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Abstract 

Human cases of H7N9 influenza A virus infection have been increasing since 2013. The 

first choice of treatment for influenza is neuraminidase (NA) inhibitors (NAIs), but there is a 

concern that NAI-resistant viruses are selected in the presence of NAIs. In our previous study, an 

H7N9 virus carrying AA substitution of threonine (T) for isoleucine (I) at residue 222 in NA 

(NA222T, N2 numbering) and an H7N9 virus carrying AA substitution of lysine (K) for arginine 

(R) at residue 292 in NA (NA292K, N2 numbering) were found in different macaques that had 

been infected with A/Anhui/1/2013 (H7N9) and treated with NAIs. In the present study, the variant 

with NA292K showed not only resistance to NAIs but also lower replication activity in MDCK 

cells than did the virus with wild-type NA, whereas the variant with NA222T, which was less 

resistant to NAIs, showed replication activity similar to that of the wild-type virus. Next, we 

examined the pathogenicity of these H7N9 NAI-resistant viruses in macaques. The variants caused 

clinical signs similar to those caused by the wild-type virus with similar replication potency. 

However, the virus with NA292K was replaced within 7 days by that with NA292R (same as the 

wild-type) in nasal samples from macaques infected with the virus with NA292K, i.e. the so-called 

revertant (wild-type virus) became dominant in the population in the absence of an NAI. These 



results suggest that the clinical signs observed in macaques infected with the NA292K virus are 

caused by the NA292K virus and the NA292R virus and that the virus with NA292K may not 

replicate continuously in the upper respiratory tract of patients without treatment as effectively as 

the wild-type virus. 
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1. Introduction 

H7N9 avian influenza A virus infection in humans has been reported since 2013 in China. 

After the occurrence of the greatest epidemic wave in the season of 2016-2017, 1568 cases 

including 615 deaths were reported up to November 2019 (WHO, 2019). Some patients infected 

with the H7N9 virus showed severe clinical symptoms with pneumonia and acute respiratory 

distress syndrome (Gao et al., 2013; Hu et al., 2013). In our previous study, the efficacy of 

neuraminidase inhibitors (NAIs) against the H7N9 influenza virus A/Anhui/1/2013 (H7N9) 

(Anhui/1) was examined in cynomolgus macaques (Itoh et al., 2015). Although oseltamivir and 

peramivir reduced the virus titers in macaques, variants with I222T and R292K in neuraminidase 

(NA) [N2 numbering, amino acid (AA) positions 219 and 289 in the N9 numbering of 

A/Anhui/1/2013 (H7N9)] were detected in different macaques treated with NAIs. R292K in NA 

has been identified in human virus samples (Hu et al., 2013; Lin et al., 2014; Sleeman et al., 2013; 

Marjuki et al., 2015) , whereas I222T among the N9 subtype was identified for the first time in our 

previous study (Itoh et al., 2015). Other non-I222T substitutions at NA222 in the N9 subtype were 

found in human samples (Marjuki et al., 2015), and I222T was found in H5N1 and influenza B 

viruses (McKimm-Breschkin et al., 2013; Monto et al., 2006). According to the results of molecular 



dynamics simulations, the substitution of R292K directly reduced NAI binding, whereas the 

substitution of I222T indirectly changed the conformation of the catalytic site of NA (Itoh et al., 

2015). 

NAIs are used for treatment of patients infected with influenza A and B viruses. In H1N1 

and H3N2 seasonal influenza viruses, NA variants resistant to NAIs (H274Y, R292K) showed 

lower replication potency (replicative fitness) in ferret models and in vitro (Herlocher et al., 2004; 

Ives et al., 2002) than did NAI-sensitive viruses, whereas an H1N1 resistant virus (H275Y) 

dominated the viruses sensitive to NAIs a few seasons later in Japan (Ujike et al., 2010). The H3N2 

virus with reduced-susceptibility (I222T/S331R or R292K), which is sporadically detected, has 

been a minor population in circulating viruses in humans (Hurt et al., 2016). In addition, it has been 

speculated that mutations in not only NA genes but also HA genes are responsible for fitness for 

replication of viruses with NAI resistance (Govorkova, 2013). Although the characteristics of 

H7N9 variants have been evaluated in mice, guinea pigs, and ferrets (Zhang et al., 2014; Hai et al., 

2013; Baranovich et al., 2014; Yen et al., 2014), the pathogenicity and replication efficiency of 

NAI-resistant variants in non-human primates, which are physiologically and genetically similar 

to humans, have not been revealed. 



In the present study, we examined the replicative fitness and pathogenicity of variant 

H7N9 viruses with NA222T or NA292K in cell culture and in macaques without NAI treatment. 

Low replication ability of the virus carrying NA292K was confirmed in vitro. The macaques 

infected with the H7N9 viruses with NA222T or NA292K showed significant symptoms as did 

macaques infected with the wild-type virus Anhui/1 (Itoh et al., 2015). After infection, the 

percentage of the variant virus carrying NA222T did not change in the virus population, whereas 

the variant carrying NA292K decreased in the population and the virus with NA292K was replaced 

by the virus with NA292R (wild-type). Therefore, the virus carrying NA292K, which showed high 

resistance to NAIs, may not replicate efficiently in the upper respiratory tract of untreated patients 

in the absence of selective pressure of NAIs, but the virus carrying NA292K may replicate in the 

lower respiratory tract. 

 

2. Materials and Methods 

2.1. Ethics statement 

This study was carried out in strict accordance with the Guidelines for the Husbandry 

and Management of Laboratory Animals of the Research Center for Animal Life Science at Shiga 



University of Medical Science and Standards Relating to the Care and Management, etc. of 

Experimental Animals (Notification No. 6, March 27, 1980 of the Prime Minister’s Office, Japan). 

The protocol was approved by the Shiga University of Medical Science Animal Experiment 

Committee (permission 2016-6-2). Regular veterinary care and monitoring, balanced nutrition and 

environmental enrichment were provided by the Research Center for Animal Life Science at Shiga 

University of Medical Science. The macaques were euthanized at the endpoint 7 days after virus 

inoculation using ketamine/xylazine followed by intravenous injection of pentobarbital (200 

mg/kg). The animals were monitored every day during the study to be clinically scored as shown 

in Table S1 and to undergo veterinary examinations to help alleviate suffering. Animals would be 

euthanized if their clinical scores reached 15 (a humane endpoint), although no animals showed 

symptoms scored as 15 in the present study (Pham et al., 2013; Itoh et al., 2015).  

 

2.2. Animals 

The macaques used in this study were free from herpes B virus, hepatitis E virus, 

Mycobacterium tuberculosis, Shigella spp., Salmonella spp., and Entamoeba histolytica. Female 

cynomolgus macaques (5 – 9 years of age) in the Research Center for Animal Life Science, Shiga 



University of Medical Science that had been bred from macaques originating in Indonesia were 

healthy adults. Sample collection and virus inoculation were performed under conditions of 

ketamine (5 mg/kg) and xylazine (1 mg/kg) anesthesia, and all efforts were made to minimize 

suffering. Food pellets of CMK-2 (CLEA Japan, Inc., Tokyo, Japan) were given once a day after 

recovery from anesthesia, and drinking water was available ad libitum. The animals were singly 

housed under conditions of controlled humidity (47% to 54%), temperature (23 to 24 °C), and light 

(12-h light/12-h dark cycle; lights on at 8:00 a.m.). In the text and figures, individual macaques are 

distinguished by the following identification numbers: T1, T2, and T3 as macaques infected with 

A/Anhui/1/2013 with NA variants I222T (NA222T) and K1, K2, and K3 as macaques infected 

with A/Anhui/1/2013 with NA variants R292K (NA292K). Two weeks before virus inoculation, a 

telemetry probe (TA10CTA-D70; Data Sciences International, St. Paul, MN) was implanted in the 

peritoneal cavity of each macaque under the condition of ketamine/xylazine anesthesia followed 

by isoflurane inhalation to monitor body temperature. Under the condition of ketamine/xylazine 

anesthesia, two cotton sticks (TE8201, Eiken Chemical, Ltd., Tokyo, Japan) were used to collect 

fluid samples in nasal cavities, oral cavities, and tracheas every day from day 0 to day 7, and the 

sticks were subsequently immersed in 1 mL of Eagle’s minimal essential medium (EMEM) 



containing 0.1% bovine serum albumin (BSA) and antibiotics. A bronchoscope (MEV-2560; 

Machida Endoscope Co. Ltd., Tokyo, Japan) and cytology brushes (BC-203D-2006; Olympus Co., 

Tokyo, Japan) were used to obtain bronchial samples. 

