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plots represent mean ± standard error. 
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Figure 4.29 Fold change in gene CYP71AV1 expression of A. annua 

L. callus (A: TC1; B: TC2; C: Highland cultivar) 
treated with various concentration of EMS. Scatter 
plots represent mean ± standard error. 
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Figure 4.30 Fold change in gene GL3 expression of A. annua L. 
seeds (A: TC1; B: TC2; C: Highland cultivar) treated 
with various concentration of NaN3. Scatter plots 
represent mean ± standard error. 
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Figure 4.31 Fold change in gene GL3 expression of A. annua L. 
nodal segments (A: TC1; B: TC2; C: Highland cultivar) 
treated with various concentration of NaN3. Scatter 
plots represent mean ± standard error. 
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Figure 4.32 Fold change in gene GL3 expression of A. annua L. 
shoot tips (A: TC1; B: TC2; C: Highland cultivar) 
treated with various concentration of NaN3. Scatter 
plots represent mean ± standard error. 
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Figure 4.33 Fold change in gene CYP71AV1 expression of A. annua 150 
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L. seeds (A: TC1; B: TC2; C: Highland cultivar) treated 
with various concentration of NaN3. Scatter plots 
represent mean ± standard error. 

Figure 4.34 Fold change in gene CYP71AV1 expression of A. annua 

L. nodal segments (A: TC1; B: TC2; C: Highland 
cultivar) treated with various concentration of NaN3. 
Scatter plot represent mean ± standard error. 
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Figure 4.35 Fold change in gene CYP71AV1 expression of A. annua 

L. shoot tips (A: TC1; B: TC2; C: Highland cultivar) 
treated with various concentration of NaN3. Scatter 
plots represent mean ± standard error. 
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Figure 4.36 Fold change in gene CYP71AV1 expression of A. annua 

L. callus (A: TC1; B: TC2; C: Highland cultivar) 
treated with various concentration of NaN3. Scatter 
plots represent mean ± standard error. 
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Figure 4.37 Scatter plots of gene GL3 expression level of three 
clones; TC1, TC2, H cDNA samples of Artemisia 

annua L. initiated from seeds, shoot tips and nodal 
segment treated with 1% EMS.  
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PEWUJUDAN POKOK Artemisia annua L. in vitro UNTUK ANALISIS 

EKSPRESI GEN BIOSINTETIK ARTEMISININ (CYP71AV1) DAN GEN 

INISIASI TRIKOM (GL3)  

 

ABSTRAK 

 

Artemisia annua L. ialah sejenis tumbuhan herba yang terkenal untuk metabolit 

sekundernya iaitu, artemisinin. Artemisinin digunakan sebagai ubat antimalaria tetapi 

pengunaannya terhad disebabkan oleh hasil artemisinin yang rendah di ladang. Untuk 

menghasilkan artemisinin menggunakan teknik in vitro, kultivar in vitro yang 

menghasilkan artemisinin tinggi perlu dipilih terlebih dahulu. Untuk mendapatkan 

anak benih aseptik, biji benih tiga klon terpilih Artemisa annua L. disterilkan 

permukaannya dengan menggunakan 10% (v/v) Clorox®  selama lima minit dan 

diikuti dengan 70% (v/v) etanol selama lima minit. Protokol pensterilan ini 

menghasilkan 96.7  % biji benih aseptik untuk klon TC1 dan TC2, dan 86.7 % bagi 

klon Highland. Peratus biji benih yang bercambah untuk ketiga-tiga klon A. annua L. 

adalah dalam lingkungan 13.3 – 36.7 %. Ujian imbibisi yang dijalankan untuk 

kesemua biji benih klon A. annua L. mendapati imbibisi sebelum percambahan tidak 

diperlukan. Kombinasi substrat yang paling sesuai untuk percambahan biji benih 

ketiga-tiga klon A. annua L. ialah kombinasi pasir: tanah hitam (1:2). Kesan keadaan 

in vitro dan rumah hijau terhadap pertumbuhan anak benih didapati keadaan in vitro 

menghasilkan anak benih A. annua L. yang lebih tinggi dibandingkan dengan rumah 

hijau. Dari segi bilangan trikom berkelenjar dan tidak berkelenjar, tiada kelainan 

didapati untuk daun anak benih daripada keadaan in vitro dan rumah hijau. 

