga0.89N, Al0.03Ga0.97N, 

and GaN grown on sapphire were investigated. The ellipsometry measurement 

operating at wavelength 632.8nm yields   the relative amplitude change for p  and s  

polarizations,   relative phase shift between the two polarization direction and 

refractive index, important parameters to develop the model for GaN on Al2O3 

substrate. We demonstrated a GaN/sapphire microcavity exhibiting 1.3-1.6 fold 

enhancement in light extraction efficiency by using flat and dome epoxy as external 

medium compared with air as the external medium. Simulations results showed that by 

using HfO2 and MgF2 can improve the light extraction by diffracting is the internal light 

with a large solid angle into the escape light cone. 

Three types of microcavity types were fabricated using metal and dielectric 

DBR mirror for the enhancement and inhibition of photoluminescence in GaN. A 

GaN/sapphire structure as an active layer was sandwiched between two mirrors, which 

were silver metal reflectors. GaN layer on sapphire showed a photoluminescence (PL) 

peak around 364 nm. Photoluminescence measurements showed intensity 



 xvii

enhancement of 2 and 16 fold in silver half-cavity back mirror and dielectric DBR mirror 

respectively. In the full cavity samples, the amplitude of the photoluminescence is 

enhanced 10-times when we used 50 nm silver as a front mirror. A tremendous 

enhancement of more than 16-fold is obtained when silver mirror of 25nm thickness 

was used as a front mirror. Further, a tremendous enhancement was obtained when a 

small hole of 4mm2 was made in the front mirror with 50nm thickness.  



 1

CHAPTER ONE 
 

INTRODUCTION  
 
1.1 Introduction 
 

Starting in early 20th century, there were several reports of light emission from 

materials due to applied electric fields, a phenomenon that was termed 

“electroluminescence”. The materials properties were poorly controlled, and the 

emission processes were not well understood. The first light-emitting semiconductor 

was a yellow-glowing piece of Silicon Carbide invented by Henry Joseph Round in 

1907 (Herbert, 2002). There was not enough light to be useful, and silicon carbide is 

hard to work with. In 1950’s the modern light emitting diodes LEDs were based on 

Gallium Arsenide (GaAs) and emitted infrared light, red LEDs came next in 1960’s, 

using Gallium Arsenide Phosphite (GaAsP on GaAs substrate). Eventually these led to 

the development of high efficiency red, red-orange, and orange LEDs by changing to a 

GaP substrate. Mid 1970's brought Gallium Phosphite (GaP) diodes, providing greater 

efficiency. Mid 1980's saw the arrival of super high brightness (GaAlAsP) LEDs, first in 

red, then yellow. In the early 1990's, ultra bright InGaAlP LEDs were made in orange-

red, orange, yellow and green. The first significant blue LEDs came in the early 1990's, 

using Silicon Carbide. This was a throwback to the earliest semiconductor light 

sources. The mid 1990's brought ultra bright blue GaN LEDs, then Indium Gallium 

Nitride (InGaN) LEDs, producing high-intensity green and blue. Many activities have 

been used on the fabrication of high brightness white/blue/green LEDs and laser 

diodes (LDs) in blue and UV spectra for many applications. For these purposes, III-

nitride semiconductors such as gallium nitride (GaN) have been investigated for a long 

time. For more than 50 years ago, GaN was first synthesized by Juza and Hahn, 1938 

who passed ammonia over hot gallium. This method produced small needles and 

platelets. Two decades later, Grimmeiss and Koelmans, 1959 studied the 

photoluminescence spectra of GaN. In 1969, Maruska and Tietjen succeeded in 

growing single crystalline GaN on sapphire using a chemical vapor deposition 
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technique. All the GaN films made at that time were very conductive n-type GaN 

(undeliberately doped). The donors were believed to be nitrogen vacancies or oxygen 

incorporation (Seifert et al., 1983). Soon after, Pankove et al., 1972, reported the first 

GaN LEDs. The electroluminescence spectra of these LEDs could be varied from blue 

to red depending on the Zn-doping concentration in the light-emitting region (Pankove, 

