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PEMBANGUNAN KULTUR PICHIA PASTORIS REKOMBINAN 

BERKEPEKATAN TINGGI UNTUK PENGHASILAN HORMON 

PERTUMBUHAN MANUSIA 

ABSTRAK 

 Pichia pastoris telah digunakan sebagai perumah yang unggul untuk 

menghasilkan lebih daripada 400 jenis protein heterologus kegunaan bidang akademik 

dan industri.  Klon Pichia pastoris GS 115 2(5) yang digunakan dalam kajian ini 

berfenotip Mut+ dan telah diselitkan dengan gen penghasilan hormon pertumbuhan 

manusia rekombinan (rhGH) secara intrasel.  Kajian ini memberi tumpuan kepada 

pembangunan protokol fermentasi untuk menghasilkan kultur Pichia pastoris 

berkepekatan tinggi.  Kajian terhadap formulasi media kultur dan pengkulturan 

sekelompok telah dijalankan sebelum memasuki pengkulturan suapan sekelompok.  

Kesan pelbagai strategi suapan dan pengaruhan metanol terhadap penghasilan 

biojisim dan rhGH juga dikaji.  Hormon pertumbuhan manusia rekombinan yang 

dihasilkan ditulenkan dengan menggunakan kromatografi penukaran ion.  Satu 

protokol pemfermentasian yang menghasilkan biojisim tertinggi sebanyak 120 g/L 

dan kadar pertumbuhan spesifik maksimum sebanyak 0.133 h-1 telah dicapai.  Satu 

lagi protokol pemfermentasian yang menghasilkan rhGH dalam masa paling singkat 

juga dicapai.  Hanya 39 jam diperlukan dari inokulasi sehingga tahap penghasilan 

rhGH, ia memendekkan masa pengkulturan sebanyak 50% dibandingkan dengan cara 

pengkulturan biasa iaitu selama 72 jam.  Satu keadaan pengaruhan yang menghasilkan 

rhGH tertinggi sebanyak 2.4 mg rhGH / L genangan sel juga dicapai.  Sebanyak 349.5 

µg rhGH telah ditulenkan dari jumlah 2418.8 µg dengan memberikan nilai hasil akhir 

sebanyak 14.5% dan faktor penulenan 1.5. 
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DEVELOPMENT OF HIGH CELL DENSITY RECOMBINANT PICHIA 

PASTORIS CULTURE FOR HUMAN GROWTH HORMONE PRODUCTION 

 
ABSTRACT 

 
Methylotrophic yeast, Pichia pastoris has been used as an excellent host to 

produce more than 400 recombinant heterologous proteins of academic and industrial 

interests.  Pichia pastoris strain used in this study was GS 115 2(5) with the 

phenotype of Mut+, which has been genetically modified to produce intracellular 

recombinant human growth hormone (rhGH).  In this research, the development of 

fermentation protocols for high cell density culture of recombinant Pichia pastoris 

was carried out.  Medium formulation and improved batch cultivation was 

investigated prior to fed batch fermentation.  Various feeding strategies and methanol 

induction conditions on biomass and rHGH production were also studied.  Ion 

exchange chromatography was performed to purify the rhGH produced.  A protocol 

of the high cell density culture was developed which gave the highest dry cell weight 

of 120 g/L with the maximum specific growth rate of 0.133 h-1.  A protocol that 

produces rHGH at the shortest time requirement was also obtained.  It took only 39 

hours from the inoculation to reach the rhGH production stage, which was almost 

50% shorter time required compared to the preliminary 72 h. An enhanced induction 

condition for rhGH production was also developed where a yield of 2.4 mg of rhGH 

/L of lysate was achieved.  A total of 349.5 µg of rhGH was purified from the total of 

2418.8 µg of rhGH, which give the final yield of 14.5% and the purification factor of 

1.5. 
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1.0 INTRODUCTION  

Pichia pastoris is methylotrophic yeast that can assimilate methanol as sole 

carbon and energy source through a highly inducible methanol utilization pathway.  It 

has been used as an excellent host system to produce more than 400 recombinant 

prokaryotes, eukaryotes, and viruses proteins of academic and industrial interests 

(Cereghino and Cregg, 2000).  Pichia pastoris provides several advantages as a 

heterologous protein expression system compared to the conventional host systems.  

One of the major characteristic is the prolific growth rate and ability to reach 

extremely high cell densities up to 130g/L dry weight (Zhang et al., 2004). 

Human growth hormone (hGH) is a hormone produced and secreted by the 

anterior pituitary gland throughout a person lifetime.  It is known to be critical for 

tissue repair, muscle growth, healing, brain and sexual function, physical and mental 

health, bone strength, energy and metabolism (Catzel et al., 2003).  Virtually, all 

organs and systems of human body are dependent on hGH for growth, development 

and functioning appropriately. 

Knowing the importance of hGH to humanity and the high demand in 

biopharmaceutical market, Pichia pastoris strain GS115 2(5) has been genetically 

modified to produce recombinant human growth hormone (rhGH).   This 

transformation produces a strain with the phenotype of Mut+ which produces 

intracellular recombinant human growth hormone (rhGH) (Loh, 2005). 