Perhimpunan dan analisis perpustakaan transkriptom didapati menghasilkan 10, 647 
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urutan gen. Daripada 10, 647 gen, 306 gen unik dikenal pasti terlibat dalam proses 

fungsi sel, proses biologi, dan fungsi molekul. CYP71AV1 and GL3 yang terlibat 

dalam laluan sintesis artemisinin dipilih untuk kajian ekspresi antara anak pokok 

kawalan dan A. annua L mutan. Kepadatan mutasi disebabkan oleh  etil 

metanesulfonat (EMS) didapati 1 dalam 408 kb nukleotida berbanding 1 dalam 816 

kb untuk natrium azida. Kadar pengesanan mutan untuk EMS adalah 2.4 manakala 

untuk natrium azida adalah 1.2 dalam setiap 1000 kb nukleotida. Pucuk untuk ketiga-

tiga klon A. annua L. yang dirawat dengan 1% EMS menunjukkan tahap ekspresi 

gen GL3 yang lebih tinggi dan konsisten apabila dibandingkan dengan pucuk pokok 

kawalan. Pokok-pokok yang dirawat dengan natrium azida juga tidak menunjukkan 

tahap ekspresi tinggi yang konsisten berbanding pokok kawalan. Oleh itu, gen GL3 

didapati lebih sesuai sebagai gen penanda artemisinin dalam pokok A. annua L. dan 

cultivar yang meghasilkan artemisinin yang tinggi boleh didapati daripada pucuk 

yang dirawat dengan 1% EMS. 
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ESTABLISHMENT OF in vitro PLANTLETS OF Artemisia annua L. FOR 

THE ANALYSIS OF ARTEMISININ BIOSYNTHETIC GENE (CYP71AV1) 

AND TRICHOME INITIATION GENE (GL3)  

 

ABSTRACT 

 

Artemisia annua L. is an herb known for its secondary metabolite, artemisinin. 

Artemisinin is used as antimalarial drug but its availability is limited by low yield in 

plantation. To produce artemisinin using in vitro technique, a high yielding in vitro 

cultivar must first be selected. For the establishment of aseptic seedlings of three 

selected clones of Artemisia annua L., the seeds were surface sterilized with 10% 

(v/v) Clorox
®
 for five minutes followed by 70% (v/v) ethanol for five minutes. This 

sterilization protocol enabled the establishment of 96.7 % aseptic seeds for TC1 and 

TC2 clones, and 86.7 % for the Highland clone. The percentage of seed germinated 

for all the clones were found to be in the range of 13.3 to 36.7 %. Imbibitions test on 

the three clones of A. annua L. seeds indicated imbibitions before seed germination 

was not required. The best substrate combination for seed germination of all the three 

clones of A. annua L. was sand: black soil (1:2) combination. Effect of in vitro and 

greenhouse condition on A. annua L. plantlets growth indicated in vitro growth 

condition produced taller plantlets than greenhouse conditions. There were no 

differences in number of glandular and non-glandular trichome on in vitro and 

greenhouse grown leaves of A. annua L. The assembly and analysis of transcriptome 

library using next generation sequencing technology produced 10, 647 gene 

sequences. Of the 10, 647 genes identified through BLAST software, 306 unique 

genes of A. annua L. were classified to be involved in cellular function, biological 
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processes and molecular function. Of the 306 genes, there were 14 unique genes that 

were identified to be involved in metabolite biosynthesis pathways. CYP71AV1 and 

GL3 genes that were involved in artemisinin biosynthesis were chosen for expression 

