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PERBANDINGAN SIMPANGAN DEPAN DAN BELAKANG 

MONOHABLURAN SEL SURIA SILIKON 

 

ABSTRAK 

Tesis ini menjalankan fabrikasi, pencirian dan pengoptimuman sel-sel suria 

persimpangan depan dan belakang. Sebagai sebahagian usaha kami iaitu strategi 

pengurangan kos, satu teknologi mudah pemprosesan relau konvensional (CFP) dan 

pemprosesan terma yang pesat (RTP) telah dibandingkan. Satu monohabluran wafer 

silikon dengan keluasan 19.64cm2 dan keluasan aktif yang efektif 12.6cm2 

mempunyai kerintangan (0.75 1.25) Ω cm digunakan bagi mencari nilai optimum 

pemancar untuk kedua-dua bahagian hadapan dan belakang persimpangan sel suria.  

Sel persimpangan depan telah menggunakan CFP untuk peresapannya. Ia 

menunjukkan purata FF 69% dengan arus litar pintas Jsc= 35.0mA / cm2 dan satu 

voltan litar buka yang cemerlang 0.640V, ia juga mempunyai  kecekapan η = 

15.6±1% (100mW/cm2, 250C). Kami juga membangunkan satu sel persimpangan 

belakang yang direka di mana serasi dengan satu julat yang lebih luas untuk kualiti 

bahan silikon. Untuk persimpangan belakang sel suria secara lebih khususnya, 

kecekapannya adalah sangat bergantung pada bahan kualiti, nisbah ketebalan alat 

untuk panjang resapan pembawa minoriti dan permukaan-permukaan yang telah 

dipasifkan secara tinggi.  Persimpangan belakang sel suria menunjukkan kecekapan 

19.3±1 %  dengan FF 72%, voltan litar buka VOC 0.67V dan satu arus litar pintas 

40.0mA/cm2. Kami mendapati yang pembentukan pengeluar untuk sel persimpangan 

belakang memerlukan masa yang lebih panjang dengan menggunakan CFP, yang 

mana mungkin tidak ada serasi untuk pengurangan kos. Sel suria berefisyen tinggi 

memerlukan permukaan bertekstur untuk mengurangkan pantulan dan untuk 



 xiv 

meningkatkan cahaya terperangkap. Sodium Hidroxide (NaOH) dan potassium 

hydroxide (KOH) selalu digunakan tetapi bahan-bahan ini adalah toksik dan 

tercemar. Ion K+ dan Na mencearkan lapisan pasif SiO2 yang didepositkan pada 

permukaan sel suria selepas proses pengteksturan. Dalam pengkajian ini, bahan 

alternatif yang mengandungi tetrametil ammonium hidrokside ((CH3)4NOH, TMAH 

telah digunakan. Pengkajian ini menunjukkan pengaruh beberapa parameter 

(konsentrasi,suhu dan masa) bagi proses pengtekturan. Daripada ujikaji menunjukan 

3% TMAH konsentrasi pada 45 minit dan 900C  memberikan kondisi terbaik bagi sel 

suria berefisyen tinggi. Sel suria dipasifkan dengan baik melalui penambahan lapisan 

SiO2. Suhu deposit bagi lapisan pasif ialah 850oC, ia adalah untuk menjaga jangka 

hayat pengangkut terkecil. Lapisan pasif ini mengurangkan kelajuan 

pengkombinasian semula permukaan bagi pengangkut terkecil. 
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COMPARISON OF FRONT AND BACK JUNCTION MONOCRYSTALLINE           

SILICON SOLAR CELL  

                                                         

ABSTRACT 

  This thesis undertakes fabrication, characterization and optimization of front 

and back junction solar cells. As  part of our effort on cost reduction strategy, a 

simple technologies of conventional furnace processing (CFP) and rapid thermal 

processing (RTP) has been compared. A monocrystalline silicon wafer with an area 

of 19.64cm2 and effective active area of 12.6cm2 resistivity of (0.75-1.25) Ω cm was 

used to find an optimal emitter for both front and back junction solar cells. The front 

junction cell utilizes CFP for its diffusion. It shows an average FF of 69 % with 

short-circuit current density Jsc= 35.0mA/cm2 and an excellent open circuit voltage 

of 0.640V with an efficiency of η = 15.6 %. We also developed a back junction cell 

whose design is compatible with a wider range of silicon material qualities. For back 

junction solar cell more specifically, its efficiency strongly depends on material 

quality, the ratio of device thickness to minority carrier diffusion length and highly 

passivated surfaces. The back junction solar cell demonstrated an efficiency of 19.3 

