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Highlights: 

 To study the Influence of postural alignment parameters on gait kinematics

 134 asymptomatic adults had gait analysis & postural parameters assessed on X-rays

 Increase in sagittal vertical axis is related to larger knee flexion in stance

 Increase in radiological pelvic tilt is related to reduced pelvic obliquity

 Increase in thoracic kyphosis is related to reduced hip sagittal mobility

Abstract: 

Introduction: Postural alignment is altered with spine deformities that might occur with age. 

Alteration of spino-pelvic and postural alignment parameters are known to affect daily life activities 

such as gait. It is still unknown how spino-pelvic and postural alignment parameters are related to gait 

kinematics.  

Research Question: To assess the relationships between spino-pelvic/postural alignment parameters 

and gait kinematics in asymptomatic adults. 

Methods: 134 asymptomatic subjects (aged 18 to 59 years) underwent 3D gait analysis, from which 

kinematics of the pelvis and lower limbs were extracted in the 3 planes. Subjects then underwent full-

body biplanar X-rays, from which skeletal 3D reconstructions and spino-pelvic and postural alignment 

parameters were obtained such as sagittal vertical axis (SVA), center of auditory meatus to hip axis 

plumbline (CAM-HA), thoracic kyphosis (TK) and radiologic pelvic tilt (rPT). In order to assess the 

influence of spino-pelvic and postural alignment parameters on gait kinematics a univariate followed 

by a multivariate analysis were performed. 

Results: SVA was related to knee flexion during loading response (β=0.268); CAM-HA to ROM pelvic 

obliquity (β=-0.19); rPT to mean pelvic tilt (β=-0.185) and ROM pelvic obliquity (β=-0.297); TK to ROM 

hip flexion/extension in stance (β=-0.17), mean foot progression in stance (β=-0.329), walking speed 

(β=-0.19), foot off (β=0.223) and step length (β=-0.181).   

Significance: This study showed that increasing SVA, CAM-HA, TK and rPT, which is known to occur in 

adults with spinal deformities, could alter gait kinematics. Increases in these parameters, even in 

asymptomatic subjects, were related to a retroverted pelvis during gait, a reduced pelvic obliquity and 

hip flexion/extension mobility, an increased knee flexion during loading response as well as an 

increase in external foot progression angle. This was associated with a decrease in the walking pace: 

reduced speed, step length and longer stance phase.  
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Introduction 

Sagittal alignment of the human posture is known to be altered with age or in the presence of spinal 

deformities [1]. In order to assess sagittal malalignment, a set of radiological parameters is calculated 

on full body lateral radiograph that evaluate the spino-pelvic complex as well as other global alignment 

parameters that include more cranial segments such as the cervical spine and the head. The clinical 

importance of sagittal spino-pelvic and postural alignment parameters has been increasingly 

recognized as of late [2,3]. To begin with, normative values of spino-pelvic postural alignment 

parameters have been established by many authors as reference values to better evaluate subjects 

with spinal deformities [4–6]. It appeared that age is a major factor in the alteration of homogenous 

postural alignment [7,8]. Many studies have investigated the influence of spinal deformities such as 

adolescent idiopathic scoliosis (AIS) [9] and especially adult spinal deformity (ASD) [10] on sagittal 

alignment. The consideration of sagittal alignment in the treatment planning of such pathologies has 

been proven to be crucial [11], since its restoration has been correlated with better prognosis and 

better quality of life [12–15].  

Gait is a component of daily life activities and plays a major role in a subject’s autonomy; its alteration 

can affect quality of life [16,17]. Previous studies based on gait analysis have shown a significant effect 

of frontal as well as sagittal malalignment on gait kinematics and kinetics [18–20]. More recently, 

Bakouny et al. showed that even asymptomatic adults with different Roussouly sagittal alignment 

morphotypes may walk differently [21]. However, Roussouly types of spinal curvatures, based on 

sacral slope and the number of vertebrae in the lumbar lordosis [22], do not take into account the 

global postural alignment of the subject. Other spino-pelvic parameters such as thoracic kyphosis (TK), 

pelvic tilt (PT), and postural alignment, known as global alignment parameters, such as the C7 sagittal 

plumbline (Sagittal Vertical Axis, SVA) or the head sagittal plumbline (i.e. CAM-HA, plumbline of the 

center of auditory meatus to the middle of hip axis) are important in the description of the full body 

posture. These parameters have been shown to be highly altered in patients with spinal deformities 

and strongly correlated to the deterioration of quality of life [23].  