study of control and mutant plantlets. The mutation density due to ethyl 

methanesulfonate (EMS) treatment using CYP71AV1 promoter gene was 1 in 408 kb 

of nucleotides compared to sodium azide induced mutation with 1 in 816 kb. The 

mutation detection rate for EMS-induced was 2.4 whereas for sodium azide-induced 

was only 1.2 mutations in every 1000 kb of nucleotides. Shoot tips of all the three 

clones of A. annua L. treated with 1% EMS showed consistently higher expression 

level for GL3 gene than in control plantlets. The other plantlets treated with sodium 

azide were not found to have consistently higher expression level than the control 

plantlets. GL3 gene expression was found to be a suitable marker in indicating 

artemisinin yield in A. annua L. initiated from treated shoot tips with 1% EMS.  
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CHAPTER ONE 

INTRODUCTION 
 

 

Malaria is a deadly disease but it is a treatable and preventable disease. Currently it is 

affecting 104 countries around the world. This mosquito-borne disease mostly affects 

children under five years old (WHO, 2012). According to WHO estimates in 2010, 

219 million cases of malaria and an approximate 660 000 deaths were reported with 

about 90% of all deaths occurred in African regions. In Malaysia, 5306 cases 

reported were confirmed of malaria with 16 deaths recorded (WHO, 2012). 

Previously in 1995, 60 000 cases of malaria were reported and there was a drastic 

reduction in malaria prevalence mainly due to strategic control efforts such as 

distribution of insecticide-treated nets and constant indoor residual spraying to areas 

with high malaria risk together with early detection and diagnosis of malaria 

symptoms (West et al., 2013). These efforts of eradication of malaria transmission 

put Malaysia in malaria pre-elimination phase as of December 2012, which saw a 

plummet in reported cases of malaria especially in Sabah, Sarawak and Pahang 

(WHO, 2012). 

  Malaria was caused by protozoa species namely Plasmodium falciparum, P. 

ovale, P. vivax and P. malariae with P. falciparum being the most deadly species of 

Plasmodium and P. vivax being more widespread (Atroosh et al., 2011).  

Predominantly, these protozoa were hosted by Anopheles maculatus, a mosquito 

species found in tropical jungles of Malaysia. With early detection of these P. 

falciparum and P. vivax in Malaysia, primary intervention efforts and effective health 
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care system with full subsidy of quinoline based antibiotics foresee the decrease in 

malaria cases. However, since 2010, a sudden rise in malaria cases was reported in 

Malaysia primarily due to the increasing number of knowlesi malaria cases or 

commonly known as simian malaria (Jiram et al., 2012; Rajahram et al., 2012). P. 

falciparum and the other three Plasmodium species mentioned above were the known 

human infecting protozoa but currently a fifth Plasmodium species strain was found 

infecting humans (White, 2007). This malaria parasite was known to find host in 

long tailed macaques (Macaca fascicularis) and pig tailed macaques (Macaca 

nemestrina) (Bronner et al., 2009) and infects another macaque through mosquitoes; 

Anopheles hackeri (found in Peninsular Malaysia), A. latens (Sarawak) and A. 

balabacencis (Sabah) (Vythilingam et al., 2005). The parasite seemed to have found 

a more stable host in human where the cases of P. knowlesi malaria were reported in 

Kapit district, Sarawak (Singh et al., 2004; Bronner et al., 2009). The transmission 

could be by mosquito bite which previously has bitten macaque with P. knowlesi. 