% with FF 72 %, open circuit voltage VOC of 0.67V and a short-circuit current 

density of 40.0mA/cm2. We found that emitter formation for back junction cell 

requires a very long time by using CFP, which might not be compatible with cost 

reduction. High –efficiency silicon solar cells requires texturing of the front surface 

to reduce reflectance and to improve light trapping. Sodium hydroxide (NaOH) and 

potassium hydroxide (KOH) are commonly used, but these solutions are toxic and 

pollutant. The K+ and Na ions contaminate the passivation layer SiO2 deposited on 

the surface of the cell after texturing. In this study an alternative solution containing 
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tetramethyl ammonium hydroxide ((CH3)4 NOH), TMAH) was used .This research 

show the influence of different parameters (concentration, temperature and time) for 

the texturing processes. We found that 3 % TMAH concentration at 45 min and 90 

0C gave an optimized condition for high efficient solar cells. The solar cells were 

excellently passivated by the growth of SiO2 layers. The deposition temperature of 

the passivation layer was kept at 850 0C, in order to maintain high lifetime of 

minority carriers. This passivation layer reduces surface recombination velocity of 

the minority carriers. 
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COMPARISON OF FRONT AND BACK JUNCTION MONOCRYSTALLINE           

SILICON SOLAR CELL  

                                                         

ABSTRACT 

  This research thesis was undertaken to fabricate, characterize and optimize 

the front and back junction solar cells. As part of an effort towards cost reduction, 

simple technologies of conventional furnace processing (CFP) and rapid thermal 

processing (RTP) were compared. A monocrystalline silicon wafer with an area of 

19.64cm2 and resistivity of (0.75-1.25) Ω cm was used to find an optimal emitter for 

both the front and back junction solar cells. The front junction cell utilized CFP for 

diffusion. It showed an average FF of 69 % with short-circuit current density Jsc= 

35.0mA/cm2 and a good open circuit voltage of 0.640V, with an efficiency of η = 

15.5±1 % (100mW/cm2, 250C).We also developed a back junction cell, the design of 

which was compatible with a wide range of silicon quality materials. For back 

junction solar cell specifically, its efficiency strongly depended on material quality, 

ratio of device thickness to minority carrier diffusion length and highly passivated 

surfaces. The back junction solar cell demonstrated an efficiency of 19.3±1 % with 

FF 72 %, open circuit voltage VOC of 0.67V and a short-circuit current density of 

40.0mA/cm2. We found that by using CFP, emitter formation for back junction cell 

required a long time, which might not be compatible with the cost reduction strategy. 

High –efficiency silicon solar cells require a textured front surface to reduce 

reflectance and to improve light trapping. Sodium hydroxide (NaOH) and potassium 

hydroxide (KOH) are commonly used, but these solutions are toxic pollutants. The 

K+ and Na+ ions contaminate the passivation layer of SiO2 deposited on the surface 

of the cell after texturing. In this study an alternative solution containing tetramethyl 
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ammonium hydroxide ((CH3)4 NOH), TMAH) was used .This research shows the 

influence of different parameters (concentration, temperature and time) on the 

texturing processes. We found that 3 % TMAH concentration at 45 min and 90 0C 

were the optimal conditions for highly efficient solar cells. The solar cells were well 

passivated by the growth of SiO2 layers. The deposition temperature of the 

passivation layer was kept at 850 0C, to maintain high lifetime of minority carriers. 

This passivation layer reduced surface recombination velocity of the minority 

carriers. 
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CHAPTER ONE 

INTRODUCTION 

 

 

1.1 Motivation           

Becquerel discovered the direct conversion of solar energy to electricity by 

the photovoltaic effect in 1839 [1].Showing that an electric field may arise between 

two electrodes attached to a liquid or solid system when illuminated. By using light 

of appropriate intensity and wavelength, it turns out that almost any condensed 

matter can be used to generate electricity of some efficiency in this way. Moreover, 

the first silicon solar cell was developed as early as 1954 by Bell laboratories [2], 

showing efficiency under solar radiation of as high as 6%. For a long time 

succeeding this event, the main use of solar cells was for power supply in space 

applications, with increased interest for small scale consumer products.  

The photovoltaic industry produced 2.54 GW of solar cells in 2006 [3]. 

About 89.9% of these cells were made from monocrystalline and multicrystalline 

wafers, 7.4% from thin films (a-Si, CdTe, Cis) and 2.6% from silicon ribbons. 

Various research groups all over the world have been working on more advanced 

solar cell concepts and have successfully reached efficiencies of well above 20% [4- 

6].            

