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� The intellectual disability group does not differ from the control group in brain entropy.
� The intellectual disability group has significant slower reaction times than the control group.
� Slow reaction times in the below-average IQ group is associated with increased EEG regularity.

a b s t r a c t

Objective: Intellectual disability (ID) is described as a general slowness in behavior and an inadequacy in
adaptive skills. The present study examines whether behavioral slowness in ID could originate from
abnormal complexity in brain signals.
Methods: Participants (N = 29) performed a reaction times (RTs) task assessing their individual informa-
tion processing speeds. Half of the participants had moderate intellectual disability (intelligence quotient
(IQ) < 70). Continuous electroencephalogram recording during the resting period was used to quantify
brain signal complexity by approximate entropy estimation (ApEn).
Results: For all participants, a negative correlation between RTs and IQ was found, with longer RTs coin-
ciding with lower IQ. This behavioral slowness in ID was associated with increased temporal regularity in
electrocortical brain signals.
Conclusions: Behavioral slowness in ID subjects is closely related to lower brain signal complexity.
Significance: Brain signal ApEn is shown to correspond with processing speed for the first time: in ID par-
ticipants, the higher the regularity in brain signals at rest, the slower RTs will be in the active state. ID
should be understood as a lack of lability in the cortical transition to the active state, weakening the effi-
ciency of adaptive behavior.
� 2020 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. This is an open

access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

1.1. Intellectual disability & general aim

Intelligence can be defined as general mental abilities related to
reasoning, problem solving, and learning. Significant limitations in
intelligence affect approximately 3% of the world population
(World Health Organization, 2001), and the prevalence of physical
disabilities (+~30%), mental health impairments (+~30%), and
hearing (+~10%) and vision impairments (+~20%) is higher in these
individuals than in individuals in the general population
(Ouellette-Kuntz, 2005). Intellectual disability (ID) is mainly
described as the presence of a below average intellectual quotient
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(IQ < 70–75, APA, 1994) (Luckasson et al., 2002, Schalock and
Luckasson, 2004), appearing in early development and combining
with adaptive deficits in daily life in adulthood (i.e., communica-
tion, social skills and self-care). The diagnosis of ID is mainly based
on psychometric evaluation scores. The intelligence quotient dis-
tribution of the general population is 100 ± 30. In a large propor-
tion of cases, the cause of ID is unknown, but it has been
estimated that 40–60% of all the etiologies of patient deficits could
be explained by genetic factors, pre- or postnatal insults, an
unhealthy environment or care provided by relatives. Most studies
have presented male-to-female ratios ranging from 40 to 80% male,
depending on the considered samples (Maulik et al., 2011), reflect-
ing a sex effect in genetic factors and enhanced vulnerability in the
male central nervous system (McLaren and Bryson, 1987). Below
average intelligence is also described in most developmental
genetic syndromes that are known to be highly prevalent in males,
such as Fragile X, Aarskog-Scott, Rett, and Börjeson-Forssman-
Lehmann syndromes and autistic spectrum disorders (Ropers and
Hamel, 2005). This wide range of causes for below average intelli-
gence poses the question of whether dysfunction in the whole cen-
tral nervous system, including metabolic/genetic abnormalities, is
related to intellectual disability. Many pathogenic processes could
result in low IQ scores, and today, more than 350 potential causes
of low IQ have been enumerated. As a consequence of this hetero-
geneity, few neuroimaging studies have focused on the shared
cerebral specificities of ID patients. However, when considered as
a unitary syndrome of generalized impairment, some specific
behavioral patterns can be revealed, particularly related to the
slowness of behavioral responses to a simple stimulus. This atypi-
cal slowness, demonstrated by a high variance in reaction times
(RTs), is a well-known effect that has been reported for a long time
in ID individuals (Baumeister and Kellas, 1968, Berkson, 1960,
Deary, 2000, Nettelbeck and Brewer, 1981). Our aim here was to
examine whether this recurrent behavioral slowness in ID origi-
nates from specific abnormalities in the flow of brain signal trans-
mission. In particular, because the presence of less ‘‘healthy noise”
has been described in brain signals at rest in neurological and psy-
chiatric patients, here, we wanted to examine whether this is also
the case in ID individuals. The relationship between this signal
irregularity and the slowdown in RTs was the focus of our
investigation.