 

2.3. Viruses and cells 

Influenza virus A/Anhui/1/2013 (H7N9) (Anhui/1, kindly provided by Eri Nobusawa, 

Kazuya Nakamura and Masato Tashiro, National Institute of Infectious Disease, Japan) was 

isolated from a human patient (Gao et al., 2013; Kageyama et al., 2013) and propagated in chicken 

embryonated eggs once at 35°C for 48 h at the Shiga University of Medical Science (Itoh et al., 

2015; Shichinohe et al., 2016). Virus isolates with NA222T or NA292K were detected in nasal 

samples from separate Anhui/1-inoculated and NAI-treated macaques in the previous study (Itoh 

et al., 2015). Since the viruses were a mixture of wild-type and NA variants, we isolated these 

viruses in plaque purification using Madin-Darby canine kidney (MDCK) cells (American Type 

Culture Collection, Manassas, VA) after staining the plaques with neutral red. After collecting the 

plaques, we propagated the viruses by using MDCK cells and stored them at -80 °C until use. The 

changes at NA222T and NA292K were detected in genes from the nasal swab samples before 



culture of MDCK cells as described in the previous study (Itoh et al., 2015). Three macaques were 

challenged with NA222T virus and three other macaques were challenged with NA292K virus (3 

× 106 plaque-forming units [PFU] in 7 mL Hanks buffered saline solution [HBSS]). The virus was 

inoculated into the conjunctivas (0.05 mL for each conjunctiva), nostrils (0.5 mL for each nostril), 

oral cavity (0.9 mL), and trachea (5 mL) using pipettes and catheters. For virus titration, serial 

dilutions of nasal swabs, oral swabs, tracheal swabs, and bronchial swabs were inoculated onto 

confluent MDCK cells. The MDCK cells were then cultured in MEM including 0.1% BSA and 

trypsin (5 µg/mL). The presence of cytopathic effects (CPE) was determined under a microscope 

72 h later, and the virus concentration (TCID50/mL) was calculated (Itoh et al., 2008).  

To compare the replicative fitness between in vivo and in vitro, we passaged viral stock 

(NA222T and NA292K) in MDCK twice (Table S5). The virus with NA222T and that with 

NA292K were cultured in MDCK cells at a multiplicity of infection (m.o.i.) of 0.01 for 48 h until 

showing CPE, and supernatants were collected and stored at -80 oC. Then virus titers in the 

collected supernatants were sequenced and the viruses were passaged twice in the same condition. 

 

2.4. Plasmids and reverse genetics 



Plasmid-based reverse genetics for influenza virus generation was performed (Hoffmann 

et al., 2000; Soda et al., 2011). pHW2000 plasmids encoding the complementary DNAs for eight 

segments of Anhui/1 RNA were constructed. Plasmids encoding Anhui/1, HA with substitution of 

leucine to glutamine at 226 (HA226Q, H3 numbering), NA with substitution of isoleucine to 

threonine at 222 (NA222T) and NA with substitution of arginine to lysine at 292 (NA292K) under 

control of the CMV promoter were transfected. For transfection, 293T cells and MDCK cells were 

co-cultured in OPTI-MEM (Thermo Fisher SCIENTIFIC, MA, USA) in a six-well plate for one 

day at 37 °C. Six combinations of plasmids coding NA and HA (wild-type NA + wild-type 

HA226L, NA222T + HA226L, NA292K + HA226L, wild-type NA + HA226Q, NA222T + 

HA226Q, NA292K + HA226Q) together with other segments (PB2, PB1, PA, NP, M, and NS) 

were mixed with OPTI-MEM and TransIT-293 (Mirus Bio LCC., WI, USA) for 30 min at room 

temperature and then added into the plates. After incubating for 6 h at 37 °C, the medium was 

changed to new OPTI-MEM and incubated at 37 °C again. After incubation for 30 h, new OPTI-

MEM containing trypsin (5 µg/mL) was added and cultured at 35 °C for four to 6 days, and then 

culture supernatants were collected and inoculated into MDCK cells for virus propagation. All six 

viruses made by reverse genetics including rgAnhui/1 (virus with a gene constellation of the wild-



type Anhui/1) had identical nucleotide changes in the HA gene, which coded the AA sequence 

FVSGSK at residues 309 to 314 instead of PFQNID as detected in wild-type Anhui/1. 

  

2.5. Growth kinetics of virus in cell culture and drug resistance assay 

To examine the propagation of mutant viruses generated by reverse genetics, MDCK 

cells and A549 cells (human lung carcinoma cells obtained from RIKEN RBC through the National 

Bio-Resource Project of MEXT, Japan) were cultured in 12-well plates for two days until becoming 

confluent. The six variant viruses were inoculated into the cells at an m.o.i. of 0.01. After 

incubation at 35 °C for 1 h, the cells were washed with HBSS once, and then EMEM containing 

0.1% BSA with trypsin (5 µg/mL) and Dulbecco’s modified Eagle’s medium (DMEM) containing 

0.3% BSA and trypsin (5 µg/mL) for MDCK cells and A549 cells, respectively, were added and 

the cells were cultured at 35 °C. Culture supernatants were collected at 6, 12, 24, 48, and 72 h after 

infection to measure virus titers. 

To examine antiviral drug susceptibility of NAI-resistant variants, MDCK cells and 

A549 cells were cultured with viruses for 1 h at an m.o.i. of 0.01. MDCK cells and A549 cells were 

washed with HBSS and cultured in EMEM containing 0.1% BSA and trypsin (5 µg/mL) and 



DMEM containing 0.3% BSA and trypsin (5 µg/mL), respectively, with or without oseltamivir 

acid (Chemscene Ltd., NJ) or peramivir hydrate (Shionogi & Co., Ltd., Osaka, Japan) (0 – 10 

µg/mL) for 24 or 48 h at 35 °C. Culture supernatants were collected to measure virus titers. 

 

2.6. NA inhibition assay 

 Half maximal inhibitory concentrations (IC50) of oseltamivir and peramivir against 

enzymatic activity of NA of the viruses generated by reverse genetics were determined as 

previously described (Leang et al., 2017). Briefly, diluted viruses were mixed with the indicated 

concentrations of oseltamivir or peramivir and incubated at 37 °C for 30 min. 2’-(4-

Methylumbelliferyl)-α-D-N-acetylneuraminic acid (MUNANA) substrate (Nacalai Tesque, Kyoto, 

Japan) was then added as a fluorescent substrate, and the mixture was incubated at 37 °C for 1 h. 

The reaction was stopped by adding 0.14 M NaOH in ethanol. The fluorescence of the solution 

was measured at an excitation wavelength of 365 nm and an emission wavelength of 415 – 445 nm, 

and the IC50 values were calculated.  