1973). The modern progress of III nitrides began from Amano and Akasaki, (Amano et 

al., 1986).  They initiated organometallic vapor phase epitaxy (OMVPE) for the growth 

of high quality GaN film on sapphire substrate by introducing a concept of AlN buffer 

layer between sapphire and GaN film. The implementation of buffer layer not only 

improves the crystal quality of the bulk film but also paves the way for p-type doping by 

using magnesium (Mg) as an acceptor doping (Amano et al.1988). A few years later 

Akasaki and Amano achieved Mg-doped p-type GaN with high conductivity using low 

energy electron beam irradiation (LEEBI) (Amano et al.1989). Then, Amano and 

Akasaki, 1990 demonstrated the first GaN p-n junction LED. The electroluminescence 

of the device was dominated by a near band edge emission at 375 nm, which was 

attributed to transitions involving injected electrons and Mg-associated centers in the p-

GaN region. Soon thereafter, Nakamura and his colleagues at Nichia Chemicals found 

that thermal annealing GaN: Mg above 750°C in N2 or vacuum also converted the 

material to conducting p-type (Nakamura,et al., 1992). It was this breakthrough that 

made high brightness InGaN-based LEDs commercialize in 1994 (Nakamura, et al., 

1994). In 1996, the AlGaN/GaN/InGaN pulsed LD was first reported to operate at room 

temperature (Itaya et al., 1996). An InGaN-based LD was soon successfully operated 

under continuous wavelength (CW) mode (Nakamura, et al., 1996). 

 

GaN and other III-nitrides are attractive in the fabrication of photonic and 

microelectronic devices for the most of areas because the performances of these 

devices are better than some of existing material systems such as Si and GaAs.  
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Physical, chemical and other interesting properties of GaN and related nitride materials 

provide the basis for the design and development of optoelectronic devices. GaN and 

related nitride materials can grow both in the crystalline wurtzite as well as zincblede 

structures, but the wurtzite structure is more common. The lattice constant of GaN 

wurtzite structure is shorter than that of GaN zincblede (Yoder, 1996). GaN and related 

nitride materials are the wide bandgap semiconductors (WBGS) whose definition is that 

the bandgap energy of material is larger than 3 eV. The III-nitride materials have high 

bond energies compared to other semiconductors therefore; normal wet etching 

methods is very difficult to pattern GaN and related nitrides for device fabrication 

(Mileham, et al., 1996). Until now, photo electrochemical (PEC) etching (Minsky, et al., 

1999; Youtsey, et al., 1997) and 10% KOH in ethylene glycol in 165 °C (Stocker, et al., 

1998) are the only alternative and successful wet etching techniques to process GaN.  

Because the sidewalls of PEC etching are very rough and high temperature of 10% 

KOH solution is not realistic to achieve, thus, most devices are fabricated by the 

techniques of plasma etching such as reactive ion etching (RIE), inductively coupled 

plasma (ICP) etching, and chemical assisted ion beam etching (CAIBE). Because of 

the GaN have direct band gap the luminous intensities of GaN-based LEDs are at least 

10-100 times stronger than that of SiC LEDs and the external quantum efficiencies are 

almost two orders of magnitude greater than the efficiency of SiC. Until recently, the 

rapid increase in LED’s efficiency was mainly due to material improvements. The 

saturated drift velocity is a parameter that shows the capability of device operation for 

high frequency at high electrical field. The electron saturated drift velocity of GaN is 

slightly better than that of GaAs, 8%-35% more than that of SiC, and 2.7 times higher 

than that of Si. The breakdown electrical field of GaN is 10 times higher than that of 

GaAs, 20 times larger than the breakdown field of Si. GaN presents lower dielectric 

constant compared to Si and GaAs. The thermal conductivity of GaN is almost 3 times 

higher than that of GaAs, roughly equal to that of Si, but less than one-third that of SiC. 

The coefficient of thermal expansion of GaN is smaller than that of GaAs and Si, 
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however, it exceeds 33% more than that of SiC. In wide bandgap semiconductors, GaN 

and SiC are always competitors on the applications of power devices. The direct 

bandgap and emission spectra of the photo electronic devices in the UV and visible 

ranges are the advantages on the applications of color displays and photodetectors 

(Walker, et al., 1996; Monroy, et al., 1999). In addition, nitride semiconductor-based 

LEDs have proven to be reliable in such applications as displays, lighting, indicator 

lights, advertisement, and traffic signs/signals There are currently major development 

programs in the world for three newer applications for GaN-based materials and 

devices (Pearton, et al., 2002), namely UV optical sources capable of operation down 

to 280 nm for use in airborne chemical and biological sensing systems, allowing direct 

multi-wavelength spectroscopic identification and monitoring of UV-induced reactions. 