Achieving high cell density is always a crucial step since the production of 

heterologous protein often influenced by the cell density.  In this research, the 

development of fermentation protocols for high cell density culture of recombinant 

Pichia pastoris was carried out in shake flask and bench scale fermenter system.  

Growth parameters such as media formulation and cultivation conditions were studied 
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in batch and fed-batch culture to achieve the major objective of reaching high cell 

density culture and rhGH production.  Several fed-batch strategies were carried out to 

investigate its effects on biomass and rhGH production.  Effects of the inducer 

concentration on the rhGH productivity were also examined.  An improved 

fermentation protocol for biomass and rhGH production was developed with the 

results from this research. 

 

1.1 Research Objectives 

The development of fermentation protocols for high cell density culture of 

recombinant Pichia pastoris was carried out.  The objectives were: 

i. To develop the medium formulation and batch cultivation condition for 

high cell density culture of recombinant Pichia pastoris. 

ii. To investigate the effect of glycerol feeding and methanol induction on 

biomass and rhGH production.  

iii. To obtain a culture protocol and feeding strategy for high cell density 

culture and rhGH production. 

iv. To perform ion exchange chromatography and purify the rhGH 

produced. 

v. To detect and quantify rhGH produced by fermentation. 

 

 

 

 

 

 



 

 3

2.0 LITERATURE REVIEW 

2.1 Pichia pastoris 

Pichia pastoris, a methylotrophic yeast that can assimilate methanol as the 

sole carbon and energy source through its highly inducible methanol utilization 

pathway (Lee et al., 2003b).  It is well known to be an out-standing host system for 

heterologous protein production since the isolation and identification of its tightly 

regulated alcohol oxidase gene (AOX) (Chen et al. 1997).  It has been chosen as one 

of the major host system due to the excellent performance in the production of either 

secreted or intracellular proteins of academic and industrial researchers (Cereghino 

and Cregg,1999). 

This excellent host system has been used to produce more than 400 

heterologous proteins of prokaryotes, eukaryotes, and viruses ranging from human 

endostatin to spider dragline silk protein (Cereghino and Cregg, 2000).  The 

concentration of foreign proteins expressed by Pichia pastoris was reported in the 

range of 1 mg/L to 12 g/L of culture volume (Li et al., 2001).  Most of the proteins are 

expressed at levels of more than 1 g/L of culture medium (Cereghino and Cregg, 

2000), which is comparatively higher than other host system such as bacterial, insect 

or mammalian systems (Romanos, 1995). 

Pichia pastoris is known to grow over a wide pH range, from 3 to 7, with 

minor effect on the growth rate.  Inan and co-workers (1999) reported that Pichia 

pastoris grew slowly on nutrient agar plates at 30oC.  It takes 3 - 7 days to form a 

milky white colony of 5 mm in diameter.  

Methylotrophic yeast of the genera of Candida and Pichia shared an almost 

similar methanol metabolic pathway.  Most of the enzymes are compartmentalized in 

methanol induced microbodies such as peroxisomes and cytoplasm (Veenhuis et al., 
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1983).  Pichia pastoris has the ability to utilize glycerol, ethanol or acetate as a 

carbon source like reported in other yeasts. 

 

2.1.1 Advantages of Pichia pastoris  

 Pichia pastoris provides several advantages as a heterologous protein 

expression system.  It has a prolific growth rate and is able to produce extremely high 

cell densities on a defined basal salt medium, often achieving 130 g/L dry weight 

(Zhang et al., 2004).  Pichia pastoris can be grown to high cell densities of more than 

400 g/L (wet weight) on comparatively simple and defined medium with glycerol as 

carbon source (Cereghino et al., 2002).  Scale up of high cell density culture for 

Pichia is an easy and achievable task which often results in enormous product yields 

on volumetric basis (Romanos, 1995). 

In contrast to the prokaryotic or other eukaryotic expression systems, Pichia 

pastoris expression system becomes an excellent choice due to the sub-cellular 

organelles, such as endoplasmic reticulum and Golgi apparatus, which facilitate the 

post-translational modification abilities (Zhou et al., 2006).  Consequently, complex 

recombinant proteins produced in Pichia expression system does not require 

additional in vitro unfolding and refolding process as in other expression systems. 

 The glycosylation machinery of Pichia pastoris might not be exactly the same 

as mammalian cells; however, it allows heterologous production of functional 

mammalian proteins especially when glycosylation is the compulsory procedure for 

the proper folding or biological activities.  Yeast cells were found to have the ability 

to target the same types of N-glycosylation site like eukaryotic cell systems (Asami et 

al., 2000).  One of the common problems of yeast as host cell is the over-

glycosylation of target protein.  However, according to Silvia and co-workers (2003), 



 

 5

the over-glycosylation of human growth hormone did not affect its function and 

binding sites. 

 In addition, the presence of alcohol oxidase gene (AOX) is also a major 

advantage that makes Pichia as the excellent host system (Cregg et al., 1989).  The 

inducibility and the ability to repress foreign protein transcription is a special 

advantage of Pichia system.  This expression system becomes a suitable host for 

proteins which are toxic to the host cells (as many heterologous proteins are when 

accumulated at high concentrations) (Tschopp et al., 1987; Lin Cereghino et al., 2002; 

Diatloff et al., 2006).  The heterologous proteins expression can be repressed in the 

biomass accumulation stage and induced at the protein production stage only. 

