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BEBERAPA PENYELESAIAN BAGI ALIRAN LAPISAN SEMPADAN 

OLAKAN MELALUI KAEDAH PENJELMAAN KUMPULAN PENSKALAAN  

ABSTRAK 

Tujuan tesis ini adalah untuk mencari penyelesaian keserupaan bagi beberapa model 

dalam mekanik bendalir menggunakan kaedah penjelmaan kumpulan penskalaan. Dalam tesis 

ini aliran lapisan sempadan berlamina dua dimensi tak boleh mampat yang mantap pada plat rata 

dan baji di dalam media berliang dan tidak berliang telah dikaji. Bendalir yang dipertimbangkan  

ialah Newtonan dan bukan Newtonan (bendalir hukum kuasa, mikrokutub) dengan syarat 

sempadan gelinciran, radiasi haba, kelikatan boleh ubah, syarat sempadan olakan dan kesan 

penjanaan haba. Kaedah penjelmaan kumpulan penskalaan dapat mengurangkan bilangan 

pemboleh ubah tak bersandar dan pemboleh ubah bersandar serta memetakan persamaan 

pembezaan separa kepada persamaan pembezaan biasa. Dengan menggunakan analisis 

penjelmaan simetri, penjelmaan keserupaan diperoleh. Oleh itu, persamaan menakluk bagi 

model aliran dijelmakan menjadi persamaan keserupaan. Persamaan tersebut diselesaikan secara 

berangka menggunakan kaedah Runge-Kutta-Fehlberg keempat-kelima dengan Maple 13. Kesan 

parameter (gelinciran halaju, gelinciran terma, hukum kuasa Falkner-Skan, keberaliran haba, 

kelikatan boleh ubah, sedutan/suntikan, indeks hukum kuasa, radiasi haba, indeks kelikatan, 

reologi, penjanaan haba, perolakan haba, nombor Prandtl, mikrokutub, nombor Grashof, 

kebolehtelapan, kepadatan putaran mikro, nombor Eckert, kelikatan vorteks  dan putaran mikro) 

pada halaju, halaju sudut, suhu dan kuantiti fizikal (tegasan ricih, kadar pemindahan haba dan 

faktor regangan pasangan) yang tak berdimensi telah dikaji dan dibincangkan. Keputusan 

berangka daripada kajian ini menepati keputusan yang telah diterbitkan sebelum ini (yang 

tersedia). Kajian ini boleh diaplikasikan dalam injap jantung tiruan, rongga dalaman, peranti 

nano/mikro, serat sintetik, bahan makanan, penyemperitan plastik lebur dan dalam beberapa 

aliran larutan polimer. 
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SOLUTIONS OF CONVECTIVE BOUNDARY LAYER FLOWS VIA SCALING 

GROUP TRANSFORMATION METHOD 

 

ABSTRACT 

 

The aim of this thesis is to find similarity solutions for some models in fluid mechanics 

using the method of scaling group transformation. In this thesis the steady two-dimensional 

incompressible laminar boundary layer on a flat plate as well as wedge flow models both in 

porous media and clear media have been studied. The working fluid considered is Newtonian 

and non-Newtonian (power-law, micropolar) with slip boundary condition, thermal radiation, 

variable viscosity, convective boundary condition and heat generation effects. Scaling group 

transformation method reduces the number of the independent variables as well as the dependent 

variables and maps the partial differential equations to ordinary differential equations. Using the 

symmetry transformations analysis, the similarity transformations have been obtained. Hence, 

the governing equations for flow models are transformed into similarity equations. The 

transformed equations are solved numerically by the Runge-Kutta-Fehlberg fourth-fifth order 

numerical method using Maple 13. The effects of parameters (velocity slip, thermal slip, 

Falkner-Skan power-law, thermal conductivity, variable viscosity, suction/injection, power-law 

index, thermal radiation, viscosity index, rheological, heat generation, convective heat, Prandtl 

number, micropolar, Grashof number, permeability, micro-rotational density, Eckert number, 

vortex viscosity and microrotation) on the dimensionless velocity, angular velocity, temperature 

and the physical quantities (shear stress, heat transfer rate and couple stress factor) have been 

studied and discussed. Good agreements were found between the numerical results of the present 

study with published results (where available). The present study find applications in artificial 

heart valves, internal cavities, nano/micro devices, synthetic fibers, foodstuffs, extrusion of 

molten plastic and as well as in some flows of polymer solutions. 
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CHAPTER 1 

GENERAL INTRODUCTION AND BASIC CONCEPTS 

 

This chapter gives a general background on fluid flow, boundary layers, heat 

transfer and solution methods. It will include basic concepts and definitions used in 

this study. It will also include types of fluids, governing equations, commonly used 

dimensionless numbers, the use of group transformation and the numerical method 

that will be used in this study. This chapter will also discuss the objectives, 

methodology and scope of the research that has been conducted. 

