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Controlling spatiotemporal pattern formation
in a concentration gradient with a synthetic
toggle switch
Içvara Barbier1 , Rubén Perez-Carrasco2,3,* & Yolanda Schaerli1,**

Abstract

The formation of spatiotemporal patterns of gene expression is
frequently guided by gradients of diffusible signaling molecules.
The toggle switch subnetwork, composed of two cross-repressing
transcription factors, is a common component of gene regulatory
networks in charge of patterning, converting the continuous infor-
mation provided by the gradient into discrete abutting stripes of
gene expression. We present a synthetic biology framework to
understand and characterize the spatiotemporal patterning prop-
erties of the toggle switch. To this end, we built a synthetic toggle
switch controllable by diffusible molecules in Escherichia coli. We
analyzed the patterning capabilities of the circuit by combining
quantitative measurements with a mathematical reconstruction of
the underlying dynamical system. The toggle switch can produce
robust patterns with sharp boundaries, governed by bistability and
hysteresis. We further demonstrate how the hysteresis, position,
timing, and precision of the boundary can be controlled, highlight-
ing the dynamical flexibility of the circuit.
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Introduction

Synthetic biology aims to engineer living organisms with standard-

ized and modular circuits that perform their functions in a program-

mable and predictable way (Brophy & Voigt, 2014; Cameron et al,

2014; Purcell & Lu, 2014). In addition to the promise of providing

new technologies for medical and industrial applications (Nielsen &

Keasling, 2016; Gilbert & Ellis, 2018; Kitada et al, 2018; Xie &

Fussenegger, 2018), recapitulating biological processes synthetically

provides a route to understand the basic necessary mechanisms

underpinning biological functions and dissect their properties and

limitations (Bashor & Collins, 2018; Li et al, 2018).

Formation of spatiotemporal patterns of gene expression, a

crucial process during the development of multicellular organisms,

lends itself to be studied by such a synthetic biology approach.

During development, pattern formation is achieved through a set of

inter-connected gene regulatory programs encoding different non-

linear responses to spatial chemical cues. This multiscale complex-

ity makes the elucidation of the core principles of spatial patterning

very challenging in living embryos, calling for alternative

approaches capable of interrogating and comparing different pattern

formation mechanisms. The rise of synthetic biology has success-

fully allowed to build synthetic systems able to explore core pattern-

ing principles (reviewed in Davies (2017), Ebrahimkhani and

Ebisuya (2019), Luo et al (2019), Santos-Moreno and Schaerli

(2019b)). In addition, synthetic pattern formation is also an attrac-

tive technology for the engineering of living materials (Cao et al,

2017; Gilbert & Ellis, 2018; Nguyen et al, 2018; Moser et al, 2019)

and tissues (Davies & Cachat, 2016; Webster et al, 2016; Healy &

Deans, 2019).

One ubiquitous strategy of patterning during embryogenesis is

positional information, in which signaling molecules—the morpho-

gens—diffuse and generate concentration gradients. Specific gene

regulatory programs are able to translate the spatiotemporal infor-

mation provided by the local concentration of morphogen gradients

into robust gene expression patterns (Wolpert, 1996; Rogers &

Schier, 2011; Green & Sharpe, 2015). This mechanism has been

extensively used in synthetic systems to generate spatial patterns,

especially stripe patterns, which were produced through synthetic

feed-forward loops (Basu et al, 2005; Schaerli et al, 2014), inducible

promoters (Grant et al, 2016), and AND gates (Boehm et al, 2018).

One of the gene regulatory subnetworks able of interpreting posi-

tional information is the bistable genetic switch (Kraut & Levine,

1991; Alon, 2007; Lopes et al, 2008; Balaskas et al, 2012;

Sokolowski et al, 2012; Zhang et al, 2012; Srinivasan et al, 2014;

Perez-Carrasco et al, 2016; Zagorski et al, 2017), known as toggle

switch (TS; Fig 1A). The topology of this circuit consists of two
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cross-repressing nodes that result in the binary mutually exclusive

stable expression of one of the nodes. If the expression is influenced

by an external signal, the TS provides a mechanism to convert a

concentration gradient of this signal into stripes of gene expression

(Sokolowski et al, 2012; Perez-Carrasco et al, 2016). Examples of

TS-controlled pattern formation have been identified in the

mesoderm formation in Xenopus (Saka & Smith, 2007), Drosophila

blastoderm gap gene segmentation (Clark, 2017; Verd et al, 2019),

and neural specification in vertebrate neural tube (Briscoe & Small,

2015; Perez-Carrasco et al, 2018).

The non-linearity of gene regulatory networks such as the TS

impedes to intuitively understand the effect that different kinetic

parameters have on the dynamics of gene expression. For this

reason, during the last decade, gene regulatory networks have been

analyzed using tools from dynamical systems theory, associating

the stable steady states of the dynamical system with the attainable

gene expression states of a cell. Similarly, the change in the avail-

ability of cellular states as a consequence of perturbations of kinetic

parameters of the network can be associated with the bifurcations

of the dynamical system, providing information of the constraints of

the possible cellular states. Indeed, the dynamical system of the TS

has been thoroughly analyzed in silico, both in single cells and in

population-level patterning scenarios (Ferrell, 2002; Guantes &

Poyatos, 2008; Perez-Carrasco et al, 2016), showing that two possi-

ble stable states can coexist for a region of parameters inside which

the expression state of the cell will depend on the initial gene

expression—a phenomenon known as bistability. Under the control

of an external signal, this bistability leads to hysteresis in which the

state of the system is robust to signal changes, thus providing

memory to gene expression patterns (Wang et al, 2009). Interest-

ingly, the analysis of the steady states of the dynamical system

provides not only static information of the cellular states, but also

information on the transient dynamics of gene expression by which

the states are attained (Verd et al, 2014). Therefore, a map of the

underlying dynamical system is critical to fully understand the

dynamics of the TS network.

The first synthetic version of the TS network was built almost

20 years ago and was a milestone of synthetic biology (Gardner

et al, 2000). Since then, it has been built multiple times, extensively

studied, and used for its memory, bistability, or hysteresis properties

A
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Figure 1. Inducible toggle switch topology and its spatial patterning behavior.

A Schematic of the inducible toggle switch network composed of two mutually inhibitory nodes. The expression of the red node is controlled by an inducer, while a
regulatory molecule can be added to tune the repression strength of the green node.

B Detailed representation of the molecular implementation of the network in (A) using SBOL annotation (Beal et al, 2019).
C, D 2D spatial patterning of a population of Escherichia coli cells harboring the inducible toggle switch network. The colors correspond to the levels of fluorescence of

mCherry (red) or GFP (green) produced by bacteria grown on a grid. Five microliter of aqueous solutions of 100 mM IPTG and 100 lM AHL was added at the grid
edges forming gradients by diffusion as indicated by the triangular shapes. Before growing on the grid, bacteria were turned into the green (C) or red state (D) as
indicated at the bottom. The grids were imaged after overnight incubation. Each grid is composed of squares with dimensions 0.75 × 0.75 mm2.