However, it is still not known how these postural parameters affect gait, even in asymptomatic adults. 

Thus, this study aimed to assess the relationship between spino-pelvic and global postural alignment 

parameters and gait kinematics in asymptomatic adults with varying age. 



Methods 

2.1. Study design 

This is a cross-sectional IRB approved study (CEHDF 285) of the relationship between spino-pelvic 

postural alignment and gait in asymptomatic adult volunteers. Subjects were enrolled in the study if 

their age was above 18 years and had no history of orthopedic surgery to either the spine, pelvis or 

lower limbs. The exclusion criteria were pain, including lower back pain at the time of the study or any 

musculoskeletal disease (scoliosis, Scheuermann’s kyphosis or leg length discrepancies) or the 

presence of at least one radiological criteria of adult spinal deformity (based on the European and 

International Spine Study Groups [24–29]) or previous orthopedic surgeries. A written informed 

consent form was signed by each subject. 

2.2. Data acquisition 

For each subject the following demographic characteristics were collected: age, weight, height and 

sex. 

Subjects performed 3D gait analysis using 7 infrared MX3+ cameras (Vicon Motion Systems, Oxford, 

UK) using the modified Helen Hayes marker set and the Plug-in Gait model was applied [30]. Subjects 

were informed to walk at self-selected speed and more than 7 trials were recorded. Data were 

processed using Workstation® (using fill gap routine at ±10 frames and Woltring filter with a scale of 

10) and the kinematics of all trials were visualized in Polygon® for consistency check. The most

representative trial was selected for each subject. Angles of the pelvis, hips, knees, ankles and feet 

were calculated in 3D during the gait cycle. Kinematics were extracted in Excel® format and previously 

defined parameters, such as maximum, minimum, mean and range of motion (ROM), were calculated 

on the waveforms [31,32] using Matlab® (Mathworks, Natick, USA). Moreover, spatiotemporal 

parameters were collected: walking speed (m/s), cadence (steps/min), foot off (% of gait cycle), single 

support (s) and step length (m).  

Following the gait analysis acquisition, subjects performed full body biplanar radiographs (EOS 

Imaging®, Paris, France). Subjects were instructed to stand in the standardized free standing position 

[33,34].  

Their spines and pelvises were reconstructed in 3D using the SterEOS® software (EOS Imaging, Paris, 

France) and the following sagittal spino-pelvic alignment parameters were generated [35,36]: pelvic 

tilt, sacral slope (SS), pelvic incidence (PI), L1-S1 lumbar lordosis (LL), T1-T12 thoracic kyphosis (TK). 

Global postural alignment parameters were calculated using the SterEOS® postural assessment 



module, from which the sagittal vertical axis (SVA: plumbline of C7 to the posterior corner of the sacral 

plate) and the center of auditory meatus to the hip axis plumbline (CAM-HA) were collected. These 

parameters were represented in figure 1. Structural parameters were also calculated, such as: PI-LL 

(the difference between pelvic incidence and lumbar lordosis), TPA (thoracic pelvic angle: angle 

between the center of T1 and center of femoral heads and the middle of the sacral plate), LPA (lumbar 

pelvic angle: angle between the center of L1 and center of femoral heads and the middle of the sacral 

plate). 

In the rest of this manuscript, the term “gait pelvic tilt” will be used to refer to the movement of the 

anterior superior iliac spines (ASIS) relative to the posterior superior iliac spines (PSIS) and is therefore 

a dynamic parameter, whereas “radiographic pelvic tilt” (rPT) will be used in order to refer to the 

radiographic definition of pelvic tilt calculated on the lateral radiograph. Note that the value of the 

“gait pelvic tilt” increases with anteversion and decreases with retroversion, while the value of the 

“radiographic pelvic tilt” increases with retroversion and decreases with anteversion.  

2.3. Statistical analysis 

Mean, standard deviation, minimum and maximum were calculated for spino-pelvic alignment and 

global postural parameters as well as gait kinematics and time-distance parameters. 