 

1.1 Types of Fluids 

1.1.1 Newtonian and Non-Newtonian Fluids 

 

Fluids such as water and air are described as Newtonian fluids. These fluids are 

essentially modelled by the Navier-Stokes equations which describe a linear relation 

between the stress and the strain rate. 

 On the other hand, there are a large number of fluids that do not fall in the 

category of Newtonian fluids and are called non-Newtonian fluids. Examples include 

toothpaste, egg whites and liquid soaps. A distinguishing feature of many non-

Newtonian fluids is that they exhibit both viscous and elastic properties and the 

relationship between the stress and the strain rate is non-linear. Contrary to 

Newtonian fluids, there is not a single model that can describe the behavior of all the 

non-Newtonian fluids and many models have been proposed such as, micropolar, 

viscoelastic, power-law, Carreau, Eyring, Ellis and Herschel–Bulkley fluid models. 
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1.1.2 Micropolar Fluids 

Micropolar fluids are fluids with microstructure belonging to a class of fluids 

with nonsymmetrical stress tensor referred to as polar fluids. Physically, they 

represent fluids consisting of randomly oriented particles suspended in a viscous 

medium (Lukaszewicz, 1999). The theory of micropolar fluid (which is a special 

form of non-Newtonian fluid) includes the effect of micro-inertia and couple 

stresses. The theory explains the non-Newtonian behavior of certain polymeric fluid, 

animal blood and liquid crystals (Parmar and Timol, 2012). 

 

1.1.3 Power-law Fluid Model 

A power-law fluid, or the Ostwald-de Waele relationship, is a type of 

generalized Newtonian fluid for which the shear stress   is given by (Bird et al., 

1987):    

,

n

u
K

y


 
  

 
                                                      (1.1)                                                                                                             

where K  is the flow consistency index, 
u

y




is the shear rate or the velocity gradient 

perpendicular to the plane of shear and n  is the flow behavior index (dimensionless). 

The quantity 

1

,

n

eff

u
K

y




 
  

 
represents the apparent or effective viscosity as a 

function of the shear rate. Power-law fluids can be subdivided into three different 

types of fluids based on the value of their flow behavior index: when 1n   the fluid 

is called pseudoplastic or shear-thinning fluid, when 1n   the fluid is called 

Newtonian fluid and when 1n   the fluid is called dilatant or shear-thickening fluid. 

The relationship between shear rate and shear stress is illustrated in Figure 1.1. 

http://www.amazon.com/Grzegorz-Lukaszewicz/e/B001K6BYHG/183-0160169-5545576
http://en.wikipedia.org/wiki/Shear_rate
http://en.wikipedia.org/wiki/Newtonian_fluid
http://en.wikipedia.org/wiki/Shear_rate
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Figure 1.1: Flow curves of power-law fluids (Uddin, 2013). 

 

1.2 Fluid Flows 

1.2.1 Unsteady and Steady Flows 

A flow whose flow state expressed by all fluid flow properties (e.g., velocity, 

temperature, pressure, and density) at any position, does not change with time, is 

called a steady flow. On the other hand, a flow whose flow state does change with 

time is called an unsteady flow (Bansal, 2005). 

 

1.2.2 Laminar and Turbulent Flows 

Some flows are smooth and orderly while others are rather chaotic. The highly 

ordered fluid motion characterized by smooth streamlines is called laminar. The flow 

of high-viscosity fluids such as oils at low velocities is typically laminar. The highly 

disordered fluid motion that typically occurs at high velocities characterized by 

velocity fluctuations is called turbulent. The flow of low-viscosity fluids such as air 

at high velocities is typically turbulent. The flow regime greatly influences the heat 

transfer rates and the required power for pumping (Cengel, 2006). 
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1.2.3 Compressible and Incompressible Flows 

An incompressible flow is the type of flow in which the variation of the mass 

per unit volume (density) within the flow is constant. In general, all liquids are 

treated as the incompressible fluids. On the contrary, flows which are characterized 

by a varying density are said to be compressible. Gases are normally compressible 

fluids (Bansal, 2005).  

 

1.3 Heat Transfer 

Heat transfer is the branch of engineering science which seeks to predict the 

energy transfer which may take place between material bodies as a result of 

temperature difference. Due to temperature difference, heat flows from the region of 

high temperature to the region of low temperature (Borthakur and Hazarika, 2010). 