 

2.7. Sequence analysis of NA and HA genes and allele frequency analysis by deep sequencing 



Viral RNA was extracted from supernatants or suspensions of swab samples using a Qiagen viral 

RNA minikit (Qiagen, Hilden, Germany) and reverse-transcribed with Uni12 primers and Moloney 

murine leukemia virus (MMLV) reverse transcriptase (Invitrogen Corporation, Carlsbad, CA) 

(Desselberger et al., 1980; Itoh, et al. 2015). The partial NA and HA regions of the influenza virus 

were amplified using the primer sets of forward primer 5’-TGCACTTCAGCCACTGCTAT-3’ and 

reverse primer 5’-ATATCGTCTCGTATTAGTAGAAACAAGGGTCTT-3’ and forward primer 

5’-CCTGGTATTCGCTCTGATTGC-3’ and reverse primer 5’-

TGCTACCAAGAGTTCAGCATTG-3’, respectively. For amplification by KOD plus-neo DNA 

polymerase (Toyobo Co. Ltd., Osaka, Japan), after denaturation at 94 °C for 2 min, the reaction 

was performed with 30 cycles of denaturation at 98 °C for 10 s, annealing at 58 °C for 30 s, and 

extension at 68 °C for 45 s. For amplification by PrimeSTAR Max DNA polymerase (Takara Bio 

Inc.), after denaturation at 98 °C for 2 min, the reaction was performed with 35 cycles of 

denaturation at 98 °C for 10 s, annealing at 55 °C for 5 s, and extension at 72 °C for 1 min. 

PCR amplicons were sheared to make the length about 300 bp using Covaris S220 

(Covaris Inc., MA) and libraries were prepared by using a KAPA Hyper Prep Kit (KAPA 

Biosystems) according to the manufacturer's protocol. The 251 bp paired-end sequencing was 



performed using a MiSeq v2 500 cycle kit (Illumina Inc., CA), and about 90,000 - 130,000 reads 

were obtained for each sample. Raw reads for each sample were mapped onto the reference 

sequence using bowtie2, and count files were generated using igvtools. 

 

3. Results 

3.1. Low replication rate of the H7N9 virus with NA292K/HA226Q in cells 

In our previous study (Itoh et al., 2015), two variant viruses were isolated from nasal 

swab samples of different cynomolgus macaques that had been infected with wild-type virus 

Anhui/1 and treated with NAIs: one was a virus with a substitution at AA position 222 in NA 

(NA222T), and the other was a virus with a substitution at AA position 292 in NA (NA292K). In 

our previous study, the both viruses showed higher IC50 values against NAIs than did Anhui/1. To 

examine the effect of each substitution in the NA on virus replication, we generated viruses 

carrying substitutions in NA using reverse genetics (rg). At cloning and confirming of viral genes, 

we detected several substitutions in HA (Table S2). Among them, the virus with NA222T and the 

virus with NA292K had a substitution of glutamine at 226 in HA (L226Q) (residue 226 in H3 

numbering corresponding to 235 in H7 numbering), which is located in the sialic acid-binding 



pocket (Rogers et al., 1983), although the wild-type Anhui/1 possessed leucine at residue 226 in 

HA (HA226L). Finally, six variants were constructed by combinations of three mutations coding 

NA222T, NA292K, and HA226Q. Virus titers of all variants reached plateau levels after 24 h in 

culture of MDCK cells (Fig. 1A) and after 48 h in culture of A549 cells (Fig. S1A). The virus 

carrying NA292K together with HA226Q (rgNA292K/HA226Q) showed lower virus titers than 

did the other variants in MDCK cells (Fig. 1A). On the other hand, in human lung carcinoma A549 

cells, NA292K/HA226Q showed a slightly lower growth rate than did rgAnhui/1 with HA226L 

(wild-type) (Fig. S1A). Three AAs at NA222, NA292, and HA226 did not change after 72 h in 

culture, as confirmed by nucleotide sequence analysis (data not shown). The results suggest that 

rgNA292K/HA226Q has lower replication potency than do other viruses in vitro although they 

have a similar replication potency in human cells. 

 

3.2. High resistance of H7N9 viruses with NA292K to oseltamivir and peramivir  

We examined the efficacy of anti-influenza drugs against the variant viruses. MDCK and 

A549 cells were infected and treated with NAIs (oseltamivir and peramivir, 0.001 – 10 µg/mL), 

and then viral titers were measured at 24 h and 48 h (Fig. 1B, C and Fig. S1B, C). The virus titers 



of rgAnhui/1 (wild-type NA/HA226L) and rgNA222T/HA226L were decreased in the presence of 

oseltamivir and peramivir, and rgHA226Q and rgNA222T/HA226Q were more sensitive to the 

NAIs than rgAnhui/1 and rgNA222T/HA226L (Fig. 1B, C). The half maximal effective 

concentrations (EC50 values) for oseltamivir and peramivir against all strains were calculated in 

MDCK and A549 cells. The rgHA226Q and rgNA222T/HA226Q strains had lower EC50 values 

for oseltamivir and peramivir than did rgAnhui/1 and rgNA222T/HA226L strains (Table S3). We 

also examined the half maximal inhibitory concentrations (IC50 values) against NA enzymatic 

activity for all the viral strains (Table 1). rgAnhui/1 and rgHA226Q exhibited similar IC50 values 

to each other, as did rgNA222T/HA226L and rgNA222T/HA226Q (Table 1). There was virtually 

no decrease in viral titers for rgNA292K/HA226L and rgNA292K/HA226Q in the presence of the 

NAIs (Fig. 1B, C, Fig. S1B, C). However, rgNA292K/HA226Q had slightly higher EC50 and IC50 

values relative to rgNA292K/HA226L. These results suggest that the NA292K substitution is 

responsible for resistance to NAIs. It is also suggested that the HA226Q substitution has a positive 

effect on the replicative fitness of viruses with wild type NA and NA222T and a negative effect on 

that of the virus with NA292K. Collectively, these results suggest that the substitution of NA292K 

is critical for escape from NAIs in macaques. 



 

3.3. Disease signs and viral pneumonia in macaques infected with two NAI-resistant H7N9 

variants 

To compare the pathogenicity of NA222T/HA226Q and NA292K/HA226Q viruses to 

that of Anhui/1, macaques were infected with plaque-purified NA222T/HA226Q or 

NA292K/HA226Q viruses. The body temperatures of the macaques rose within 24 h after virus 

inoculation and did not return to the basal level during the study period as was previously observed 

in macaques inoculated with Anhui/1 (Fig. 2A, Fig. S2) (Itoh et al., 2015). Body weights decreased, 

but the changes were not statistically significant (Fig. 2B). Clinical scores in macaques infected 

with NA222T/HA226Q or NA292K/HA226Q viruses increased after virus inoculation due to the 

increase in body temperature and loss of appetite (Fig. 2C, Table S1). No other signs of disease 

were observed. 

We examined inflammation caused by infection and viral cell tropism histologically in 

lung tissues of the macaques that had been infected with each of the two variants. Alveolar spaces 

were filled with exudate, neutrophils, and lymphocytes in the macaques infected with either variant 

viruses (Fig. 3A, B) as well as in a macaque infected with Anhui/1 (Fig. 3C) that we reported 



previously (Itoh et al., 2015) but not in an uninfected control macaque (Fig. 3D). The influenza A 

virus nucleoprotein was detected in type-I alveolar epithelial cells and type-II alveolar epithelial 

cells (Fig. 3E-G). Thus, the two variants caused viral pneumonia as did the wild-type virus. 