The pattern of knowlesi malaria infections in Malaysia was observed in regions with 

abundant mosquito due to ineffective malaria eradication programme, for example, 

in Sabah and Sarawak where logging activity is on the rise with loggers often found 

camping deep in jungle for days. Singh et al. (2004) reported P. knowlesi accounted 

for one in five malaria cases in Kapit district which previously mistaken for P. 

malariae and all the reported cases were found in adults. In Sabah, a study done in 

rural area of Kudat district found that children below 15 years old were also infected 

with non-severe knowlesi malaria with uncomplicated disease symptoms. Children 

below 15 years old made up 14% of the malaria cases admitted in Kudat Hospital 

(William et al., 2013). This consistent emergence of knowlesi malaria dominance in 

Malaysia Borneo (Sabah and Sarawak) could be due to a few factors; namely the 

http://en.wikipedia.org/wiki/Macaca_nemestrina
http://en.wikipedia.org/wiki/Macaca_nemestrina
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increasing deforestation in these states, increasing exposure of humans to monkeys 

and vectors and hampering of inter species competition due to effective control of P. 

falciparum and P. vivax malaria prevalence (Rajahram et al., 2012). Such a rise in 

knowlesi malaria is worrisome especially at the time when Malaysia is fighting to 

aiming at total elimination of malaria by 2020 and hence total malaria eradication 

effort (William et al., 2011).  

 With the ever increasing cases of malaria in endemic districts of Sabah and 

Sarawak, artemisinin-based combination therapy (ACT) was suggested by WHO in 

2001 as the first line treatment for malaria (WHO, 2001). Before 1960s, quinine-

based antibiotics treatments effectively controlled malaria. However, emergence of 

multi resistant strain P. falciparum malaria caused alternative treatment to be widely 

sought. The year 1971 saw the discovery of artemisinin compound from traditionally 

used Chinese herb, Artemisia annua L. Artemisinin is a sesquiterpene lactone with a 

unique endoperoxide structure which is complicated, difficult and expensive to be 

synthetically synthesised (Kindermans et al., 2007). The underlying mechanism in 

antimalarial activity of artemisinin is still unclear but the importance of endoperoxide 

bridge in artemisinin after iron activation in specifically and selectively inhibiting the 

endoplasmic reticulum Ca2+ ATPase in P. falciparum is well documented (Teoh et 

al., 2006). Artemisinin’s rapid therapeutic efficacy, short half life and low toxicity in 

human have been recommended to be used in combination with other commonly 

used antimalarial drugs such as lumefantrine and sulfadoxime/pyrimethamine in 

antimalarial therapy now widely known as artemisinin-based combination therapy 

(ACT).  
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 The genus Artemisia (Asteraceae) consists of more than 500 species and till 

to date A. annua L. is the only known species with this secondary metabolite, 

artemisinin (Paddon et al., 2013). However, artemisinin yield often influenced by 

environmental factors such as local temperature, humidity and soil acidity which 

cause inconsistent artemisinin availability in commercial market. Mostly planted as 

crop in Vietnam and China, concentration of artemisinin ranges from 0.01 to 0.8% of 

the plant dry weight (Zhang et al., 2009; Brown, 2010). To date, 400 million courses 

of ACT are required throughout a year especially in poor countries and only about 

100 million courses of ACT were able to be fulfilled in 2011 (WHO, 2012). 

Insufficient supply of artemisinin makes artemisinin relatively an expensive drug for 

countries in poor regions of the world.  

 In Malaysia, the above scenario was also observed in which quinine-based 

antibiotics were still used to alleviate malaria despite recommendations from WHO 

in 2001 to use ACT. High price of this therapy resulted in assignment of different 

regiments of quinine-based drug to patients in Malaysia which took longer period of 

time for the parasite clearance in patients (Barber et al., 2011). ACT is only used as 

the last alternative in Malaysia to fight malaria as a result of high price and low 

supply in local hospitals. With unsuitable environment for A. annua L. growth in 

Malaysia as a crop plant, Malaysia was left to seek an alternative approach in 

producing artemisinin locally to meet the drug’s growing demand and to combat the 

rise of new malaria strain (P. knowlesi) in Malaysia. In vitro culture technology can 

be the alternative to solve these problems. 