After giving a brief history of LED in general and GaN LED in particular, based on the 

properties of GaN that have been mentioned earlier in brief, GaN is deemed a key 

substance which has many applications, for example as a source of light operates 

within a wide range of spectrum depending on the mole fraction added such as (Al) and 

(In) to alter its energy gap. Now, modern growth techniques can achieve very high 

quality material deposition, giving active zones with almost 100% internal quantum 

efficiency, meaning that each electron-hole pair entering the active zone recombines 

radiatively by producing a photon. Then, the main limitation in efficiency comes from 

the optical extraction factor that gives the probability for an internal photon to be 

extracted in the outside medium.   Because GaN has high refractive index it is not easy 

to extract light from it effectively and due to certain factors that determine light quantity 

emitted out of this substance. The main factors are the design and structure of this 

substance. The efficiency of “conventional” LEDs is limited to (1/4n2)~4% where n is 

the refractive index of the active medium (Maxime et al., 2002). The remainder of 

internally generated light (92%–96%) never finds an opportunity to escape the emitter, 

and is eventually absorbed, either by the active region or the opaque substrate. For 

years, a significant amount of scientific work has been focused on ways of improving 
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the extraction efficiency of light-emitting diode (LED). ). Many interesting approaches 

have been proposed to accomplish this, such as the use of thin light emitting layers 

with surface texturing (Schnitzer et al., 1993), resonant cavities (Temelkurana and 

Ozbay, 1998) and photon recycling (Misha et al., 1999). 

 

This efficacy mainly depends on light reflection inside the active medium and 

emitting it out. Therefore the researcher tends to look for increasing the reflectivity 

inside the gap by using the multi-layer mirror DBR that encompasses the active 

medium on both ends to exploit this medium optimally. To design these DBR layers 

and to select its materials, there must be certain theoretical calculations through which 

we will be able to know the number of these layers and the ultimate reflectivity these 

layers provide.  

 

The possibility of ratio error while manufacturing large number of DBR layers 

demand high cost of this kind of mirror which is needful to achieve high reflectivity. 

Through the technological development, knowing more about the materials and their 

properties, we can use different types of materials to achieve high reflectivity. So using 

the metallic reflectors in increasing the reflectivity and enhance the light emission is a 

cheaper and practical option. Aluminum, gold and silver are the most used metals for 

reflective coatings (Macleod, 1986).  

 

The objectives of the thesis are as follows: 

1- Simulation of DBR for semiconductors (GaN /AlxGa1-xN) and dielectric 

(TiO2/SiO2, ZrO2/SiO2, HfO2/SiO2) materials to achieve high reflectivity. 

2- Simulation of GaN microcavity using external materials (HfO2, MgF2, and 

epoxy). 
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3- Characterization of GaN material as active mediums using different optical 

techniques (ellipsometry, filmetrics, spectrophotometer, and photolumines-

cence). 

4- Fabrication and measurement of metal/sapphire and dielectric/sapphire DBR 

mirrors. 

5- Design and fabrication of half and full microcavities on GaN using metal and 

dielectric DBR mirrors to get high extraction efficiency. 

6-   Fabrication of external medium using epoxy in order to get high extraction 

efficiency from the active medium. 

 

The originality of our work is firstly, using the silver as a contact and as a 

resonator instead of multilayer semiconductor or dielectric materials to enhance the 

extraction efficiency from GaN active layer.  Secondly, in our microcavity design we 

have used the sapphire substrate as a spacer between the back mirror and the active 

medium to get resonance condition to achieve standing wave inside the active medium 

and enhance the extracted light. 

