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PENGKOMPOSAN VERMI BAGI ENAPCEMAR EFLUEN KILANG 

MINYAK SAWIT DAN KESAN-KESAN VERMIKOMPOS KE ATAS 

PERTUMBUHAN ANAK KELAPA SAWIT 

ABSTRAK 

Kajian ini adalah berkaitan tentang pengkomposan vermi bagi enapcemar efluen 

kilang minyak sawit dan kesan-kesan vermikompos ke atas pertumbuhan anak kelapa 

sawit. Eksperimen terhadap pengkomposan vermi hanya bagi bahan rendah nisbah 

C/N, tanpa percampuran, adalah sangat terhad. Hanya terdapat beberapa sumber 

sahaja yang meniliti kajian ini. Objektif utama kajian ini adalah untuk mengkaji 

kebolehupayaan pengkomposan vermi bagi enapcemar efluen kilang minyak sawit di 

samping memviarasikan stok kepadatan cacing, iaitu Eudrilus eugeniae. Satu kajian 

untuk melihat bahan-bahan rendah nisbah C/N sebagai bahan pengkomposan vermi 

telah dibuat. Sisa enapcemar efluen kilang minyak sawit telah digunakan untuk 

menyediakan perkadaran pencampuran sisa enapcemar bersama stok kepadatan 

cacing yang berbeza, iaitu E0 (sisa enapcemar efluen kilang minyak sawit sahaja), 

E50 (sisa enapcemar efluen kilang minyak sawit + 0.24 kg-cacing/m
2
) dan E100 

(sisa enapcemar efluen kilang minyak sawit + 0.48 kg-cacing/m
2
). Vermikompos dan 

kompos sisa efluen minyak kelapa sawit kemudiannya dianalisis secara kimia iaitu 

suhu, pH, jumlah nitrogen Kjedahl, nisbah C/N, konduktiviti elektrik, makro dan 

mikronutrien dan juga jumlah populasi mikrob. Eksperimen seterusnya terhadap 

aplikasi vermikompos ke atas pertumbuhan anak kelapa sawit juga dikaji. Kajian ini 

merumuskan bahawa vermikompos bersama 0.48 kg-cacing/m
2
 stok kepadatan 

cacing memberikan peningkatan yang ketara dari segi kepekatan nitrogen dan 

kalium, begitu juga terdapat perbezaan yang ketara di dalam nisbah C/N, jika 

dibandingkan dengan kompos sisa enapcemar efluen kilang minyak sawit (kawalan). 
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Mikronutrien, iaitu kandungan kuprum juga memberikan peningkatan yang ketara di 

dalam vermikompos bersama 0.48 kg-cacing/m
2
 stok kepadatan cacing, berbanding 

dengan kompos sisa enapcemar efluen kilang minyak sawit (kawalan). Jumlah 

populasi mikrob yang lebih tinggi juga telah dicatatkan bagi vermikompos bersama 

stok kepadatan cacing 0.48 kg-cacing/m
2
. Di samping itu, kajian aplikasi terhadap 

anak pokok kelapa sawit sebagai penunjuk tumbuhan mencatatkan bahawa 

vermikompos meningkatkan kandungan nutrient di dalam tanah (fosforus dan 

kalium), selain memberikan peningkatan yang ketara terhadap jumlah bilangan 

pelepah sawit, jika dibandingkan dengan percampuran tanah bersama kompos biasa. 

Secara keseluruhannya, kajian ini membuktikan bahawa pengkomposan vermi 

bersama sisa enapcemar efluen kilang minyak sawit sebagai bahan rendah nisbah 

C/N boleh dilaksanakan. 
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VERMICOMPOSTING OF PALM OIL MILL EFFLUENT (POME) SLUDGE 

AND EFFECTS OF VERMICOMPOST ON OIL PALM SEEDLING 

GROWTH   

ABSTRACT 

The present study is about vermicomposting of palm oil mill effluent (POME) sludge 

as a low C/N ratio material and effects of vermicompost on oil palm seedling growth. 

Experiment on vermicomposting of low C/N ratio materials alone, without mixing, is 

very limited. There are limited literatures that have looked into this matter. The main 

objective of this work was to study the feasibility of vermicomposting of the sludge 

by varying worm stocking density, namely Eudrilus eugeniae. A review on materials 

with low C/N ratio as a substrate in vermicomposting with a proposal to 

vermicompost POME sludge was done. POME sludge was then used to prepare 

different proportions of worm stocking density with POME sludge mixtures, viz. E0 

(POME sludge only), E50 (POME sludge + 0.24 kg-worms/m
2
) and E100 (POME 

sludge + 0.48 kg-worms/m
2
). Vermicompost and POME sludge compost were then 

chemically analyzed for various parameters namely, Total Kjeldahl Nitrogen (TKN), 

C/N ratio, Electrical Conductivity (EC), macro and micronutrients as well as 

microbial population. Further experiments on application of vermicompost towards 

total number of frond and height of oil palm seedlings have been studied. This study 

concluded that vermicompost with worm stocking density of 0.48 kg-worms/m
2 

gives significantly higher results in terms of nitrogen and potassium concentration, as 

well as significantly different in C/N ratio, as compared to POME sludge compost 

(control). Vermicompost with stocking density of 0.48 kg-worms/m
2 

also gives 

significantly higher copper content, as compared to POME sludge compost (control).  