 Micropropagation is one of the in vitro culture techniques for plantlet 

multiplication under aseptic environment with controlled temperature, nutrients and 
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light intensity (Zhou & Brown, 2006).  In vitro culture techniques include few 

techniques such as callus culture (Bhojwani & Radzan, 1996), cell suspension culture 

(Bhojwani & Radzan, 1996; Fowler et al., 1998), somatic embryogenesis 

(Zimmerman, 1993; Radzan, 2002) and protoplast cultures (Bhojwani & Radzan, 

1996). These techniques were introduced as an alternative tool for in vitro study and 

production of plant secondary metabolites (Sidhu, 2010). By using in vitro culture 

system, different strategies such as manipulation of growth conditions (McChesney, 

1999), medium formulations (Misawa, 1985; Stafford et al., 1986), usage of plant 

growth regulators (Misawa, 1985) and elicitators (Roberts & Shuler, 1997) have been 

employed to study and improve production of plant secondary metabolites.  

 Till date, many medicinal plants with commercially valuable secondary 

metabolites have been researched and produced in in vitro system, for example 

Corydalis yanhusuo, Dioscorea doryophora, Pinellia ternate, and Salvia miltiorrhiza 

(Tsay & Agarwal, 2005), Charybdis nunidica (Jour & Fourr) Speta (Kongbangkard 

et al., 2005), Stemona tuberose Lour. (Montri et al., 2009) and Dendrobium 

huoshanense C. Z. Tang et S. J. Chang (Luo et al., 2009). However, secondary 

metabolites production in plants often involves complicated biosynthesis pathways. 

Due to this setback, only certain amount of these compounds can be derived using in 

vitro system, for example A. annua L. grown in vitro in USM contains 90 - 300 µg/g 

(DW) of artemisinin compared to 440 µg/g of artemisinin content from A. annua L. 

leaves grown in Vietnamese field (Thu et al., 2011). This low level of secondary 

metabolites in in vitro culture system can be attributed to the influence by temporal 

(temperature) and spatial (environment) factors and vary in production from cell to 

cell (Sidhu, 2010). Heterogeneity of plants and morphological characteristics 

difference of each plant must be addressed and eliminated (Ferreira et al., 2005). One 
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of the solutions that can be used to increase the in vitro production of secondary 

metabolites is by selecting and using high yielding clones in initiation of in vitro 

system by which all the plants will have similar high quality traits and high yield of 

secondary metabolites.  

 Classical breeding involves manual crossbreeding of crops and choosing the 

economically valuable qualities that are viable such as bigger fruits, plants that are 

resistance to disease and seedless fruits (Rommens et al., 2007). This technique of 

crop breeding has been in practice for hundreds of years. One of the setbacks of this 

manual selection is that it takes practically long time span and high number of 

workmanship in large scale breeding process (Turan et al., 2012). The potential to 

improve medicinal plants property and productivity largely depend not only on 

classical breeding methods but also on plant biotechnology techniques. The 

integration of plant breeding and plant biotechnology enables selection of useful 

genotypes, isolation and cloning of commercially important traits and development 

of organisms that are of high quality traits (Tanksley & McCouch, 1997). Thus, 

integration of classical breeding method and plant biotechnology not only shortens 

breeding and selection cycles but also increases productivity. There are many plant 

biotechnology techniques available for the manipulation of DNA, one of it is 

chemical mutagenesis. Chemical mutagenesis can be defined as induction of random 

mutations either by point mutation, deletion, insertion, transversion or transition in 

plant DNA sequences with the use of chemical mutagens (Koorneef, 2002). Though 

some of the mutations created by chemical mutagenesis can be deemed as lethal in 

plants, beneficial new proteins could also be created and studied through this 

technique (Al-Qurainy & Khan, 2009). Mutational specificity can be determined at 

two levels; phenotype and genotype level. Mutational effect occurs not only at DNA 
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stage but also at nucleotide stage (Kodym & Afza, 2003). The inheritable changes 

can be observed at phenotypic level and affects the expression of the given allele 

(Rauf et al., 2010). Morphological studies accompanied by genotypic examination of 

the studied gene provide a better view on the effect of mutagen on the gene (Kostov 

et al., 2007). Through random mutation induced by chemical mutagens, cultivars 

with high expression of selected genes and favourable morphological characteristics 

which also in turn increases productivity of secondary metabolites in A. annua L. 

could be chosen as a starting material for micropropagation of high yielding A. 

annua L. in Malaysia.  