E Overlay of the grids of (C and D), highlighting the hysteresis of the system in yellow, resulting from the superposition of red and green fluorescence.

Source data are available online for this figure.
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(Kim et al, 2006; Lou et al, 2010; Chen & Arkin, 2012; Padirac et al,

2012; Sokolowski et al, 2012; Lebar et al, 2014; Purcell & Lu, 2014;

Zhao et al, 2015; Nikolaev & Sontag, 2016; Andrews et al, 2018;

Pokhilko et al, 2018; Yang et al, 2019), for stochasticity fate choice

(Sekine et al, 2011; Wu et al, 2013; Axelrod et al, 2015;

Perez-Carrasco et al, 2016; Weber & Buceta, 2016; Lugagne et al,

2017), and to tune threshold activation (Gao et al, 2018). Neverthe-

less, its patterning capabilities controlled with a morphogen-like

signal have not been studied in a synthetic system. Here, we

constructed a “morphogen”-inducible synthetic TS network and

studied its ability to produce spatial patterns—governed by bistabil-

ity and hysteresis—in an Escherichia coli (E. coli) population. A

combination of experiments and mathematical modeling allowed us

to characterize the underlying bifurcation diagram, unveiling the

possible dynamical regimes of the circuit. This enabled us to demon-

strate how the inducible TS allows to control hysteresis, precision,

position, and timing of the pattern boundary.

Results

Inducible toggle switch topology and its spatial
patterning behavior

The inducible TS network consists of two mutually repressing nodes

(Fig 1A). This mutual inhibition architecture ensures that only one

of the nodes can be maintained at high expression. An array of cells

under a concentration gradient in charge of controlling either the

repression strength or the production rate of one of the nodes will

generate a binary spatial pattern. We built a synthetic inducible TS

circuit starting from a characterized TS (Litcofsky et al, 2012). The

first node of the network is composed of the TetR repressor and

the mCherry reporter and will be referred hereon as the red node.

The second node contains the LacI repressor and GFP reporter and

will be referred to as green node (Fig 1B). Accordingly, the two

expression states that the circuit can maintain will be referred to as

green and red states. TetR and mCherry are regulated by the hybrid

pLuxLac promoter (BBa_I751502), which is activated by the LuxR-

AHL (N-(b-ketocaproyl)-L-homoserine lactone) complex and

repressed by LacI, whose repression strength can be regulated by

isopropyl b-D-1-thiogalactopyranoside (IPTG). LacI and GFP are

controlled by the pLtetO promoter, which is repressed by TetR.

LuxR is constitutively expressed from a pLuxL promoter on a second

plasmid (Fig 1B). In the absence of AHL (inducer), TetR and

mCherry are not expressed, but LacI and GFP are, resulting in the

green state. In the presence of AHL, TetR and mCherry can be

expressed and repress LacI and GFP expression. Consequently, the

system switches to the red state, provided that the concentration of

the regulator (IPTG) is high enough.

We studied the capability of the inducible TS circuit to pattern an

E. coli population exposed to different concentrations of AHL and

IPTG and combinations thereof (Fig 1C and D). To this end, we

grew the cells on a hydrophobic grid placed on an agar plate to give

a defined spatial organization to the cells (Grant et al, 2016), while

small molecules can freely diffuse between grid squares. AHL and

IPTG were pipetted at the left and at the top edges of the grid,

respectively, forming gradients of AHL and IPTG by diffusion, thus

inducing a fluorescent pattern in the E. coli populations. We

measured the bacterial fluorescence after overnight incubation

(~ 16 h). Although the gradients decay over time, the observed

patterns stayed constant even after further incubation, as the expres-

sion of the synthetic toggle switch becomes frozen in cells that have

entered the stationary phase, a phenomenon commonly observed

for bacterial synthetic circuits (Elowitz & Leibler, 2000). When the

starting cells were in the green state (reached by previous incuba-

tion in the absence of AHL and IPTG), the switch to the red state

was observed only in the presence of both AHL and IPTG, in the top

left corner of the grid (Fig 1C). In contrast, the same experiment

performed with cells initially in the red state (reached by previous

incubation in the presence of AHL and IPTG) showed that the red

state is maintained above a certain concentration of AHL, mostly

independent of the concentration of IPTG, leading to a green domain

at the right (Fig 1D). An overlay of the two grid patterns allows to

highlight the possible stable states available for different concentra-

tions of AHL and IPTG showing two monostable regions for the red

and green states, and a bistable region for high values of AHL and

low values of IPTG that grant hysteresis to the system (Fig 1E). In

addition to the tuning of the LacI repression by IPTG as explored

here, the TetR repressing strength can be regulated by the addition

of anhydrotetracycline (aTc; Fig EV1A and B). Different

combinations of gradients of AHL, IPTG, and aTc result in different

patterns (Fig EV1B–D), revealing the flexibility of the TS to control

spatial gene expression. We focused on AHL-IPTG because we

aimed to have a TS which interprets a “morphogen” gradient (AHL)

that acts on the expression level of the target by direct promoter

interaction, similar to known morphogens such as bicoid (Chen

et al, 2012) or sonic hedgehog (Balaskas et al, 2012). Moreover, this

combination allowed us to observe a cusp bifurcation as we will

describe below.

Characterization of the toggle switch as a dynamical system

To quantitatively analyze the network behavior with single-cell

resolution, we grew the TS bacteria in liquid culture for 10 h with

defined concentrations of inducer (AHL) and regulator (IPTG)

molecules. We prevented the bacteria from entering the stationary

phase by diluting them 100-fold after 5 h. We used flow cytometry

to measure the green and red fluorescence of individual bacteria

(Fig 2A). We set gates for the red and green states with the help of

positive red and green fluorescent controls. This gating allowed us

to quantify the percentage of TS bacteria in the red or green state

for different inducer and regulator concentrations and different

initial states. The observed behavior is consistent with the spatial

patterning on the grid: Starting with an initial population of bacte-

ria in the green state, the entire population (> 90% of events)

switched to the red state at high concentrations of both AHL and

IPTG, whereas they stayed green otherwise. On the other hand,

starting in the red state, the entire population stayed red above

AHL concentrations of ~ 11 nM, but switched to the green state at

lower AHL concentrations.

At the boundary between the red and green areas (white squares

in Fig 2A), we observed cells in both flow cytometry gates. At high

IPTG concentrations (≥ 0.5 mM), a single population was located at

intermediate red and green fluorescence values, whereas at IPTG

concentrations ≤ 0.5 mM, the population split into two subpopula-

tions displaying either the red or the green state. A bimodal

ª 2020 The Authors Molecular Systems Biology 16: e9361 | 2020 3 of 15

Içvara Barbier et al Molecular Systems Biology



distribution at the boundary between the two stable states is a

known phenomenon of bistable circuits (Sekine et al, 2011; Wu

et al, 2013; Axelrod et al, 2015) and can be caused by cell state

switching in response to intrinsic gene expression noise (Sekine

et al, 2011).