1.2. Behavioral slowness

Despite the undeniable gap that could be observed between the
tool of measurement [Spearman’s g factor (Spearman, 1904), WAIS
IQ (Wechsler, 1981)] and the trait being measured (human intelli-
gence), experimental studies have revealed that intelligence scales
can be linked to the general speed of behavioral processing. In clin-
ical and nonclinical populations, individual IQ scores are highly
correlated with the length and variance in RTs durations
(Berkson, 1960, Jensen, 1980, 1992, Kail, 1992). The higher the
intelligence score is, the faster the RTs are; this is the case regard-
less of whether simple or choice RTs tasks are used (Lynn and
Vanhanen, 2002).

A general correspondence between intellectual fitness and neu-
ral properties has been proposed to explain this RTs slowdown in
ID. The neural hypothesis considers that the link between RTs
and IQ depends on the speed of processing between the appear-
ance of a stimulus and the behavioral response. The speed of this
transmission depends on the integrity of neurobiological processes
such as nerve conduction velocity and synaptic transmission
(Vernon and Mori, 1992) and myelin integrity (Miller, 1994). The
neuronal adaptation hypothesis, in contrast, posits the idea that
there are individual differences in speed reactions in the brain’s
economy mode and during functional arousal, and differences in
functional brain connectivity (Deary, 2000, Song et al., 2008). From
this perspective, brighter subjects do not allocate more processing
power when performing highly repetitive, predictable, or easy cog-
nitive tasks (i.e., train of regular clicks) (Barrett and Eysenck, 1994,
Haier et al., 1988, Neubauer and Fink, 2009, Robinson, 1989,
Robinson and Behbehani, 1997) but do invest more cortical
resources when the task difficulty increases. In contrast, low IQ
individuals may be forced to allocate similar processing power
regardless of the stimulus’s predictability or complexity, as has
been suggested in Down Syndrome studies (Jensen et al., 1981,
Schafer and Peeke, 1982). The fundamental common idea here is
the determination of the individual speed of information process-
ing in efficient intelligence by the neural transmission efficiency
(i.e., neural errors or quality of conductivity) and the functional
mode (dynamics of resources), but so far, few neuroimaging stud-
ies have focused on transmission in those with below average
intelligence.

1.3. Brain oscillations related to intelligence at rest

Regarding nonpathological individual differences in intelligence
scales, evidence has supported the idea that during rest, cerebral
recruitment is slower in brighter individuals than in individuals
with lower intelligence. Consequently, higher synchronicity in
the brain’s alpha oscillations (Doppelmayr et al., 2005) and lower
regional BOLD signal activation have been seen in high IQ individ-
uals during relaxation but not in low IQ individuals (Neubauer and
Fink, 2009). In this way, the impairment of general intelligence has
been proposed to be related to more effortful cortical involvement
during active states (Deary et al., 2010) and less refreshing rest
states. As synchronous neuronal discharges in the alpha frequency
range (8–13 Hz) represent rhythmic and ample potential fluctua-
tions, known as the noncoding state of processing, increased power
reflects a slowdown in cerebral activities. As a consequence, during
effortful tasks, highly efficient subjects show higher transfer
speeds between brain areas (Li et al., 2009, Miller, 1994,
Robinson, 1989) and reach higher neural activation levels, corre-
sponding to more desynchronized neural signals than subjects
with low intelligence (Neubauer and Fink, 2009).

1.4. Entropy and the pathological brain

The electroencephalographic (EEG) approximate entropy
(ApEn) estimation method (Pincus, 1991) consists of recording a
few dozen seconds of spontaneous brain signals over the scalp of
subjects and then extracting signal irregularities in the time series
related to electrocortical fluctuations. The ApEn provides an esti-
mation of the complexity and irregularity of the EEG signals.
Steyn-Ross and colleagues (Steyn-Ross et al., 1999) matched the
regularity in EEG to intracortical connectivity. Research findings
have demonstrated that patients with neurological (Abasolo
et al., 2006, Abásolo et al., 2005, Li et al., 2014) or psychiatric dis-
orders (Akar et al., 2016, Kang et al., 2019, Pincus, 2006) display
lower brain signal complexity than the general population. These
findings all suggest that decreased EEG complexity at rest could
be related to increased dysfunction. Based on numerous studies,
the ApEn has been shown to correlate with subclinical changes
and is thought to be predictive of subsequent clinical changes
and individual longitudinal evolution, such as physiological aging,
postsurgical recovery, and medical treatment. This loss of com-
plexity also corresponded to fMRI entropy in the BOLD signal
(Hager et al., 2017, Roy et al., 2018).