Heat transfer is applied in various aspects of engineering. Electrical engineers 

apply their knowledge of heat transfer to design cooling system for motors, 

generators and transformers. The mechanical engineer deals with the problem of heat 

transfer in the field of internal combustion engines, steam generation, refrigeration 

and heating and ventilation. In the design of heat exchangers such as boilers, 

condensers, radiators etc., heat transfer analysis is essential for sizing such 

equipments. In heating and air conditioning applications for buildings, a proper heat 

transfer analysis is necessary to estimate the amount of insulation needed to prevent 

excessive heat losses or gains. Chemical engineers are concerned with the 

evaporation, condensation, heating and cooling of fluids. In the design of nuclear 

reactor a thorough heat transfer analysis of fuel elements is important for proper 

sizing of fuel elements to prevent burnout. In aerospace technology, the temperature 



5 

 

distribution and heat transfer are crucial because of weight limitation and safety 

consideration (Borthakur and Hazarika, 2010). 

There are three different modes of heat transfer: conduction, convection and 

radiation. In reality, temperature distribution in a medium is controlled by the 

combined effects of these three modes of heat transfer; therefore, it is not possible to 

isolate entirely one mode from interacting with the other modes (Borthakur and 

Hazarika, 2010). 

 

1.3.1 Convective Heat Transfer 

Convection or convective heat transfer is one of the modes of heat transfer 

besides conduction and radiation. This mode of heat transfer is met with in situations 

where energy is transferred as heat to a flowing fluid at the surface over which the 

flow occurs. This mode is basically conduction in a very thin fluid layer at the 

surface and then mixing caused by the flow. The energy transfer is by combined 

molecular diffusion and bulk flow (Kaothandaraman, 2010). The heat flow is 

independent of the properties of the material of the surface and depends only on the 

fluid properties. However, the shape and nature of the surface will influence the flow 

and hence the heat transfer. Convection is not a pure mode as conduction or radiation 

and hence involves several parameters. If the flow is caused by external means like a 

fan or pump, then the mode is known as forced convection. If the flow is due to the 

buoyant forces caused by temperature difference in the fluid body, then the mode is 

known as free or natural convection. In most applications, heat is transferred from 

one fluid to another separated by a solid surface. So heat is transferred from the hot 

fluid to the surface and then from the surface to the cold fluid by convection. In the 
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design process thus convection mode becomes the most important one from the point 

of view of application (Kaothandaraman, 2010). 

 

1.4 Boundary Layer Concept  

Boundary layer theory is the cornerstone of our knowledge of the flow of air 

and other small viscosity under circumstance of interest in many engineering 

applications. Thus, many complex problems in aerodynamics have been clarified by 

a study of the boundary layer and its effect on the general flow around the body.                                                                                       

One of the most convenient concepts in fluid mechanics is that which 

classifies the flow about solid bodies into two regions. The first is the main stream in 

which the ideal frictionless fluid theory can be successfully employed. The second is 

the boundary layer adjacent to the solid surface in which viscous effects are equally 

important to inertia effects. With the aid of the idealization due to Prandtl number 

will be defined later, many flow fields may be mathematically modelled and 

deductions made which correspond well with experimental by observed results.                                                                                                                           

Boundary layer theory was developed mainly for the case of laminar flow in an 

incompressible fluid. Later, the theory was extended to include turbulent and 

incompressible boundary layers, which are more important from the point of view of 

practical applications (Schlichting and Gersten, 2000).     

 Ludwig Prandtl in 1904 introduced the concept of a boundary layer in large 

Reynolds number flows and he also showed how the Navier-Stokes equations could 

be simplified to yield approximate solutions. There are many books on boundary 

layer theory for example, by Schlichting (1979), Schlichting and Gersten (2000) and 

Naz (2008).     

http://en.wikipedia.org/wiki/Ludwig_Prandtl
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A boundary layer is a thin layer in which the effect of viscosity is important no 

matter how high the Reynolds number may be. The Reynolds number Re will be 

defined later. A boundary layer exists if 1Re  . 

A boundary layer does not necessarily need to be adjacent to a solid boundary. 

A thin region of sharp change can exist away from a boundary such as along the axis 

of a free jet. The boundary layer equations are applicable in the thin region of sharp 

change (Naz, 2008). 

Boundary layers of non-Newtonian fluids have received considerable attention 

in last decades. Boundary layer theory has been applied successfully to various non-

Newtonian fluids models. One of these models is the power-law fluid; the first 

considered the form of the boundary-layer equations for a power-law fluid by 

Schowalter (1960) and Acrivos et al. (1960). Schowalter (1960) derived the 

equations governing the self-similar flow of a pseudo-plastic fluid and Acrivos et al. 