 

3.4. Virus propagation in macaques infected with the two NAI-resistant H7N9 variants 

We examined virus titers in swab and tissue samples to verify virus propagation. The 

virus was detected in nasal, oral, tracheal, and bronchial samples of the macaques in both groups 

from day 1 to day 6 or 7 after virus infection (Fig. 4A-D, Table S4). Virus titers in the samples 

from macaques in the NA222T/HA226Q and NA292K/HA226Q groups were comparable to those 

in the samples from macaques in the Anhui/1 group except for in bronchial samples (Table S4, Itoh 

et al., 2015). In bronchial samples, the virus titers in macaques infected with NA222T/HA226Q on 

day 4 and day 7 and that in infected with NA292K/HA226Q on day 7 were significantly higher 

than those in macaques infected with the wild-type virus. The virus titers in the samples from 

macaques in the NA222T/HA226Q group were higher than those in the samples from macaques in 

the NA292K/HA226Q group, especially oral samples at day 1 and day 7 of NA222T/HA226Q 

group were significantly higher than that of NA292K/HA226Q group (Fig. 4B). The virus was 



detected in respiratory tissues 7 days after infection (Fig. 4E). The virus titers of NA222T/HA226Q 

in tissue samples were higher than those of NA292K/HA226Q especially in tracheas, conjunctivas, 

and a part of the lung. 

 

3.5. Increases of the virus with wild-type NA292R in nasal samples from macaques infected 

with H7N9 virus with NA292K/HA226Q 

The NA genes of viruses in nasal swab samples from the macaques infected with the two 

variant viruses were examined by deep sequencing. After infection with NA222T/HA226Q, 

threonine at AA position 222 was maintained predominantly on days 5 and 7 in the nasal samples 

from macaques infected with NA222T/HA226Q (Table 2). In contrast, the virus carrying arginine 

(R) at position 292 increased in nasal swab samples instead of the virus carrying lysine (K), so 

revertant (wild-type) became dominant (Table 3). The percentages of other mutations in the NA 

gene were up to 12% in one macaque (T2) (data not shown). On the other hand, in lung samples 

collected on day 7, NA222T and NA292K were major populations in macaques inoculated with 

NA222T/HA226Q and NA292K/HA226Q, respectively (Fig. S3). Therefore, population change 

was dependent on the organ or tissue. After three in vitro passages in MDCK cells, no increase in 



the percentage of wild-type sequences in NA genes was detected in culture with NA222T/HA226Q 

or NA292K/HA226Q (Table S5). The results suggest that NA222T substitution does not affect the 

replicative fitness of the virus since the percentage of the virus with NA222I (wild-type) was less 

than 1% after one passage in macaques, whereas the virus carrying NA292K substitution has a 

disadvantage in replication in macaques without NAI treatment compared with that carrying 

NA292R (wild-type). This result indicates that the clinical signs seen in the macaques infected with 

NA292K/HA226Q were caused by NA292K/HA226Q and NA292R/HA226Q viruses in the later 

time point of infection. 

 

3.6. Sensitivity of the mixed population of NA292K and NA292R viruses to oseltamivir  

To confirm the susceptibility of the virus population propagated in the macaques to NAIs, 

we examined the replication potency of viruses that were recovered from macaques K1 and K3 as 

representative viruses (The remaining samples of K2 were insufficient for analysis.) after one 

passage in MDCK cell culture. After the passage, the percentages of NA292K in the passaged 

samples from K1 on day 1 and day 7 were 99.68% and 0.11%, respectively, and those of NA292K 

in the passaged samples from K3 on day 1 and day 7 were 99.47% and 13.58%, respectively (Table 



S6). Replication of the virus recovered from K1 on day 1 was not inhibited by oseltamivir (0.001 

– 10 µg/mL) in the culture fluid of MDCK cells for 24 h, whereas replication of the virus recovered 

on day 7 was inhibited by oseltamivir as was seen for Anhui/1 (wild-type) (Fig. 5). Although the 

percentage of NA292K in virus samples from K3 on day 7 after a passage in vitro was lower than 

that of the original viral population (26.56% as shown in Table 1), the replication of viruses 

recovered from K3 on days 1 and 7 was not inhibited by oseltamivir as was the case for NA292K 

virus (inoculum). Since the difference in viruses recovered on day 7 from K1 and K3 was the 

percentages of virus with NA292K in the population (0.11% in K1 and 13.58% in K3), it was 

thought that an increase of the virus with NAI-sensitive NA292R directly restored susceptibility of 

the virus population to NAIs. 

 

4. Discussion 

Using cell culture and cynomolgus macaques, we revealed the replication and 

pathogenicity of two H7N9 avian influenza viruses with AA substitutions in the NA protein were 

less sensitive to NAIs than was the wild-type strain Anhui/1 (Itoh et al., 2015). To examine the 

effects of AA substitutions of NA222T, NA292K and HA226Q on viral replication, we constructed 



viruses with combinations of mutations in the NA and HA genes using reverse genetics. 

rgNA292K/HA226Q showed lower virus titers than those of the other variants in culture of MDCK 

cells, whereas rg viruses with NA222T showed virus titers similar to those of rg viruses with wild-

type NA. In the macaque model, NA222T/HA226Q and NA292K/HA226Q viruses caused raised 

body temperature and loss of appetite, and virus propagation was observed in swab samples and 

respiratory tissue samples from macaques infected with either virus. Unlike the results obtained in 

an in vitro study, deep sequencing revealed that the virus carrying NA292K was replaced by that 

carrying NA292R (wild-type) during infection in nasal samples form macaques without NAI 

treatment, whereas the virus carrying NA222T was detected predominantly throughout the 

infection. These results showed that the two NAI-resistant H7N9 avian influenza viruses with 

NA222T and NA292K substitutions have different replication rates that result in population 

stability and population change, respectively. 

The clinical signs seen in the macaques infected with NA292K/HA226Q virus were 

similar to those seen in the macaques infected with wild-type Anhui/1. However, deep sequence 

analysis revealed that the percentage of NA292R/HA226Q virus increased in nasal samples during 

the infection, although NA292R/HA226Q virus did not increase in in vitro passages and in the lung 



tissues. The reasons for population stability are thought to be a death of MDCK cells in culture 

before a change of virus population and an environment of the lung tissue, i.e. lack of mucus 

produced by submucosal glands, which are located from the nasal mucosa to the bronchus (Yen et 

al., 2014), and higher temperature in the lung than the nasal cavity, in which the NA folding 

efficacy and viral replication decreased (da Silva et al., 2015). Therefore, the replication rate of the 

virus with NA292K in the nasal cavity was lower than that of the virus with NA292R, and the 

symptoms seen in macaques infected with NA292K/HA226Q virus might be caused by both 

NA292K/HA226Q virus and NA292R/HA226Q virus. On the other hand, low virus titers of 

rgNA292K/HA226Q in the culture of MDCK cells are consistent with the population change with 

increase in the percentage of NA292R/HA226Q virus in swab samples in the absence of NAIs (Yen 

et al., 2014). Furthermore, the results suggest expansion of NA292R/HA226Q virus in the 

inoculum (0.11%) during replication and/or shedding in nasal cavity of macaques without 

treatment, although no reversion was found in the lung tissue and a ferret model (Marjuki et al., 

2015). Therefore, a virus that is highly resistant to NAIs such as NA292K/HA226Q virus may not 

be a major virus population in an upper respiratory tract of patients without NAI treatment 

(Treurnicht et al., 2019). 