There is a drastic increase in energy demands worldwide, which seems to be 

unavoidable in the near feature. In studies conducted in USA, it was found that 

electricity generation from fossil fuel accounted for as much as 34% of CO2 , 37% of  

NOx and 62% of SO2  emissions from controlled sources [7].  Hence, for a merited 
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development of a sustainable economy in third world countries, the utilization of 

renewable energy resources was regarded to be of great importance. Environmental 

awareness has traditionally motivated the research into renewable energy sources.  

Solar cell converts sunlight directly to electrical power without any pollution, 

exhaust, noise or moving parts. There could still be   great environmental impacts if 

solar cells effectively reduce the   amount of   fossil fuel used in developing 

countries, which is predicted to be responsible for the majority of global CO2 

emission in the future.      

The photovoltaic market has two main objectives. The first is to make the 

production of electricity as cheap as possible and the other is to maximize the 

performance of the solar energy system to be at moderate level of cost. The cost of 

solar energy system can be roughly divided into the following categories as shown in 

the Fig. 1.1 below;  

20%

20% 

35%

25%

 
 
 
 

Figure 1.1: The cost breakdown of a solar array. 

 

As shown in Fig1.1, about one fifth of the total cost of photovoltaic module is 

attributed to the silicon substrate [8]. The cost of the silicon wafers takes 20%, solar 

cell technology (diffusion, metallization etc) 20% while land and land preparation 

Silicon wafers 

Solar cell technology 
Diffusion, metallization, 
etc 

Modules without solar cell 
Glass frames, etc. 

Land and preparation 
Framework, foundation, 
installation 



 3 

(framework foundations, installation) 35%, and finally modules without solar cells 

account for 25%. 

 

1.2 The Challenges         

In the effort to bring PV one-step closer to being cost-effective with 

improved efficiency, researchers tried to develop different cell designs, having low 

thermal budgeting. Solar cell design includes cells with the junctions located either at 

the front or at the rear, with conventional furnaces processing (CFP) and rapid 

thermal processing (RTP) used to provide the required thermal input.   

Rapid thermal processing is a promising method for the fabrication of 

crystalline silicon solar cell. It utilizes banks of tungsten lamp to quickly heat the 

semiconductor wafers. RTP drastically reduces the time required for solar cell 

fabrication when compared to CFP. For example, phosphorus emitter diffusion by 

CFP may require 30 minutes to 1 hour, whereas this is reduced to a few seconds to 

one minute when RTP is used.       

In the microelectronics industry, RTP is well established. It is commonly 

used for the fabrication of high –quality layers. For example for the growth of ultra 

thin gates oxides, as well as the activation anneal of ion-implants are usually 

performed by RTP. Within the area of crystalline silicon solar cell, RTP so far has 

been used for the diffusion of P emitter [9 -12], for the growth of surface passivation 

oxides [13,14] and tunnel oxides [15,16] for the alloying of Al layer for back surface 

formation (BSF) and for firing of Ag front contacts [17-20]. However, RTP is 

relatively expensive and only single wafer RTP machines are available which can 

hardly meet the throughput of CFP batch furnace, despites its short time processing 

conditions.  
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1.3 Research Objectives 

Researchers are trying to enhance the competitiveness of photovoltaic 

production with other forms of energy. The cost of industrial module is at present 

around Euro/WP  2.15 .The aims of this research therefore, are: 

• To reduced material cost; this can be achieved by a cell with its 

junction located at the rear of the wafer. This cell requires thin wafers 

which could subsequently, result to significant reduction in to the use 

of silicon.  

• To improve the efficiency by lowering reflectance from the surface of 

the cell, texturing with tetramethyl ammonium hydroxide (TMAH) 

and antireflection coating that serves as  passivating layer. 

  In order to reduce the cost of production of solar cell using low thermal input, we 

make comparisons between front junction cell and back-junction cell employing, 

both conventional furnace processing (CFP) and rapid thermal processing (RTP). 

         

1.4 Organization of Thesis         
 

The thesis starts with a brief history of photovoltaic in general and its 

significance to environmental protection when compared to other forms of energy 

like nuclear power.  

Chapter 2 presents a comprehensive literature review of different types of 

solar cells, ranging from silicon and other materials with their fabrication procedures. 

The limitations of front junction cell over rear junction are also emphasized. 

 Chapter 3 provides a detailed explanation of the physics of the solar cell. The 

theories of phosphorus diffusion, oxidation, antireflection coating are discussed. In 
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Chapter 4, a presentation of the various equipments used in fabrication and 

characterization of our solar cell is made. The experimental procedures used to 

optimize the device are also explained.      

Chapter 5 contains a comprehensive explanation and analyses of various 

results obtained from chapter four. The effects of diffusion conditions on front and 

rear junction cells are treated.       