A higher microbial population also was recorded in vermicompost with stocking 
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density of 0.48 kg-worms/m
2
. Meanwhile, the application of vermicompost (VC) 

towards oil palm seedlings as plants indicator revealed that there was a significant 

difference in terms of P and K content in VC mixed with soil as compared to 

chemical fertilizer (CF) mixed with soil (i.e. control). Total number of oil palm frond 

in VC mixed soil also was significantly higher as compared to normal compost (NC) 

mixed with soil. Overall, this study demonstrated that vermicomposting of POME 

sludge as low C/N ratio material is feasible.  
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CHAPTER 1 

 INTRODUCTION 

 
 

1.1 General Background 

During the past few decades, the oil palm (Elaeis guineensis) has become one of 

the most rapidly expanding equatorial crops in the world (Alengaram et al., 2013; 

Suriyan et al., 2013). As reported by Alengaram et al., (2013), the global extent of oil 

palm cultivation increased from 3.6 million ha in 1961 to 13.2 million ha in 2006. 

Malaysia is reported as one of the largest palm oil producer and exporter in the 

world. Regardless of its high economics return to the country, Amini et al., (2013) 

have reported that the industry also generates large amount of wastes (Alengaram et 

al., 2013) such as empty fruit bunch (EFB) (23%), mesocarp fibre (12%), shell (5%) 

and palm oil mill effluent (POME) (60%) for every tonne of fresh fruit bunches 

(FFB) processed in the mills. 

 

For many years, the palm oil industry has contributed to the major revenue of 

Malaysia (Tan et al., 2013). However, its impacts on the environment are not 

negligible. Abate and Kronk, (2013) reported that the palm oil industry has had a 

destructive effect on the Malaysian ecology. According to Ohimain and Izah (2014), 

more than 70% (by weight) of the processed fresh fruit bunch (FFB) was left over as 

oil palm waste during sustainable management practice. 

 

The most polluted organic residues generated from palm oil mills is POME. It 

composed of high organic content of oil and fatty acids (Yoshizaki et al., 2013). 
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Besides the damages brought by the upstream processes, the bad impacts are 

continued by the downstream processing of the fresh fruit bunch (FFB). In this 

respect, POME has been identified as the largest source of water pollution due to its 

high organic content and acidic nature (Tan et al., 2013). As quoted by Singh et al., 

(2013), POME which consisted of suspended solids and dissolved solids that left 

after POME treatment is known as palm oil mill effluent (POME) sludge. As POME 

production increases each year, the amount of POME sludge increases respectively. 

 

Mohammad et al, (2012) reported that POME sludge has higher nutrient value 

than the slurry, pH around 8.4 as well as enriched with minerals such as calcium, 

potassium, sodium, magnesium, copper and iron. Unfortunately, POME sludge has 

bad odors as a result of its high content in total nitrogen, total phosphorus and 

potassium. It also plays a crucial impact on the environment, which makes it 

necessary to find a proper technology for mitigating these wastes (Singh et al., 2013). 

Therefore, it is considered as a source of surface and ground pollution.  

 

Several studies on POME sludge have showed that POME sludge can be dried 

and used as a fertilizer as it contains high nutrient value (Abdurahman et al., 2013). 

According to Abdurahman et al., (2013), composting as well as vermicompost 

technology can be used in POME sludge management. Since the characteristics of 

partially treated POME was always varied and difficult to maintain in the open pond 

system which was influenced by weather condition and mill operation (Yoshizaki et 

al., 2013), therefore an approach has been taken to stabilize this waste by using 

vermicomposting. 
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Over the last few years, various researchers have examined the potential 

utilization of earthworm-processed wastes, commonly referred to as vermicompost, 

in the horticultural and agricultural industries (Erwan et al., 2013). The ability of 

some earthworms to consume a wide range of organic residues such as sewage 

sludge, animal wastes, crop residues, and industrial wastes of low and high C/N ratio 

materials by biological degradation process has been fully established (Kenyangi and 

Blok, 2013; Basheer and Agrawal., 2013; Yee Shak et al., 2014; Haiba et al., 2014).   

Various factors such as soil temperature, substrate moisture, types of waste substrate, 

as well as worm stocking density play a role in success of vermicomposting. 

 

1.2 Problem Statement 

The conversion of organic materials into a readily usable form can be indicated 

by the decline of its C/N ratio (Tripetchkul, 2012). Vermicomposting by mixing of 

high C/N ratio materials with low C/N ratio materials have been studied by many 

researchers (Cardoso-Vigeuros and Ramirez-Camperos, 2002; Kaushik and Garg, 

2003; Nahrul et al., 2010; Baharuddin et al., 2010; Ludibeth et al., 2010; Tripetchkul 

et al., 2012), to obtain a starting substrate with suitable C/N ratio between 25-30 

(Agriculture and Food, 1996; USDA, 2000).  