The advantage of this method of analysis is that it considers
background EEG activity as an informative time series, unlike the
more traditional methods seeking to eliminate as much ‘‘noise”
as possible from the raw data before analysis (evoked potentials,
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analysis frequency). Thus, ApEn has been proposed as a solution to
the problem of noise contamination in EEG data and has been suc-
cessfully applied to relatively small and noisy data sets (Natarajan
et al., 2004, Pincus, 1991, Pincus and Goldberger, 1994). Further-
more, this method of analysis allows us to overcome any power
or neuronal synchronization deficiencies related to a stimulus or
a motor response and, thus, seems to be particularly appropriate
for the population studied here, which is known to have difficulty
concentrating and staying still and suffers from multiple sensory
impairments.

Behavioral slowness and inefficiency in adaptive skills that
characterize intellectual disability have been depicted for several
developmental pathologies without finding consistent explana-
tions. Our objective was to examine whether brain signal singular-
ities related to behavioral slowdown correspond to intellectual
disability. Indeed, Alzheimer’s disease patients, for whom neural
connectivity has been shown to decrease, not only demonstrate
psychomotor slowness (Miller, 1974, Pirozzolo et al., 1981) but
also general impairments in surface EEG signals (Jeong, 2004,
Jeong et al., 2001) and abnormally low cortical signal complexity
compared to controls (Abasolo et al., 2008). Because white matter
integrity has been proposed to be related to general intelligence
(Song et al., 2008), differences in ApEn were expected between par-
ticipants with weak and normal intelligence. We hypothesized that
the approximate entropy, i.e., an index of brain signal complexity,
would be lower in the intellectually disabled group than in the
control group, in line with the supposed global brain connectivity
impairment and alterations in intracortical flow in the ID group.
2. Methods

2.1. Subjects

Twenty-nine young adults took part in the study, 14 (11 males)
participants with moderate intellectual disability (IQID = 57 ± 11)
and 15 age- and gender-matched healthy controls (IQHC = 109 ± 11
). ID participants were recruited from a group of patients who were
followed by the mental development psychiatry mobile team of the
Community Psychiatry Service at the University Hospital Center of
Lausanne, Switzerland. IQ was individually evaluated with the
WAIS-III instrument (Wechsler, 1981) by trained psychologists in
the psychiatric department at the Lausanne University Hospital.
All the ID subjects lived near their parents and/or were affiliated
with an extended-care mental institution in the Lausanne area.
No recognizedmedical or psychiatric pathologies other thanmental
retardation were diagnosed (DSM-IV-TR criteria, American Psychi-
atric Association, 2001), albeit most participants had been taking
pharmaceutical medication since adolescence. All of the subjects
personally, or through their legal representative, gave their written
informed consent to participate in the study. Of the 14 subjects in
the experimental group, one was excluded from the EEG results
(contamination of vagus nerve electrical stimulation). The control
subjects were volunteers who were recruited from the hospital
(employees such as secretaries, human resources employees, and
administrative, medical and educational staff) or from vocational
colleges. A medical questionnaire confirmed the good health of
the participants and the absence of any history of neurological dis-
ease in their families. The experiment was created with respect to
the Declaration of Helsinki and was accepted by the Human
Research Ethics Committee of the Canton de Vaud, Switzerland.
2.2. Apparatus and procedure

The participants were seated comfortably in a dimly lit room in
front of a table onwhich therewas an HP computer screen (eyes-to-
screen distance = 57 cm). The subjects were instructed to stay still
and to relax until the beginning of the experiment. Sixty-four active
pin-type electrodes (BioSemi ActiveTwo EEG System acquisition,
BioSemi B.V. WG-Plein 129 1054SC Amsterdam) had been attached
to the Quick-Cap according to the 10–20 international position sys-
tem (Jasper, 1958). The feedback loop provided by BioSemi Acti-
veTwo was used to ensure valid measurements. This system
allows to avoid any abnormal range before recordings (common
mode voltage) and to evaluate the good conductivity of signal at
all electrodes ‘sites (electrodes offset visualization). A continuous
electroencephalogram was then recorded during the resting state
(awake with eyes open) to be used offline in the estimation of the
complexity of EEG resting activity. The EEG data were continuously
acquired at a sampling rate of 4096 Hzwith ActiView software (ver-
sion 5.34) through 0.5–100 Hz filters.