 Glandular trichome in A. annua L. has been identified as the site for 

synthesis, storage and sequestration of artemisinin (Wagner et al., 2004). Lommen et 

al. (2006) reported that increase in glandular trichome density can in turn increase 

the level of artemisinin. Thus, selection and establishment of A. annua L. cultivar 

with high density of glandular trichome on the leaves as the starting material for in 

vitro culture techniques could result in high in vitro artemisinin production. Gene 

GL3 has been identified to be involved in the development of glandular trichome and 

gene CYP71AV1 is involved in the artemisinin biosynthesis pathway (Teoh et al., 

2006; Caro et al., 2007). Induction of point mutations via chemical mutagens could 

offer an alternative in improving the genotypes of A. anuua L. Changes in genes GL3 

and CYP71AV1 mRNA levels due to chemical mutagen treatments could be 

measured using real time PCR. The changes in the transcripts of these two genes 

after the treatment with chemical mutagens will also reveal the co-relation between 

trichome density and artemisinin content in A. annua L. Consequently, a high 

yielding clone with high density of glandular trichome would be chosen as a starting 

material for in in vitro culture technique. 
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1.1 Objectives of study 

 Hence the objectives of this research are:  

1. To investigate and compare the growth of in vitro A. annua L. clones and 

those maintained at greenhouse condition 

2. To identify artemisinin related biosynthetic gene and morphology related 

gene from  A. annua L. transcriptome cDNA library of in vitro leaf tissue 

3. To detect the mutation rate and mutagenic density in A. annua L. plants 

caused by ethyl methanesulfonate and sodium azide  

4. To detect the expression of CYP71AV1 and GL3 genes of mutated A. annua 

L. induced from callus, seeds, shoot tips and nodal segment  
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CHAPTER TWO 

LITERATURE REVIEW 
 

 

2.1 Malaria  

2.1.1 Types of malaria 

Malaria is an infectious disease caused by protozoa of the genus Plasmodium, which 

is carried by female mosquitoes of the genus Anopheles (Bouwmeester et al., 2006). 

The term malaria was derived from the Italian term for disease (mala=bad, aria=air) 

(Goldsmith, 2010).  A group of Italian researchers in 1898 reported the transmission 

of malaria in human was conclusively by anopheline mosquitoes. In 1948, another 

group demonstrated the development of malaria parasites in human liver before 

entering the blood stream. The presence of dormant stages of this parasite in liver 

was only reported in 1982 (Cox, 2010). For more than hundred years, malaria and its 

parasites were actively researched to understand the mechanism of transmission and 

symptoms in human.  

WHO has named five species of Plasmodium that were afflicted to malaria 

with Plasmodium falciparum being rated as the most life threatening species and P. 

knowlesi as the most recent finding in malaria-causing parasite (WHO, 2012). The 

malaria parasite, Plasmodium, is a small and single celled organism (protozoan) that 

lives as a parasite in man and in specific genus of mosquito known as Anopheles. 

There are five different strains of malaria parasite; P.  falciparum and P. knowlesi are 

the causes of fatal malaria (Barber et al., 2011) while P. vivax, P. ovale and P. 

malariae cause more benign types of malaria. Falciparum and knowlesi malaria can 

kill, but the other forms were less likely to prove fatal (Sandhosam & Thomas, 1982; 
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William et al., 2011). There are several stages in the life cycle of the parasite as 

reported by National Institute of Health (NIH) and all are the same for the five types 

(Morrow, 2001). 