In order to assess the relationship between spino-pelvic/global postural alignment parameters and 

gait kinematics, a univariate analysis using linear correlations was applied. Pearson’s r and p-values 

were reported.  

Then, in order to investigate which spino-pelvic/postural alignment parameters mostly influence gait 

kinematics, a multivariate analysis using stepwise linear regressions was performed. Kinematic 

parameters were considered as dependent variables; spino-pelvic (CAM-HA, SVA, rPT, PI, LL, TK, TPA, 

LPA and PI-LL) and anthropometric parameters (age, weight, height and sex) as independent variables. 

Adjusted R2, β and p-values were reported for each model.  

Statistical analyses were performed using Xlstat® (version 2015.3.1, Addinsoft, Paris, France). The level 

of significance was set at 0.05.  



Results 

In total, 134 asymptomatic subjects (29±11 years old [18-59]; 66 females, 68 males), average weight 

of 71±15 Kg and height of 170±10 cm met the eligibility criteria and were included in this study.  

Results of spino-pelvic alignment parameters were presented in figure 2. Briefly, the mean SVA value 

was -13±23 mm ranging from -67 to 37 mm. The mean CAM-HA was -26±28mm ranging from -95 to 

66mm. The mean rPT value was 12±6°, ranging from -7.0 to 25°. The mean TK value was 45.6±8° 

ranging from 23 to 60°. In addition, the mean PI-LL was -11.8±11° ranging from -33 to 25°, the mean 

TPA was 6.2±6° ranging from -6.5 to 20°, the mean LPA was 3.8±6° ranging from -13 to 28°. 

Gait kinematic parameters were presented in table 1 as mean and standard deviations. They were 

subdivided for each skeletal segment and joint separately.  

Sagittal vertical axis was significantly correlated to ROM pelvic obliquity (r=-0.317), ROM hip 

abduction/adduction (r=-0.252) and maximum knee flexion in stance (r=0.282, figure 3). Center of 

auditory meatus-hip axis plumbline was significantly correlated to ROM pelvic obliquity (r=-0.263, 

figure 3), ROM hip abduction/adduction (r=-0.237), maximum plantarflexion in stance (r=0.176). 

Radiological pelvic tilt was significantly correlated to ROM pelvic obliquity (-0.211, figure 3). Thoracic 

kyphosis was significantly correlated to ROM pelvic obliquity (r=-0.211), ROM pelvic rotation (r=-

0.197), ROM hip abduction adduction (r=-0.182), ROM knee flexion/extension (r=-0.18), maximum 

plantarflexion in stance (r=0.220), mean foot progression in stance (r=-0.383, figure 3), walking speed 

(r=-0.19, figure 3) and foot off (r=0.259). All p-values were <0.05. TPA, LPA and PI-LL were significantly 

correlated to ROM pelvic obliquity (r=-0.26, r=-0.20, r=-0.27, respectively). TPA was also correlated to 

single support (r=-0.21). 

Results of the ANCOVA models were displayed in table 2. Briefly, mean gait pelvic tilt was determined 

(R2 adjusted=0.09, p<0.001) by age (β=0.28), and rPT (β=-0.19). The ROM pelvic obliquity was 

determined (R2 adjusted=0.37, p<0.001) by sex (β=0.49, M as reference), rPT (β=-0.30) and CAM-HA 

(β=-0.19). The ROM hip flexion/extension in stance (R2 adjusted=0.13, p<0.001) was determined by 

age (β=0.23), height (β=-0.23) and TK (β=-0.17). Hip flexion at initial contact was determined (R2 

adjusted=0.18, p<0.001) by age (β=0.43) and TK (β=-0.17). Maximal knee flexion during stance was 

determined (R2 adjusted=0.14, p<0.001) by age (β=0.27) and SVA (β=0.27). Mean foot progression in 

stance was determined (R2 adjusted=0.30, p<0.001) by weight (β=-0.41) and TK (β=-0.33). Walking 

speed was determined (R2 adjusted=0.03, p=0.03) by TK (β=-0.19). Foot off was determined (R2 

adjusted=0.13, p<0.001) by weight (β=0.27) and TK (β=0.22). The main results were summarized in 

figure 4.  