(1960) provided numerical solutions to the equations governing the self-similar flow 

for both shear-thinning and shear-thickening fluids (Denier and Dabrowski, 2004). 

 The theory of micropolar fluids was first introduced by Eringen (1964, 1966, 

1972). In this theory, the micropolar fluid exhibits the microrotational effects and 

micro-inertia. It is applied to describe the non-Newtonian behavior of certain fluids, 

such as liquid crystals, ferro liquids, colloidal fluids, and liquids with polymer 

additives. Many attempts were made to find analytical and numerical solutions, 

applying certain special conditions and using different mathematical approaches. The 

study of micropolar fluid mechanics has received the attention of several researchers. 

The boundary layer concept in micropolar fluids was studied by Willson (1969). A 

review of this study was provided by Ariman et al. (1973, 1974). A similarity 

solution was provided for the micropolar boundary layer flow over a semi-infinite 
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flat plate by Ahmadi (1976). Hassanien et al. (1999) have studied flow and heat 

transfer in boundary layer of a micropolar fluid on a continuous moving surface. An 

excellent account of the theory and applications of boundary layer modeling has been 

given by Schlichting and Gerstern (2000). 

 

1.4.1 Velocity Boundary Layer 

The velocity boundary layer develops when there is fluid flow over a surface. 

Consider the flow with velocity u  over a flat plate as shown in Figure 1.2. 

Beginning at the leading edge of the plate, the thickness of the boundary layer v

increases with the distance ,x  i.e. when measured along the surface. The region 

between the surface and the dash curve is the boundary layer or the velocity 

boundary layer (also called the hydrodynamic boundary layer) where the effects of 

viscosity are observed. Outside the boundary layer, i.e. the free stream flow, the 

viscosity is neglected. The velocity boundary layer ends at some arbitrary value of 

y where the velocity attained 99% of the free-stream velocity (Welty et al., 2008). 

Incropera and Dewitt (1985) have clearly described the mechanism of the flow to 

form the velocity boundary layer as follow: When the fluid particles make contact 

with the surface, they attain zero velocity. These particles then act to retard the 

motion of particles in the adjoining fluid layer, which act to retard the motion of 

particles in the next layer, and so on until, at a distance 
vy  from the surface at this 

point the effect becomes negligible. This retardation of fluid motion is associated 

with shear stresses  acting in planes that are parallel to the fluid velocity. With the 

increasing distance y from the surface, the x velocity component of the fluid u must 

increase until it approaches the free stream value .u  The subscript   is used to 
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designate conditions in the free stream outside the boundary layer. The boundary 

layer velocity profile refers to the manner in which u  varies with y through the 

boundary layer (Bergman et al., 2011). 

 

Figure 1.2: Velocity boundary layer. 

 

 

1.4.2 Thermal Boundary Layer 

The thermal boundary layer forms when there is temperature difference 

between the fluid stream and the surface (Incropera and Dewitt, 1985). Consider the 

fluid flow with velocity u  and temperature T  over a flat plate in Figure 1.3. The 

region from the plate surface to the curve is the thermal boundary layer. From the 

leading edge we can see that the thermal boundary layer thickness T  also increase 

along the flow direction ,x  following the trend of velocity boundary layer. This is 

mainly because of the effects of heat transfer into the free stream. The thermal 

boundary layer thickness can be defined as the distance from the surface in the y

direction where    0.99w wT T T T   . It should be noted that T is the fluid 

temperature within the thermal boundary layer, wT is the surface temperature and T  

is the free stream fluid temperature (Bergman et al. 2011).  



11 

 

 

Figure 1.3: Thermal boundary layer. 

 

Following the no-slip condition when the flow comes in contact with the 

surface of the plate, the temperature of the fluid will be equal to the surface 

temperature. Then, that layer of flow will change energy with the particles in the 

adjoining fluid layer which in turn change the energy with subsequent layer and from 

the process the temperature profile will develop (Rudramoorthy and Mayilsamy, 

2006). 

 

1.4.3 Basic Boundary Layer Equations 

In this section, we show the basic equations of fluid mechanics, continuity, 

momentum, and energy and angular momentum equations for laminar, 

incompressible, two-dimensional flow of Newtonian, non-Newtonian power-law and 

micropolar fluid models. 

 

 

 

 



11 

 

Newtonian fluid model (White, 1998). 