 

However, a study on composting as well as vermicomposting of low C/N ratio 

materials alone, by varying worm stocking density, is very limited (Orozco et al., 

1996). In relation to this, POME sludge was reported to have a C/N ratio around 8 

(Yoshizaki et al., 2013). There are only few literature references that have looked 

into this matter and a study on vermicomposting with POME sludge unmixed as a 

low C/N ratio material has not been done yet.  
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The applications of vermicompost on plant growth and yield (especially on 

vegetative plants) also have been examined by many researchers (Edwards and 

Burrows 1988; Wilson and Carlile 1989; Mba, 1996; Buckerfield and Webster 1998; 

Edwards 1998; Subler et al., 1998; Erwan et al., 2013). However, the application of 

vermicompost of POME sludge on oil palm seedlings in recycling it back to the 

source plant has not yet been fully studied. 

 

1.3 Objectives of Study 

The general aim of this work is to study the feasibility of vermicomposting of POME 

sludge and the specific objectives of this study are:  

I. To determine the physico-chemical changes of Palm Oil Mill Effluent 

(POME) Sludge as a material with low C/N ratio in vermicomposting by 

varying earthworm  (Eudrilus eugeniae) stocking density;  

II. To assess the effects of vermicompost on the height and number of frond of 

oil palm seedlings as compared to other fertilizers under nursery conditions.  

 

1.4 Research Scope and Limitation 

The main purpose of this work is to study the decomposition or degradation of 

POME sludge as a low C/N ratio material via vermicomposting. The resultant 

vermicompost is tested by using oil palm seedlings as plants indicator. This study is 

not about producing vermicompost as a complete fertilizer from the agricultural 

perspective as well as not on the vermiculture of earthworms. 
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CHAPTER 2 

LITERATURE REVIEW 

 

2.1 Overview of Oil Palm Industry 

2.1.1 Introduction  

Originally from West Africa, the oil palm, Elaeis guineensis, has over the last 

century been an increasingly important driver for the economies of producing 

countries in South-East Asia, Papua New Guinea, Central and West Africa and to a 

lesser extent in tropical Latin America. According to Basri et al., (2010), the highly 

efficient producer of vegetable oil is an oil palm, as compared to other oil-bearing 

crops.  Oil palm plantation only needs 0.26 ha of land to produce 1 tonne of oil, 

compared with 2.2, 2.0 and 1.5 ha for soya bean, sunflower and rape, respectively. 

Through research and development (R&D), the oil palm yield is expected to increase 

further to produce 10 times the energy it consumes, thereby out-performing oil seeds 

like soya bean and rape by ratios of 2.5 and 3, respectively (Basri et al., 2010). 

 

Palm oil was first introduced in Malaysia in 1875 (Ibrahim et al., 1999). 

There was an early interest in the oil palm as an ornamental plant. Since 1917, the oil 

palm sector began its development into what is witnessed today as a multi-billion 

Ringgit industry, and currently palm oil has become world's largest source of edible 

oil, which amounts to 25% of the world total fat and edible oil production (Ibrahim et 

al., 1999). Malaysia is gifted with the ideal climate conditions for oil palm growing. 

Therefore, it is in Malaysia that crop's full potential can be realized and exploited 

(Kiew Ling et al., 2011). 
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2.1.2 Oil Palm Biomass Production  

According to Plantation Industries and Commodities, Deputy Minister Datuk 

Hamzah Zainudin, Malaysia produced an estimated 80 million tonnes dry weight of 

oil palm biomass in 2011, reflecting the importance and significant potential of 

biomass (The Oil Palm, 2012). This biomass includes empty fruit bunches, mesocarp 

fibers, oil palm shells, oil palm fronds and oil palm trunks. In addition, about 54 

million tonnes of palm oil mill effluent, which is mainly water but also contains a 

substantial amount of biomass solids, was produced (The Oil Palm, 2012).  

 

According to Basiron and Simeh (2005), oil palm is a prolific producer of 

biomass as raw materials for value-added industries. It acts as a multi purposed 

plantation as well. For example, fresh fruit bunch contains only 21% palm oil, while 

the rest 6–7% palm kernel, 14–15% fiber, 6–7% shell and 23% empty fruit bunch 

(EFB) are left as biomass, as reported by Umikalsom et al., (1997). 

 

2.1.3 Oil Palm Processing 

In general, the palm oil milling process can be categorized into a dry and a 

wet (standard) process. The wet process of palm oil milling is the most common and 

typical way of extracting palm oil, especially in Malaysia. It is estimated that for 

each ton of crude palm oil that is produced, 5–7.5 t of water are required, and more 

than 50% of this water ends up as palm oil mill effluent (POME) (Ahmad et al., 

2003). Raw POME is a colloidal suspension containing 95–96% water, 0.6–0.7% oil 

and 4–5% total solids (Ahmad et al., 2003). Included in the total solids are 2–4% 

suspended solids, which are mainly constituted of debris from palm fruit mesocarp 

generated from three main sources, i.e. sterilizer condensate, separator sludge and 

http://archives.thestar.com.my/search/?q=Datuk%20Hamzah%20Zainudin
http://archives.thestar.com.my/search/?q=Datuk%20Hamzah%20Zainudin
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hydrocyclone wastewater (Zinatizadeh et al, 2007; Singh et al., 2010; Ma, 2000). If 

the untreated effluent is discharged into watercourses, it is certain to cause 

considerable environmental problems (Rupani et al., 2010) due to its high 

biochemical oxygen demand (25,000 mg/L), chemical oxygen demand (53,630 

mg/L), oil and grease (8370 mg/L), total solids (43,635 mg/L) and suspended solids 

(19,020 mg/L). The palm oil mill industry in Malaysia has thus been identified as the 

one discharging the largest pollution load into the rivers throughout the country. 