Discussion 

The assessment of spino-pelvic postural alignment has been considered as crucial in the evaluation of 

patients with spinal malalignment as well as for surgical planning that aims to correct patient’s 

alignment and to enhance quality of life. Gait is an essential factor of quality of life. It is still unknown 

how spino-pelvic and global postural alignment parameters are related to gait, even in asymptomatic 

subjects. In the current study, gait kinematics of 134 asymptomatic adults age ranging from 18 to 59 

years old were shown to be partially determined by spino-pelvic and global postural alignment 

parameters. 

The spino-pelvic parameters of our population were comparable to those of other populations 

published in the literature [35]. Iyer et al. established the normative values of traditional and novel 

sagittal alignment parameters based on age; our results were shown to be in accordance with their 

values [8].  

Ageing has been widely shown to be a major modifier in gait kinematics and kinetics. It is already 

known that older adults have different gait kinematics compared to young adults when walking at 

self-selected speed [37]. These differences were related to the decreased walking speed seen in 

elderly [38–40]. Walking speed was not correlated with age in our study maybe because the maximal 

age in our population did not exceed 59 years. However, even with a small coefficient of 

determination (R2 adjusted=0.029), a significant negative correlation was found between walking 

speed and TK (β=-0.19, p=0.028). This could be explained by the fact that TK is known to increase with 

age [8].  

Age was found to have significant effects on knee kinematics in the sagittal plane during loading 

response and during swing: maximum knee flexion in stance (β=0.272, R2 adjusted = 0.141, p=0.001) 

and maximum flexion in swing (β=0.204, R2 adjusted = 0.105, p=0.016) were positively correlated with 

age. This might be explained by age related decreases in neuromuscular control [41]. These results 

are in accordance with other studies reporting the effect of age on gait kinematics [42]. 

Furthermore, hip kinematics in the sagittal plane were affected by age. In fact, ROM hip 

flexion/extension during stance (β=0.231, R2 adjusted = 0.130, p=0.006), mean hip extension in stance 

(β=0.196, R2 adjusted = 0.118, p=0.020), and hip flexion at initial contact (β=0.432, R2 adjusted = 0.183, 

p<0.001) were shown to increase with age. This finding might join DeVita and Hortobagyi’s hypothesis 

that older adults adopt a gait strategy with increased hip flexion, thus compensating the reduced 

power generation at the ankle [37].  

Moreover, our results showed that increased weight might cause a decreased hip extension in stance 

(hip flexion: β=0.269, R2 adjusted = 0.118), along with an attitude of external hip rotation  (decreased 



hip internal rotation in stance: β=-0.232, R2 adjusted = 0.234), a decreased mobility in the knee (ROM 

knee flexion/extension: β=-0.360, R2 adjusted = 0.123), a more external foot progression (mean foot 

progression in stance: β=-0.410, R2 adjusted = 0.301) and a longer stance phase (foot off: β=0.273, R2 

adjusted = 0.128). Part of these results are in accordance with recent studies that found that increased 

Body Mass Index (BMI) was associated with increased hip flexion, that might be due to differences in 

the location of subjects’ center of mass [42,43].  

While the axial-plane kinematics of the pelvis were barely affected by sex (ROM pelvic rotation: 

β=0.248 - M as reference, R2 adjusted = 0.054, p=0.004), frontal-plane kinematics of the pelvis and hip 

presented stronger significance attributed to sex (higher adjusted R2 and higher β coefficients). 

Compared to males, females had a larger ROM of pelvic obliquity in the frontal plane (β=0.488, R2 

adjusted = 0.365, p<0.001), a larger ROM of hip abduction/adduction (β=0.511, R2 adjusted = 0.255, 

p<0.001) and a larger mean hip abduction/adduction (β=0.412, R2 adjusted = 0.221, p<0.001). This 

was in accordance with previous studies that related these changes to anatomical and neuromuscular 

differences between both sexes [42]. 

Thus, anthropometric and demographic factors were shown to be confounding factors that affected 

gait kinematic parameters. Interestingly, even when including age, sex weight and height in the 

multivariate analysis models – thus correcting for confounding factors – the following spino-pelvic and 

global postural alignment parameters showed significant implications in variability of gait kinematics: 

SVA, CAM-HA, rPT and TK. 

First, SVA was shown to determine knee flexion during stance (β=0.268, R2 adjusted = 0.141, p=0.001). 