Continuity:                   

                    0,
u v

x y

 
 

 
                                                          (1.2) 

Momentum:          

                   
2 2

2 2

1
,

u u p u u
u v

x y x x y




      
      

       
                                 (1.3a) 

                   
2 2
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1
,

v v p v v
u v

x y y x y




      
      

       
                                 (1.3b) 

Energy:                           

                  
2 2

2 2
.p

T T T T
c u v k

x y x y


     
    

      
                                          (1.4) 

 

Non-Newtonian power-law fluid model (Dabrowski, 2009) 

Continuity:                           

                    0,
u v

x y

 
 

 
                                                               (1.5)  

Momentum:               

                    

1 2

2
,

n

u u p u u
u v

x y x y y







    
   

    
                                            (1.6a) 

                     0 ,
p

y


 


                                                                      (1.6b) 

Energy:                      
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                                            (1.7) 
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Micropolar fluid model (Borthakur and Hazarika, 2010) 

Continuity:             

                        0,
u v

x y

 
 

 
                                                        (1.8) 

Momentum:                  

                     ( ) ,
u u u N

u v
x y y y y

   
       

      
       

                                 (1.9) 

Angular Momentum  

                       

2

2
2 ,

N N u N
j u v N

x y y y
  

      
       
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                          (1.10)  

Energy:                                

                   
22 2

2 2
,p

T T T T u
c u v k

x y x y y
  

        
        

        
                  (1.11) 

where u  and v  are the velocity components along the x  and y axes,   is the 

kinematic viscosity of the fluid, p  is the pressure, T is the temperature inside 

boundary layer, N is the micro-rotation or angular velocity, j is the micro-inertia per 

unit mass,   denotes the density of the fluid,   is the dynamic viscosity of the fluid, 

pc  is the specific heat at constant pressure, k  is the thermal conductivity, and , 

are the material parameters. 

 

1.5 Stream Function 

Stream function is a very useful device in the study of fluid dynamics and was 

derived by the French mathematician Joseph Louis Lagrange in 1781. A stream 

function is defined, for two and three dimensional flows. The latter one is quite 
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complicated and not necessary for our study. We restrict ourselves to two-

dimensional flows. 

The stream function   is a function of x  and .y  It is defined in terms of the 

flow velocities as 

, .u v
y x

  
  
 

                                                  (1.12) 

The stream function defined here satisfies the two-dimensional continuity 

equation. Thus, if ),( yx  is known and is a continuously differentiable function, the 

velocity components u   and v can be determined (White, 1998). 

 

1.6 Porous Medium 

A porous medium is composed of a persistent solid part, called solid matrix, 

and the remaining void space (or pore space) that can be filled with one or more 

fluids (e. g. water, oil and gas). Typical examples of a porous medium are soil, sand, 

cemented sandstone, karstic limestone, foam rubber, bread, lungs or kidneys 

(Bastian, 1999). 

In a natural porous medium such as beach sand, sandstone, limestone, rye 

bread, wood, and the human lung etc., the distribution of pores with respect to shape 

and size is irregular. Transport properties in fluid-saturated porous media have 

enormous modern industrial applications in: the petroleum industry, geothermal, 

insulation for buildings, heat exchange between soil and atmosphere, flat plate solar 

collectors, flat plate condensers in refrigerators and many other areas, (Nield and 

Beijan, 2006; Vafai, 2010; Vadasz, 2008). 
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1.7 Non-dimensional Numbers 

In order to get a first hand knowledge about the different phenomena occurring 

in heat and mass transfer problems, we should have a discussion about the 

fundamental dimensionless parameters which govern the process. Dimensionless 

parameters are normally the ratios of some forces acting on a fluid flow or the ratios 

of some fluid parameters involved during fluid flow under different situations, which 

govern the processes. Various dimensionless parameters to be considered in this 

study are discussed as follows: 

 

1.7.1 Reynolds number 

Reynolds number is the most important parameter of the dynamics of viscous 

fluid. It represents the ratio of inertia to viscous force and is defined by  

  

2

2

.

U
ULLRe

U

L



 
                                                        (1.13) 

Here , , ,U L    and   represent characteristic velocity, reference length, density, 

dynamic viscosity and kinematic viscosity respectively. If Re is small the viscous 

forces will be predominant and the effect of viscosity will be felt in the whole flow 

field. On the other hand, if Re is large the inertia force will be predominant and in 

such case the effect of viscosity can be considered to be confined in a thin layer 

know as boundary layer adjacent to the surface. For large Reynolds number the flow 

ceases to be laminar and becomes turbulent (Borthakur and Hazarika, 2010). 