Pichia pastoris expression system provides an easy and simple cultivation 

procedures as compared to other eukaryotic expression systems.  It is able to produce 

high expression level of heterologous proteins (extracellularly or intracellularly) into a 

simple and inexpensive culture medium (Zhou et al., 2006).  The endogenous proteins 

produced in Pichia pastoris are lower as compared to the conventional 

Saccharomyces cerevisiae system (Ascacio-Martinez and Barrera-Saldana, 2004).  

The extremely high recombinant proteins production and comparatively low native 

proteins secretion make the protein separation process much easier (Romanos, 1995), 

which is a major advantage for subsequent protein purification steps (Shi et al., 2003; 

Aloulou et al., 2006). 

Furthermore, Pichia pastoris genome can be integrated with single or multi-

copy of expression plasmids at specific sites.  The genetic content of wild type and 

recombinant Pichia are very stable as the heterologous proteins are inserted into 

chromosomes with homologous recombination and not kept in the form of plasmids.  

Genetic stability and scale-up without loss of yield is necessary to achieve the over-
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production of heterologous proteins (Romanos, 1995).  This host and expression 

system is now available as a kit from Invitrogen Corporation (Carlsbad, CA, USA).  

Detailed procedures and precautions were attached together with the kits; users can 

easily achieve the targeted goal by following the step-by-step guideline.   

The ability of Pichia pastoris to grow in a medium containing methanol 

reduces the risk of microbial contaminations (Cereghino and Cregg, 1999).  No toxic 

cell wall pyrogens (as found in Escherichia coli) or oncogenic and viral nucleic acids 

(as found in mammalian cells) were found in heterologous proteins produced by 

Pichia pastoris (Romanos, 1995).   

Yeasts do not produce toxins that are normally active by oral route.  

Documentation of Pichia pastoris toxigenic effects was not found in the extensive 

literature databases (Pariza and Johnson, 2001).  Pichia pastoris has been classified as 

Biosafety Level 1 (BL-1), a group of well-characterized microorganisms which will 

not causing sickness in healthy human adults and need minimal safety attention in 

handling and storage (Center for Disease Control, 1999). 

Many human genes such as Insulin-like growth factor-1, Amyloid precursor 

protein, Insulin, Leukemia inhibitory factor and etc. (Lin Cereghino and Cregg, 2000) 

have been expressed in Pichia pastoris for pharmaceutical purpose and they fulfill the 

standard of several safety examinations.  Toxicity studies were done and approved in 

animal feed (including pathogenicity study in mice, acute and sub acute oral toxicity 

study in rats, and two generation teratology study in rats).  The FDA reported that 

Pichia pastoris is neither pathogenic nor toxigenic (FDA, 1993). 
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2.1.2 Alcohol oxidase gene (AOX)  

The genome of Pichia pastoris contains two copies of alcohol oxidase (AOX) 

gene i.e. AOX 1 and AOX 2.  The AOX 1 promoter regulates 85% of alcohol oxidase 

activity and commonly used to control heterologous protein expression (Damasceno 

et al., 2004).  The AOX 2 gene played only a minor role in the total alcohol oxidase 

activity regulation (Cregg et al., 1989). 

AOX catalyzes the oxidation of methanol to formaldehyde and hydrogen 

peroxide, which is the first step in methanol metabolic pathway.  It is then responsible 

in the degradation of hydrogen peroxide to form oxygen and water in peroxisome 

after its sequesteration with catalase.  Some of the formaldehydes leave peroxisome 

and further oxidized by cytoplasmic dehydrogenase to form formate and carbon 

dioxide.  These reactions are the main energy output of the methanol metabolic 

pathway (Ellis et al., 1985; Lee et al., 2003a). 

The expression of alcohol oxidase is partially repressed in the medium 

containing excess non-methanol carbon sources such as glucose and glycerol.  

However, the promoter is induced more than 1000-fold in medium containing 

methanol as the sole carbon source (Thorpe et al., 1999; d'Anjou and Daugulis 2000).  

Recombinant proteins that placed under the regulation of AOX 1 promoter can be 

permitted to be expressed at high levels via methanol induction (Chiruvolu et al., 

1997).   

Typically, the methanol regulation is found to be similar with alternative 

carbon source pathways in many microorganisms.  Interestingly, ethanol as a small 

alcohol and gluconeogenic carbon source like methanol is reported to repress 

transcription of AOX and other methanol pathways.  In the logical physiological 

perspective, AOX might oxidize ethanol nearly as readily as methanol, which cause 
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the accumulation of acetaldehyde in peroxisome and become a major catastrophe for 

cells.  However, this critical phenomenon was not found in the record of extended 

literature for Pichia pastoris.  How the cellular regulatory machinery is able to 

recognize and differentiate these similar compounds still remains a mystery (Lin 

Cereghino et al., 2006). 

 

2.1.3 Methanol utilization (Mut) phenotypes  

There are three phenotypes in recombinant Pichia pastoris strains, based on 

their ability to utilize methanol: Mut+ (methanol utilization plus, wild type AOX, 

where both alcohol oxidase genes, AOX 1 and AOX 2 are remained), Muts (methanol 

utilization slow, where only AOX 2, which is responsible for 15% of the AOX activity, 

is intact), and Mut− (methanol utilization minus, in which both AOX 1 and AOX 2 are 

impaired).  The Muts strains exhibit slower growth on methanol than Mut+ strains due 

to deletion of AOX 1 gene.  The lower levels of alcohol oxidase produced from AOX 2 

gene are not sufficient to oxidize methanol and causing growth limitation (Inan et al., 

1999).  