 Chapter 6: This chapter contains a summary of results obtained from our 

study. Logical conclusions are drawn from the comparison between front and rear 

junction cells. Suggestions for future work in the same area are given as well. 
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CHAPTER TWO 

LITERATURE REVIEW 

 

 

2.1 Introduction 

The previous chapter gave a brief history of the photovoltaic industry and its 

challenges. It also contains the aim and objectives of the research study intended to 

be performed. This chapter focuses on the evolution of the solar cell and the different 

types of cell. A great emphasis is laid on the limitations of front junction cell and the 

advantages of back junction cell.  

      

2.2 Limitation of the Conventional Solar Cell 

The conventional (front-contact) silicon solar cell has a structure in which a 

large p-n junction is formed over the entire substrate on the illuminated side of the 

cell. This conventional design has the virtue of simplicity, in that no patterning is 

required for the emitter (typically the p-type layer in a p-n junction cell), since it 

covers the entire front surface. However, simultaneous and conflicting requirements 

are imposed on the front surface and the emitter layer in this type of arrangement. On 

one hand, the emitter diffusion should be shallow and have low dopant concentration 

(<1×1019 cm-2), to reduce recombination which occurs with higher dopant 

concentrations.  

On the other hand, such a shallow, lightly-doped emitter will have a high 

sheet resistance (current flows laterally through the top layer of a conventional cell, 

and in between any contact grid lines and sheet resistance is inversely proportional to 

the doped layer thickness) generally greater than 100 ohms/square, which will 
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necessitate that the grid contact line be closely spaced to avoid excessive ohmic 

power losses. Figs. 2.1 and 2.2 show a cross sectional and front view schematic 

representation of a front junction solar cell respectively. 

Closely spaced contact lines in a conventional front-contact cell means 

reduced power from the cell due to shadowing of the underlying silicon by the 

contact material. One important limitation arises at high input intensity because large 

amount of current must be conducted from the front surface of the device, through a 

metal grid contact to wires or leads that connect the device to an external circuit. 

Power loss owing to series resistance increases as the square of the current, thus 

increasing as the intensity increases. 

The metal grid cannot be made arbitrarily large without reducing the photo-

generated current, since the grid blocks the light from entering the cell. Owing to 

numerous constraints on the grid design, which are necessary for both minimizing 

series resistance and maximizing the amount of light that enters the device, other 

aspects of the cell design (such as junction optimization) cannot be simultaneously 

optimized [21]. 

                           

 

Figure 2.1: Schematic representation of front junction solar cell. (We is width 
of the emitter; Wb is the width base of the solar cell). 
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Figure 2.2: Schematic representation of a conventional solar cell. 

 

 Additionally, if the dopant concentration is low, the contact dopant layer 

interface will rectify (like a Schottky diode) rather than ohmic contact formation, 

with corresponding power loss associated with the turn-over voltage of the diode. 

However, the higher the dopant concentration, the greater the recombination of 

electrons and holes in the emitter layer, which is deleterious and typically occurs 

greatest near the surface, where incoming light shines.  

 For a conventional cell structure, a balance must be sought between the 

following features: desirability for a heavily -doped surface to promote ohmic 

contact formation, reduced shadowing, desirability for a lightly-doped surface, 

reduced carrier recombination and effective surface passivation. Constrains due to 

texturing and shadowing also constitute a problem; the alternative approach to these 

of which is to place the p-n junction on the (non-illuminated side) cell [22]. 

2.3 Advantages of Back-junction cell over Front -junction   
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1. The requirements for texturing and passivating the front surface are separated 

from the requirements for forming the p-n junction and for contacting the 

emitter and the base. This means the p-n junction can be deep and the emitter 

can be heavily doped without extreme consequences. 

2. Back-contact cells have higher conversion efficiency due to reduced or 

eliminated contact obscuration losses. 

3. Assembly of back-contact cells into electrical circuit is easier and therefore 

cheaper, because both polarities are on the same surface. Because of the 

significant cost savings compared to the present photovoltaic module, assembly 

can be achieved with back-contact cells by encapsulating the photovoltaic 

module and the solar cell electrical circuit in a single step. 

4. Back-contact solar cells are better aesthetics through more uniform appearance. 

Aesthetics is important for some applications, such as building-integrated 

photovoltaic systems and photovoltaic sunroofs for automobiles. 

 

2.4 Types of Back Contact Solar Cells 

Back-contact solar cell is an alternative to the conventional solar cell. It simply refers 

to a cell design where all the interconnection circuitry is located behind the cell. 