The transition from red to green is less affected by the concen-

trations of IPTG than the transition from green to red, because of

the asymmetry of the network. In the transition from red to green,

the rate-limiting step is the degradation and dilution of TetR in

the cells, since the clearance of TetR is required before changes in

A

B

D

E

C

Figure 2.
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AHL or IPTG concentrations can induce the switch. Therefore, for

the rest of the manuscript, we will focus on initial green state

populations, while the data for the initial red state are in the

Appendix Figs S1 and S2.

In order to fully characterize the dynamical capabilities of the

circuit, we described the network with a mathematical model

composed of ordinary differential equations (ODE) capturing the

concentration of all the chemical species over time (see Materials

and Methods for details). To unveil the dynamical landscape

compatible with the synthetic circuit, we parameterized the model

by fitting it to our experimental data. Since the transient expression

profiles to both cellular states were faster than the transitions

between them, we inferred the details of the dynamical system by

identifying each observed cellular state with a stable steady state of

the dynamical system. In order to do so, we made use of multitry

Markov chain Monte Carlo (MCMC) inference (Laloy & Vrugt, 2012;

Shockley et al, 2018), with a likelihood function based on the experi-

mentally measured levels of expression and number of steady states

found for the different concentrations of AHL and IPTG tested. We

obtained a narrow probability distribution for all 11 parameters

(Fig EV2). The predicted outputs from the parameterized equa-

tion were able to recapitulate the bistability and hysteresis observed

in the experimental data (Figs 2B and EV3). This allowed us to

reconstruct the multidimensional bifurcation diagram of the system

(Fig 2C) which we can use as a map to predict the effect that dif-

ferent dynamical gradients will have on the observed gene expres-

sion patterns.

Analysis of the bifurcations of the system shows a scenario

compatible with other TS, in which a continuous variation of AHL

or IPTG can change the number of stable states via saddle-node

bifurcations (Gardner et al, 2000; Guantes & Poyatos, 2008;

Perez-Carrasco et al, 2016). Starting from a bistable condition, a

saddle-node bifurcation occurs through the collision of a stable and

an unstable state of the system, leaving only one possible stable

state left (Fig 2C). For a cell in the state about to disappear, a small

perturbation of IPTG or AHL induces a sharp switch to the opposite

state, producing a sharp transition between cell states.

There are two different saddle-node lines in the phase plane

(AHL and IPTG) of the bifurcation diagram that collide at a certain

concentration of the inducers (around 10�3 lM AHL and 10 mM

IPTG). Called a cusp bifurcation, this point separates the regions of

inducer in the phase plane in which the switch between states

occurs through a saddle-node bifurcation (bistability) or through the

continuous change of expression of a monostable state. Thus, the

availability of a cusp point allows to explore the properties of two

different patterning strategies (bistability versus sigmoidal response)

for the same circuit topology.

Controlling the hysteresis, position, and sharpness of
the boundary

Next, we analyzed how the IPTG concentration influences the

hysteresis of the circuit, characterized by the range of inducer

concentrations for which the circuit shows bistability (Fig 2D).

Since IPTG is in control of the repression of the green node over

the red node, it is a perfect candidate to control the hysteresis of

the TS. Based on the bifurcation diagram, we expected that the

lower the IPTG concentration (i.e., the stronger the repression on

the red node), the bigger the range of bistability. Testing the bista-

bility of the circuit at different IPTG concentrations confirmed this

hypothesis, showing a response without bistability to an AHL

gradient at high values of IPTG (10 mM) and an increasing range

of bistability as IPTG decreases. The highest amount of hysteresis

is observed in the absence of IPTG. Here, cells are not able to

switch from green to red, even in the presence of high AHL.

However, AHL is enough to preserve the red state once reached.

We thus observed three different ranges of hysteresis: (i) no

hysteresis (> 1 mM IPTG) in a sigmoidal regime; (ii) hysteresis in

a bistable regime with the possibility to switch between both

states (around 0.125 mM IPTG); and (iii) hysteresis in a bistable

regime with irreversibility of the green state (around 0 mM IPTG).

Those three regimes were also observed as spatial patterns on the

grid, when placed on agar plates with uniform IPTG concentra-

tions (Fig 2D, right).

In addition to controlling the transition between a sigmoidal

and a bistable regime and consequently the hysteresis, the IPTG

concentration also affects the position of the boundary between

the red and green states. Higher concentrations of IPTG allow the

◀ Figure 2. Controlling the hysteresis, position, and sharpness of the boundary.

A Quantitative single-cell analysis of the inducible toggle switch. Overview of the flow cytometry data of a representative replicate. Each square shows red (y-axis) and
green (x-axis) fluorescence of the population (10,000 events) measured at indicated concentrations of IPTG and AHL after 10 h of incubation. Background color
corresponds to the percentage of red gated events as indicated.

B Comparison between the observed populated states from the flow cytometry data (circles) and the available steady states predicted by the model (solid lines: stable
states; dashed lines: unstable states), shown for three IPTG concentrations. The median and the standard deviation of the experimentally observed states of the gated
populations from three replicates are shown. Parameters used in the model are the best parameter candidates from the MCMC fitting (Table 1). The whole dataset is
shown in Fig EV3.

C Top: Bifurcation diagram for the parameters found in the fitting, showing the stable steady states available for different combinations of [AHL] and [IPTG]. Bottom:
phase portrait of the TS, indicating monostable regions in red/green proportionally to the concentrations of mCherry/GFP and bistable conditions in blue. The circle
indicates the cusp bifurcation.

D Effect of initial conditions in the patterning of the TS showing the hysteresis at three different IPTG concentrations, corresponding to the three different regimes
showed in (C) as dashed lines. Left: Mean percentage of red cells (full circles) for different concentrations of AHL are shown for an initial population in the red state
(solid red lines) and for an initial population in the green state (dashed orange lines). Error bars show standard deviation of three biological replicates (individually
shown as empty circles). Right: Grid patterns at constant IPTG concentrations. Five microliter of a solution of 100 lM AHL was added at the left to create the
gradient. Colors correspond to the intensity of red and green fluorescence.

E Sharpness of the boundary. Normalized red fluorescence for an initial population in the green state in an AHL gradient at different IPTG concentrations. Mean (full
circles) and standard deviation (error bars) of three biological replicates (individually shown as empty circles). The inset bar plots represent the mean of the
maximum slope of each curve from three replicates with standard deviation as error bars (Appendix Fig S1).