The pathogenicity of NA222T/HA226Q virus in macaques was similar to that of wild-

type Anhui/1 (Itoh et al., 2015). In addition, substitution of the AA at position 222 of NA did not 

change the viral replication, as was confirmed in the in vitro study. Since the percentage of virus 

carrying NA222I (wild-type) slightly increased in macaques for 7 days, the results indicate the 

possibility that the virus with NA222I (wild-type) replaces that with NA222T after further 

passages. However, since rgNA222T/HA226Q and rgHA226Q viruses were more sensitive to 

NAIs than was the virus with HA226L, there might not be a threat of expansion of 

NA222T/HA226Q virus during treatment with NAIs. In patients without NAI treatment, 

NA222T/HA226Q virus might propagate as much as the wild-type virus, suggesting a possibility 

that NA222T/HA226Q virus coexists in patients. 

The substitution HA226Q was shown to affect virus propagation and NAI sensitivity in 

the cell culture study. In the absence of NAIs, rgNA292K/HA226Q virus showed lower replication 

potency than did rgNA292K/HA226L, whereas rgNA292K/HA226Q virus showed the greatest 

replication rate in the presence of NAIs among the rg viruses examined. In addition, 

rgNA292K/HA226Q virus showed a tendency to be more resistant than rgNA292K/HA226L virus 

to NAIs at a high concentration. Thus, HA226Q reduced the replication rate of the virus with 



NA292K. On the other hand, in rgAnhui/1 and rgNA222T viruses, the virus with HA226Q 

substitution was more sensitive than the virus with HA226L substitution to NAIs, although 

propagation of the viruses was not affected in the absence of NAIs. Therefore, AA substitution of 

HA226Q works as an NAI-resistant factor when a virus has an NA that is highly resistant to NAIs, 

whereas HA226Q works as an NAI-sensitive factor when a virus has an NA that is sensitive or less 

resistant to NAIs. Therefore, we consider that the replicative fitness and drug resistance are affected 

by the balance of function between HA and NA proteins (Gaymard et al., 2016; Lai et al., 2019). 

In summary, we examined the pathogenicity of NA222T/HA226Q and 

NA292K/HA226Q viruses in untreated macaques. We also examined replication kinetics of viruses 

with various combinations of AA substitutions and sensitivities of the viruses to antivirus drugs in 

vitro. The virus carrying NA292K was gradually replaced by the virus carrying NA292R (same as 

the wild-type) in nasal samples from the macaques without treatment. Therefore, the virus carrying 

NA292K might not become a major population in the upper respiratory tract of patients without 

treatment, although the virus carrying NA292K might propagate in the lower respiratory tract. In 

addition, the virus carrying NA222T might show potential to replicate at the same rate as that of 

the wild-type virus. 
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Figure legends 

Fig 1. Replication and sensitivity to antiviral drugs of variant viruses carrying NA222T, 

NA292K, and HA226Q in MDCK cells. 

(A) Variant viruses carrying HA226L, HA226Q, wild-type NA, NA222T, or NA292K were 

inoculated into culture of MDCK cells at an m.o.i. of 0.01 to determine propagation rates. (B, C) 

MDCK cells were cultured with viruses for 1 h at an m.o.i. of 0.01, and then the viral inoculum 

was replaced by a medium containing oseltamivir acid (B) or peramivir hydrate (C), at a 

concentration between 0 – 10 µg/mL. Culture supernatants were collected after 24 h for virus 

titration. Averages and standard deviations of hexaplicates are shown. Asterisks indicate significant 

differences compared with rgAnhui/1 (HA226L, wild-type) (*P < 0.05, **P < 0.01, Mann-Whitney 

U test). 

  

Fig 2. Clinical symptoms of macaques infected with NA222T/ HA226Q and NA292K/ 

HA226Q viruses. 

Cynomolgus macaques (n = 3 in each group) were inoculated with the influenza viruses 

NA222T/HA226Q and NA292K/HA226Q viruses, which are NAI-resistant variants originating 



from A/Anhui/1/2013 (H7N9). (A) Average body temperatures from 8 p.m. to 8 a.m. on the next 

day were calculated for individual macaques (Fig. S2). Average body temperatures on each day 

were compared with those from 8 p.m. on the day before virus inoculation (day -1) to 8 a.m. on the 

day of virus inoculation (day 0). (B) Body weights on each day were compared with that on day 0 

before virus inoculation. (C) Clinical scores were determined by daily observation and body 

temperature according to Table S1. Average and standard deviations of the results of three monkeys 

are shown. Red: macaques inoculated with NA222T/HA226Q, blue: macaques inoculated with 

NA292K/HA226Q. An asterisk indicates a significant difference between the two groups on day 5 

(P < 0.05, Mann-Whitney U test). 

 

Fig 3. Viral pneumonia in macaques infected with NA222T/HA226Q and NA292K/HA226Q 

viruses. 

All macaques infected with virus were autopsied 7 days after virus inoculation. Representative 

photos for each group are shown. (A, E) Lung tissues of macaques infected with NA222T/HA226Q 

(T1). (B, F) Lung tissues of macaques infected with NA292K/HA226Q (K2). (C, G) Lung tissues 

of macaques infected with Anhui/1 in our previous study (Itoh et al., 2015). (D, H) Lung tissues of 



a normal uninfected macaque. New sections were prepared from the paraffin blocks made in the 

previous study (Itoh et al., 2015) and stained (C, G, D, H). (A-D) H & E staining. (E-H) and 

immunohistochemical staining for influenza virus NP (brown). White arrowheads: type-I alveolar 

epithelial cells, black arrowheads: type-II alveolar epithelial cells, bars: 50 µm. 

  

Fig 4. Virus titers in swab and tissue samples from macaques infected with NA222T/HA226Q 

and NA292K/HA226Q. 

Cynomolgus macaques were inoculated with NA222T/HA226Q and NA292K/HA226Q viruses on 

day 0. (A-D) Nasal, oral, tracheal, and bronchial samples were collected on the indicated days. 

Averages and standard deviations of virus titers in the nasal (A), oral (B), tracheal (C), and 

bronchial (D) samples were calculated on the basis of individual titers listed in Table S4. (E) 

Averages of virus titers in tissue samples. The samples were collected at autopsy 7 days after virus 

inoculation. R: right, L: left, RU: right upper lobe, RM: right middle lobe, RL: right lower lobe, 

LU: left upper lobe, LM: left middle lobe, LL: left lower lobe. The detection limit of virus titer is 

0.67 log10TCID50/mL in swab samples and 1.67 log10TCID50/g in tissue samples. Virus titers under 

the detection limit were calculated as 0. Averages and standard deviations of the results for three 



macaques are shown. Red: macaques inoculated with NA222T/HA226Q, blue: macaques 

inoculated with NA292K/HA226Q. Asterisks indicate significant differences between the two 

groups (P < 0.05, Mann-Whitney U test). 

 

Fig 5. Viral sensitivity to oseltamivir of viruses isolated from nasal samples in MDCK cells. 

Anhui/1 (wild-type), NA292K/HA226Q (inoculum) and viruses isolated from nasal samples of 

macaques infected with NA292K/HA226Q were inoculated into the MDCK cells. Averages and 

standard deviations of triplicates are shown. MDCK cells were cultured with viruses for 1 h at an 

m.o.i. of 0.01, then the viral inoculum was replaced by medium containing oseltamivir acid at a 

concentration between 0 – 10 µg/mL. Culture supernatants were collected after 24 h for virus 

titration. Averages and standard deviations of quadruplicates are shown. Asterisks indicate 

significant differences compared with the virus titers without oseltamivir (*P < 0.05, Mann-

Whitney U test).  