The RTs task was the Poffenberger paradigm (Poffenberger,
1912), which measures participants’ response latencies to a visual
stimulus, usually a flash of light, appearing an equal amount of
times in the right or left visual field, thus requiring an equal num-
ber of left or right hand responses. This paradigm has been selected
for the population with mild intellectual disability because of its
simplicity, as there is no ambiguity in the instruction: ‘‘As soon
as picture appears on the screen, please press the button as fast
as possible”. It allows the easy testing of both visuals fields and
the RTs of both hands and lateralized control impairment in this
population. Here, the protocol was adapted, and the flashes were
replaced by 140 different black line drawings (objects, animals,
body parts) that were presented one by one on a uniform white
background (3000 ms maximum duration). Next, the target stimu-
lus onset after the preceding response occurred after a random
interval between 500 ms and 1000 ms. For each trial, a black
5 mm by 5 mm fixation cross (‘+’) was centered on the monitor
screen. The subjects were instructed to respond as fast as possible
when an image appeared while maintaining their gaze on the cen-
tral fixation point. Each image was lateralized to the left or the
right of the central fixation point (8� of the visual angle) and
required the unimanual push of the button to disappear. Half of
the trial responses were given with the right hand using the right
button (Cedrus RB-530 Copyright 2009 Cedrus Corporation, P.O.
Box 6309, San Pedro, CA 90,734 – USA), while the other half of trial
responses were given using the left hand on the left button. The
stimuli and responses were presented and recorded with E-Prime
2.0 Professional software (Copyright � 2007 Psychology Software
Tools, Inc.).

2.3. Analysis

Reaction times: The means and standard deviations of all the
data (for both hands and visual fields) were calculated for each sub-
ject after excluding outlier responses (150 ms < RTs > 1000 ms).
Significant differences between the populations were assessed
using Student’s t-test.

EEG irregularity quantification: The EEG signal was re-
referenced offline to virtual ear lobes (B.E.S.A. GmbH, Germany)
and bandpass filtered (0.5–40 Hz) using a zero-phase shift
second-order Butterworth filter. We also downsampled to 256 Hz,
in accordance with the methods described by Abasolo and col-
leagues (Abasolo et al., 2006). The EEG data that were free from
electro-oculographic and movement artifacts (amplitudes
below ± 120 lV) were carefully selected for nonlinear analysis. Fur-
ther data pre-processing was not applied as the ApEn calculation is
robust or even insensitive to extreme values and artifacts (Pincus,
2001): Extremely ample and minor artifacts have little impact on
the ApEn calculation if they appear infrequently. The idea is also
that the presence of broadband activity of EEG is required for a
proper evaluation of complexity (Azami et al., 2017). Additionally



Fig. 1. Intelligence quotient (IQ) was significantly lower for the intellectual
disability subjects (ID, block dots: 57 ± 11SD) than for the healthy control subjects
(HC, gray squares: 109 ± 11SD; p < .001). No correlation between IQ and the EEG
approximate entropy (ApEn) was noted.
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the parameter r of the ApEn formula plays de facto the role of filter:
noisy data of a magnitude below the tolerance width of r (0.25 � st
andard deviation) will have no incidence in the calculation (Pincus,
1991; Pincus, 2001; Abásolo et al., 2005). As a check for the pres-
ence of an acceptable signal-to-noise ratio (SNR) in the EEG signals
of both groups, evoked potentials were calculated stimulus-locked
on the images presentation, individually for each participant. On
average, 86% ± 16 SD of raw signal were retained (59 epochs/70),
without groups distinction (p = .57). The SNR was equivalent to
1.97+/-0.28 SD (B.E.S.A. GmbH, Germany), and comparable in both
groups (p = .75), providing a satisfactory estimate of 2:1 ratio
between the signal power and noise.