Source data are available online for this figure.
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system to switch from green to red at lower AHL concentrations

(Fig 2A and D), thus controlling the boundary position for a given

AHL gradient. Finally, IPTG also tunes the transition sharpness

between the red and green states (Figs 2E and EV4, and

Appendix Fig S1). Starting from the green state, at high concentra-

tions of IPTG beyond the cusp point, we observed a sigmoidal

expression response in an AHL concentration gradient, similar to

the one expected from a circuit with a single repressor (TetR)

active. At lower IPTG concentrations, below the cusp point, the

system displayed a sharper transition as expected from the saddle-

node bifurcation. Moreover, these different transitions are consistent

with the distinct population behaviors during cell state transitions

along the gradient: a smooth transition of a single population for

the sigmoidal behavior and a bimodal population transition

(Fig 2A) for the bistable switch behavior. In particular, the bimodal

profile is only observed close to the bifurcation, where the timescale

of noise-induced transitions between cellular states is smaller than

the duration of our observation time (10 h) (Perez-Carrasco et al,

2016). In summary, the regulator IPTG allows us to choose between

a bistable and a sigmoidal regime (at high IPTG concentrations) and

thus to control the hysteresis, the position, and the sharpness of the

boundary.

Temporal dynamics of the patterning

So far, we investigated the influence of IPTG on the pattern in an

AHL gradient by studying the static spatial gene expression after

10-h growth in liquid culture or overnight incubation of the grid.

However, in order to understand the process of pattern formation

it is of paramount importance to study the temporal dynamics of

the patterning process. To this end, we measured the fluorescence

of the cells at different concentrations of IPTG and AHL over a

time course of 10 h with flow cytometry (Fig 3, Movie EV1,

Appendix Fig S2). We observed that gradients inducing a pattern

across a bistable region have a slower and position-dependent

response than those patterning across a sigmoidal region. In partic-

ular, the time to switch from green to red (> 90% red events)

depends on the concentration of IPTG, switching at 4 h at high

IPTG concentrations (10 to 0.5 mM) and after 6 h and 8 h for

lower IPTG concentrations (0.16 and 0.125 mM, respectively;

Fig 3A). Similarly, for a constant amount of IPTG, the switching

time depends on the AHL concentration, switching at times as

slow as 6–10 h for an IPTG concentration corresponding to the

bistable region (0.125 mM Fig 3B). On the other hand, when

inducing a pattern in the sigmoidal regime (10 mM IPTG), we

observe a more consistent switching time (4 h) across different

AHL concentrations (Fig 3C).

Interestingly, the behaviors of the switch at the population level

over time are identical to the ones observed across different AHL

concentrations: At high IPTG (beyond the cusp bifurcation, in the

sigmoidal regime), we measured one population moving as a whole,

while at lower IPTG concentrations (bistable regime), we observed

the cells splitting into two divergent subpopulations (Fig 3A and B,

and Movie EV1), suggesting that the dynamics of the sigmoidal

patterning are a result of the population relaxing to the unique

possible steady state, whereas in the bistable regime, the transition

is controlled through the stochastic switching between the two

possible states, with a time that is determined by intrinsic noise and

can therefore be slower than the degradation rate of the proteins

composing the TS.

Patterning in the sigmoidal regime is faster than that in the
bistable regime

Combining our model with 2D diffusion allowed us to reproduce

the patterns observed in the grid assay shown in Fig 1 (Fig 4A). In

addition, integrating the diffusion of the inducer with the dynamical

properties of the bifurcations of the system can shed light on the

different patterning dynamics observed. In particular, consistent

with our flow cytometry data (Fig 3), the model suggests that the

switching slows down close to the saddle-node bifurcation, a

phenomenon called critical slowing down (Narula et al, 2013;

Perez-Carrasco et al, 2016). Thus, for different constant values of

IPTG, a gradient of AHL is expected to create a moving boundary at

different speeds for cells switching from the green to the red state

(Fig 4B). To test this prediction, we measured the position of the

boundary over time in the grid assay at two different IPTG concen-

trations corresponding to two different dynamical regimes (sig-

moidal, 1 mM and bistable, 0.125 mM; Fig 4B). As expected, we

observed that the transition to the production of mCherry starts

earlier and advances faster in the sigmoidal regime, equipping the

TS with time control of the pattern formation through the cusp

bifurcation. This was confirmed through simulation of the diffusion

of the inducers on the grid, where the model predicts the same

trend than the experimental data, with no more than three squares

of difference. On the other hand, in this assay, we did not observe

clear differences in the precision of the boundary, potentially due to

the high starting cell density.

Spatiotemporal control of the pattern by using spatially
homogenous signals

In addition to the pattern formation through a bistable or monostable

sigmoidal regime, the TS offers the possibility to move between both

Table 1. Parameters

Parameter Median Credibility interval

aX 364 a.u. (252, 444) a.u.

aY 310 a.u. (153, 422) a.u.

bX
�

362 a.u. (200, 598) a.u.

bY
�

438 a.u. (322, 644) a.u.

KIPTG 2.22 mM�1 (1.04, 3.16) mM�1

KAHL 133 lM�1 (59.5, 318) lM�1

KLacI 4.17 10�2 a.u. (2.11, 8.90) a.u.

KTetR 27.4 10�2 a.u. (6.12, 99.3) 10�2 a.u.

nLacI 2.17 (1.00, 3.73)

nAHL 1.61 (1.04,2.23)

nTetR 2.29 (1.16, 5.01)

Summary of values of parameters inferred from the experimental data
corresponding to the distributions of Fig 3. For each parameter, the median
and the 95% credibility interval of each marginal distribution are indicated.
The median of each parameter corresponds with the value used in the
mathematical model for the rest of simulations of the manuscript.
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Figure 3. Temporal dynamics of patterning with the inducible toggle switch.

A–C Effect of IPTG and AHL concentrations on the switching time from the green to the red state. For plots in the right column, each square represents flow cytometry
data of 10,000 events measuring red (y-axis) and green fluorescence (x-axis). Background color of each square indicates whether > 90% of the events are in the
red or the green gate. Plots in the left column show the percentage of cells in the red gate over time. Shown are the mean (full circles) and standard deviation
(error bars) of three biological replicates (individually shown as empty circles). (The data at time point 8 h for 1 and 10 mM IPTG are based on two replicates due
to failed flow cytometry measurements.) Dashed lines indicate the 90% threshold used to color the flow cytometry plots. (A) Analysis of state transition over time in
the presence of different IPTG concentrations and a high level of AHL (10 lM). (B, C) Analysis of state transition over time in the presence of different AHL
concentrations and two different IPTG concentrations corresponding to the bistable (0.125 mM) and sigmoidal (10 mM) regimes.