 



Table 1. Neuraminidase inhibition of viruses with NA substitutions  

Virus 
IC50 (nM) (Average +/- SD) a 

oseltamivir peramivir 

rgAnhui/1 (HA226L) 0.150 +/- 0.088 0.043 +/- 0.021 

rgNA222T/HA226L 0.956 +/- 0.544 0.163 +/- 0.098 

rgNA292K/HA226L 1350.522 +/- 400.051 109.259 +/- 50.292 

rgHA226Q 0.242 +/- 0.137 0.084 +/- 0.077 

rgNA222T/HA226Q 0.718 +/- 0.631 0.157 +/- 0.085 

rgNA292K/ HA226Q 2331.677 +/- 409.293 154.701 +/- 31.965 

a Averages and standard deviations of four experiments� 

  



Table 2. Nucleotide and amino acid changes in NA222 of viruses isolated from nasal samples. 

Monkey 

Days after 

virus 

inoculation 

Total no. 

 of coverageb 

% of nucleotide at 656a  AA at 222 

in major population Cc Td 

Inoculum  - 14,151 99.80 0.13 T 

T1 3 17,048  99.65  0.25  T 

T1 5 20,045  99.12  0.70  T 

T1 7 18,391  99.61  0.31  T 

T2 3 19,569  99.62  0.30  T 

T2 5 21,269  99.50  0.39  T 

T2 7 18,021  99.48  0.39  T 

T3 3 16,667  99.69  0.22  T 

T3 5 16,384  99.25  0.60  T 

 
a Nucleotides at position 656 in the NA gene corresponding to amino acid position 222 in the NA 

protein (N2 numbering) were examined. Percentages of the nucleotide alleles were calculated as % 

alleles = 100 × (number of alleles counted/total coverage number). 
b Total number of sequences counted at each nucleotide position. 
c A nucleotide at 656 of inoculum virus is C corresponding to threonine (T). 
d A nucleotide at 656 of wild-type virus (Anhui/1) is T corresponding to isoleucine (I). 

  



Table 3. Nucleotide and amino acid changes in NA292 of viruses isolated from nasal samples. 

Monkey 

Days after 

virus 

inoculation 

Total no. 

 of coverageb 

% of nucleotide at 866a 
AA at 292 

in major population Ac Gd 

Inoculum - 16,354 99.79 0.11 K 

K1 3 17,995  86.88  12.87  K 

K1 5 15,345  36.57  63.26  R 

K1 7 20,780  0.16  99.56  R 

K2 5 17,585  16.41  83.32  R 

K3 3 14,824  73.00  26.68  K 

K3 5 16,874  51.03  48.74  K 

K3 7 16,310  26.56  73.30  R 

 
a Nucleotides at position 866 in the NA gene corresponding to amino acid (AA) position 292 in the 

NA protein (N2 numbering) were examined. Percentages of the nucleotide alleles were calculated 

as 100 × (number of alleles counted/total coverage number). 
b Total number of sequences counted at each nucleotide position. 
c A nucleotide at 866 of inoculum virus is A corresponding to lysine (K). 
d A nucleotide at 866 of wild-type virus (Anhui/1) is G corresponding to arginine (R). 
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Fig. 1

Fig 1. Replication and sensitivity to anti-viral drugs of variant viruses carrying NA222T, NA292K, and 
HA226Q in MDCK cells.
(A) Variant viruses carrying HA226L, HA226Q, wild-type NA, NA222T, or NA292K were inoculated into 
culture of MDCK cells at an m.o.i. of 0.01 to determine propagation rates. (B, C) MDCK cells were cultured 
with viruses for 1 h at an m.o.i. of 0.01, and then the viral inoculum was replaced by a medium containing 
oseltamivir acid (B) or peramivir hydrate (C), at a concentration between 0 – 10 µg/mL. Culture 
supernatants were collected after 24 h for virus titration. Averages and standard deviations of hexaplicates
are shown. Asterisks indicate significant differences compared with rgAnhui/1 (HA226L, wild-type) (*P < 
0.05, **P < 0.01, Mann-Whitney U test).



Parameter Degree of parameter Possible score

Fever

Normal (< 39 ℃) 0

Elevated temperature (39-40 ℃) 3

High temperature (> 40 ℃) 5

Posture

Piloerection of body hair 1

Decreased activity, decreasing normal behavior
/Occasionally lying down, huddled, active 

when people in room
2

Huddled on camera, active when people in room/Lying down, 
getting up when approached, using cage for support 3

Huddled when people in room, shaking, toes and hands 
clenched/Lying down, not getting up 

when approached or prompted
5

Respiration

Increased or decreased; mild cough and clear nasal 
discharge 3

Labored breathing through mouth; severe cough and severe 
nasal discharge 5

Appetite

Slightly decreased 1

Decreased 2

Severely decreased 5

Skin

Flushed appearance 2

Visible rash 2

Bleeding 5

Animals were monitored every day during the study to be clinically scored. Animals would be
scheduled to be euthanized if their clinical scores reached 15 (humane endpoint).

Table S1. Clinical scoring used in the present study.



Nucleotide 
positiona Inoculum virus Referenceb Total no. of 

coveragec Inoculumd % of 
nucleotidee

AA
positionf

AA in 
reference

AA in 
sample

NA

498 NA222T/HA226Q C 14,704 G 6.93 170 Yg *h

656 NA222T/HA226Q T 14,151 C 99.80 222 I T

866 NA292K/HA226Q G 14,979 A 99.79 292 R K

HA

319 NA292K/HA226Q C 11,872 A 8.24 115 P T

437 NA292K/HA226Q C 13,843 A 21.36 154 A E

704
NA222T/HA226Q T 17,118 A 99.80

226
L Q

NA292K/HA226Q T 12,122 A 99.68 L Q

a Nucleotide position 1 is the first nucleotide A of the ATG-translation start point for methionine.
b A reference sequence of A/Anhui/1/2013 (H7N9) obtained from the GISIAD database.
c Total number of sequences counted at each nucleotide position.
d Nucleotides of inoculum viruses for which allele frequencies are higher than 5.0 % and different from
those in the reference sequence are shown.
e Percentages of alleles different from the reference sequence was calculated as % alleles = 100� (number
of alleles counted/total coverage number).
f Amino acid (AA) positions were determined on the basis of the N2 neuraminidase and H3 hemagglutinin
sequences.
g Amino acid abbreviations. A: alanine, D: aspartic acid, E: glutamic acid, L: leucine, N: asparagine, P:
proline, S: serine, T: threonine, Y: tyrosine.
h * stop codon

Table S2. Nucleotide variations in the NA and HA gene of inoculum virus of NA222T/HA226Q and
NA292K/HA226Q used in the present study.
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Fig. S1

Fig.  S1. Replication and sensitivity to anti-viral drugs of variant viruses A549 cells.
(A) Variant viruses carrying wild type HA226L, HA226Q, wild type NA, NA222T, or NA292K were inoculated into 
culture of A549 cells at an m.o.i. of 0.01  to determine propagation rates. (B, C) A549 cells were cultured with viruses 
for 1 h at an m.o.i. of 0.01, and then the viral inoculum was replaced by a medium containing oseltamivir acid (B) or 
peramivir hydrate (C) at a concentration between 0 – 10 µg/mL. Culture supernatants were collected after 48 h for virus 
titration. Averages and standard deviations of triplicates are shown. Asterisks indicate significant differences compared 
with rgAnhui/1 (HA226L, wild type) (*P < 0.05, **P < 0.01, Mann-Whitney U test).