Back-contact solar cells are generally categorized into the three main classes. These 

are: 

2.4.1 Metallization wrap-through  

Its concept is most closely linked to the conventional cell structure. The emitter is 

located near the front surface, but part of the metallization grid in the front is moved 

from the front to the back surface. Figure 2.3 shows a schematic representation of 

metallization wrap-through cell. This is depicted as the busbar moving from one 
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surface to another. The remaining front surface grid is connected to the 

interconnection pads on the surface by extending it through a number of openings in 

the wafer [23]. 

 

  
 

Figure 2.3: Schematic representation of a metallization wrap-through solar cell 
(MWT). 
 

2.4.2 Emitter wrap-through 

Its concept is similar to that of front junction cell but its surface is void of any 

metallization. The emitter is still located near the front surface; all the contacts are on 

the rear surface. In Fig 2.4, an embodiment of this structure is shown [24]. The 

current-collection between the active emitter near the front surface and the emitter 

contact on the rear surface is provided by extending doped conductive channels in 

the silicon wafer. Such conductive channels can be produced by drilling holes into 

the silicon substrate with a laser and subsequently forming the emitter inside the hole 

as well as forming the emitter on the front and the rear surface. 
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Figure 2.4: Schematic representation of an emitter wrap through solar cell (EWT). 

 

 
 

 Figure 2.5: Schematic representation of a back junction solar cell. 

 

2.4.3 Back-junction cell 
 
The emitter is no longer located near the front surface, but put together with all 

contact on the rear surface. Since most of the light is absorbed and most of the 

carriers are photo-generated near the front surface, back- junction cells require very 

high quality material, so that carriers have sufficient time to diffuse from the front to 

the rear surface with the collection junctions on the rear surface. The schematic 

presentation of back junction solar cell is shown in Fig. 2.5. 
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2.5       Bifacial Solar Cells 

In this type of cell, instead of very wide interdigitated fingers, an interdigitated finger 

grid is deposited with a similar layout but very narrow. This cell can be illuminated 

from both sides. Such a cell is capable of collecting diffused light from the back 

surface, thus increasing total efficiency. One variant of this cell consist of a cell with 

an n+ layer on its back surface. This gives a structure similar to a transistor. The 

highest efficiency reported was 21.4 %, if the cell is illuminated on the non-

metalized side. It also has an efficiency of 20.2 % when illuminated on the surface 

containing the grid. The lower efficiency was due to shadowing. This was the first 

bifacial cell with efficiency on both sides >20%. This high and very consistent values 

both show that the two sided surface passivation is very effective and that the carrier 

life time in the base must be very high [25- 26]. 

 

2.6 Buried Contact Solar Cell 

This structure was first suggested in 1985 [27]. The significance of this cell is from 

the buried contact using laser technology; grooves of approximately 20µm wide and 

up to 100µm deep are cut in Si wafers textures according to the principle of random 

pyramids, to hold the grid fingers. The etching process which follows, removes the 

silicon destroyed by this process.  

These grooves provide two advantages. First, shadowing is reduced 

significantly when compared with the normal grid structure of the commercial solar 

cell. Values of only 3 % surface shadowing are obtained. Secondly, the grooves can 

be filled with contact material. The technology of metallization consists of electrode 

deposited nickel contact, which is reinforced after sintering with copper.  
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Since this technique does not require photomask process or high vacuum 

evaporation technologies and is thus significantly more economical, it is predestined 

for use in large scale volume production. The double stage emitter is used for the 

emitter structure, where by the highly doped n++ film is restricted to the grooves. The 

p+  backfield permits higher efficiencies. 

A further advantage of this cell is the textured back surface, which increase 

the confinement of light and thus the total efficiency. With this type of cell (large 

area), average efficiencies of 18 % has been achieved in production [28]. With 

specific techniques such as an improved antireflection coating and local back surface 

field, efficiencies of up to 21 % have been achieved in the laboratory [29].  

 

2.7 Thin Film Solar Cells 

A great effort has been in research and development in the field of thin film solar and 

other materials, with cell thickness of few micrometers. Thin film solar cell is 

expected to provide cost reductions and energy savings in cell manufacture.  

All known semiconductor compounds [III-V or IV materials] are direct 

semiconductors, such that the absorption of light occurs within a crystal thickness of 

a few micrometers. For application in terrestrial solar technology however, these 

cells must have efficiency of the same magnitude as those of crystalline silicon and 

also high stability. 

 

2.7.1 Amorphous silicon solar cells 

An amorphous material (glass is a typical example) differ from a crystalline structure 

primarily because the strict periodicity of the lattice is not present. In particular, the 

absorption of light occurs directly. Amorphous silicon [a-Si] – is a compound of 
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silicon and hydrogen and has a band gap of approximately 1.7eV but varies between 

certain limits due to its hydrogen content. 