 

This thesis is organized as follows: In chapter 2, TMM theory of the DBR optical 

multilayer and calculation on reflectivity and transmissivity will be presented. Chapter 3 

describes the results from MATLAB programs to simulate and analize the effects of 

variation of certain parameters on DBR efficiency. This will provide sufficient 

background to enable one to understand the microcavity operation and the effects of 

these parameters on UV light emission enhancement. Chapter 4 discusses the 

fabrication and measurement results of the active medium and the dielectric DBR and 

metal (Ag, Al) mirrors. Chapter 5 focuses on results of PL intensity enhancement using 

metal (Ag, Al) and dielectric DBR mirrors in microcavity to enhance the spontaneous 

UV emission in GaN samples. Finally, Chapter 6 concludes the thesis, with summary 

and future work. 
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CHAPTER TWO 
 

MULTILAYER STRUCTURE AND MICROCAVITY DESIGN 
 
2.1 Introduction 
 
  This chapter discusses the optical properties of thin films and how their unique 

characteristics can be used to develop the reflectivity, and enhance the extracted light 

using microcavity. One of the most important and pervasive sub-fields of optical 

science is the technology of thin film. It is very rare to find any optical system in today’s 

technology that does not have components with single or multilayer thin films attached.  

The physical phenomena that describe the basis of filters (mirrors) include 

absorption, refraction, diffraction, scattering and polarization. The optical performances 

of thin film filters are determined by the interference that occurs because of multiple 

reflected beams at the various interfaces within the film coating (Flory, 1995; Conway, 

1999). However the most complete descriptions of the performance of these filters are 

provided by the spectral reflectance, transmittance, absorption and phase shift on 

reflection (Macleod, 2000; Furman et al., 1992). This section briefly details the basic 

theory, which is necessary in order to make calculations of the properties of multilayer 

thin film filters.  

 

2.2 Optical parameters of thin films 

The theoretical and experimental studies on the optical behaviors of thin films deal 

primarily with optical reflection, transmission, and absorption properties, and their 

relation to the thickness and optical constants of films. Consequently, complex 

multilayer optical-device systems with remarkable reflection, antireflection, interference, 

and polarization properties have emerged for both laboratory and industrial 

applications. The simplest and commonest type of optical coating is probably the thin 

metal layer that is used as a reflector. Metals attenuate very rapidly any light that 

succeeds in passing through their front surface. Thus a thin metal film will usually have 

optical properties indistinguishable from those of the bulk material. Almost other thin 
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film optical coatings depend on interference for their operation. In an optical coating, 

the particular materials used for the thin film vary with the application and 

consideration, such as the environment in which the coating will be used, frequently 

imply that the choice of materials should be as much for their mechanical as for their 

optical properties. It is possible to construct assemblies of thin films which will reduce 

the reflectance of surface and hence increase the transmittance of a component, or 

increase the reflectance of a surface, or which will give high reflectance and low 

transmittance over part of a region and low reflectance and high transmittance over the 

remainder, or which will have different properties for different planes of polarization and 

so on (Thelen, 1988). Thin film coating are often known by names which describe their 

function, such as antireflection coatings, beam splitters, polarizer, long wave pass 

filters, band-stop or minus filters, or which describe their construction, such as quarter-

wave attack or quarter-half quarter coating (Furman and Tikhonravov, 1992).  

 

2.2.1 Refractive index   

The indices of refraction are only properties of an optical material, which used in 

actual design of optical system. A refracting material, to be useful, obviously must 

transmit radiation in the wavelength region in which it is to be used. In some instances, 

the refracting material transmits imperfectly in the region of use and the designer must 

determine what thickness he can use without greatly impairing the performance of the 

instrument. In most cases, the thickness and refractive index of the films in a multilayer 

mirror are chosen from theoretical considerations. In order to translate this design into 

a practical mirror, it is necessary to select for each layer a thin film material, which can 

be evaporated to a desired thickness and which has a refractive index, which is close 

to the theoretical value.  
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2.2.2 Quarter wave optical thickness and optical admittance 

The principle of the single and multilayer reflection coatings is based on the 

constructive interference of light reflected from the interfaces of the coating layers. Any 

time light traverses an interface between two media with different refractive indexes, 

such as the air/sapphire interface, a portion of the incident light is reflected. When this 

incident light is normal to the surface, the amplitude of the reflected wave at the 

interface between the sapphire substrate and the incident media is proportional to the 

Fresnel amplitude reflection coefficient (r) (Born and Wolf, 1983): 
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where 0n is the refractive index of the incident medium (usually air), and sn is the 

refractive index of the substrate, in this case sapphire. The human eye and most other 

photodetectors, however, do not respond directly to the amplitude of light, but rather to 

the intensity of light. The intensity of the reflected light, referred to as reflectivity )(R , is 

equal to the square of the amplitude of the reflected light. The reflectivity of a bare 

substrate, irradiated at normal incidence is given by, 
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where T is the transmittance. For example, the amplitude of the light reflected off 

uncoated sapphire ( 78.1sn ) in air ( 10 n ) is 28.0r . The reflectivity in this 

situation is 078.02  rR , or 7.8%. Therefore, as far as the human eye and other 

photodetectors are concerned, 7.8% of the light is reflected off the sapphire substrate. 