Then, for entropy estimation, EEGs at rest were divided into 5 s
epochs (~1280 data points) and exported for electrodes P7, P3, POz,
P4 and P8 as ASCII files for offline analysis. A total average of
35 s ± 2 (9000±~500 data points) was used for each electrode
and for each subject to estimate the approximate entropy, which
is considered to be highly sufficient for classifying such complex
systems (at least 1000 data points are advised) (Pincus, 1991).
The number of raw EEG data points used to estimate the entropy
was equivalent between both groups (t-test applied for indepen-
dent variables; p > .7).

The MATLAB routine previously used by Pincus (1991) was then
applied to each time series for each subject independently (see the
online Supplementary Material). ApEn can be defined as the nega-
tive logarithmic probability that a sequence of length m predicts a
new sequence of m + 1 points to within an error range of ’r’, typi-
cally set at 0.25 � standard deviation. In a regular signal, most
sequences will thus successfully predict the next data points, and
the ApEn will be low. In an irregular signal, there will be few suc-
cessful predictions, and the ApEn will be correspondingly high
(Pincus and Goldberger, 1994, Sleigh et al., 2004).

According to Pincus (Pincus, 2001) and Abásolo et al (Abásolo
et al., 2005), ApEn provides effective discriminatory capability in
instances in which spectral analyses exhibit minimal distinctions.
This entropy estimator might be complementary to spectral and
autocorrelation analyses to reveal hidden characteristics of biosig-
nals that can remain undetected with linear (spectral) analysis.
This routine has been introduced to quantify regularity in the data
(in short and noisy data sets) without any a priori knowledge about
the system generating them (Pincus and Goldberger, 1994).

The ApEn values for the ID subjects and controls were compared
on the 5 posterior electrode sites in a 2 (groups) � 5 (electrodes)
factorial design analysis of variance because these electrodes rep-
resent the brain default network (in which alpha activity is stron-
ger) and will avoid contamination from eye movement artifacts.
Differences were considered to be statistically significant if the P
value was lower than 0.05. Post hoc comparisons were performed
with Fisher’s LSD test, and the normality of the data and homo-
geneity of variance was assessed with the Shapiro-Wilk test and
the Brown & Forsythe test, respectively, before performing ANOVA.
Then, a multilinear regression analysis was conducted to predict
RTs duration, with IQ, ApEn and age as independent variables. In
this last analysis, the average ApEn of the 5 posterior electrode
sites was used. All analyses were performed with the software
StatSoft, Inc. (2014) STATISTICA (data analysis software system),
version 12.

3. Results

Both groups (experimental group (NID = 14, 11 males) and
healthy controls (NHC = 15, 11 males)) were comparable
(pmin = 0.53) in age (ID = 33 ± 11 SD; HC = 35 ± 9 years old), skull
perimeter (ID = 57.5 ± 2.7; HC = 57.5 ± 1.5 cm), height (ID = 174 ± 9;
HC = 174 ± 9 cm), weight (ID = 79 ± 20; HC = 77 ± 17 kg) and BMI
(ID = 26 ± 5; HC = 25 ± 5). IQ was significantly lower in ID individ-
uals (57 ± 11) than in HCs (109 ± 11; p < .001). Parametric assump-
tions were tested with success for all variables. The Shapiro-Wilk
W test was significant only for the age distribution of the ID group.

3.1. Reaction times

Outlier RTs (150 ms<>1000 ms), representing an average of
5/140 for the ID subjects and 0.5/140 for controls, were excluded
from the calculations. The RTs were longer for the ID subjects
(309 ms ± 69) than for the HCs (270 ms ± 27; p < .05), with almost
twice the standard deviation in the ID subjects (97 ± 40) than in the
HCs (48 ± 9 ms; p < .001). The variance was higher in the ID sub-
jects than in the HCs (Brn-Fors F(1,26) = 17.9; p < .001). When com-
bining all participants (N = 28), RTs were negatively correlated
with IQ (r = �0.43, p < .03), indicating that the processing speed
tended to decrease with the decline in IQ. The RTs StDevs corre-
lated with IQ even more clearly (r = �0.73; p < .001).