*



Table S3. EC50 values of NAIs

Virus

EC50 (µg/mL) a

MDCK A549

oseltamivir peramivir oseltamivir peramivir

rgAnhui/1 0.102 0.058 0.142 0.082

rgNA222T/HA226L 0.218 0.059 0.095 0.062

rgNA292K/HA226L 1.118 1.594 0.619 0.398

rgHA226Q 0.006 0.002 0.060 0.024

rgNA222T/HA226Q 0.011 0.004 0.109 0.026

rgNA292K/HA226Q > 10 > 10 > 10 1.716

a EC50 values of oseltamivir and peramivir were calculated on the basis of the results in Fig. 1 and Fig. S1.
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Fig 2. Clinical symptoms of macaques infected with NA222T/HA226Q and NA292K/HA226Q viruses.
Cynomolgus macaques (n = 3 in each group) were inoculated with influenza viruses NA222T/HA226Q or
NA292K/HA226Q that were NAI-resistant variants originated from A/Anhui/1/2013 (H7N9). (A) Average
temperature from 8 p.m. to 8 a.m. on the next day were calculated on the basis of data for individual macaques
(Fig. S1). Average temperatures on each day were compared with those from 8 p.m. on the day before virus
inoculation (day -1) to 8 a.m. on the day of virus inoculation (day 0). (B) Body weights on each day were
compared with that on day 0 before virus inoculation. (C) Clinical scores were determined by daily observation
and body temperature according to Table S1. Average and standard deviations of the results of three monkeys
are shown. Red: macaques inoculated NA222T/HA226Q, blue: macaques inoculated NA292K/HA226Q. An
asterisk indicates significant differences between two groups on day 5 (P < 0.05, Mann-Whitney U test).
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Fig 2. Clinical symptoms of macaques infected with NA222T/HA226Q and NA292K/HA226Q viruses.
Cynomolgus macaques (n = 3 in each group) were inoculated with influenza viruses NA222T/HA226Q or
NA292K/HA226Q that were NAI-resistant variants originated from A/Anhui/1/2013 (H7N9). (A) Average
temperature from 8 p.m. to 8 a.m. on the next day were calculated on the basis of data for individual macaques
(Fig. S1). Average temperatures on each day were compared with those from 8 p.m. on the day before virus
inoculation (day -1) to 8 a.m. on the day of virus inoculation (day 0). (B) Body weights on each day were
compared with that on day 0 before virus inoculation. (C) Clinical scores were determined by daily observation
and body temperature according to Table S1. Average and standard deviations of the results of three monkeys
are shown. Red: macaques inoculated NA222T/HA226Q, blue: macaques inoculated NA292K/HA226Q. An
asterisk indicates significant differences between two groups on day 5 (P < 0.05, Mann-Whitney U test).

Fig. 2



36

37

38

39

40

41

42
T1

36

37

38

39

40

41

42
T2

36

37

38

39

40

41

42
T3

NA222T/HA226Q

Days after virus inoculation

B
od

y 
te

m
pe

ra
tu

re
 (o

C
)

-2   -1  0  1   2   3   4   5   6   7 -2   -1  0  1   2   3   4   5   6   7-2   -1  0  1   2   3   4   5   6   7

Fig. S2. Body temperatures of macaques infected with NA222T/HA226Q and NA292K/HA226Q viruses.
Cynomolgus macaques (n = 3 in each group) were inoculated NAIs resistant influenza viruses, NA222T/HA226Q
(red), NA292K/HA226Q (blue), or Anhui/1 (green). Body temperatures of the macaques were recorded using
telemetry transmitters and a computer. Temperatures from 8 P.M. to 8 A.M. are shown in the graphs since
temperatures between 8 A.M. to 8 P.M. were affected by anesthesia. Results of macaques infected with Anhui/1 were
cited from our previous study (Itoh, et al., 2015) and the graphs were remade.

36

37

38

39

40

41

42
K1

36

37

38

39

40

41

42 K2

36

37

38

39

40

41

42
K3

NA292K/HA226Q

Days after virus inoculation

B
od

y 
te

m
pe

ra
tu

re
 (o

C
)

-2   -1  0  1   2   3   4   5   6   7 -2   -1  0  1   2   3   4   5   6   7 -2   -1  0  1   2   3   4   5   6   7

-2   -1  0  1   2   3   4   5   6   7 -2   -1  0  1   2   3   4   5   6   7 -2   -1  0  1   2   3   4   5   6   7
36

37

38

39

40

41

42 S1

36

37

38

39

40

41

42 S2

B
od

y 
te

m
pe

ra
tu

re
 (o

C
)

Days after virus inoculation

Anhui/1

36

37

38

39

40

41

42
S3

Fig. S2



Fig 3. Viral pneumonia in macaques infected with NA222T/HA226Q and NA292K /HA226Q viruses.
All macaques infected with virus were autopsied 7 days after virus inoculation. Representative photos for 
each group are shown. (A, E) Lung tissues of macaques infected with NA222T/HA226Q (T1). (B, F) Lung 
tissues of macaques infected with NA292K/HA226Q (K2). (C, G) Lung tissues of macaques infected with 
Anhui/1 in our previous study (Itoh et al., 2015). Sections were newly prepared and stained. (D,  H) Lung 
tissues of a normal uninfected macaque. (A-D) H&E staining. (E-H) and immunohistochemical staining 
for influenza virus NP (brown). White arrowheads: type-I alveolar epithelial cells, black arrowheads: type-
II alveolar epithelial cells, bars: 50 µm.
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Fig 4. Virus titers in swab and tissue samples from macaque infected with NA222T/HA226Q and NA292K /HA226Q 
viruses.
Cynomolgus macaques were inoculated with NA222T/HA226Q and NA292K /HA226Q on day 0. (A-D) Nasal, oral, 
tracheal, and bronchial samples were collected on the indicated days. Averages and standard deviations of virus titers 
in the nasal (A), oral (B), tracheal (C), and bronchial (D) samples were calculated on the basis of individual titers listed 
in Table S2. (E) Averages of virus titers in tissue samples. The samples were collected at autopsy 7 days after virus 
inoculation. R: right, L: left, RU: right upper lobe, RM: right middle lobe, RL: right lower lobe, LU: left upper lobe, 
LM: left middle lobe, LL: left lower lobe. Virus titers under the detection limit were calculated as 0. Averages and 
standard deviations of the results for three macaques are shown. Red: macaques inoculated with NA222T/HA226Q 
virus, blue: macaques inoculated with NA292K/HA226Q virus. Asterisks indicate significant differences between the 
two groups (P < 0.05, Mann-Whitney U test).
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Sample Virus Animals
Virus titers (log10 TCID50/mL)
Days after virus inoculation

1 2 3 4 5 6 7

Nasal 
swab

NA222T/HA226Q
T1 5.67 6.33 5.00 4.50 4.67 4.33 3.33 
T2 ≤ 0.67a 3.67 4.67 3.33 3.50 5.77 3.00 
T3 4.67 5.50 4.33 4.67 4.50 4.00 2.67 

NA292K/HA226Q
K1 3.67 4.33 4.67 4.50 4.00 3.50 1.50 
K2 4.50 4.67 3.67 3.00 5.33 4.77 2.33 
K3 2.50 5.33 5.33 3.50 3.50 3.67 2.83 

Anhui/1b

S1 5.00 4.00 4.00 1.67 2.50 3.67 1.83
S2 4.33 3.00 2.67 3.50 4.77 3.67 < 1.67a

S3 5.33 5.23 3.50 3.00 4.00 4.67 2.33

Oral 
swab

NA222T/HA226Q
T1 2.83 3.50 ≤ 1.33a 2.67 4.67 2.67 ≤ 1.50a

T2 1.67 2.50 ≤ 1.33a ≤ 0.67a ≤ 0.67a 1.50 ≤ 1.77a

T3 3.00 4.33 <c 3.67 1.67 1.33a ≤ 1.00a

NA292K/HA226Q
K1 < 1.67 1.50 2.00 2.00 2.00 <
K2 < 1.67 < 3.50 2.33 ≤ 1.33a <
K3 ≤ 0.67a 2.67 < ≤ 0.67a < 2.50 <