When this sapphire substrate is coated with a thin layer (non-absorbing) film of different 

index than the sapphire, the reflectivity is changed. The reflectivity of a surface coated 

with a single layer having refractive index 1n and physical thickness 1t is given 

(Macleod., 1986): 



 10

1
2

2

1
011

22
0

1
2

2

1
011

22
0

sincos)(

sincos)(

1



























n

n
nnnn

n

n
nnnn

TR
s

s

s
s

                              (2-3) 

0

11
1 2




tn
                                                                                              (2-4) 

where 1 is the phase retardation in the thin film layer,� and 0 is the wavelength of 

incident light in a vacuum. The product 11tn is referred to as the optical thickness of the 

film.  

 

This product is what determines the phase shift of a light beam as it traverses 

the film. When the optical thickness of the layer is equal to ( 20m ), where m is an 

odd integer, the phase shift suffered by a wave traveling through thickness 1t of a thin 

film is given by ( 011 / tn ), the phase shift multiple of 180º and the layer acts as an 

absentee layer. In this case equation (2-3) reduces to equation (2-2) and the reflectivity 

of the coated substrate is the same as that of the uncoated substrate. The optical 

thickness 11tn  is related to physical thickness by the refractive index. If the optical 

thickness is ( 40 ) then, 101 4/ nt  and the layer is referred to as having quarter 

wave optical thickness (QWOT). Fig. 2.1 shows a comparison between the optical and 

physical thickness of a film. The optical thickness is shown to be greater than its 

physical thickness. This difference is compensated for by the fact that the wavelength 

shown is not the wavelength in the film, but the wavelength in a vacuum. 
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Fig. 2.1: Comparison between physical and optical thickness in an optical film. 

 

The optical thickness of the film is represented in (A) and the physical thickness 

is shown in (B). The solid lines represent the wavelength of light in a vacuum, and the 

dotted line represents the wavelength in the film. The wavelength of the incident light 

after it has entered the film is represented by the dotted line. This illustrates that the 

wavelength of the light decreases as it enters the film.  

 

The wavelength ( i ) of the incident light as it propagates through the thin film 

layer is 10 / ni   . It is usual to define some extra quantities to reduce the notation of 

the reflectance and transmittance expressions. Instead of the refractive index, it is 

common to use the quantity )/(  cn (ratio of magnetic field to electric field 

strengths) known as the characteristic optical admittance of the medium. In free space, 

the optical admittance is (Liddell, 1980): 
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0  and 0  are the permittivity and the permeability of the free space respectively. 
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 And since )/(1 2
00 c and at optical frequencies 0  , we can write: 

0 n                                                                                                      (2-6) 

 

  The straightforward nature of the calculations when the layer is a quarter-wave 

thick yields a particularly simple result that can be best expressed in terms of the 

transformation of the admittance of the substrate. Optical quarter wave layer of 

characteristic admittance   transform the admittance of the substrate surface from s  

to s /2 . This result is known as the quarter-wave rule and the reflectance of the 

substrate coated with a single quarter-wave layer is then: 
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We can extend the idea of admittance transformation by optical quarter wave 

layer to a stack of quarter waves. 

The summary of the discussion of this section can be seen in Fig. 2.2, which 

shows that the effects of the refractive index and thin film optical thickness on 

reflectivity by using different thin film materials on the same substrate, (sapphire). Also 

shown in Fig. 2.2 the reflectance of uncoated sapphire can be calculated as 7.8% 

because of the index contrast between the air and sapphire and so this simple coating 

of quarter-wave of silicon dioxide (SiO2) acts to reduce the reflectance by a very 

significant amount. In fact this coating is a very simple example of an antireflection 

coating. Clearly, a high admittance quarter-wave layer will increase the reflectance of a 

sapphire surface such as TiO2, GaN, and HfO2.   
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Fig. 2.2: The reflectance of single films of different index on sapphire as a function of 
optical thickness. 
 