 

2.1.4 Environmental Concerns 

The volume of oil palm biomass produced annually is much larger than the amount 

used in any other conversion processes, as reported by Kelly-Yong et al., (2007). 

Yusoff (2006) reported that surplus will occur, ultimately causing the biomass to be 

discarded. Empty fruit bunches, fiber and shells that form a large quantity of biomass 

are normally dumped in open areas or disposed in open burning, which later on 

generating pollutant gases (Yusoff, 2006). 

 

Nowadays, the 5R policy (reduction, replacement, reuse, recovery and 

recycling) is widely promoted (Kiew Ling et al., 2011). The 5R policy applies a 

concept of cleaner production and environmentally sound biotechnologies in 

wastewater management. Besides, a “zero waste” concept (Ibrahim et al., 1999; 

Motavalli, 2001; Cheah, 2007)  is now being directed by the MPOB as an 

environmental goal for this agro-industrial sector and aims to optimize the utilization 

of oil biomass as the recycled input into the plantations or for the production of 

commercial products as well as the generation of energy. 
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2.2 Treatments of Palm Oil Mill Effluent (POME) 

Ponding system is the most conventional method for treating POME (Singh et al., 

2010) but other processes such as aerobic and anaerobic digestions, physicochemical 

treatments and membrane filtration may also provide the palm oil industries with a 

possible insight into the improvement of current POME treatment process. However, 

the treatment that is based mainly on biological treatments of anaerobic and aerobic 

systems is quite inefficient to treat POME, which unfortunately leads to 

environmental pollution issues (Ahmad et al., 2005).  

 

Anaerobic treatment, evaporation method as well as membrane treatment 

system are the alternative methods for treatment being used currently (Poh and 

Chong, 2009).  Meanwhile, Metcalf and Eddy (2003) also reported that untreated 

wastewater with BOD/COD ratio of 0.5 and greater can be treated easily by 

biological means. With reference to the published values of BOD and COD in Data 

for Engineers: POME (2004), aerobic and anaerobic treatment is suitable for POME 

treatment since the BOD/COD ratio is of 0.5. Poh and Chong (2009) also reported 

that the anaerobic treatment can be regarded to be more suitable for POME treatment 

in comparison of those two treatment methods, due to its lower energy consumption 

while producing methane as a value-added product in the process.  

 

2.3 Characteristics of POME  

Nitrogen is originally present in POME in the form of organic (protein) nitrogen and 

as time progresses the organic nitrogen is gradually converted to ammoniacal 

nitrogen with a molecular weight of 17–35 kg/ kmol (Ta et al., 2009). The nutrient 

balance in terms of the average ratio of BOD:N:P for raw POME is 100:4:0.3. 
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Muhrizal et al., (2006) reported that POME is characterized by a low C:N ratio 

(C:NPOME = 6.54) as compared to sawdust (C:Nsawdust = 185.74), purun (C:Npurun = 

88.32) and peat (C:Npeat = 50.31). Only N, P, K, Mg and Ca are consistently present 

in relatively large amounts in the POME (Muhrizal et al., 2006).  

 

Table 2.1 below shows the application of POME as fertilizer for palm oil 

plantations as reported by Onyia et al., 2001 in her study of increasing the fertilizer 

value of palm oil mill sludge. Muhrizal et al., (2006) also reported that POME has a 

high content of Al as compared to chicken manure and composted sawdust. It would 

thus seem that the probable usefulness of POME as fertilizer or animal feed 

substitute, in terms of providing sufficient mineral requirements, depends mainly on 

the soluble fraction of POME (Muhrizal et al., 2006). Toxic metals, such as Pb, can 

also be found in POME but their concentrations are usually below sub-lethal levels 

(N= 17.5 μg/g) (Onyia et al., 2001). POME is thus not toxic for plants and animals. 

Pb is found in POME due to contamination from plastic and metal pipes, tanks and 

containers where Pb is widely employed in paints and glazing materials (Onyia et al., 

2001). 

 

 

Table 2.1: The application of POME (m
3
/acre/year) as fertilizer for palm oil 

plantations (Onyia et al., 2001) 

Crops N P K Mg 

Young palms 25-70 27.5-32 5.1-10 1.2-10 

Adults palms 90-128 52.5 10-18.5 15 

Old palms 162 52 18 20 

 

2.4 Characteristics of POME Sludge 

POME contains significant amounts of solids, both suspended solids and total 

dissolved solids that are commonly known as palm oil mill sludge (POME sludge) 
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(Rupani et al., 2010). The solid wastes produced by extraction process were from 

leaves, trunk, decanter cake, empty fruit bunches, seed shells and fibre from the 

mesocarp (Rupani et al., 2010).  

 

As large quantity of POME is produced each year, the amount of POME 

sludge also increases (Rupani et al., 2010). As reported by Zakaria et al., (1994), 

POME sludge contains higher nutrients than the slurry in terms of pH (i.e. 8.4, high 

amount of moisture content and enriched with nutrients). Table 2.3 shows physico-

chemical analysis of raw POME sludge as compared to empty fruit bunch. From the 

table, NPK ratio of POME sludge recorded was 3.6:0.9:2.1 (mg/L).  