Mut+ strains have a higher oxygen demand which is more often in causing 

oxygen limiting conditions in the culture  (Files et al., 2001).  In contrast, Muts strains 

has the less possibility to become oxygen-limited (Romanos 1995).  It utilize less 

methanol and may reach higher expression levels of heterologous proteins than the 

Mut+ strains (Xie et al., 2005).  But, protein expression with Muts strains requires 

long induction period (approximately 100 hours) for maximal expression due to the 

low AOX 2 activity (Files et al., 2001). 

 

 



 

 9

2.2 Human growth hormone (hGH)  

Human growth hormone (hGH) or somatotropin is a small, single chain 

peptide.  It is formed by 191 residues which 50% of the residues are in helical 

conformation (Catzel et al., 2003).  It is a hormone produced and secreted by the 

anterior pituitary gland throughout a person lifetime.  Human growth hormone is 

responsible for many human body functions such as growth, development, immunity, 

and metabolism (Catzel et al., 2003).  It is needed for tissue repair, muscle growth, 

healing, brain and sexual function, physical and mental health, bone strength and 

energy metabolism.  Virtually, all organs and systems of human body are dependent 

on hGH for growth, development and functioning appropriately (Growth Hormone 

Explanation (2006) [Online] [Accessed 16th July 2008], available from World Wide 

Web: Http://www.21stcenturyhgh.com/hgh-research-explanation.htm). 

The main function of growth hormone is to stimulate the secretion of IGF-1 by 

liver and other tissues.   IGF-1 is the major component to enhance rapid reproduction 

and differentiation of chondrocytes (cartilage cells) and resulting in bone growth.  On 

the other hand, IGF-1 also stimulates the differentiation and proliferation of myoblasts, 

amino acid utilization and protein production in muscle and other parts of the human 

body (Growth Hormone Explanation (2006) [Online] [Accessed 16th July 2008], 

available from World Wide Web: Http://www.21stcenturyhgh.com/hgh-research-

explanation.htm). 

The first medical application of human growth hormone is the use of 

exogenous hGH from human pituitary glands for growth hormone deficiency 

treatment.  Pituitary-extracted hGH was then become the major treatment for most of 

the growth hormone deficiency cases.  However, the application of pituitary-derived 
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hGH was abruptly banned when hGH extraction process was found to related to the 

Creutzfeld–Jakob disease (CJD) in 1985 (Catzel et al., 2003).   

Nowadays, hGH is used as the treatment for children growth retardation such 

as short stature caused by insufficient growth hormone secretion (Tae et al., 2005).  

The hormone has also been used as a remediation for Turner’s syndrome and chronic 

renal insufficiency (Leitner et al., 2004).  Besides, hGH is used as a therapy for adults 

growth hormone deficiency and in the management of HIV-related waste and 

cachexia (Chen et al., 2004). 

Human growth hormone formed as a mixture of peptides with major physical 

component (22 kDa) and minor component (20 kDa).  The minor component is 

formed as the result of deletion of 15 amino acid residues (32–46) from the 22 kDa 

form.  There are also variants of 45 kDa and 24 kDa hGH form, derived from the 

aggregation or additional amino acids in 22 kDa compartment (Catzel et al., 2003). 

Nowadays, synthetic human growth hormone is produced with recombinant 

DNA technology.  It is a 191 amino acid polypeptide (22 kDa) with an amino acid 

sequence and two internal disulphide bridges which is identical to the major 

component of growth hormone extracted from human pituitary (Chen et al., 2004). 

Purification of recombinant human growth hormone (rhGH) is commonly 

performed with the combinations of adsorption chromatographies, including ion 

exchange, hydrophobic interaction, and metal–chelate which followed by gel filtration 

for protein separation according to protein size and removal of aggregated compounds.  

The overall rhGH recovery is found to be greatly influenced by the efficiency of 

solubilization and refolding processes (Catzel et al., 2003). 
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2.3 High cell density culture 

Pichia pastoris is well characterized budding yeast that has a prolific growth 

rate (Cino 1996).  It is possible to achieve extreme high cell density (up to 130 g/L of 

dry cell weight) with a comparatively low cost glycerol basal salts medium (Zhang et 

al., 2004).  Pichia pastoris prefers respiratory metabolism mode over a fermentative 

mode (Lin Cereghino et al., 2002).  Hence, the tendency of ethanol accumulation 

rarely happened in Pichia pastoris culture and thus minimized the risk of ethanol 

accumulation as an inhibitor of cell growth (Sunga and Cregg, 2004).   

Optimization of fermentation process to achieve high cell density can be 

carried out by either modifying one growth parameter at a time or changing a series of 

factors at the same time and investigate the interactions among the factors (Thiry and 

Cingolani, 2002).  The optimization process is always a crucial step since the yield of 

heterologous protein production often affected directly by culture density of the host 

cells (Inan and Meagher, 2001).  