Source data are available online for this figure.
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different regimes during the pattern formation, allowing for different

patterning strategies that can exploit the properties of both regimes. In

particular, by manipulating the homogeneous levels of IPTG in time

for a given gradient of AHL, we can control the pattern formation

process. An initial population of cells in the green state in the absence

of IPTG (bistable irreversible regime) is unaffected by the gradient of

AHL. Adding IPTG homogeneously at the desired time point brings

the cells to the sigmoidal monostable regime able to respond to the

gradient of AHL and forming a boundary. Once the boundary is

located at the desired position, removing IPTG takes the system back

to the bistable zone, thus freezing the boundary and making it robust

to changes in AHL (Fig 5A). Consequently, the system is able to main-

tain a pattern in the absence of IPTG which removes the requirement

of maintaining a precise AHL gradient to keep the pattern boundary.

Therefore, a pulse of IPTG can combine advantages of two distinct

regimes: of the sigmoidal monostable regime for a fast establishment

of a pattern (Fig 4) and of the irreversible regime to make the pattern

robust to changes in the AHL gradient. To demonstrate this effect, we

grew cells initially in the green state at different concentrations of

AHL and exposed them to pulses (2, 3.5, 5, 6.5 h) of 10 mM IPTG

(Fig 5B). We then grew them for further 6 h in the absence of IPTG

but kept the AHL concentrations used during the pulse. Indeed, cells

receiving enough AHL (≥ 0.01 lM) were able to maintain the red

state. Interestingly, this was the case even for short pulses where not

the whole population did have enough time to switch (2 h). For inter-

mediate values of AHL, close to the boundary, the final state of the

population depends on the gene expression of the population with

respect to the basins of attraction of the bistable regime. In particular,

it is noteworthy that when the single-cell population at the end of the

pulse was located at intermediate green and red fluorescence levels, it

split into two subpopulations (green or red fluorescence) when

brought back to the bistable regime.

A

B

Figure 4. Patterning in the sigmoidal regime is faster than that in the bistable regime.

A Modeling of the pattern observed in the grid assay (Fig 1C–E). Results show the state of the system at 13.10 h posterior to gradient initiation for both diffusive
molecules (top left panels) and the response of the network for different initial conditions (bottom left panels and right panel). Gene expression is color-coded shown
in green for GFP/LacI expression and in red for mCherry/TetR expression. Positions where different cellular states are obtained depending on the initial condition
chosen are indicated in yellow.

B Time course of pattern formation in the grid in the sigmoidal (1 mM IPTG, left) and bistable (0.125 mM, right) regimes. Center: Before growing on the grid, bacteria
were turned into the green state. The indicated concentration of IPTG was homogeneously present in the agar plate, and 5 ll of 100 lM AHL was loaded at the left
edge of the grid. The grids were incubated at 37°C and imaged at the indicated times. A representative replicate is shown. Left and right 3D plots represent the
quantitative analysis of mean red fluorescence intensity in the grid over time and position of three biological replicates. Blue lines represent the boundary predictions
from the mathematical model. Green and red colors correspond to measurements where the red fluorescence intensity is below or above 50% of the highest intensity
measured along the AHL gradient at each time point, respectively, corresponding to how the boundary was defined in silico (see Materials and Methods for details).

Source data are available online for this figure.
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We used the grid assay to further demonstrate this memory

property of the TS and to show that the pattern in the bistable regime

is indeed robust to changes in the AHL gradient. We patterned a grid

as in Fig 1 and transferred the cells onto a new agar plate where the

positional information provided by AHL and IPTG was removed

(0 mM IPTG, homogeneous concentration of 5 lM AHL). As

predicted, the pattern was maintained in the absence of any spatial

information (Fig EV5). This result demonstrates that an inducible TS

network is capable of interpreting and maintaining spatiotemporal

gradients by making use of the memory properties of the circuit.

Discussion

Systems displaying hysteresis, and in particular the bistable switch,

allow for a sharp threshold response that can turn a graded input

into a binary output (Sokolowski et al, 2012; Perez-Carrasco et al,

2016). Interestingly, the mutual repressing motif of the toggle switch

is widely found in natural pattern-forming systems, for example, in

networks responsible for patterning the neural tube (Balaskas et al,

2012), the dorsal telencephalon (Srinivasan et al, 2014), the Droso-

phila embryo segments (Clark, 2017; Verd et al, 2019), and the

Xenopus mesoderm (Saka & Smith, 2007). However, in addition to

forming sharp boundaries, the successful formation of a pattern

requires the control of the position and timing of the boundary

formation. Here, for the first time we characterize a synthetic indu-

cible toggle switch (Fig 1) in order to explore the dynamic pattern-

ing properties of the TS gene regulatory network by combining

quantitative measurements with a mathematical reconstruction of

the underlying dynamical system. Our setup with an AHL gradient

controlling the expression level of one of the promoters and an

IPTG-tunable repression allowed us to transition between bistable

and sigmoidal regimes. This in turn allowed us to show how the

hysteresis, position, timing, and precision of the boundary can be

controlled, revealing a trade-off between speed and precision of the

boundary formation.

A B

Figure 5. A homogeneous pulse of IPTG allows to control the pattern formation.

A Schematic of the protocol used. Cells initially in the green state for low levels of IPTG (irreversible bistable regime) are exposed to a pulse of high IPTG (at time t0)
bringing the system to the sigmoidal region where a gradient of AHL can induce a pattern. Removing IPTG (at time t1) takes the system back to the bistable zone,
thus freezing the boundary and making it robust to changes in AHL (at any posterior time t2).

B Response of the system to IPTG pulses of different durations (2–6.5 h) at different AHL concentrations. Cells were grown in the presence of 10 mM IPTG and the
indicated amount of AHL and analyzed by flow cytometry. Shown are the mean (full circles) and standard deviation (error bars) of three biological replicates
(individually shown as empty circles). The top graph displays the percentages of red cells observed just after the incubation with IPTG (time 1, t1). Next, the cells were
diluted and grown for another 6 h without IPTG, but with the same concentration of AHL as during the IPTG pulse. The bottom graph displays the percentage of red
cells observed after this incubation (time 2, t2). Inset graphs represent red (y-axis) and green (x-axis) fluorescence measured by flow cytometry (10,000 events). The
following conditions are shown: (i) 6.5 h pulse, 10,000 nM AHL; (ii) 2 h pulse, 10,000 nM AHL; and (iii) 6.5 h pulse, 1.235 nM AHL.

Source data are available online for this figure.
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We quantified the gene expression at the single-cell level over a

wide range of inducer and regulator concentrations and fit the data

to parameterize a mathematical model of gene regulation. The

resulting bifurcation diagram of the dynamical system provided the

mechanistic understanding required to interpret the different

spatiotemporal patterns observed and experimental design guidance

for pattern formation with the synthetic TS. In particular, this

approach allowed us to characterize the mechanism by which the

system can transit from a bistable regime to a sigmoidal unimodal

response to the inducer, determined by the cusp bifurcation of the

dynamical system (Fig 2). Importantly, this was enabled by the

choice of focusing on AHL and IPTG gradients. While combining

aTc and IPTG gradients would have reduced the asymmetry of the

system, we would not have been able to reach the sigmoidal regime

(Fig EV1).