As reported by Lafage et al, SVA held the second strongest correlation with health-related quality of 

life (HRQOL) scores in patients  with adult spinal deformity [15]. Glassman et al. also found that SVA 

was correlated with pain and a decrease in function measured by HRQOL outcomes [14]. Moreover, 

Schwab et al. used the SVA as the global alignment modifier to classify adults with spinal deformities 

since it has been proven to be correlated with pain and disability [44]. This emphasizes the importance 

of this parameter in the assessment of the global postural alignment. The findings of this study showed 

that asymptomatic subjects with increased SVA seem to have a larger knee flexion during loading 

response (figure 4). In fact, the more the SVA increases, the more the trunk has a forward inclination. 

It was demonstrated that an original forward or backward inclination while standing still is maintained 

during locomotion [36] and affects lower limbs loading patterns [45]. Therefore, postures with 

forward inclination of the trunk could require compensatory changes in lower limb kinematics to 

maintain balance during walking. Consequently, this study showed that even asymptomatic subjects 

that have a large SVA presented modifications in knee flexion during loading response. Thus, further 

increase in SVA in these subjects, either due to ageing or spinal deformities, could lead to even more 



flexed knees during walking, which can predispose to knee osteoarthritis (KOA) and lead to gait 

instability while walking at self-selected speed, as shown in previous studies [38]. 

Although a strong correlation is known to exist between SVA and CAM-HA (r=0.739, p<0.001- found 

in this study), both parameters were integrated in the multivariate analysis in order to investigate if 

both head and spine positions (taken into account in the CAM-HA plumbline) or only the spine position 

(SVA) influences gait kinematics the most.    

This study showed that a more advanced head and spine position in standing (i.e. increased CAM-HA) 

was related to a limitation of the pelvic mobility in the frontal plane (ROM pelvic obliquity: β=-0.19, 

R2 adjusted=0.365).  

Moreover, subjects with increased radiographic pelvic tilt (rPT) were also found to have a retroverted 

pelvis during walking (mean gait pelvic tilt: β=-0.185, R2 adjusted=0.09) and a reduced mobility in the 

frontal plane (ROM pelvic obliquity: β=-0.297, R2 adjusted=0.365). Radiographic pelvic tilt in the 

sagittal plane is considered to be a crucial compensatory mechanism for subjects with sagittal 

malalignment and the maximal amount of pelvic tilt that a subject can perform is known to be limited 

by his maximal capacity of hip extension [15]. Moreover, rPT is an essential parameter that is used in 

different classifications of adult spinal deformity patients [24–29,44] and is known to be increased in 

this specific population whose quality of life is affected [15]. Thus, when the hip extension reserve is 

used, mobility of the pelvis might be limited. The results obtained in this study showed that an 

increased rPT is correlated to a pelvic retroversion during walking and a decrease in pelvic obliquity 

ROM during gait, thus affecting the mobility of the pelvis while walking.  

Additionally, this study showed that a larger TK was correlated with a decreased hip mobility in the 

sagittal plane (ROM hip flexion/extension β=-0.17, R2 adjusted=0.13) a decreased hip flexion at initial 

contact (β=-0.165, R2 adjusted=0.183). These findings suggest that subjects with larger TK, such as in 

subjects with adult spinal deformities, might have their hip mobility affected. This study showed also 

that subjects with larger TK present with a more external foot progression (β=-0.33, R2 adjusted=0.30), 

a decreased walking speed (β=-0.19, R2 adjusted=0.03) along with a more prolonged stance phase 

(Foot off: β=0.22, R2 adjusted=0.13) and a reduced step length (β=-0.181, R2 adjusted=0.204).  

Surprisingly, structural parameters were not found as significant determinants of gait parameters 

except for the maximal plantar flexion in stance (Table 2). 

As noticed in the results of this study, several sagittal radiological parameters (SVA, CAM-HA, rPT and 

TK) were correlated not only to sagittal kinematics but also to frontal and axial plane kinematics such 

as pelvic obliquity, pelvic rotation and hip abduction/adduction. In fact, this correlation was expected 

since an interaction across planes is known in lower limb kinematics during gait [46]. This is usually 



observed in the presence of muscle weakness or spasticity causing gait abnormalities in one plane (i.e 

sagittal) and one joint (i.e ankle) that propagate to other joints in other planes (hip and pelvis).   