Optimization of Pichia pastoris is usually initiated with the investigation of 

growth parameters in shake flask system.  Some of the growth parameters such as 

medium formulation can be pre-optimized in shake flask system prior to the practical 

in fermenter.  The production of biomass and desired protein is then further optimized 

in fermenter where the effect of pH, aeration, agitation and feeding strategies were 

investigated.  This step always resulted in a significant improved total recombinant 

protein production due to the high cell density achieved by cultivation in fermenter 

(Fantoni et al., 2007). 

Despite the advantages obtained from high cell densities, it actually brings 

some critical problems to the culture.  Firstly, oxygen transfer is a major limiting 

factor especially in the large scale fermenter.  This problem can be solved by 
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providing oxygen enriched air into the fermenter but results in the increase of 

production costs and create a safety risk.  Secondly, high cell density cultures are 

often susceptible to develop some level of stress on the cells.   This may lead to a 

decreased productivity, decreased viability and increased cell lysis.  The increase of 

cell lysis increase the difficulties of purification process with the release of 

intracellular proteins into supernatant (Hohenblum et al., 2003).  Efforts to get a 

balance point of achieving high cell density culture and minimize its disadvantages 

are necessary in order to obtain high expression level of the particular desired proteins. 

 

2.3.1 Carbon sources 

 Several carbon sources have been used to generate Pichia pastoris biomass, 

such as glycerol, methanol, ethanol, glucose, sorbitol, mannitol and etc. (Sreekrishna 

et al., 1997; Inan and Meagher, 2001; Lee, 2005; Xie et al., 2005).  Growth on 

glycerol or glucose alone allows high cell growth rate without expression of the 

foreign gene.  Methanol is needed to induce the expression of AOX 1 promoter.  

Culture with methanol as the sole carbon source produces a high product yield, 

however, the low growth rate and low biomass production on methanol lowered the 

overall productivity (Thorpe et al., 1999).  

Research has found that a diauxic growth was observed when there are two or 

more carbon sources the culture medium.  In the culture with a mixture of ethanol and 

glycerol, utilization of ethanol was started after glycerol consumption.  A transient 

accumulation of acetate was observed after the depletion of glycerol.  Then, growth 

was supported with acetate as carbon source.  However, medium with glycerol and 

methanol mixture do not showed in a complete diauxic curve.  Methanol utilization 

started before glycerol depletion.  This indicates that glycerol does not repress the 
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synthesis of methanol utilizing enzymes as strong as ethanol since methanol utilizing 

enzymes was expressed before the complete exhaustion of glycerol (Inan and 

Meagher, 2001).   

 In the case of all three carbon sources (glycerol, ethanol and methanol) 

presence in the medium, the order of carbon source consumption is glycerol, ethanol, 

acetate (produced from the ethanol consumption) and methanol (Inan and Meagher, 

2001).  Glycerol is preferred over ethanol and methanol, ethanol being preferred over 

methanol.   

As reported by Lee (2005), cultivation of Pichia pastoris GS115 2(5) in 

glycerol gave the highest biomass production compared to methanol, sorbitol, glucose 

and mannitol.  While some researchers found that Pichia pastoris was not able to 

utilize xylose and lactate, while acetate repress the growth of Pichia pastoris 

especially on the phenotype of Mut+ or Mut− (Inan and Meagher, 2001).  

 

2.3.1.1 Glycerol and its metabolic pathways 

Glycerol is found to be partially repress the AOX 1 gene promoter, however, it 

is still considered as the most widely used carbon source in Pichia pastoris 

fermentations (Xie et al., 2005).  High cell density culture required high glycerol 

feeding rates in the fed-batch phase but high concentrations of glycerol may inhibit 

the cell growth (Lee et al., 2003a). 

The theoretical biomass yield (Yx/s) of glycerol is 0.50 g dry cell weight / g 

substrate (Boze et al., 2001) and higher specific glycerol consumption rate (at the 

average of 0.10g / g dry cell weight / h) can be observed with high glycerol feed rates  

(Lee et al., 2003a).  Jungo and co-workers, (2007), reported that the maximal specific 

growth rate of Pichia pastoris on glycerol as sole carbon source is 0.24 h−1; however, 
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the maximal specific growth rate achieved in this study is only half of the value 

reported here. 

 

Fig 1.1: Metabolic pathways of glycerol in Pichia pastoris (Figure adapted from Ren 

et al., 2003). 

 

Fig 1.1 is the simplified metabolic pathways of glycerol (Ren et al., 2003).  

The pathway starts with phosphorylation of glycerol by glycerol kinase to produce 

glycerol-3-phosphate (G3P).  G3P is then further oxidized to dihydroxyacetone 

phosphate and pyruvate in glycolysis process by FAD-dependent glycerol-3-

phosphate dehydrogenase.  Further oxidation of pyruvate by pyruvate dehydrogenase 

results in the formation of acetyl–CoA and used in the tri-carboxylic acid (TCA) cycle.  

TCA cycle is the main part to produce metabolites for cellular components such as 

amino acids, nucleic acids and cell wall synthesis (Ren et al., 2003).  Most of the 
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energy sources needed for cell growth and maintenance (in the form of ATP and 

NADH) were generated in the TCA cycle from acetyl-CoA while a small portion 

might come from G3P. 