 

1.7.2 Prandtl number  

The Prandtl number is the ratio of the kinematic viscosity to the thermal 

diffusivity and is defined as 
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.
pc

Pr
k




                                                  (1.14)           

Here   is the thermal diffusivity of the fluid, k is the thermal conductivity of the 

fluid and 
pc is the specific heat at constant pressure of the fluid, where the value of 

shows the effect of viscosity of the fluid. For small value of   thin region in the 

immediate neighborhood of the surface will be affected by the viscosity called the 

thermal boundary layer. The quantity 
p

k

c



 represents thermal diffusivity due to 

heat conduction. For small value of ,  the thin regions will be affected by heat 

conduction which is known as thermal boundary layer. Thus, Prandtl number shows 

the relative importance of heat conduction and viscosity of the fluid. It is a material 

property and thus varies from fluid to fluid. Liquid metals have small Prandtl number 

(e.g. 0.024Pr   for mercury), gases are slightly less than unity (e.g. 0.7Pr   for 

Helium), light liquids some what higher than unity and oils have very high Pr  

(Borthakur and Hazarika, 2010). 

 

1.7.3 Grashof number  

This number generally arises in the case of free convection heat transfer. It is 

the ratio of buoyancy force to the viscous force acting on a fluid flow. In the case of 

a fluid flow where the free convection of heat transfer occurs, Grashof number 

indicates the type of flow, whether the flow is laminar or turbulent, at higher Grashof 

numbers, the boundary layer is turbulent, at lower Grashof numbers, the boundary 

layer is laminar (Borthakur and Hazarika, 2010). The Grashof number is defined as 

3

2
,

g TL
Gr






                                                      (1.15) 
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where g  stands for the gravitational acceleration,   signifies the coefficient of 

volumetric change and  T  represents the temperature difference 

 

1.7.4 Eckert number 

For incompressible flow, it determines the relative rise in temperature of the 

fluid through adiabatic compression. In high speed flow, it is defined as 

2

.
p

U
Ec

c T



                                                     (1.16) 

The work of compression and that of friction become important when the 

characteristic velocity is comparable with or much greater than the sound or when 

the prescribed temperature difference is small compared to the absolute temperature 

of the free stream. It is important in high speed heat transfer problem and very 

viscous fluid. It is associated with viscous dissipation (Borthakur and Hazarika, 

2010). 

 

1.7.5 Nusselt number 

A Nusselt number close to one, shows that convection and conduction are of 

similar magnitude, which is characteristic of laminar flow. A larger Nusselt number 

corresponds to more active convection with turbulent flow typically in the 100–1000 

range. The convection and conduction heat flows are parallel to each other and to the 

surface normal of the boundary surface, and are all perpendicular to the mean fluid 

flow in the simple case (Minea, 2012). The Nusselt number is defined as 

,
hL

Nu
k

                                                        (1.17) 

where h is the convective heat transfer coefficient. 

 

http://en.wikipedia.org/wiki/Laminar_flow
http://en.wikipedia.org/wiki/Turbulent_flow
http://en.wikipedia.org/wiki/Parallel_(geometry)
http://en.wikipedia.org/wiki/Perpendicular
http://en.wikipedia.org/wiki/Mean
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1.7.6 Rayleigh number 

The Rayleigh number is associated with buoyancy driven flow (also known as 

free convection or natural convection). When the Rayleigh number is below the 

critical value for that fluid, heat transfer is primarily in the form of conduction; when 

it exceeds the critical value, heat transfer is primarily in the form of convection 

(Minea, 2012). The Rayleigh number is described as 

3

.
g T L

Ra


 


                                                 (1.18) 

1.7.7 Friction Factor  

The non-dimensional shear stress at the surface is defined as the friction factor 

and is given by 

2
,w

fC
U




                                                      (1.19) 

where 
0

w

y

u

y
 



 
  

 
is the shearing stress on the surface of the body. 

We now explain the similarity solutions and group transformations method, 

focus on the definition of group, groups of transformations, one-parameter Lie group 

of transformations, scaling group of transformations and scaling method algorithm to 

determine similarity transformations. 

 

1.8 Similarity Solutions and Group Transformations Method  

As mentioned above the boundary layer equations can be represented by 

differential equations. Similarity solutions are defined mathematically as a solution 

where a change of variables allows for a reduction in the number of independent 

variables. Similarity solutions play an important role in fluid mechanics and heat 

transfer. A similarity ransformations reduces the governing partial differential 
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equations to ordinary differential equations which are much easier to solve 

numerically.  

The symmetry group transformations method is an important method to 

transfer partial differential equations to ordinary differential equations (similarity 

equations). We will adopt the group transformation method in this thesis. The 

method allows one to find the symmetries (infinitesimal generators of Lie group) of 

the differential equations which give family of equations invariant. With the 

symmetries of the differential equations, a solution can be obtained (Bluman and 

Kumei, 1989). 