 In 1977, Carson [30], [31] produced the fist solar cell in RCA laboratory, 

with a very low efficiency of 2 %. The current production method for a-Si solar cells 

involves depositing the individual layers in a higher frequency glow discharge 

reactor. Silane (SiH4) in a mixture with hydrogen is split into hydrogen and silicon. 

The required doping for the manufacture of solar cells is achieved by addition of 

dibromine B2H6 or phosphine (PH3). In case of evaporation unto glass, the electrical 

contact is made using a conductive oxide film (TOC). Indium-Tin-Oxide (ITO) is 

often used for this purpose. 

 The critical problem of a-Si solar cells is their stability. The efficiency drop is 

degraded. The degradation acts primarily on the fill factor and the short circuit 

current, whereas the open circuit voltage remains constant. The degradation can be 

reversed only by exposing the cells to a temperature of approximately 160 0C. 

 

2.7.2 Gallium-Arsenide (GaAS) solar cell 

GaAs is also a very interesting material for photovoltaic applications. The energy gap 

for this semiconductor is 1.42 eV, with an effective adaptation to solar radiation. 

Further advantages are: 

 
• GaAs is also a direct semiconductor and therefore up to 90 % of sunlight 

is absorbed in a film thickness of 2 µm. 

• The temperature dependency of efficiency in a GaAs solar cell is only one 

–third of silicon due to higher energy gap. 
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Furthermore, this binary semiconductor can be transformed into a ternary 

semiconductor by the addition of elements from group (III or V) of the periodic 

table. This means that the semiconductor with lager bang gap can be produced, 

which can then act as window layer, or with smaller band gaps for tandem solar cell. 

In addition, GaAs solar cells have a much lower sensitivity to cosmic 

radiation than Si solar cells. The GaAs solar cell is a cell with a p-n junction. There 

are currently three manufacturing process: 

• Liquid phase epitaxy (LPE). 

• Metal organic vapour phase epitaxy (MOVPE). 

• Molecular beam epitaxy (MBE) carried out in an ultra high vacuum; 

therefore used almost exclusively in research and development laboratories. 

 

In the first process a molten mass of Ga is almost saturated with As in a 

graphite crucible at a temperature of approximately 850 0C and dopants such as zinc 

and aluminium are added. For processing Ga it  is placed with the crucible open at 

the bottom over an n-doped GaAs substrate.  

First, a very small quantity of the n-GaAs is dissolved from the surface and 

secondly, during contact with the molten mass, zinc diffuses into the GaAs substrate 

thus doping a small part of the substrate to a p-material (creation of p-n junction). 

Thirdly, within the dissolved layer near the surface, some 85 % of Ga is exchanged 

for Al (Al 0.85 Ga 0.15 As), thus creating a semiconductor with a band gap of 

approximately 1.9eV. Using this elegant method –in which all necessary layers are 

created in a single step –an efficiency of 22 % was achieved (AM 1.5) [32]. 

To further improve efficiency, n+-GaAs is required on the back surface. Both 

epitaxy processes mentioned permit the creation of any chosen layer sequence and 
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the dopant level. The technique of (MOVPE) was used to produce the highest 

efficiency of 25 % under AM1.5 [33]. 

 Two problems prevent increased use of GaAs. One is the very high price of 

the GaAs cell, if the cell has to be built on its substrate. The second is a problem of 

acceptability, since Ga and As are toxic substances.    

 

2.7.3 Cadmium-Telluride solar cells 

Cadmium-Telluride has band gap of 1.45eV and like GaAs, it is an optimal 

semiconductor for conversion of sunlight. The first work dates back to the 1960s and 

early 1970s when an efficiency of 6 % was achieved [34-35]. Work was then put on 

hold until the 1980s, when it was taken up again by numerous laboratories around the 

world with different technologies. As well as the classical CVD and high evaporation 

techniques, other techniques were successfully developed such as; electrolytic 

deposition, chemical spraying as well as screen-printing. 

 The CdTe thin –film solar cell has achieved a world record of 15.8 % 

efficiency. The majority of CdTe devices are deposited on glass/transparent 

conductor substrates in a superstrate configuration. The 15.2 % cell was fabricated 

on fluorine-doped, tin oxide-coated 7059 glass. A 50-80 nm thick CdS is formed by 

chemical vapour deposition from an aqueous solution containing Cd acetate followed 

by a 3-5µm thick CdTe layer deposited by close-space sublimation. The back contact 

is formed first by etching the CdTe surface and then depositing HgTe. The 

completed device is annealed in an inert gas and finally a MgF2 antireflection 

coating on the front glass [36]. 