 

 

2.3 Transfer matrix method (TMM) 

2.3.1 Single and double layers reflectivity   
 
 

Optical filters can be defined as thickness dependent refractive index systems, 

which modify the properties of a surface to produce the desired optical characteristics. 

As discussed previously, thin film interference filters are highly popular for applications 

in a range of fields. These filters can work over a broad range of wavelengths or over a 

narrow band. A simple extension of the analysis in section (2.2.2) as shown in Fig. 2.2 

can be used to analyze the reflectance of a thin film. 
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Fig. 2.3: Plane wave incident on a thin film 

 

The successive reflections at the multiple interfaces give rise to multiple beams 

and the summation of these beams determines the properties of the film. The film is 

said to be ‘thin’ when interference effects can be observed in the beams. When 

monochromatic, plane polarized light passes through a thin film, multiple reflections at 

the interfaces give rise, generally, to two main beams of light advancing in opposite 

directions. At any point within the medium, these beams will interfere and give rise to a 

resultant electric field E and a resultant magnetic field H. Considering the light to be 

incident normally to the surface; the field vectors are parallel to the interfaces. 

 

The arrangement is illustrated in Fig. 2.3.  At this stage it is convenient to 

introduce a new notation. We denote waves in the direction of incidence by the symbol 

+ (that is, positive-going) and waves in the opposite direction by – (that is, negative-

going). The interface between the films and the substrate, denoted by the symbol “b”, 
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can be treated in exactly the same way as the simple boundary in a and b. We 

consider the tangential components of the fields. There is no negative-going wave in 

the substrate and the waves in the film can be summed into one resultant positive-

going wave and one resultant negative-going wave. At this interface, then, the 

tangential components of E and H are 

  bbb EEE 11                                                                                          (2-8)                                                    

  bbb HHH 1111                                                                                 (2-9) 

where 1 is the optical admittance of the thin film layer which is defined by the optical 

admittance of the free space ( 377/10  siemens) as: 

011  n                                                                                                (2-10) 

 

At normal incident angle, the optical admittance is usually normalized to equal 

the same numerical magnitude as the refractive index. At oblique incidence angles, the 

wave is split in two plane polarized components. One with the electric vector in the 

plane of incidence, known as p-polarized (TM, transverse magnetic field) and one with 

electric vector normal to the plane of incidence, known as s-polarized (TE, transverse 

electric field), as shown in Fig. 2.4. 

Sabstrate

Incident
light

Reflected
lightP-polarized

S-polarized

0

 

Fig. 2.4: The light at oblique incidence angles, the wave is split two plane polarized 
components. 
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 The optical admittance at oblique incidence angle can be expressed as:  

1011 cos n            for s-polarization                                                   (2-11) 

1011 cos/)(  n       for p-polarization                                                   (2-12) 

where 1  is the angle of incidence in the thin film layer, which is related to the angles of 

incidence in the medium of incidence 0 and in the substrate sub  by Snell’s laws 

(Heavens, 1955): 

1100 sinsin  nn                                                                                     (2-13) 

subsubnn  sinsin 11                                                                                 (2-14) 

       From equations (2-8) and (2-9), where we are neglecting the common phase 

factors we can obtain the expression for the traveling waves (Ulaby, 1999): 
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Hence: 

 bbbb EHEH 1111 2

1                                                                     (2-17) 

 bbbb EHEH 1111 2

1                                                                   (2-18) 

these are the amplitude terms for the fields at the interface “b”. A wave traveling inside 

the material exponential fall-off amplitude, therefore the expression of the fields at 

interfaces “a” are the same as at “b” but affected by the appropriate phase factors. The 

phase factor of the positive-going wave will be multiplied by )exp( i where 

 11 cos2 dn  while the negative-going phase factor will be multiplied 

by )exp( i . The values of E and H at the interface are now, using equations (2-15) to 

(2-18), 
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The resultant field in “a” are:  
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This can be written in matrix notation, defining the whole thin film between the 

‘boundary a’ and ‘boundary b’ as shown in Fig. 2.3 which is given by: 





















cossin

sin
cos

1

1

i

i

                                                                                    (2-25) 

Therefore, we can write the matrix for single layer as,  



































b

b

a

a

H

E

i

i

H

E





cossin

sin
cos

1

1                                                             (2-26) 
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Since the tangential components of E and H  are continuous across a 

boundary, and since there is only a positive-going wave in the substrate, this 

relationship connects the tangential components of E and H at the incident interface 

with the tangential components of E and H , which are transmitted through the final 

interface. The 2x2 matrix on the right-hand side of equation (2-26) is known as the 

characteristic matrix of the thin film. 