The main limitation of this study is the small number of older subjects. This is due to the difficulty in 

finding older adults who fill the inclusion criteria, thus have no history of back pain nor have 

undergone any orthopeadic surgery, and do not have any spinal deformity (adult spinal deformity, 

vertebral compression or spondylolysthesis). Due to the inclusion/exclusion criteria, the older subjects 

in this study represent the higher end of the spectrum in performance and do not represent the 

general elderly population. This could limit this study’s ability to generalize our results to the entire 

elderly population.  

In conclusion, spino-pelvic as well as global postural alignment parameters are related to pelvic, hip, 

knee and foot gait kinematics as well as time-distance parameters. A more forwarded spine (larger 

SVA) was related to a larger knee flexion during loading response. A larger radiological pelvic tilt and 

a more advanced head (larger CAM-HA) were related to a limited pelvic mobility in the frontal plane 

during walking. A larger thoracic kyphosis was related to a reduced hip sagittal mobility, more external 

foot progression, a reduced walking speed and a delayed foot off.  Thus, adults with spinal deformities, 

where increase in SVA, CAM-HA, TK and rPT are known to occur, could have their gait affected by 

reducing their pelvis, hips and knees mobility along with a slower pace (reduced speed, step length 

and longer stance phase) that might be necessary to insure stability during walking. Future studies 

should focus on specific alterations in gait in subjects with adult spinal deformities. 
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Figure legends: 

Figure 1: Sagittal spino-pelvic and global postural alignment parameters: pelvic tilt (PT), sacral slope 

(SS), pelvic incidence (PI), L1S1 lumbar lordosis (LL), T1T12 thoracic kyphosis (TK), sagittal vertical 

axis (SVA), center of auditory meatus to hip axis plumbline (CAM-HA). 

Figure 2: Means and standard deviations for sagittal spino-pelvic and global postural alignment 

parameters in 134 asymptomatic adults. 



Figure 3: Correlations (Pearson’s r) between kinematics and spino-pelvic and global postural 

parameters. 

Figure 4: Influence of spino-pelvic and postural alignment parameters (SVA, PT and rPT) on gait 
kinematics. 



Table 1: Gait kinematics in 134 asymptomatic subjects as mean and standard deviation. 

Gait kinematics Mean 
Standard 
deviation 

P
el

vi
s 

Mean pelvic tilt 11.4 5.8 

ROM pelvic tilt 3.4 1.2 

Mean pelvic obliquity -0.1 1.6 

ROM pelvic obliquity 10.3 4.0 

Mean pelvic rotation 0.0 2.7 

ROM pelvic rotation  12.5 4.5 

H
ip

 

ROM hip flexion/extension in stance 42.0 4.6 

Max hip extension in stance  -7.4 7.0 

ROM hip flexion/extension  43.6 4.6 

Mean hip flexion/extension 16.4 6.6 

Hip flexion at initial contact 34.2 7.2 

ROM hip abduction/adduction 14.0 4.0 

Peak hip abduction in swing -8.0 3.0 

Mean hip abduction/adduction -0.4 2.9 

Mean hip internal/external rotation 0.9 8.7 

Mean hip internal/external rotation in stance 0.7 9.3 

K
n

ee
 

Max knee flexion in stance  16.4 5.6 

Max knee extension in stance  2.5 5.0 

Max knee flexion in swing 62.3 5.6 

Knee extension at initial contact 4.2 4.7 

ROM knee flexion/extension 61.2 5.1 

Mean knee flexion/extension 20.6 4.2 

A
n

kl
e 

&
 f

o
o

t 

Max dorsiflexion in stance  17.3 3.5 

Max plantarflexion in stance  -8.5 5.6 

Max dorsiflexion in swing  9.5 3.4 

ROM dorsi/plantar flexion 29.4 5.8 

Mean dorsi/plantar flexion 6.2 2.7 

Mean foot progression angle in stance -10.3 6.1 

ROM foot progression angle in stance  9.2 3.2 

Ti
m

e-

d
is

ta
n

ce
 

p
ar

am
et

er
s Walking speed 1.3 0.1 

Cadence 115.5 9.1 

Foot off 60.8 1.7 

Single support 0.4 0.0 

Step length 0.7 0.1 

ROM: Range of Motion; Max: Maximum.