Ethanol might be produced as the result of respiratory capacity limitations or 

glycolytic flux (Sonnleitner and Kaeppeli, 1986; Lei et al., 2001).  Pyruvate is 

converted to acetaldehyde by pyruvate decarboxylase and then oxidized to ethanol by 

alcohol dehydrogenase.  But, ethanol may also be used as substrate when it was 

changed to acetaldehyde by alcohol dehydrogenase, then to acetate by acetaldehyde 

dehydrogenase.  Finally, acetate is converted back to acetyl–CoA by acetyl–CoA 

synthetase and enter the TCA cycle (Ren et al., 2003).   

 

2.3.1.2 Methanol and its metabolic pathways 

Pichia pastoris has the ability to assimilate methanol as sole carbon and 

energy source (Sunga and Cregg, 2004).  It contains an alcohol oxidase (AOX) 

enzyme that catalyzes the oxidation of methanol which eventually results in the 

production of carbon dioxide and energy (Zhang et al., 2003).   

The ‘Pichia Fermentation Process Guidelines’ from Invitrogen Co. (San Diego, 

CA) suggested two different empirical methanol feeding strategies which are widely 

used in Pichia pastoris fermentation.  The first method is based on the dissolved 

oxygen (DO) spike while the second involve preprogrammed linear methanol feed 

rates to maintain a very low methanol concentration in the medium.  The choice of 

feeding strategy and specific regulatory parameters such as methanol feed rate are 

dependent on the strains methanol-utilization ability phenotype and characteristic of 

the recombinant protein (Cregg et al., 1993; Minning et al., 2001).   
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Generally, maintaining excess methanol in the culture is able to achieve higher 

recombinant protein expression than conventional methods of methanol-limited 

conditions (Brady et al., 2001).   The higher expression levels might be contributed by 

the increase of cell growth rate or higher induction possibility of AOX1 promoter in 

high methanol concentration.  

The increase of methanol concentration in the medium causes an increase in 

oxygen uptake, carbon dioxide production and heat production rate.  These rates were 

found to be higher in cultures on methanol than glycerol.  However, biomass 

production was lower with the increase of methanol concentration in the medium, due 

to the lower biomass yield of methanol compared to glycerol (Jungo et al., 2007). 

The theoretical biomass yield (Yx/s) on methanol is 0.30 g dry cell weight / g 

substrate (Boze et al., 2001) and the highest reported value of maximal specific 

growth rate for Pichia pastoris grown on methanol as the sole carbon source is 0.14 

h−1.  Culture with methanol medium produces a notably large amount of heat during 

the fermentation process.  A rapid and efficient cooling system is required especially 

in large scale fermenter where heat transfer was dependent solely on the reactor wall.  

Inefficient heat removal will cause the increase of reactor temperature which bring 

significant effect on the productivity and highly affect the quality of recombinant 

protein produced (Jungo et al., 2007). 

Methanol evaporates rapidly.  The evaporation rate of methanol was 5.9 times 

of butyl acetate at room temperature (Material Data Safety Sheet (MSDS): methyl 

alcohol [Online] [Accessed 16th July 2008], available from World Wide Web: 

http://www.bu.edu/es/labsafety/ESMSDSs/MSMethanol.html).  It is difficult to 

control methanol concentrations within an optimal range especially in small and 

micro scale cultures.  Moreover, methanol metabolism utilizes oxygen at a high rate. 
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The inefficient aeration limits the availability of oxygen, which might affect 

recombinant protein expression especially in small and micro scale culture conditions 

(Resina et al., 2004). 

Although methanol is needed for AOX 1 promoter induction, however, it is a 

potential fire hazard and may not be suitable for the production of food products or 

human consumption products (Cereghino and Cregg,1999). 

 

Fig 1.2: Metabolic pathways of methanol in Pichia pastoris (Figure adapted  

             from Ren et al., 2003). 

 

Fig 1.2 shows the simplified metabolic pathways of methanol in Pichia 

pastoris.  First, methanol is oxidized to form formaldehyde and hydrogen peroxide by 

alcohol oxidase.  Formaldehyde then enters both dissimilatory and assimilatory 

pathways (Cereghino and Cregg, 2000).  
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In the dissimilatory pathway, some of the formaldehyde is oxidized to formate 

and carbon dioxide by formaldehyde dehydrogenase (FLD) and formate 

dehydrogenase (FDH) respectively, which produce energy in the form of NADH.  

In the assimilatory pathway, formaldehyde is metabolized by condensation of 

formaldehyde with xylulose-5-monophosphate, catalyzed by the peroxisomal enzyme 

dihydroxyacetone synthase to form glyceraldehyde-3-phosphate (GAP), which later 

enters the TCA cycle (Cereghino and Cregg, 2000).  Similar to the glycerol metabolic 

pathways, biomass formation was assumed to come from GAP and acetyl–CoA in the 

TCA cycle (Cereghino and Cregg, 2000; Jahic et al., 2003).   

 

2.3.2 pH 

Pichia pastoris is known to tolerate a pH range of 3–7 (Damasceno et al., 

2004) but cannot grow at pHs below pH 2.2 (Thiry and Cingolani, 2002).  