 Using atomic layer epitaxy (ALE) process, an efficiency of 14 % was 

.achieved. ALE deposits the CdTe from elemental Cd, S and Te at 240 0C substrate 
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temperatures via a sequential chemical reaction on the deposition surface. In addition 

to the typical glass (TG) and CdS/CdTe structure, the device includes a 250 nm thick 

graded CdSxTe1-x between the 50 nm thick CdS and the 3 µm thick CdTe layers. 

 

2.7.4 Copper-Indium-Diselenide (CIS) solar cell 

The first ones utilized a thick CdS layer as the window layer and bilayer (CIS) 

sequence, where a Cu-rich layer is deposited first, followed by an In-rich layer [37]. 

For the second device, a layer of approximately 1 µm thick of molybdenum is 

deposited onto a glass substrate, and then the active layer of Co-In-Se2 is deposited 

with a thickness of 1-3 µm in a high vacuum using a multilayer evaporation process. 

As with all thin film solar cells, a window of ZnO (band gap approximately 3.2 eV) 

is then deposited on to a thin buffer layer of CdS with thickness of 0.3 µm. This cell 

achieves higher Jsc by using ZnO as the transparent conductor and thin CdS layer at 

the junction [38]. 

The highest efficiencies have been achieved with devices using a ZnO 

transparent conductor with a thin CdS junction layer. The best device, 14.8% 

efficient, consist of soda-lime glass with a 1500 nm Mo layer, a 2500 nm co-

evaporated CIS layer, a 10 nm chemically deposited CdS layer, a 500 nm RF 

magnetron sputtered Al-doped ZnO layer and final temperature is ramped from 350 

120nm MgF2 AR coating [39]. The substrate temperature is ramped from 350 0C to 

550 0C during the CIS deposition. After fabrication, the cell was annealed in air at 

200 0C; an additional annealing of cell at higher temperature improves the efficiency 

of the cell. 

 The CuInSe2 layer itself is polycrystalline, so the influence of grain 

boundaries and electronic state which exist strongly influence the characteristics of 
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photocurrent and open circuit voltage. In addition, low defect densities are decisive 

for the very high efficiency greater than 15 % and this can only be achieved using 

high vacuum evaporation techniques. The cheaper screen printing technique has also 

been tested for the purpose of cost reduction. In addition, the surface layers have 

recently been improved both in the quality of the CdS buffer layer and the window 

film. Using this process, several laboratories have been able to achieve efficiency of 

up to 17 % [40-41]. 

 

2.7.5 Indium Phosphide solar cells 

Indium phosphide (1.35 eV direct band gap) has nearly the optimum value for high 

efficiency. Since the early 1960s, continuous evaluation of InP with many different 

processing technologies has continued. The resultant efficiencies were not high 

(approximately 10 %) and because of the perceived scarcity of In, the substrate cost 

were even higher than that for GaAs and this appeared to blow their chance to be 

used in terrestrial  or space applications. The mechanism controlling the photocurrent 

and the junction rectification differ among these structures, although high short-

circuits current and open-circuit voltage are achieved.  

For shallow homojunctions, an anodic oxide antireflection layer on the front 

surface reduces the effect of front surface recombination on the cell properties [42]. 

Similarly, for the CdS/InP hetrojunction, interface recombination plays an important 

role because close lattice match between CdS and InP [43].     

            

2.7.6 Organic Solar cell           

Organic solar cell includes dye-sensitized and polymer bulk hetro-junction cells. In 

this type of cell, a semiconductor electrolyte contact converts light energy into 
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electrical energy. The concept was developed by Gratzel in the late 1980s. 

Nanoporous TiO2 is sintered at 500 0C unto a glass plate, which is coated with 

transparent conductive oxide (TOC). A tin oxide doped with fluorine, which has a 

sheet resistance of approximately 10  Ω /square is used as a conductive film. The 

significance of the more conductive ITO cannot, unfortunately be used as it would 

not survive the sintering process. The semiconductor TiO2 is not an option for 

photovoltaic process, due to its band gap of approximately 3 eV. It is transparent to 

sunlight; almost no absorption is possible. Therefore, the porous TiO2 is coated with 

a dye based on ruthenium, such that a monomolecular layer is created. The dye 

bonds chemically with the TiO2 surface. Visible light can be absorbed in this dye and 

the TiO2 is placed in an electrolyte iodide and tri-iodide    

     

2.8 Summary                

This chapter gave an over view of the different forms of solar cell designs. The basic 

differences between these cells depend on their substrate materials. The most 

common substrates used include Silicon, Gallium-Arsenide, Cadmium-Telluride and 

organic materials to fabricate the cells. This chapter also explained the different types 

of back junction cell which include, metallization wrap-through and emitter wrap-

through. A brief advantage of back junction solar cell over the front junction cell was 

also discussed. 
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CHAPTER THREE 

THE WORKING CONCEPT OF SOLAR CELL 

    

 

3.1 Introduction 

  The previous chapter consisted of a review on solar cell research and 

different forms of cell design. This chapter explains the physics of the solar cell, 

upon which the working principles of the cell are build. The basic equations, 

particularly the current density and continuity equations, the minority carrier 

transport mechanism and current density of the p-n junctions as well as the theories 

of diffusion and oxidation are discussed. 