Table 2: Multivariate analysis results: effect of demographic and postural alignment parameters on gait 

kinematics. 

Demographic and Postural alignment parameters as determinants of gait (independent variables in the ANCOVA model) 

Gait 
parameters R2   

adj
ust
ed 

Age Weight Height 
Sex (M as 
reference) 

SVA 
(mm) 

CAM-HA 
(mm) 

Pelvic 
Tilt 

T1T12 
kyphosis 

Pelvic 
Incidenc

e TPA LPA PI-LL 

(dependent 
variables in 

the ANCOVA 
models) 

β 
p 
val
ue 

β 
p 
val
ue 

β 
p 
val
ue 

β 
p 
val
ue 

β 
p 
val
ue 

β 
p 
val
ue 

β 
p 
val
ue 

β 
p 
val
ue 

β 
p 
val
ue 

β 
p 
val
ue 

β 
p 
val
ue 

β 
p 
val
ue 

P
el

vi
s 

Mean 
pelvic 

tilt 

0.0
89 

0.
28

4 

0.
00

1 

-
0.

18
5 

0.
02

8 

ROM 
pelvic 

obliquit
y 

0.3
65 

0.
48

8 

<0.
001 

-
0.
1
9 

0.
02 

-
0.

29
7 

<0
.0

01 

ROM 
pelvic 

rotation 

0.0
54 

0.
24

8 

0.0
04 

H
ip

 

ROM 
hip 

flexion/
extensio

n in 
stance 

0.1
3 

0.
23

1 

0.
00

6 

-
0.

22
8 

0.
00

7 

-
0.

17 

0.
04 

Max hip 
extensio

n in 
stance 

0.1
18 

0.
19

6 

0.
02 

0.
26

9 

0.
00

2 

ROM 
hip 

flexion/
extensio

n 

0.1
25 

-
0.

36
2 

<0
.0

01 

Mean 
hip 

flexion/
extensio

n 

0.1
01 

0.
32

8 

<0
.0

01 

Hip 
flexion 

at initial 
contact 

0.1
83 

0.
43

2 

<0
.0

01 

-
0.

16
5 

0.
03

9 

ROM 
hip 

abducti
on/addu

ction 

0.2
55 

0.
51

1 

<0.
001 

Mean 
hip 

abducti
on/addu

ction 

0.2
21 

0.
22

2 

0.
00

5 

0.
41

2 

<0.
001 

Mean 
hip 

internal
/externa

l 
rotation 

in 
stance 

0.2
34 

-
0.

39
6 

<0
.0

01 

-
0.

23
2 

0.
00

3 

K
n

ee
 

Max 
knee 

flexion 
in 

stance 

0.1
41 

0.
27

2 

0.
00

1 

0.
2
6
8 

0.
00

1 

Max 
knee 

flexion 
in swing 

0.1
05 

0.
20

4 

0.
01

6 

-
0.

31
9 

<0
.0

01 

ROM 
knee 

flexion/
extensio

n 

0.1
23 

-
0.

36 

<0
.0

01 



A
n

kl
e 

&
 f

o
o

t 

ROM 
dorsi/pl

antar 
flexion  

0.1
41 

0.
38

4 

<0.
001 

Max 
plantar 
flexion 

in 
stance 

0.1
37 

-
0.

25
4 

0.0
03 

0.
19

2 

0.
02

1 

0.
2
8
9 

0.
00

1 

-
0.
3
7 

0.
00

1 

Mean 
foot 

progress
ion in 
stance 

0.3
01 

-
0.

41 

<0
.0

01 

-
0.

32
9 

<0
.0

01 

Walking 
speed 

0.0
29 

-
0.

19 

0.
02

8 

Ti
m

e-
d

is
ta

n
ce

 

Cadence 
0.2
09 

-
0.

46
3 

<0
.0

01 

Foot off 
0.1
28 

0.
27

3 

0.
00

1 

0.
22

3 

0.
00

7 

Step 
length 

0.2
04 

0.
44

7 

<0
.0

01 

-
0.

18
1 

0.
02

2 

ROM: Range Of Motion; Max: Maximum; TPA: thoracic pelvic angle; LPA: lumbar pelvic angle; PI-LL: 

pelvic incidence-lumbar lordosis. 