Investigation on medium pH is critical for yeast-secreting protein because they can 

grow in a wide range of pHs.  The choice of pH depends on the stability of the 

recombinant protein expressed.  It has been reported that pH 5 is optimal for cell 

metabolism and biomass production as oxygen consumption rate is higher at that pH 

(Cino, 1996). 

Cultivation of Pichia pastoris at low pH increases the expression of 

recombinant proteins by reducing protease degradation (Damasceno et al., 2004). 

Protease activity in shake flask cultures of Pichia pastoris is drastically reduced at pH 

3 (Shi et al., 2003).  Maintaining culture at pH 3 or lower in methanol-induction phase 

to inhibit neutral proteases is one of the efficient approach to protect the product from 

proteolysis (Murasugi and Tohma-Aiba, 2003; Mattanovich et al., 2004).   
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On the other hand, optimum production pH varies for each recombinant 

protein which is dependent on the product biochemical properties.  Low range values 

of pH 3.0 to 5.0 is found to be effective for gelatins and HIV-1 envelope proteins 

(Ohya et al., 2002) while low acidic condition of pH 5.6 to 6.0 is suitable for human 

serum albumin and mouse epidermal growth factor (Ohya et al., 2002). However, low 

fermentation pH decreases the viability of Pichia pastoris.  A decreased yield in 

biomass at pH 3.0 was observed compared to cultures at pH 5.0 (Hohenblum et al., 

2003).  The viability of cells decreased drastically when low culture pH was reached 

and the problem became severe during prolonged fermentation period.  Critical 

stresses from high acidic environment often leading to cell death.  The decrease of 

cell viability causes the release of host intracellular proteases level into supernatant 

and eventually causing a decreased productivity. 

A low pH may offer higher protein expression but it may also lead to the 

increase of cell death.  One of the common approaches applied in Pichia pastoris 

fermentation is to maintain optimum pH for cell growth (pH 5.0) at biomass 

production stage while the pH is then adjusted to the optimum production value for 

desired proteins at induction stage. 

 

2.3.3 Temperature 

Pichia pastoris is a psychrotrophic microorganism that can grow at a 

temperature as low as 12°C (Jahic et al., 2003).  Elevated culture temperature always 

lead to cell death and causing cell lysis.  As a result, intracellular protease is released 

into the culture media (Inan et al., 1999). 

Temperature may be a critical factor to reduce protease activity and 

minimizing product proteolysis.  Low culture temperature might increase cell viability 
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and possibly reducing proteolytic degradation of the desired proteins (Li et al., 2001).  

Some researchers lowered culture temperature during the induction phase achieve a 

four-fold increase of production yield (Whittaker and Whittaker, 2000, Thiry and 

Cingolani, 2002).   

In addition, methanol is found to be more toxic at 30°C compared to the lower 

environment temperature (Jahic et al., 2003).  This is important especially when 

culturing Pichia strain with Mut+ phenotype, which is more likely to be sensitive to 

overdoses methanol and become poisoned. 

 

2.3.4 Oxygen and aeration factors 

Oxygen is one of the critical and major requirements for aerobic fermentations.  

Stirred tank fermenter becomes the most commonly used fermenter due to the 

effectiveness and reliability of providing a comparatively high dissolved oxygen level.  

It is the most well-received reactor type especially for shear tolerant cultures (Liang 

and Yuan, 2006). 

 Dissolved oxygen level in a particular culture is usually regulated by the 

agitation and aeration rates.  Aeration rates provide the initial volume of air bubbles to 

the system whereas agitation rates facilitate oxygen and substrate distribution in the 

culture (Crolla and Kennedy, 2004).  However, increased agitation will create shear 

force on cell walls and the cell-insoluble substrate interface which results in a 

decreasing cell viability.  The agitation rate should be regulated appropriately for 

optimum product production and also to cut down the operational costs (Crolla and 

Kennedy, 2004). 

Aeration is a critical factor that affects the growth rate and induction 

efficiency of Pichia cultures significantly especially for Mut+ strains, which tends to 
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become oxygen-limited.  A consistently increase (5-10 fold) in yield was observed 

when the culture was switched from shake flasks system to fermenter due to the better 

aeration environment (Romanos, 1995).  Pichia pastoris culture required 

comparatively high oxygen demand as described in the glycerol and methanol 

metabolic pathways (Ren et al., 2003).  Oxygen was used by alcohol oxygenase 

as a substrate and involved in cellular electron transportation; hence, dissolved 

oxygen (DO) concentration in the medium should be maintained at high levels 

throughout methanol utilization metabolism   (Shi et al., 2003). 

More oxygen is needed for energy and maintenance pathway than for the 

anabolic flux (Jahic et al., 2003).  Dissolved oxygen is a common limiting factor if a 

high growth rate is reached in fed-batch processes.  It is crucial to avoid oxygen 

limitation in methylotrophic yeast culture so that cells remain in respiratory 

metabolism to avoid methanol accumulation in the broth and methanol toxicity. 

 A number of approaches have been done to increase and maintain DO level in 

the medium.  These efforts include the supplementation of oxygen gas and the use of 

microbubble dispersions (MBD) strategy (Zhang et al., 2003; Damasceno et al., 2004).  

The increase of cultivation pressure is useful to increase DO concentration but at the 

same time, it also raise up dissolved carbon dioxide concentration in the culture. 