Anhui/1
S1 2.67 0.67 2.17 < 2.33 1.00 < 1.67
S2 < 1.67 < < 0.67 0.67 <
S3 1.00 3.33 0.83 2.00 3.50 < <

Tracheal 
swab

NA222T/HA226Q
T1 4.50 4.67 5.23 3.67 4.33 3.33 2.33 
T2 3.50 4.00 2.67 2.33 3.23 2.67 2.33 
T3 4.67 4.83 2.67 3.67 4.23 3.00 1.67 

NA292K/HA226Q
K1 4.50 3.00 2.67 2.77 3.33 3.00 2.50 
K2 2.67 1.50 < 2.67 4.00 1.83 ≤ 1.33a

K3 3.33 4.00 ≤ 1.00a ≤ 1.00a 3.00 2.33 ≤ 1.00a

Anhui/1
S1 6.33 5.00 3.00 1.00 3.00 3.77 <
S2 3.50 1.50 2.50 1.33 4.77 3.50 <
S3 4.77 4.00 3.00 3.00 4.00 3.00 < 1.67

Bronchial 
swab

NA222T/HA226Q
T1 3.67 4.67 2.67 5.00 4.33 2.33 2.00 
T2 3.33 3.23 2.00 1.50 3.50 3.50 ≤ 0.83a

T3 3.67 3.33 2.50 3.67 3.50 3.50 ≤ 1.33a

NA292K/HA226Q
K1 5.67 3.50 3.23 2.67 3.67 4.50 ≤ 1.33a

K2 2.23 2.50 1.50 3.00 3.33 3.33 1.50 
K3 2.67 3.67 ≤ 2.00a < 2.67 1.67 <

Anhui/1
S1 3.00 4.50 1.50 2.67 1.50 1.50 <
S2 3.00 0.67 < 2.50 1.67 < <
S3 3.50 3.00 1.33 1.50 2.00 2.33 <

a A part of four wells were positive for CPE in quadruplicate culture of undiluted samples.
b Virus titers in samples of macaques infected with Anhui/1 are cited from our previous study (Itoh, et al,
2015) for comparison.
c <: virus titers were under the detection limit (0.67 log10TCID50/mL).

Table S4. Virus titers in swab samples of cynomolgus macaques infected with
NA222T/HA226Q and NA292K/HA226Q.
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Fig. S3. NA gene sequences of the viruses in lung tissues of macaques infected with NA222T
/HA226Q and NA292K/HA226Q viruses. 
RNA was extracted from the lung tissues of macaques infected with NA222T/HA226Q virus (T1 - T3) or 
NA292K/HA226Q virus (K1 – K3) 7 days after infection. Extracted RNA was reverse-transcribed and 
partial NA genes were amplified with KOD plus-neo DNA polymerase. The used primers were 5’-
TGCACTTCAGCCACTGCTAT-3’ and 5’-ATATCGTCTCGTATTAGTAGAAACAAGGAGTTTTTT-3’ in 
the first PCR and 5’- GTGGAATGCATTGGGTGGTC-3’ 5’-
ATATCGTCTCGTATTAGTAGAAACAAGGAGTTTTTT-3’ in the second PCR. After denaturation at 94 oC
for 2 min, the reaction was performed with 35 (1st PCR) and 30 (2nd PCR) cycles of denaturation at 98 oC for 
10 s, annealing at 55 oC for 30 s, and extension at 68 oC for 45 s, followed by extension at 68 oC for 5 min. 
Nucleotide sequences were determined by Sanger sequencing. Nucleotide sequences of Anhui/1 and 
inoculum viruses are shown for comparison.



Virusa Lot Passage

nucleotide position; 656
AA position 

222 nucleotide position; 866 AA position
292

Total no.
of coverageb

% of 
nucleotidec AA of major 

populationd

Total no.
of 

coverageb

% of  
nucleotidec AA of major 

populationd

C T A G

NA222T
/HA226Q

1

1 21,912 99.69 0.22 T 23,579 0.05 99.87 R

2 22,933 99.73 0.20 T 24,062 0.05 99.85 R

3 20,582 99.73 0.20 T 21,984 0.05 99.82 R

2

1 21,523 99.75 0.18 T 22,387 0.06 99.81 R

2 21,737 99.77 0.14 T 22,355 0.04 99.86 R

3 21,437 99.73 0.22 T 23,034 0.08 99.81 R

3

1 16,544 99.69 0.23 T 17,525 0.03 99.88 R

2 22,040 99.77 0.18 T 21,816 0.05 99.84 R

3 16,842 99.73 0.22 T 18,613 0.12 99.78 R

NA292K
/HA226Q

1

1 22,589 0.11 99.81 I 20,640 99.65 0.23 K

2 25,437 0.14 99.70 I 24,502 99.67 0.24 K

3 28,177 0.12 99.80 I 25,149 99.59 0.28 K

2

1 24,749 0.06 99.88 I 22,743 99.68 0.23 K

2 26,582 0.08 99.83 I 24,017 99.65 0.24 K

3 26,773 0.12 99.76 I 24,524 99.64 0.18 K

3

1 24,910 0.11 99.77 I 22,539 99.68 0.23 K

2 21,176 0.08 99.82 I 23,153 99.62 0.25 K

3 23,371 0.09 99.81 I 21,158 99.56 0.30 K

a Viruses passaged in MDCK are used from same stock lot as that used in inoculation of macaques on day 0.
b Total number of sequences counted at each nucleotide position
c Percentage of alleles of the indicated nucleotide was calculated as % alleles = 100 � (number of alleles
counted/total coverage number).
d Amino acids (AA) coded by major nucleotides counted at the position. AA positions are determined on the basis of
an N2 numbering. I: isoleucine, K: lysine, R: arginine, T: threonine.

Table S5. Nucleotide and amino acid changes in NA of NA222T/HA226Q and NA292K/HA226Q.



Monkeya Days after virus 
inoculationb Total no. of coverage

% nucleotide at
position 866 AA of majority 

population at 
NA292

A G

K1 1 22,610 99.68 0.23 K
K1 7 20,223 0.11 99.72 R
K3 1 24,598 99.47 0.42 K
K3 7 21,727 13.58 86.36 R

a Monkeys K1 and K3 were inoculated with NA292K/HA226Q virus on day 0. 
b Nasal swab samples were collected on days 1 and 7. The samples were inoculated to 
MDCK cells to make stock viruses. Then, RNA was extracted for deep sequencing.

Table S6. Allele frequency in virus in nasal samples collected from macaques infected with 
NA292K/HA226Q virus after a passage in MDCK cells.
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Fig 5. Viral sensitivity to oseltamivir of viruses isolated from nasal samples in MDCK cells.

Anhui/1 (wild-type), NA292K/HA226Q (inoculum) and viruses isolated from nasal samples of 
macaques infected with NA292K/HA226Q on indicated days were inoculated into the MDCK 
cells. Averages and standard deviations of triplicates are shown. MDCK cells were cultured with 
viruses for 1 h at an m.o.i. of 0.01, then the viral inoculum was replaced by medium containing 
oseltamivir acid at the concentration between 0 – 10 µg/mL. Culture supernatants were collected 
after 24 h for virus titration. Averages and standard deviations of quadruplicates are shown. 
Asterisks indicate significant differences compared with the virus titers without oseltamivir (*P < 
0.05, Mann-Whitney U test).

NA292K/HA226Q