From the exploration of the differences in boundary precision of

the bistable and sigmoidal regimes, we observed that while the

bistable regime provides the sharper boundary (as previously

reported (Isalan et al, 2005; Lopes et al, 2008)), the sigmoidal

regime allows for a faster response (Figs 3 and 4). This reveals a

trade-off between the timing and precision of the boundary. These

observations are in consonance with dynamical system predictions,

in which the sharp transition of the bistable regime—through a

saddle-node bifurcation—comes at the price of the critical slowing

down close to the bifurcation (Narula et al, 2013; Perez-Carrasco

et al, 2016).

In addition, for different levels of a spatially homogeneous regu-

lator, we have been able to control the range of hysteresis and the

position of the pattern boundary for a given inducer gradient

(Fig 2). This mechanism is analogue to the one proposed by Cohen

et al (2014) to control the boundary position of patterns regulated

by morphogen gradients by changing the affinity of one of the

elements to a spatially homogeneous transcription factor. This result

highlights the evolutionary potential of the circuit, allowing for

kinetic mechanisms of controlling the position of the boundary

without compromising other aspects of the boundary or requiring

an upstream regulation of the morphogen gradient.

Further to controlling the position of the pattern, the range of

bistability can also lead to an irreversible switch for a wide range of

the parameter space. Inside this region of the parameter space, any

prepattern can be robustly fixed, only requiring the morphogen infor-

mation for a certain time window (Figs 5 and EV5). Coupled with the

dynamics of boundary formation, this provides alternative patterning

strategies to the classical static positional information, in which the

precision, position, and timing of the boundary can be controlled by

the dynamic properties of the upstream signal. This flexibility is of

utmost importance in developmental scenarios, where both the

morphogen signaling and the patterns are dynamic processes during

tissue differentiation, such as the boundary position movement

during the gap gene segmentation in Drosophila (DiFrisco & Jaeger,

2019) or the adaptation of the signaling of sonic hedgehog

morphogen during neural differentiation in the patterning of the

neural tube (Balaskas et al, 2012). In this latter scenario, the adapta-

tion to the gradient of sonic hedgehog (through Gli signaling) results

in a combination of temporal profiles of activation and repression

acting on the patterning circuit (Junker et al, 2014; Cohen et al,

2015). This highlights the importance to understand bistable switches

inside a dynamical scenario. While such dynamics are challenging to

measure in the developing embryo, our synthetic biology framework

allowed for an alternative route toward understanding the dynamics

of the TS in pattern formation. However, extending such parallelisms

further will require an exhaustive analysis of the different dynamical

properties between our synthetic system in E. coli and eukaryotic

systems. For instance, we expect the approach performed in this

manuscript to be valid in eukaryotic systems in which binding kinet-

ics and changes in promoter availability are faster than the patterning

time, but not in situations where they are slower (Bintu et al, 2016).

Differences might also come from other characteristics of the GRN,

such as chromatin remodeling, binding dynamics, or transcriptional

bursting (Oates, 2011; Bentovim et al, 2017; Mathur et al, 2017;

Folguera-Blasco et al, 2019).

Our improved understanding of the TS for pattern formation opens

up new avenues of research. In particular, for many bistable parame-

ter conditions, single-cell expression showed the coexistence of two

subpopulations of cells at each one of the available stable states. This

provides evidence of the relevance of intrinsic noise in the establish-

ment of the pattern. While previous in silico research shows that

intrinsic noise can determine the position and precision of

morphogen-driven boundaries (Weber & Buceta, 2013; Perez-Carrasco

et al, 2016), the actual role of noise in the dynamics of pattern forma-

tion in living systems and the possibility of optimal dynamical strate-

gies based on the stochasticity of gene expression remain still a

conundrum. In addition, it poses new challenges to dynamical system

inference in which different sources of intrinsic noise must be disen-

tangled from measurement noise in order to obtain an accurate char-

acterization of the circuit (Dharmarajan et al, 2019).

Overall, our results underscore the relevance of studying the

dynamical context of a gene regulatory network in order to under-

stand patterning processes, not only of synthetic circuits but also of

developmental systems (Ferrell, 2002; Sagner & Briscoe, 2017).

Future work will reveal if the TS properties are conserved when

incorporated in more complex (synthetic) gene regulatory networks,

for example, when combined with the repressilator (Elowitz &

Leibler, 2000; Potvin-Trottier et al, 2016; preprint: Santos-Moreno &

Schaerli, 2019a) to yield the AC-DC network (Balaskas et al, 2012;

Panovska-Griffiths et al, 2013; Perez-Carrasco et al, 2018; Verd

et al, 2019). Moreover, the here established engineering guidelines

on how to control patterning with a synthetic TS will be valuable

for future synthetic pattern formation, for example, in the context of

engineered living materials based on bacterial biofilms (Cao et al,

2017; Gilbert & Ellis, 2018; Nguyen et al, 2018; Moser et al, 2019).

Materials and Methods

Media

Cloning experiments used lysogeny broth medium (LB: 10 g

Bacto-Tryptone, 5 g yeast extract, 10 g NaCl per 1 l) supplemented

with the appropriate antibiotic (25 lg/ml kanamycin or 25 lg/ml

spectinomycin). All experiments with the synthetic circuit were

performed in M9 minimal medium (1× M9 salts, 2 mM MgSO4,

0.2 mM CaCl2, 0.0005% (w/v) thiamine) with 0.2% (w/v) glucose

as carbon source, supplemented with 0.1% (w/v) casamino acids

and the appropriate antibiotics (25 lg/ml kanamycin and 25 lg/ml

spectinomycin).
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Reagents

Restriction enzymes, alkaline phosphatase from calf intestine (CIP),

DNA polymerase I large (Klenow) fragment, and T4 DNA ligase

were purchased from New England Biolabs (NEB). Oligonucleotides

and chemicals were obtained from Sigma-Aldrich. Polymerase chain

reactions (PCRs) were carried out with Q5 Hot Start High-Fidelity

DNA Polymerase (NEB). Colony PCRs were performed with Taq

polymerase (NEB). PCR products and digested plasmids were puri-

fied with the Monarch PCR & DNA Cleanup Kit (NEB). Plasmids

were purified using the QIAprep Spin Miniprep Kit (QIAGEN).

Cloning of the inducible toggle switch circuit

We cloned the morphogen-inducible toggle switch plasmid

(“TS_pLuxLac”) from an already functional toggle switch plasmid

(pKDL071) (Litcofsky et al, 2012), kindly provided by Jeong Wook

Lee. The two Ptrc-2 promoters upstream of TetR and mCherry

coding sequences were replaced by the hybrid promoter pLuxLac

(BBa_I751502) with the plug-and-play method initially used to

assemble pKDL071 using the restrictions sites NcoI and SalI

upstream of TetR and XmaI and MfeI upstream of mCherry.