The group theory approach will be used in this thesis to obtain similarity 

transformation of the problems under investigation. A group G  is a set of elements 

with a law of composition   between elements satisfying the following axioms 

(Bluman and Cole, 1974; Bluman and Kumei, 1989; Hill, 1992): 

(i) Closure property: For any element a and b  of G , ),( ba  is an element of G . 

(ii) Associative property: For any elements ,a b  and c  of G , 

).),,(()),(,( cbacba                                                      (1.20) 

(iii)  Identity element: There is a distinguished element e  of ,G  called the identity      

element, such that for any element a  in G  

.),(),( aaeea                                                 (1.21) 

(iv)  Inverse element: For any element a  of G  there exists a unique inverse   

element 1a  in G  such that 

.),(),( 11 eaaaa                                                  (1.22) 
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1.8.1 Groups of transformations  

Let 1 2( , ,..., )nx x x x  lie in region .nRD   The set of transformations  

   ( ; ),x X x                                                          (1.23) 

defined for each  x in D  depending on parameter   in set ,RS   with 
1( , )    

defining a law of composition of parameters   and 1  in ,S  forms a group of 

transformations on D  if the following hold (Bluman and Cole, 1974; Bluman and 

Kumei, 1989; Hill, 1992): 

(i) For each parameter   in S  the transformations are one-to-one onto .D  Hence, x  

lies in .D  

(ii) S  with the law of composition   forms a group .G  

(iii) x x   when ,e i.e.    ( , ) .X x e x                                                          

(iv) If    ** *

1; , ; ,x X x x X x    then   1; , .x X x        

 

1.8.2 One-parameter Lie group of transformations 

A one-parameter group of transformations defines a one-parameter Lie group 

of transformations if in addition to satisfying axioms (i)-(iv) of definition (1.8.1) 

(Bluman and Cole, 1974; Bluman and Kumei, 1989; Hill, 1992): 

(v)   is a continuous parameter, i.e. S  is an interval in .R  Without loss of   

generality, 0   corresponds to the identity element .e  

(vi) X is infinitely differentiable with respect to x  in D  and an analytic function of 

  in .S  

(vii)  1,    is an analytic function of   and 1, .S   

 

1.8.3 Scaling method algorithm to determine similarity transformations 
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We will introduce the method which will be used in this study in an algorithm 

form. Here, we consider the system of partial differential equations which contains 

p independent variables ix and q  dependent variables jy . 

Step 1: Assume that * *, ,j pi
cc

i i j jx e x y e y
    where 1,...,i p and 1,..., .j q  

Step 2: Substitute values from step 1 into the original system of partial differential 

equations. 

Step 3:  Apply the invariant condition: the resulting system should be invariant under 

the scaling transformations in step 1. 

Step 4: Solving this linear system found in step 3 for ' .c s  

Step 5: Formulate the characteristic equations as follows 

1 2 1 2

1 1 2 2 1 1 2 2

... ... .
p q

p p p p p q q

dx dydx dx dy dy

c x c x c x c y c y c y  

                        (1.24) 

Step 6: Using the characteristic equations, we can find the new independent 

similarity variable   in terms of , 'i jx y s , also we obtain the similarity 

transformations.                                                                              

Step7: Substituting similarity variables in the original partial system to obtain the 

similarity equations, we get a new system with fewer number of independent 

variables. 

 If the system contains three and more independent variables, repeat the above 

mentioned procedure until we get one independent variable in terms of the original 

independent variables. Finally we get similarity equations (Bluman and Cole, 1974; 

Bluman and Kumei, 1989; Hill, 1992). 

 

 

Example: 
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To explain the scaling group transformations method, we will transform the 

Falkner-Skan equation to ordinary differential equation using the scaling group 

transformations method 

2

2
,e

e

duu u u
u v u

x y dx y

  
  

  
                                           (1.25)                                               

where its boundary conditions are  

 

0 0, at 0,

, as .e

u v y

u u x y

  

 
                                         (1.26) 

Here ( ) m

eu x x is the velocity of the free stream, m is the Falkner-Skan power law 

parameter. We introduce the stream function   which is defined as yu  /  and 

xv  /  to reduce the number of equations and number of dependent variables. 