 

Table 2.2: Physico-chemical analysis of raw POME sludge as compared to empty 

fruit bunch (Baharuddin et al., 2009). All units in mg/L except moisture content and 

pH. 

Parameters POME sludge (average)
 

Empty fruit bunch
 

Moisture content (%) 85 60 

pH 8.4 6.7 ± 0.2 

Organic matter 60 - 

Total organic carbon 

(TOC) 

33.0 - 

Total nitrogen (TN) 3.6 58.9 % 

Phosphorus (P2O5) 0.9 0.6 ± 0.1 % 

Potassium (K2O) 2.1 2.4 ± 0.4 % 

 

2.4.1 Management of POME Sludge 

According to Chooi (1984), since POME sludge contains high nutritional value, it 

can be dried and used as a fertilizer. Normally, drying is mostly done in open ponds. 

The oil palm mills generate many by-products and wastes besides the liquid wastes 

that may have a significant impact on environment if they are not properly handled 

with. As per Rupani et al., (2010), POME sludge plays crucial impact on the 

environment caused from POME treatment. Therefore, it is necessary to find a 
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proper technology for mitigating these wastes. Thus, composting as well as 

vermicomposting technology can be used in POME sludge management (Rupani et 

al., 2010).  

 

2.5 Vermicomposting 

The concept of vermicomposting started from the knowledge that certain species of 

earthworms consume a wide range of organic residues very rapidly, converting them 

into vermicompost, a humus-like, soil building substance in short time. Therefore, 

the effective use of the earthworms in organic waste management requires a detailed 

understanding of the effect of the physico-chemical properties of the substrate (Singh 

et al., 2005). Meanwhile, according to Hayawin et al. (2013), vermicomposting is a 

decomposition process involving interactions between earthworms and 

microorganisms and it is an economical, viable and sustainable option for oil palm 

wastes management.  

 

The same idea was also cited by Parveen et al. (2010), stating that 

vermicomposting is described as composting or natural conversion of biodegradable 

waste into high quality fertilizer with the help of earthworms. Vermicomposting is 

the process in which earthworms are used to convert organic materials into humus-

like material known as vermicompost or earthworm compost. Through 

vermicomposting process physical, chemical and biological reactions take place, 

resulting changes in the organic matter. The resultant product (vermicast) is much 

more fragmented, porous and microbially active (Am-Euras, 2009).  
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Vermicomposting is also explained as the application of earthworm in 

producing vermifertilizer, which helps in the maintenance of better environment and 

results in sustainable agriculture (Sudhakar et al., 2002). In contrast to traditional 

microbial waste treatment, vermicomposting process results in bioconversion of the 

organic wastes into two useful products: the earthworm biomass and the 

vermicompost. Earthworm biomass can further be processed into proteins as a source 

of animal feeds (Am-Euras, 2009).  

 

In addition, as cited by Nagavallemma et al. (2004), vermicompost improves 

growth, quality and yield of different field crops, flower and fruit crops. 

Vermicomposting contributes to recycling of nitrogen and augments soil physico-

chemical as well as biological properties.  

 

The optimum temperature for non-burrowing earthworms in 

vermicomposting is about 25-30°C (Nagavallemma et al., 2004) and moisture level 

in pile ranges from 70±5% (Giraddi, 2008). It is a very simple process and easy to 

practice as well as cost-effective pollution abatement technology. Meanwhile, 

Nagavallemma et al., (2004) concluded that vermicomposting is a simple 

biotechnology process of composting, in which certain species of earthworms are 

used to enhance the process of waste conversion and produce a better end product. 

 

Vermicomposting differs from composting in several ways (Nagavallemma et 

al., 2004). It is a mesophilic process, utilizing microorganisms and earthworms that 

are active at 28-34°C (Sivasankari et al., 2013). The process is faster than 

composting, because the material passes through the earthworm producing castings 
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(worm manure) which are rich in microbial activity and plant growth regulators, and 

fortified with pest repellence attributes as well. In short, through a type of biological 

alchemy, vermicomposting is capable of transforming garbage into „gold‟ (Vermi 

Co., 2001; Tara Crescent, 2003).  

 

2.5.1 Types of Earthworm Species Used In Vermicomposting 

Different requirements for optimal development, growth and reproduction of the 

earthworms are needed for different earthworm species with different organic wastes 

(Garg and Kaushik, 2005). There are more than 4400 named species of earthworms 

on this planet, and they have been broken down into categories such as endogeic, 

anecic and epigiec by researchers, largely descriptive of their habits in the soil. It is 

generally known that epigeic species have a greater potential as waste decomposers 

than anecics and endogeics. This is due to predominantly humus consuming surface 

dwelling nature of the epigeics. The most commonly used epigeic species are 

Eudrilus eugeniae Kinberg,  Eisenia foetida Savigny, and Perionyx excavates Perrier 

(Gajalakshmi and Abbasi, 2004; Edwards, 1998). 

 

All of the above three species are prolific feeders and can feed upon a wide 

variety of degradable organic wastes. They exhibit high growth rate. In the study 

conducted by Gajalakshmi et al. (2001), four species of detritivorous (humus-former) 

earthworms were tested for their ability to vermicompost paper waste blended with 

cow dung in 6:1 (w/w) ratio. The species used were E. eugeniae, P. excavatus, 

L.mauritii and Drawida willsi Michealsen. Results showed that the feasibility of 

vermicomposting as a viable process for the gainful utilization of paper waste in an 

environmental clean manner. Gajalakshmi et al. (2001) also reported that all the four 
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species are suitable for the purpose, with L. mauritii and E. eugeniae a shade more 

efficient than the other two species. 