For the “pCDF_luxR” plasmid, the pLuxL promoter (BBa_R0063)

and the LuxR gene (synthesized by GenScript) were introduced into

a pCDF plasmid with a customized multiple cloning site (Schaerli

et al, 2014) between the KpnI and BamHI sites. The sequences and

plasmids are available through Addgene, ID 140426 for TS_pluxlac

and ID 140039 for pCDF_luxR.

Strain and growth condition

pCDF_luxR and TS_pLuxLac were transformed into the E. coli strain

MK01 (Kogenaru & Tans, 2014). The absence of the lacI gene in this

strain avoids unexpected cross talk between the synthetic circuit

and the host.

Bacteria were turned into red state by inoculating single colonies

into 4 ml M9 medium in the presence of 1 mM IPTG and 10 lM
AHL (N-(b-Ketocaproyl)-L-homoserine lactone). They were grown

overnight at 37°C and 200 rpm shaking. The same procedure was

used to turn the bacteria into the green state, with the difference

that the medium did not contain IPTG and AHL. These bacteria

were plated out on LB agar plates (supplemented with 10 lM AHL

for the red state) and incubated overnight at 37°C. The plates were

stored at 4°C, and single colonies were picked for the experiments.

Flow cytometry

For each biological replicate, a single colony in the red or green state

was cultured in M9 for 4–6 h and put at 4°C before entering station-

ary phase (below 0.8 OD). The following day, these cultures were

diluted to 0.01 OD (NanoDrop 2000, Thermo Fisher) and added into

the wells of a 96-well plate (CytoOne) to a total volume of 120 ll
including indicated concentrations of AHL and IPTG. The plate was

incubated in a BioTek Synergy H1 Plate Reader at 37°C with

548 cpm (2 mm) double orbital shaking speed. Absorbance

(600 nm) was monitored every 10 min to check that cells did not

enter stationary phase (below 0.3 in the plate reader) as cells in

stationary phase can no longer switch between the two states. After

5 h, cells were diluted 100 times before incubating them again

under the same conditions for a total of 10 h.

At indicated times, 5 ll of the cell cultures was diluted into

95 ll of phosphate-buffered saline (PBS) and analyzed by flow

cytometry (BD LSRFortessaTM) with 488-nm excitation and FITC

filter for measuring GFP fluorescence and 561-nm excitation and

PE-Texas Red filter for measuring mCherry fluorescence. Ten

thousand events were recorded and analyzed by FlowJo and a

custom-made R script.

First, cells were gated with FlowJo in the SSC-H and FSC-H scatter

plot. Next, FITC-H and PE-Texas Red-H data were exported to be

analyzed in R. The red and green gates were set with the help of posi-

tive controls for red and green fluorescence, so that nearly 100% of

the events lay in the respective gate. These controls were an over-

night culture of our bacteria in the presence of 1 mM IPTG and

10 lM AHL for red and without any inducer for green. In the figures,

percentages of red cells correspond to the percentages of cells found

in the red gate and the red fluorescence mean corresponds to the

mean of red fluorescence of all the gated cells normalized to the red

fluorescence of the cells grown at the highest AHL and IPTG concen-

trations and corrected for the background fluorescence (minimal red

fluorescence value measured in the experiment).

For the IPTG time pulse experiment, we started the experiment

with a culture of OD 0.1 in a medium containing 10 mM IPTG and

the indicated concentration of AHL. The samples were incubated as

described above until the first time point (2 h), and an aliquot was

stored at 4°C. Then, the cells were diluted 1:5 into fresh medium

containing the same IPTG and AHL concentrations and further incu-

bated until the next time point (3.5 h). This procedure was repeated

for all time points. An aliquot of each sample was analyzed by flow

cytometry once all samples were collected. The next day, the cells

were diluted 1,000 times into fresh medium with the indicated

concentration of AHL and no IPTG. The cells were grown for 6 h

and directly measured by flow cytometry.

Grid assay

Single colonies in the red or green state were cultured in M9 for 4–

6 h and put at 4°C before entering stationary phase (below 0.8 OD).

The following day, these cultures were washed from IPTG and AHL

by centrifugation for 1 min at 13,000 RPM and resuspended in fresh

medium without IPTG or AHL. Then, cells were diluted to an OD of

0.1 before being pipetted onto the grid (ISO-GRID from NEOGEN)

(Grant et al, 2016) (20 ll of cells was loaded for 10 lines, approxi-

mately 0.05 ll per square) that was placed on a M9 agar plate with

0.2% (w/v) glucose and appropriate antibiotics (25 lg/ml kana-

mycin and 25 lg/ml spectinomycin). The inducers (100 mM IPTG

and 100 lM AHL, 5 ll each) were added as indicated in the figures.

The plate was incubated overnight at 37°C before green and red flu-

orescence were measured with a Fusion FX (VILBER) imaging

system. We used 0.2-ms exposure with blue light (480 nm) and a

F-565 filter for the GFP measurement and 1-min exposure with red

light (530 nm) and F-740 filter for mCherry. ImageJ software

(R Core Team, 2017) was used to analyze the picture.

For the time course experiment, bacterial solutions with an OD

of 3 were loaded on the grid in order to be able to quantify early

time points. Fluorescence intensity values for each square of the

grids were extracted with a custom Fiji ImageJ (Schindelin et al,
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2012) macro script, and the maximum value for each square was

normalized to the highest measured fluorescence in all the condi-

tions and replicates. The data were plotted with R software (R Core

Team, 2017).

Model derivation and parameterization

We modeled the expression dynamics of the TS by describing the

change in time of the concentration of the [LacI] and [TetR] as a

balance between their regulated production and degradation. In

addition, we made the assumptions that the dynamics of the tran-

scripts and promoter binding/unbinding is faster than the dynamics

of production and degradation of the repressor proteins and that the

reporters follow the same dynamics as their associated repressors.

The expression of LacI is regulated by TetR, which can inhibit

the production of LacI by binding to the TetO promoter. Modeling

this interaction as a repressive Hill function we described the evolu-

tion in time of LacI as,

d LacI½ �
dt

¼ bY
1þ KTetR TetR½ �ð ÞnTetR

� dY LacI½ �; (1)

where bY is the maximum production of LacI in the absence of the

repressor TetR, KTetR sets the TetR concentration required to halve

the production rate of LacI, nTetR is the Hill coefficient, and dY is

its degradation rate.