Then Eq. (1.25) becomes    

2 2 3

2 3
,e

e

du
u

y y x x y dx y

        
  

     
                                    (1.27)                                                          

and the boundary conditions (1.26) become 

 

0, 0 at 0,

as .e

y
y x

u x y
y

 



 
  

 


 



                                            (1.28) 

We transform the partial differential equation (1.27) and the boundary conditions 

(1.28) to an ordinary differential equation using scaling group transformations  

31 2* * *: , ,
cc cx e x y e y e
                                                 (1.29) 

Here  is the parameter of the group   and  ' , 1,2,3ic s i   are arbitrary real 

numbers. The Eqs. (1.27) and (1.28) will remain invariant under the group 

transformations in Eq. (1.29) if the following relationships hold: 
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 

 

     

 

1 2 3

2 31

2 2
2 2

2

3
2 1 32 1

3
,

c c c

m c cc m

e
y y x x y

me x e
y





   



   
 

   



   



 
     

     
 




                                   (1.30) 

   

   

2 3 1 3

2 3

0, 0 at 0,

as .

c c c c

c c

e

e e y
y x

e u x y
y

 



 



 
  

 


  



 
  

 


 



                         (1.31) 

 

Equating powers of e , we have  

 

 1 2 3 1 2 32 2 2 1 3c c c c m c c                                           (1.32)  

 

Solving the Eq. (1.32), we have the following relationship among the exponents 

   2 1 3 1

1 1
1 , 1 .

2 2
c m c c m c                                        (1.33)  

the characteristic equations are 

   
.

1 1
1 1

2 2

dx dy d

x
m y m





 

 

                                       (1.34)  

Using the characteristic Eqs. (1.34), we find these equations. 

   
, .

1 1
1 1

2 2

dx dy dx d

x x
m y m





 

 

                                  (1.35) 

Solving these equations by using the integration we obtain, 

 
1 1

2 2, .
m m

x y x f  
 

                                             (1.36)  

Here  and f  are similarity independent and dependent variables recpectively. 

Substituting Eq. (1.36) into Eq. (1.27) and boundary conditions (1.28), we get 
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 21
1 0,

2

m
f ff m f


                                           (1.37) 

     0 0, 0 0, 1.f f f                                          (1.38)  

 

1.9 Runge-Kutta-Fehlberg Method 

The Runge-Kutta method is a numerical technique to solve an initial value 

problem of the form    

   0 0, , .
dy

f x y y x y
dx

                                         (1.39) 

The most popular Runge-Kutta method is the classical Runge-Kutta fourth order 

method.  One way to guarantee accuracy in the solution of an initial valued problem 

is to solve the problem twice using step sizes h  and 2h and compare answers at the 

mesh points corresponding to the larger step size. But this requires a significant 

amount of computation for the smaller step size and must be repeated if it is 

determined that the agreement is not good enough (Mathews and Fink, 2004). 

The Runge-Kutta-Fehlberg method (RKF45) is a technique to resolve this 

problem. It is called RKF45 because the fourth-order method with five stages is used 

together with a fifth-order method with six stages, that uses all of the points of the 

first one. It has a procedure to determine if the proper step size h  is being used. At 

each step, two different approximations for the solution are made and compared. If 

the two answers are in close agreement, the approximation is accepted. If the two 

answers do not agree to a specified accuracy, the step size is reduced. If the answers 

agree to more significant digits than required, the step size is increased. Each step 

requires the use of the following six values (Mathews and Fink, 2004). 
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First, we need the definitions of the following; 

 1

2 1

3 1 2

4 1 2 3

5 1 2 3 4

6 1

, ,

1 1
, ,

4 4

3 3 9
, ,

8 32 32

12 1932 7200 7296
, ,

13 2197 2197 2197

439 3680 845
, 8 ,

216 513 4104

1 8
, 2

2 27

k k

k k

k k

k k

k k

k k

K hf x y

K hf x h y K

K hf x h y K K

K hf x h y K K K

K hf x h y K K K K

K hf x h y K



 
   

 

 
    

 

 
     

 

 
      

 

    2 3 4 5

3544 1859 11
.

2565 4104 40
K K K K

 
   

 

       (1.40) 

Then an approximation to the solution of the initial value problem (I.V.P) is made 

using a Runge-Kutta method of order 4: 

1 1 3 4 5

25 1408 2197 1
,

216 2565 4101 5
k ky y K K K K                                  (1.41)  

where the four function values 1 3 4, ,K K K  and 5K are used. A better value for the 

solution is determined using a Runge-Kutta method of order 5: 

1 1 3 4 5 6

16 6656 28561 9 2

135 12825 56430 50 55
k kz y K K K K K                                (1.42) 

The optimal step size sh  can be determined by multiplying the scalar s  times the 

current step size h . The scalar s  is 

1 1

4 4

1 1 1 1

tol tol
0.84

2 k k k k

h h
s

z y z y   

   
           

                              (1.43) 

 

 

1.10 Background and Motivation 

A power-law fluid model, or the Ostwald-de Waele relationship, is a type of 

generalized Newtonian fluid for which the relationship between shear stress and 