 

We define the input optical admittance Y of the assembly as 

a

a

E

H
Y                                                                                                      (2-27) 

when the problem becomes merely that of finding the reflectance  R of a simple 

interface between an incident medium of admittance 0 and a medium of admittance 

Y , i.e. 

Y

Y
r





0

0




                                                                                                (2-28) 

*

0

0

0

0
























Y

Y

Y

Y
R







                                                                            (2-29) 

We can normalize equation (2-26) by dividing by bE to give 

b
sub

a E
i

i

C

B

Y
E 
































 1

cossin

/)sin(cos1

1

1                                   (2-30) 

B and C , the normalized electric and magnetic fields at the front interface, are the 

quantities from which we will be extracting the properties of the thin-film system. 

Clearly, from (2-27) and (2-30), we can write 




sin)/(cos

sincos

1

1

sub

ubs

i

i
Y




                                                                 (2-31) 

and from (2-29) and (2-31) we can calculate the reflectance. 
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Let another film be added to the single film of the previous figure so that the 

final interface is now denoted by c, as shown in Fig. 2.5.  

E a



1 E b



1

E b



1

E a



1 H b



1

H b



1

H a



1

H a



1

Boundary

a
Boundary

b

SubstrateLayer
1

Air

n0 n1 n s

Boundary

c

Layer
2

2n

H c



1

E c



1

H c



1

E c



1

 

Fig. 2.5: Schematic diagram showing the interfaces of double layer structure. 

 

The characteristic matrix of the film nearest the substrate is  













222

222

cossin

/)sin(cos





i

i
                                                                             (2-32) 



























c

c

b

b

H

E

i

i

H

E

222

222

cossin

/)sin(cos




                                                    (2-33) 

and the characteristic matrix of the double film assembly becomes 







































c

c

a

a

H

E

i

i

i

i

H

E

222

222

111

111

cossin

/)sin(cos

cossin

/)sin(cos







                      (2-34) 
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




























subi

i

i

i

C

B





 1

cossin

/)sin(cos

cossin

/)sin(cos

222

222

111

111              (2-35) 
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Y , is as before equal to BC / , and the amplitude reflection coefficient and the 

reflectance are the same equations above. The result can be immediately extended to 

the general case of an assembly of N  layers. 

 

2.3.2 Multilayer calculation  

2.3.2.1 Distributed Bragg Reflector (DBR) mirror 

 
The distributed Bragg reflector (DBR) with high reflectance should help to develop 

devices such as lasers and light emitting diodes. DBR mirror can simply be described 

as a stack of thin film structure of alternating high and low refractive index films, all one 

quarter wavelength thick (Fig. 2.6). By employing all layers with quarter wavelength 

thickness with alternating high and low refractive indices, upon incidence the light 

beams reflected at successive boundaries throughout the assembly are equal in phase 

when they reappear at the front surface. These will recombine constructively producing 

high reflectivity with phase change upon reflection of 180o or 0o (Macleod, 2000). This 

effect leads to the formation of a so-called stop band in the vicinity of the Bragg 

wavelength. 

 

   For ideal mirror without any absorption, the reflectivity can reach any desired 

value between 0% and almost 100% by adding layer pairs and thereby decreasing the 

mirror transmission. A highly reflective DBR allows the fabrication of efficient vertical 

cavity surface emitting lasers (VCSEL) (Roux et al., 1999) and bright light emitting 

diodes (LED) (Uusimaa et al., 1998). Successful examples include both II-VI and III-V 

compound semiconductor-based VCSELs and bright LEDs (Beak et al., 1999, Naranjo 

et al., 2002). DBR mirrors are more commonly studied in LEDs than metallic mirrors 

since its advantages over metallic mirrors are, it is wavelength selective and it also 

provide better enhancement factor upon light emission. Its reflectivity can easily be 



 21

controlled and increasing reflectivity doesn’t result in absorption losses compared to 

metallic mirrors.  