On the other hand, the expression of TetR is regulated at the

same time by the repression of free LacI in the system [LacIf] and

the activation by AHL through the LuxR-AHL complex. Since the

presence of free [LacIf] is enough to silence the expression of [TetR]

even in the presence of AHL, the production can be modeled as the

product of two Hill functions with affinities KLacI and KAHL, and Hill

coefficients nLacI and nAHL,

d TetR½ �
dt

¼ bX
1þ KLacI LacIf½ �ð ÞnLacI

KAHL AHL½ �ð ÞnAHL

1þ KAHL AHL½ �ð ÞnAHL
� dX TetR½ �;

(2)

where bX is the production rate in the absence of LacI and saturat-

ing amounts of AHL, and dX is the degradation rate of TetR. The

amount of free LacI ([LacIf]) is controlled by IPTG, which can bind

free LacI with an equilibrium constant KIPTG impeding the binding

with the LuxLac promoter,

LacIf½ � ¼ LacI½ �
1þ KIPTG IPTG½ � : (3)

In order to parameterize the mathematical model equations

(1–3), we compared the experimentally observed cellular states with

the stable steady states of the theoretical dynamical system for dif-

ferent sets of concentrations of AHL and IPTG. The experimental

steady states were obtained by using the gated expression in cellular

populations (see Flow Cytometry for details). For each gated popu-

lation, the state was accepted when it contained at least 15% of the

cellular population.

The stable states for the mathematical model ([LacI]*,[TetR]*)

were computed by solving equations (1–3) at equilibrium condition

d[LacI]/dt = d[TetR]/dt = 0,

½LacI�� ¼ f1 ½TetR��ð Þ ¼ bY=dY
1þ KTetR TetR½ ��ð ÞnTetR

;

½TetR�� ¼ f2 ½LacI��; ½IPTG�; ½AHL�ð Þ

¼ bX=dX

1þ KLacI LacI½ ��
1þKIPTG IPTG½ �
� �nLacI

ðKAHL AHL½ �ÞnAHL

1þ KAHL AHL½ �nAHLð Þ :

Thus, finding the available steady states for a given condition is

reduced to finding the roots of G(x) in the 1-dimensional equation

G([LacI]*) = f1 (f2 ([LacI]*;[IPTG], [AHL])) � [LacI]* = 0. This was

done by finding the number and approximate location of the roots

by evaluating the sign of G(x) over a logarithmically spaced

set along the possible values of [LacI]* = [f1 (bX/dX), bY/dY]. All the
values found were refined by using the Brent–Dekker method with

hyperbolic extrapolation. Finally, the stability of all the possible

found states was addressed by evaluating the eigenvalues of the

Jacobian corresponding to equations (1 and 2).

In order to compare the computational steady states with fluores-

cence measurements, we assumed a linear relationship between flu-

orescence and gene expression,

FRED ¼ aY þ xY ½LacI��; FGREEN ¼ aX þ xX ½TetR��:

Thus, the parameterization of the problem is reduced to the

inference of 11 irreducible identifiable set of parameters

h ¼ aX ; aY ;bX
�
;bY

�
;KTetR;KLacI;KAHL;KIPTG;nTetR;nLacI;nAHL, where bX

�

and bY
�

are the non-dimensionalizing production rates summarizing

the parameter products bX
�

¼ xXbX=dX and bY
�

¼ xYbY=dY .
The ensemble of parameters in the mathematical model compati-

ble with experimental observations was inferred using Markov

chain Monte Carlo. In particular, we made use of multiple-try dif-

ferential evolution adaptive Metropolis algorithm (Laloy & Vrugt,

2012) using the PyDREAM implementation (Shockley et al, 2018).

The log-likelihood function used to evaluate the goodness of a given

set of parameters is defined as,

LðhjdataÞ ¼
XN
i¼1

pi þmin
j

Fi
REDexp

� Fi;j
REDtheo

riRED

 !2

þ
Fi
GREENexp

� Fi;j
GREENtheo

riGREEN

 !
2
666664

3
777775

2
0
BBBBBB@

1
CCCCCCA

where the index i in the sum runs over all the experimentally

detected cell states for each experimental condition. The experimen-

tal fluorescence Fi
REDexp

; Fi
GREENexp

corresponds with the median of the

gated population of cells for the i-th observed state. Similarly, riREDexp

and riGREENexp
are the standard deviation of the gated populations of

each state. The theoretical prediction for each parameter set h and

conditions of state i is given by Fi;j
REDtheo

and Fi;j
GREENtheo

, where the

superindex j presents the different theoretically predicted stable

states in the case of bistability. Finally, parameter pi penalizes that

for the condition given by state i (concentrations of AHL and IPTG),

the number of different states detected experimentally is not the

same as the number of stable states predicted in the mathematical
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model. Thus, pi promotes parameter sets that match monostable

and bistable regions between experimental and computational

steady states. In particular, pi = 0 if the number of stable steady

states matches, and pi < 0 otherwise. For the inference used in the

manuscript, a value of pi = �102 was used. The inferred parameters

are summarized in Table 1.

Morphogen diffusion

The diffusion of the morphogens (AHL, IPTG, and aTc) on the

agar plate was assumed to be a 2-D free diffusion determining

the concentration of each chemical q(x, y, t) at different posi-

tions of the plate. This was modeled through the partial differen-

tial equations

@qAHL
@t

¼ D
@2qAHL
@x2

þ @2qAHL
@y2

� �
;

@qIPTG
@t

¼ D
@2qIPTG
@x2

þ @2qIPTG
@y2

� �
:

This equation was solved by discretizing the space using the

square experimental grid. The Dirichlet boundary conditions

imposed by the experiment are given by the constant concentration

of morphogen along one side of the square q(0, y, t) = q0, and

assuming sinks in the rest of the perimeter of the square q(L, y, t) =
q(x, 0, t) = q(x, L, t) = 0, where L is the length of the side of the

grid. In order to take into account the dilution effect of the initial

concentration pipetted c0 on the agar before establishing the gradi-

ent, we set q0 = c0ξ. Parameters used for the grid assays are

ξ = 10�2 and D = 2.5 10�3 cm2/h (Basu et al, 2005; Miyamoto et al,

2018). Finally, in order to provide a timescale to the dynamics of

protein, not available from the MCMC fitting of the steady states of

the system, the degradation rate of the LacI and TetR was set to

d = 8.3 h�1 (Wu et al, 2011).

Boundary position in the grid model was computed by analyzing the

red fluorescence levels along the central strip of the grid TeTR (x, L/2, t).

For each time point, a boundary was considered when the difference in

fluorescence at both sides of the gradient was above a certain threshold |

TeTR(‘/2, L/2, t) � TeTR(L – ‘/2, L/2, t)| > 250, where ‘ is the

distance between two adjacent cells of the grid. The position of the

boundary xb was set as the last cell of the grid where the concentration

is above the mean point of the fluorescence range for each given time

point (TeTR(‘/2, L/2, t) + TeTR(L � ‘/2, L/2, t))/2.

Data availability

The plasmids and their full sequences are available via Addgene (ID

140426 and ID 140039). The source data for all figures are provided

as Supplementary documents. The raw flow cytometry data under-

lying Fig 2 and 3 are provided as Dataset EV1. The raw flow cytom-

etry data underlying Fig 5 are provided as Dataset EV2. The

computer code used to simulate the dynamical system and infer the

model parameters can be found at: https://github.com/2piruben/

SyntheticBistableSwitch.

Expanded View for this article is available online.
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