 

2.5.1 (a) Eudrilus eugeniae (Kinberg, 1867) 

E. eugeniae belongs to the Eudrilidae; it is a native African species that lives in both 

soils and organic wastes but has been bred extensively in the United States, Canada, 

and elsewhere for the fish-bait market, where it is commonly called the African night 

crawler (Dominguez et al., 2001). It is a large, robust earthworm that grows 

extremely rapidly, and it is relatively prolific when cultured. Under optimum 

conditions, it could be considered an ideal species for animal feed protein 

production. Its main disadvantages are a relatively narrow temperature tolerance and 

some sensitivity to handling (Dominguez et al., 2001). 

 

As mentioned earlier, E. eugeniae is classified as epigeic or humus feeder 

earthworm. It typically inhabits humus-laden upper layers of garden earth and 

manure-pits. This species has higher frequency of reproduction and faster rate of 

growth to adulthood than most other species. Thus, these factors make it efficient 

utilizers of humus, manure and other forms of organic carbon. Further, as this species 

do not burrow into the soil, the vermireactors based on them need not contain deep 

bed of soil.  

 

This has the potential of contributing towards saving on reactor volume, in 

turn contributing to favorable economics. For all these reasons, E. eugeniae has been 

extensively used in vermicomposting throughout the world (Tin et al., 1995; 
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Gajalakshmi et al., 2001a, 2001b) and has proved to be efficient converters of 

organic feed, especially manure, into vermicast. 

 

2.5.1 (b) Eisenia foetida (Savigny, 1826) and Eisenia Andrei (Bouche, 1972)  

The closely related E. foetida and E. andrei species are the ones most commonly 

used for the management of organic wastes by vermicomposting (Dominguez et al., 

2001). There are several reasons why these two species are preferred: they are 

peregrine and ubiquitous with a worldwide distribution, and many organic wastes 

become naturally colonized by them; they have good temperature tolerance and can 

live in organic wastes with a range of moisture contents. According to Dominguez et 

al., (2001), E. foetida and E. andrei are resilient earthworms and can be handled 

readily; in mixed cultures with other species, they usually become dominant, so that 

even when systems begin with other species, they often end up with dominant 

Eisenia spp.  

 

The biology and ecology of vermicomposting of E. foetida and E. andrei with 

animal manures or sewage sludge have been investigated by several authors 

(Dominguez et al., 2000). Under optimal conditions, their life cycles, from freshly 

deposited cocoon through sexually mature clitellate earthworm and the deposition of 

the next generation of cocoons, range from 45 to 51 days. The time for hatchlings to 

reach sexual maturity ranges from 21 to 30 days. Copulation in these species, which 

takes place in the organic matter, has been prescribed by various authors since 1845 

and has been observed more often than for any other megadrile species (Dominguez 

et al., 2001).  
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2.6 Effect of Stocking Rate of Eudrilus eugeniae (Kinberg, 1867) on 

Vermicompost Production 

The information on stocking rates of earthworms is necessary for effective recycling 

of organic residues in vermicomposting. A study by Giraddi (2008) was undertaken 

to determine the optimum introduction density of earthworms for recycling of crop 

wastes. African night crawler, E. eugeniae was used at four densities of 100, 150, 

200 and 250 worms per 1 x 1 x 0.5 m bed. Soybean crop residue and little millet 

straw with C/N ratios of 20:1 and 46:1, respectively were used as food substrates, 

with total quantity amounting to 30 kg/replicate. The obtained results revealed that 

the influence of earthworm density on vermicompost production followed similar 

trend with significantly highest quantity of vermicompost harvested at 250 worm 

density (16.25 kg), followed by 200 worms (14.75 kg), 150 worms (12.75 kg) and 

100 worms (11.40 kg). 

 

However, a higher productivity rate was observed at 100 worms when 

conversion rates were assessed per worm basis, which decreased by successive 

increase in earthworm density. Giraddi (2008) concluded that it is obvious that 

beyond a threshold density limit, earthworms compete with each other for space and 

food and such intraspecific competition is more pronounced under conditions of 

crowding. Thus, at higher stocking rates, the increase in population growth rates was 

not as per theoretical rates of multiplication. 

 

Giraddi (2008) study was supported by a study conducted by Kale and Bano 

(1988) and Reinecke and Viljoen (1991), which observed that the growth rate and 

reproduction are controlled by population density. Earthworms remain small in 
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numbers and size and produce less number of cocoons when they are crowded. 

Similar observations by Hegde et al., (1997) on effect of crowding on population 

growth rate have been reported in E. eugeniae worms.  

 

2.7 Importance of Vermicompost 

2.7.1 The plant growth promoter and soil conditioner 

The role of earthworm in the breakdown of organic debris on the soil surface and in 

the soil turnover process was first highlighted by Darwin (Sudhakar et al., 2002). 