3.2. Brain signal complexity

The ApEn values in the ID group did not differ from those in the
HC group (p = .48; ApEnI.D.=0.835 ± 0.12, ApEnCTRL = 0.805 ± 0.12).
When all the participants’ data were combined, IQ and ApEn did
not seem to be related (Fig. 1), and no correlation was found
between RTs and ApEn (p = .15).

However, when considered separately, the groups showed dif-
ferent patterns. The results of multilinear regression analyses, with
RTs duration as the dependent variable and IQ, ApEn and age as
independent variables, were significant for the ID group ((F(3,
12) = 3.95, p < .05, R2 = 0.57, CI 95% (1.25–0.13)). Only ApEN pre-
dicted a significant increase in RTs duration (see Fig. 2left). Thus,
for ID patients, the lower the brain signal complexity, the longer
the RTs were. The other predictors were not significant (see
Table 1a). For the HC group, the model was not significant
(R2 = 0.18, n.s. see Fig. 2right, Table 1b).

4. Discussion

Our objective was to determine whether brain signal irregular-
ities in individuals with intellectual disabilities were less promi-
nent than in healthy controls and whether this difference could
explain the specific behavioral slowdown related to ID. We found
no differences between the ID subjects and the controls in their



Fig. 2. Left. EEG signal complexity estimates by approximate entropy (ApEn) predicts reaction times length for intellectual disability subjects (N = 13). Right. No such effect is
found for healthy control subjects (N = 15).

Table 1
Multilinear regression analyses.

Predictor b R 95% CI for p

a. Predicting reaction times of intellectual disability subjects
Intelligent Quotient �0.07 �0.06 �0.59, 0.44
EEG approximate entropy estimation �0.69* �0.74** �1.25, �0.13
Age 0.12 0.43 �0.46, 0.69

b. Predicting reaction times of healthy control subjects
Intelligent Quotient �0.38 �0.40 �1.03, 0.27
EEG approximate entropy estimation 0.13 0.25 �0.51, 0.76
Age 0.09 0.02 �0.52, 0.70

*p < .05; **p < .01.
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respective brain signal complexities, with no relation to IQ.
However, strong negative correlations between posterior signal
irregularities and RTs were found in the ID group.

4.1. Brain signal complexity does not differ between HC and ID groups

First, this study provides strong evidence in favor of the feasibil-
ity of EEG for investigating and extracting common cerebral factors
in ID patients using EEG nonlinear analysis. The neural activations
that characterize distributed and interconnected brain areas during
the resting state have been poorly described in relation to intelli-
gence disability. However, two studies from the 1980s showed that
electrical brain dynamics in individuals with low intelligence were
distinguished by higher coherence in interconnected cortical area
activations (Gasser et al., 1987, Thatcher et al., 1983). One of the
reasons why we did not find any differences in our results may be
that the population here comprised adult ID subjects, not school-
aged ID subjects. In addition, EEG coherence analysis specifically
measures coupling between cerebral areas, while entropymeasures
the regularity of EEG signal information flow. From this point of
view, it seems important for us to emphasize the absence of a dis-
tinction between individuals with ID and individuals with normal
IQ within the general population. Thus, the decrease in entropy
described in many pathologies, e.g., in patients with Alzheimer’s
disease, even in the early stages, or in epilepsy, schizophrenia,
depression and mood disorders (Coronel et al., 2017, Glenn et al.,
2006, Li et al., 2008, Pincus, 2006, Urigüen et al., 2017), was not
observed in intellectual disability in our study.

4.2. Negative correlations between posterior signal irregularity and
RTs slowdown in ID

However, despite this point of correspondence between the two
groups, the ID population had significantly slower RTs than the
controls, an effect that was highly correlated with the level of
irregularity in the brain signal: the higher the regularity in the
brain signal at rest, the slower the RTs were in response to stimuli
in the active state. As this link between RTs and ApEn was not
found for all the individuals in both groups, it could not be consid-
ered representative of a general rule with a linear function. It
should be noted, however, that subjects with an IQ between 60
and 90 should be tested in future investigations to complement
our work and improve this interpretation. However, the correlation
between ApEn and processing speed in overt behavior could help
us better understand the origin of behavioral slowness and the dis-
rupted skills that characterize intellectual disability in the diagno-
sis of an IQ below 70.