  

3.2 The Structure of the p-n Junction 

For a comprehensive understanding of how a solar cell works, it is 

necessary to understand the p-n junction. A p-n junction is formed when n-type and 

p-type semiconductor materials are brought in contact with each other. In a diode, 

electron from the n-type will diffuse due to concentration gradient into the p-type 

material. Similarly, holes from p-type part will diffuse into the n-type region.  

The result is that the n-type semiconductor is positively charged, whereas at 

the same time a negative charge will be created in the p-type semiconductor, such 

that a space charge region is developed. The band edge EC and EV will be adjusted 

such that the Fermi level EF is constant throughout the crystal as shown in Figure 3.1 

[44].  
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Figure 3.1: Semiconductor diode structure, Ec and Ev give the electron electrostatic 
energy, EF the global electrochemical energy [44] 

.      
 
            
3.3 p-n Junctions at Equilibrium        

 The ionized donor creates an internal electric field in the depletion region. 

The electric field produces the drift of minority carrier (holes) from the n-region to 

the p-region and the drift of the minority carrier electron from p-region to the n-

region. Thus, the field produces the drift current in the direction from n-side to the p- 

side, opposing the diffusion current [45].  

 The motion of both the electrons and holes give rise to diffusion current in a 

direction from the p- region to the n- region. The magnitude of the electric field in 

the junction increases until the net current through the junction is zero; that is the 

drift current is equal and opposite to the diffusion current. When this condition of 

current balance is attained, the space charge region is said to be in thermal 

equilibrium. The electric field in the space charge region is large but outside the 

space charge region, neutrality prevails. The electric field in the space charge region 

works as a barrier preventing more electrons diffusing from n-side to the p-side. 
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Only the electron with enough energy can make transition. The majority carriers are 

the dominant carrier type (nno >> pno and ppo >>npo ) therefore, nno and npo are the 

electron densities in the n- and p- sides respectively. 

 The concentration nn of electrons (that is the number of electrons per unit 

volume) in the conduction band of n-type material and the concentration np of 

electrons (the minority carriers) in the conduction band of the p-type material in 

thermal equilibrium at temperature T, are given by the following equations [46]. 
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where NC and NV are the effective density of states in the conduction band and 

valence band respectively. Dividing Eq (3.1) by Eq (3.2) we get; 
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The Fermi energy level EF is closer to the bottom of the conduction band at energy 

level ECn in the n- type material and closer to the top of the valence band at energy 

level EVp in the p- type material.                                                                                                                 

Simplifying the right side of equation (3.3) we have the following,                 
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Since,                                                                                                                                                                                                                

DCnCp qvEE =−                                                                                (3.5)                                                            

Taking the logarithm to base e of equation (3.4) and solving for vD we get  
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where Ecp and Ecn are conduction band in p-and n – materials respectively. 

The same situation holds for the holes,       
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In n- and p- regions, the electrons and the hole concentration satisfy the law of mass-

action.  

== ppnn nppn 2
in                                                                                                (3.9)           

 

where ni  is the intrinsic carrier concentration. If all the donors and the acceptor 

atoms in n-and p-regions are respectively ionized then,      

 

nn≈ Nd  and  pp ≈Na                                         (3.10)                         

 

where Nd and Na are the concentrations of the donor and acceptor atoms respectively
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Now substituting for nn  and np  in equation (3.6) we get  
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The electron current flowing from the n-type to the p-type region strongly 

depends on barrier height. The n-type region forms an almost infinite electron 

source, however only those electrons which have enough energy will be able to 

diffuse over the built –in barrier VD and to recombine in the p-type region. 

Such an electron transport process is typically characterized by an 

exponential dependence on the barrier height, typically for a Boltzman distribution. 

This current is normally referred to as recombination current,  

   I recom = I0 exp 





−

KB
qvD  = Ig,d  [94] 

where K is the Boltzman constant,  T the absolute temperature and I0 the dark 

saturation current. This current is compensated by the current Ig,d the generated 

current of electron in the p-type region which is independent of the barrier height and 

is determined by the availability of electrons on the p-side. In thermal equilibrium, 

these electrons are thermally generated. 
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