Since 1978, there has been increasing interest in possible methods of processing 

organic wastes using earthworm to produce valuable soil additives. Earthworm is 

specialized to live in decaying organic wastes and can degrade it into fine particulate 

materials, which are rich in available nutrients with considerable potential as soil 

additives to revive the productivity status of soil (Dominguez et al., 2001; Sudhakar 

et al., 2002).  

 

Earthworm can consume practically all kinds of organic wastes, consume two 

to five times its body weight and after using 5-10 per cent of the feed stock for its 

growth, excrete mucus coated undigested matter as worm casts. It is estimated that 

1000 tonnes of moist organic matter can be converted by earthworms into 300 tonnes 

of compost (Am-Euras, 2009). 

 

Earthworms vermicompost is proving to be highly nutritive „organic 

fertilizer‟ and more powerful „growth promoter‟ over the conventional composts and 

a „protective‟ farm input (increasing the physical, chemical and biological properties 

of soil, restoring and improving its natural fertility) against the „destructive‟ chemical 
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fertilizers which has destroyed the soil properties and decreased its natural fertility 

over the years (Sudhakar et al., 2002; Dominguez et al., 2000). Vermicompost is rich 

in NPK (nitrogen 2-3%, potassium 1.85-2.25% and phosphorus 1.55-2.25%), 

micronutrients, and beneficial soil microbes and also contain plant growth hormones 

and enzymes (Dominguez et al., 2000). It is scientifically proving as „miracle‟ 

growth promoter and also plant protector from pests and diseases.  

 

Vermicompost retains nutrients for long time and while the conventional 

compost fails to deliver the required amount of macro and micronutrients including 

the vital NPK to plants in shorter time (Sudhakar et al., 2002). Significantly, 

vermicompost works as a soil conditioner and its continued application over the 

years lead to total improvement in the quality of soil and farmland, even on degraded 

and sodic soils. Experiments conducted in India at Shivri farm of „U.P. Bhumi 

Sudhar Nigam‟ (U.P. Land Development Corporation) to reclaim sodic soils gave 

very good results (Sudhakar et al., 2002).  

 

2.7.2 Improved soil physical, chemical and biological properties 

Studies in vermicompost indicate that it increases macrospore space ranging from 50 

to 500 μm, resulting in improved air-water relationship in the soil which favorably 

affects plant growth (Marinari et al., 2000). The application of organic matter 

including vermicompost favorably affects soil pH, microbial population and soil 

enzyme activities (Maheswarappa et al., 1999). It also reduces the proportion of 

water-soluble chemical species, which cause possible environmental contamination 

(Nagavallemma et al., 2004). 
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Organic materials which are degraded through the activities of successive 

groups of microorganisms is an aerobic process of composting, as cited by Rebollido 

et al., (2008)  in Gajdos (1992). Eventhough composting is a microbiological 

process, but little known that microorganisms is actually involved as well as their 

activities, during specific phases of the composting process. As reported by Tiquia 

and Michel (2002), the diversity and structure of microbial communities of compost 

through their constituent populations has been of considerable interest to compost 

researchers in order to address basic ecological questions such as how similar are 

microbial communities in mature compost that were made from different feedstock 

and using different composting methods.   

 

Meanwhile, the composition of the microbial communities during composting 

is determined by many factors such as temperature, water content, C/N, etc. In 

addition, under aerobic conditions, temperature is the major selective factor for 

populations and determines the rate of metabolic activities (Rebollido et al., 2008). 

Several authors have noted that the earthworms play a major role in affecting 

populations of soil organisms, especially in causing changes in the soil microbial 

community (Coleman, 1985; Parmelee ,1998). According to Subler et al., (1998), 

vermicompost is much richer in microbial diversity, populations and activities in 

conventional thermophilic composts.  

  

Ranganathan and Parthasarathi (2000) reported that earthworms inevitably 

consume the soil microbes during the ingestion of litter and soil. They also have been 

estimated that earthworms necessarily have to feed on microbes, particularly fungi 

for their protein/nitrogen requirement.  
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2.8 Factors determining the nutritional quality of vermicompost 

The nutritional quality of vermicompost is determined primarily by the type of the 

substrate (raw materials) and species of earthworms used for composting, along with 

microbial inoculants, liming, aeration, humidity, pH and temperature. Cattle dung 

has been found to yield most nutritive vermicompost when composted by Eisenia 

feotida. Pramanik (2007) found that application of lime @ 5 gm/kg of substrate and 

„microbial inoculation‟ by suitable „cellulolytic‟, „lignolytic‟ and „N-fixing‟ strains 

of microbes not only enhance the rate of vermicomposting but also results into 

nutritionally better vermicompost with greater enzymatic (phosphatase & urease) 

activities.  

 

Kaushik and Garg (2004) found that inoculation with N-fixing bacteria 

significantly increased the nitrogen (N) content of the vermicompost. Liming 

generally enhance earthworm activities as well as microbial population. Earthworms 

after ingesting microbes into its gut proliferate the population of microbes to several 

times in its excreta (vermicast). It is therefore advantageous to use beneficial 

microbial inoculants whose population is rapidly increased for rapid composting and 

also better compost quality. 