Oxygen mass transfer is often occurred extensive of the given cell density and 

causing oxygen limitation in high cell density culture.  Oxygen transfer capacity of 

fermenters is always unable to support the oxygen metabolic demand at high cell 

density.  Thus, oxygen availability should be taken into consideration upon the 

selection of feeding strategy (Oliveira et al., 2005).   

A mass transfer coefficient can be defined with mass balance of species in the 

fermenter.  An assumption of oxygen transfer from gas to liquid phase is controlled 
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by the liquid film surrounding air bubbles was made (Mavituna and Sinclair, 1985).  

The rate of oxygen transfer is given by:  

OTR = kLa (C*-CL)                              (1) 

Where OTR = Oxygen transfer rate, 

kLa = volumetric oxygen transfer coefficient (h-1),  

C* = saturated DO concentration, 

CL = actual DO concentration in the liquid.   

 

2.4 Fermentation and feeding strategy 

2.4.1 Fermenter and shake flask culture 

Fermentation process of Pichia pastoris generally starts in shake flask system 

before transferring to larger volume fermenter.  Shake flask system is considered as 

sub-optimal condition due to the lack of data recorder and regulatory controller 

(Romanos, 1995).  Some minor adjustment on the culture parameters were needed 

during the shift from a shake flask system to a small fermenter or from a small 

fermenter to a large volume fermenter (Lin Cereghino et al., 2002). 

Pichia is able to achieve extremely high cell densities (130 g/L dry cell weight) 

in the fully equipped fermenter where culture parameters such as pH, aeration, 

temperature and carbon source feed rate were controlled.  Protein level in fermenter 

culture is generally much higher (up to 140%) compared to culture in shake flask 

(Jahic et al., 2003).  Switching from shake flask system to fermenter might increase 

the dissolved oxygen (DO) levels by increasing agitation, air flow, or supplementation 

of pure oxygen in the gas inlet.   

Substrate limitation can also be minimized with the fed-batch strategy in 

fermenter.  Growth limiting nutrients can be provided to the culture from time to time 
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as the replacement of exhausted substrates and maintained at a particular 

concentration.  Methanol concentration can also be maintained at the level of just 

enough for protein synthesis while preventing accumulation to toxicity level (Cino, 

1996). 

Cultivation in fermenter system is found to match the high oxygen demand of 

Pichia pastoris.  An optimal growth and induction condition can be achieved when 

culture parameters and feeding rate were well controlled.  Accumulations of substrate 

or by-products were minimized in the fermenter system.  Optimization of biomass 

production to achieve high cell density culture is utmost importance for recombinant 

protein production especially for growth-related products (Cereghino et al., 2002).  

 

2.4.2 Three stage high cell density fermentation scheme 

Standard high cell density fed-batch cultures for recombinant Pichia pastoris 

strains are usually performed in three steps.  Cells are first batch cultured in salt 

medium with a non-fermentable carbon source (most commonly glycerol) to achieve 

unlimited growth and biomass accumulation (Inan and Meagher, 2001).  The AOX 1 

promoter is repressed and recombinant protein is not produced at this stage (Chen et 

al., 1997). 

The second phase (AOX 1 derepression phase) is started upon the depletion of 

initial glycerol.  Glycerol is provided in a fed-batch mode to further increase the 

biomass concentration and derepress the cells for methanol induction (Cereghino et 

al., 2002).   The second phase is important to ensure that high cell density is achieved 

and cells were primed prior to the induction phase (Lee et al., 2003a).  This transition 

phase played a key role to derepress the enzymes involved in methanol metabolic 

pathway gradually and helps to reduce time needed for cells to adapt to methanol.  
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This transition phase is found to be a compulsory step in order to shorten the time 

required for methanol adaptation (Chiruvolu et al., 1997).  

The third phase is the induction phase by adding methanol at a slow rate, 

which helps the culture to adapt to methanol and induces the synthesis of recombinant 

protein (Inan and Meagher, 2001; Cereghino et al., 2002; Lee et al., 2003a).  The 

methanol feed rate is then increased gradually to achieve the level of sufficient for cell 

induction but lower than the concentration of toxicity (Cereghino et al., 2002).  The 

AOX 1 promoter is induced by methanol and recombinant protein is produced in this 

phase.  

 

2.4.3 Fed batch and feeding strategy 

Fermentation can be performed in batch, fed-batch or continuous mode.  Batch 

cultivation is simple and robust but always suffered from low biomass production.  

Continuous culture is rarely practiced in pharmaceutical product due to the high 

mutation and contamination risks.  Fed batch fermentation is a strategy in between 

batch and continuous culture and it seems to be the most effective approach to achieve 

high cell density culture (Thiry and Cingolani, 2002).  Fed-batch culture is initiated 

with a batch culture and fed continuously or sequentially without removing the culture 

medium (Stanbury and Whitaker, 1995).   

Fed batch culture offers many advantages compared to batch and continuous 

cultures.  Conventional batch culture suffers from low biomass and product yield due 

to the high initial substrate concentration which causes substrate and product 

inhibition (Ding and Tan, 2006).   Fed-batch strategy seems to be an ideal solution to 

overcome the inhibitions.  Fed batch fermentation allows the concentration of limiting 

substrate in the culture broth to be adjusted precisely at constant low level  that 