First, these results supported our initial hypothesis of a possible
link between ID and brain signal regularity. More precisely, we
showed that the higher the cerebral signal regularity, the more
substantial the behavioral slowdown is. Given that this pattern
was valid only for the clinical population with lower than normal
IQs, one therefore wonders to what extent, if any, the ApEn values
of this population are similar to the norm, as differences in this
variable would indicate a resting state slightly different from that
of the control population.

Indeed, one of the intelligence impairment explanations states
that higher general arousal in the nervous system (Deary et al.,
2010) amounts to global inefficiency. From this perspective, here,
we wonder whether a higher level of activity occurring at rest in
ID individuals, i.e., resting hyperarousal compared to the cortical
resources at their disposal, would hamper the deployment of addi-
tional resources when sudden activity is needed. This explanation
resonates with the results of previous studies regarding intelli-
gence and neural efficiency (for review, see Neubauer and Fink,
2009). Therefore, the high predictability between ApEn during rest
and RTs slowness during the active state should be understood as
an impairment in the neural threshold permutation, more than an
intracortical flow dysfunction in ID, and as a lack of lability in cor-
tical activations in the active state, weakening the efficiency of
adaptive behavior.

These considerations would also fit, in a broader sense, with our
previous results concerning this particular population, noting that
a heightened general state of excitation in the autonomic nervous
system was identified at rest, producing normal-to-overactive
parasympathetic activities (Palix et al., 2017). These internal con-
straints could be responsible for an increase in sensory anxiety,
which is often reported in the case of sensory overload (Giuliani
et al., 2011). These observations were related to a level of subordi-
nation / vulnerability in these individuals, with high levels of per-
ceived stress and increased anxiety related to the abnormally
effortful inhibition of negatively induced emotions (Palix et al.,
2011), with good results being achieved with targeted therapeutic
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interventions (El Korh and Giuliani, 2016, Favrod et al., 2015,
Giuliani and Jacquemettaz, 2017). Indeed, poor intellectual skills
may interact with environmental speed and complexity in a way
that makes the world seem more threatening and keeps the alert
system overactivated, degrading the resting state.

Our study has a few limitations. The sample is small, and the
results should be interpreted with caution. However, the results
are promising and should be replicated in a larger sample. It would
be interesting to have a subgroup with IQ scores between 70 and
90, since the results are linear. Only the ApEn algorithm corre-
sponding to the embedded time series analysis has been used. Sup-
plementary algorithms could have been used to complete our
exploration, such as Fuzzy entropy or Sample entropy
(Amarantidis and Abasolo, 2019, Chen et al., 2009). Only visual
inspection has been used to avoid artefacts. The EEG data that were
free from electro-oculographic and movement artifacts were
selected for the analysis. However, resting-state EEG of subjects
can be influenced by other factors, which can be not be necessarily
identified by data preprocessing (Kang et al., 2019). Finally, ApEn
analysis cannot be considered as independent of other EEG dimen-
sions such as spectral power. Thus, possible power confounds can-
not be excluded. Equally, EEG reference choice and skin
preparation remain probably relevant issues in order to reduce
noisy reference which might produce confounding ApEn values.
5. Conclusion

Together, our results indicate that in addition to being useful for
psychiatric or neurological diagnoses, brain signal irregularity esti-
mation by nonlinear EEG analysis may be used as a marker reflect-
ing unusual processing speed inefficiency. We speculated that
signal irregularity in the ID group during the resting state, although
similar to that of controls, could restrict brain efficiency and pro-
duce impairments in smooth adaptive behaviors in the active state.
This speculation is in agreement with conclusions from ApEn BOLD
signals in fMRI showing improvements in health-related quality of
life and reduced depression. A healthy brain that is able to wander
suggests flexibility in thinking (Lin et al., 2019, Shan et al., 2018). A
more general hyperarousal of the neural alert system at rest in
intellectual disability could be the origin of and could coincide
with such a pattern; thus, hyperarousal must be taken into account
in appropriate therapeutic follow-up from an early age. To our
knowledge, this is the first time that cortical entropy has been
shown to be correlated with a behavioral measure.
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