 

Pramanik (2007) studied the vermicomposting of four (4) substrates viz. cow 

dung, grass, aquatic weeds and municipal solid wastes (MSW) to know the 

„nutritional status and enzymatic activities‟ of the resulting vermicomposts in terms 

of increase in total nitrogen (N), total phosphorus (P) and potassium (K), humic acid 

contents and phosphatase activity. 
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In Total Nitrogen result, Pramanik (2007) found that cow dung recorded 

maximum increase in nitrogen (N) content (275%) followed by MSW (178%), grass 

(153%) and aquatic weed (146%) in their resulting vermicompost over the initial 

values in their raw materials. Application of lime without microbial inoculation, 

however, increased N content in the vermicompost from 3% to 12% over non-limed 

treatment, irrespective of substrates used.  

 

Meanwhile, for Total Phosphorus and Potassium, similarly, the vermicompost 

prepared from cow dung had the highest total phosphorus (12.70 mg/g) and total 

potassium (11.44 mg/g) over their initial substrate followed by those obtained from 

aquatic weeds, grasses and MSW (Pramanik, 2007).  

 

Furthermore, phosphatase activity for vermicompost obtained from cow dung 

showed the highest acid phosphatase (200.45 μg p-nitrophenol/g/h) activities 

followed by vermicompost from grasses (179.24 μg p-nitrophenol/g/h), aquatic 

weeds (174.27 μg p-nitrophenol/g/h) and MSW (64.38 μg p-nitrophenol/g/h) 

(Pramanik, 2007). The alkaline phosphatase activity was highest in vermicompost 

obtained from aquatic weeds (679.88 μg p-nitrophenol/g/h) followed by cow dung 

(658.03 μg p-nitrophenol/g/h), grasses (583.28 μg p-nitrophenol/g/h) and MSW 

(267.54 μg p- nitrophenol/g/h). This was also indicated by Vinotha, (2000).  

 

2.9 Carbon mineralization during vermicomposting 

As the worm processes organic matter (OM), it modifies the sources of C, N and by 

means of the C/N ratio, which reports the quality of the obtained product. Organic C 

decreases by the end of vermicomposting, from different factors, namely: i) the 
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worm consumption of organic C; ii) the transformation into carbon dioxide (CO2) by 

the respiratory activity; iii) the  formation  of  humic  fraction  that  makes  room  for  

mature vermicompost (Singh et al.,  2005; Garg  et al., 2006; Suthar, 2009).  

 

Dominguez (2004) also reported that earthworms can assimilate carbon best 

from the more recently deposited organic matter fractions, consisting mainly of 

easily degradable substances. The degradation process resulted in carbon losses by 

mineralization, which produced a decrease in the amounts of total organic carbon and 

in the carbon contributions to the organic matter.  

 

2.10 Nitrogen transformations during vermicomposting 

Del Aguila Juárez et al., (2011) reported that  N increases by the  end  of  the 

vermicomposting  process  and  responds  to  i)  the elaboration of products 

(metabolites) that contain N by the worm; ii) the excrete of mucus that is a fluid rich 

in  N  eliminated  by  the  worm;  iii)  the  substratum enzymes,  NH4
+
, dead  tissue  

rich  in  N;  and  iv)  the mineralization  process  during  vermicomposting 

(Chaudhuri  et  al.,  2000;  Aira  et  al.,  2006; Muthukumaravel et al., 2008). C/N 

ratio expresses the quantity  of  C  and  N  that  has  to  be  included  to elaborate a 

vermicompost and it decreases by the end of  the  process  (Yadav  and  Garg,  2009). 

 

Meanwhile, a study by Dominguez (2004) on vermicomposting of pig slurry 

reported that earthworms had a great impact on the nitrogen transformations in the 

pig manure by enhancing nitrogen mineralization, so that most mineral nitrogen was 

retained as nitrates. He also reported the decrease in the net total nitrogen and the 
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different nitrogen fractions during vermicomposting and important reductions in 

organic nitrogen content and recorded its high nitrification rate. 

 

Stabilization of organic wastes by vermicomposting is highly desirable as it 

eliminates odor, increases nutrient contents, and prevents the organic wastes from 

becoming phytotoxic when incorporated into the soil (Kuo et al., 2004; Suthar, 

2008). The ability of some earthworm species to consume a wide range of organic 

residues such as sewage sludge, animal wastes, crop residues, and industrial refuse 

has been well-established (Mitchell et al., 1980; Edwards et al., 1985; Chan & 

Griffiths, 1988; Hartenstein and Bisesi, 1989). The most commonly used of 

earthworm in breakdown or organic wastes are Eisenia foetida and Eisenia andrei 

(Atiyeh at al., 2000). 

 

Figure 2.1 shows a more comprehensive look of nitrogen cycle in agricultural 

industry. Most agriculture factories produced nitrogen fertilizer. However, in palm 

oil mill, it produces nitrogen-containing sludge. When discharged on the ground 

(open ponding system), the nitrate-bacteria converts ammonium to plant-usable 

nitrate (Scott and Daryl, 1993). 

 

In vermicomposting, ammonium-bacteria in vermicompost convert organic 

nitrogen in POME sludge into plant-usable ammonium. Later on, the nitrate-bacteria 

in POME sludge will convert the ammonium to plant-usable nitrate. The application 

of vermicompost on plants caused the plants take up the nitrates and ammonium 

which then gives some good effects on their growth and productivity (Scott and 

Daryl, 1993). 
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Figure 2.1: A more comprehensive look at the nitrogen cycle. (Source from: Scott and Daryl, 1993).