 

This section will look into the DBR design and investigate its reflectivity and 

transmission properties. The parameters that determined and performance high 

reflectivity are thickness, number of layers and optical parameters. 

 
 

High index

Low index

Substrate

Incidence light

Reflected light

 

Fig. 2.6: DBR mirror structure 

 

Various methods have been developed to calculate the multilayer reflectivity 

and the most convenient method is the matrix method. The matrix method for 

calculating the spectral coefficients of the layered media was first suggested by 

(Berreman, 1986) and has been widely employed ever since. 

 

Let us assume a multilayer coating consisting of a finite number of 

homogeneous and isotropic layers (see Fig. 2.7). 
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Fig. 2.7: Multilayer coating including mth homogeneous layers 

 

 

In Fig. 2.6, the geometrical thickness of the layers are denoted as 

mddd .........,, 21 , and their refractive indices as mnnn ........,, 21 , where m denotes the 

total number of layers. Next, the incident angle will be denoted as 0 and its refractive 

index as 0n . Refractive index of the substrate, it will be denoted as subn . By applying the 

boundary condition for the propagation of an electromagnetic (EM) wave at the 

interface between the ( 1m ) and the m th layer, the matrix expression is: 































m

m

mmm

mmm

m

m

H

E

i

i

H

E





cossin

/)sin(cos

1

1                                              (2-36) 

0 mm n                                                                                              (2-37) 

For N-layers the expression is  



















 N

N
N

m
m H

E
M

H

E

10

0                                                                             (2-38) 

where  











mmm

mmm
m i

i
M




cossin

/)sin(cos
                                                         (2-39) 
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and  

s
sN

N E
H

E


















1

                                                                                    (2-40) 

where m  is the phase shift of the EM wave at the interface obtained from equation (2-

4). From equation 2-37 we can obtained m and s  which is the optical admittance of 

the m th layer and the substrate respectively. Equation 2-40 can be expressed as: 

 

s
s

N E
Y

E 

















11

                                                                                     (2-41) 

 Where Y is the characteristic optical admittance defined by equation 2-37. For a 

general case of assembly of N layers, the characteristic matrix is simply the product of 

the individual matrices taken in the correct order and is denoted by: 

 


































 
 s

N

m mmm

mmm

i

i

C

B


 1

cossin

/)sin(cos

1

                                          (2-42) 

 

B and C are the total electric and magnetic field amplitudes; their ratio has the 

dimension of admittance. 

BCY /                                                                                                   (2-43) 

Y is the admittance presented to the incident wave by the coating. The admittance 

presented by simple interface between two media is indistinguishable from the 

reflectance at that interface. This concept is used to calculate the reflectance of an 

assembly of thin films and the transmittance and be derived through the relationship of 

)1( RT  . The expressions for reflectance, transmittance and phase changes on 

reflection are given respectively as follows: 
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










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


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
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0
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
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

                                                                       (2-44) 




))((

Re4

00

0

CBCB
T sub




                                                                         (2-45) 

Where “  “denote the conjugate and the phase changes on reflection are then given 

by: 

 













CB

CB

0

0arg



                                                                                   (2-46) 

 

2.3.2.2 MATLAB simulation programs 
 

Part of this thesis is to model and investigate the DBR mirror properties of 

microcavity enhancement. It was decided that simulation via a software program would 

be the best option. Previous section showed that the theory and formulas could be 

used to accurately determine the reflectivity performance of an assembly of layers.  

 

The design of thin-film multilayer coating often specifies the transmittance and 

reflectance values at a number of wavelengths, angles, and polarizations of the 

incident light. Hence, the MATLAB programs are written as a function of the 

parameters that can be used to reach these goals, such as the number of layers in the 

multilayer, the layer thicknesses, and the refractive indices of the individual layers and 

surrounding media. The following sections outline the basic structure of MATLAB 

programs a step by step approach will be adopted using equation shown in the 

previous section. The MATLAB source codes for calculating reflectivity of the DBR 

mirrors are enclosed in Appendix A. MATLAB source codes for phase shift of DBR 

mirrors are enclosed in Appendix B. The progressive steps, taken to obtain the 

program are outlined in the flowchart of Fig. 2.8.  
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