Symptoms commonly associated with malaria caused by all the parasite types 

are bouts of chills (ague) and fever lasting several hours for three or four days, 

couple with muscle ache, headache, diarrhea and vomiting. Any delayed treatment 

will cause spleen and liver enlargement, causing anemia to develop and clogging of 

the vessels of cerebral tissues followed by coma and eventually death (Sandhosam & 

Thomas, 1982). In Africa, over 90% of life threatening cases were reported to occur 

in children. Severe malaria is mainly reported in areas with stable endemicity in 

which children with age range of few months to five years old and symptoms such as 

severe anemia, respiratory distress in relation to metabolic acidosis or cerebral 

malaria are frequently recorded (William et al., 2011; WHO, 2012). The severity of 

malaria lowers in older children and adults as a result of increasing partial immunity 

in their immune system. Conversely, in lower endemicity areas, adults and older 

children also inflicted with severe malaria as well as non-immune travelers and 

migrant workers (Barber et al. 2011). Severe malaria is defined as inability to 

swallow tablets, high parasite counts in bloods and evident vital organ dysfunction 

which increases risk of dying.  However, the stated risks depend on the degree of 

abnormality, age, background immunity and access to appropriate treatment (WHO, 

2001). The symptoms of severe knowlesi malaria and multi organ failure 

experienced by patients were reported to be comparable to that of severe falciparum 

malaria reported in adult patients in areas with low transmission rate and unstable 

endemicity (William et al., 2013).   
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A common parasite between human and primate, P. knowlesi, has a 24 hours 

erythrocytic cycle that is likely to accelerate the development of complications. 

Respiratory distress is the frequently recorded complication (Cox-Singh et al., 2008; 

Daneshvar et al., 2009). Clinical relapses were also reported to occur in weeks or 

months after the first infection for both P. vivax and P. ovale. This recurrence was 

accounted to arise even after the patients have left the endemic area which is caused 

by dormant liver form of parasite known as hypnozoites. This form is absent in P. 

falciparum and P. malariae and special treatment targeted at this specific stage in 

liver is required for complete cure (WHO, 2012). 

 

2.1.2 Antimalarial drug resistance 

For decades, malaria is still considered as one of the three deadliest diseases 

affecting 104 countries in developing and poor regions of world. Alongside HIV and 

tuberculosis, malaria is causing poorer countries especially sub-Saharan Africa 

where P. falciparum is the main cause of malaria to lose billions a year due to this 

infectious disease (Ferreira et al., 2005; WHO, 2012). There were an estimated 219 

million cases of malaria and 660 000 deaths reported in 2010. Of the 104 countries 

with malaria, 80% of deaths estimated to occur in only 14 countries with the 

Democratic Republic of the Congo and Nigeria accounted for over 40% of malaria 

deaths worldwide in 2010. There were five malaria eradication phase as outlined by 

WHO, of the 104 countries, 79 countries were classified in malaria control phase, 10 

in pre-elimination phase, 10 in elimination phase and the final five countries which 

were free of ongoing transmission were classified in the prevention of re-introduction 

phase (Figure 2.1) (WHO, 2012).   
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Ferreira et al. (2005) stated that in the early 1960s, P. falciparum malaria 

began to show resistance against quinine-derived drugs. This rapid emergence of 

resistance further complicated malaria control and treatment as few cheap and 

alternative drugs to chloroquine were available especially in African region (D’ 

Alessandro & Buttiens, 2001). Sulphadoxine/pyrimethamine and mefloquine 

resistant strains of falciparum malaria have spread in 1953 and in 1980s -1990s, 

Southeast Asia region countries have reported resistant strain that have spread 

quickly in this region. Cambodia-Thailand border is one the endemic area that 

harbors world’s most widespread multidrug-resistant falciparum malaria (Figure 2.1) 

(Price et al., 2004; Song et al., 2011).  

In 1969, mefloquine was synthesized by US army in Antimalarial Control 

Centre in search of new drug for chemoprophylaxis and then in late 1970s, its 

efficacy against chloroquine resistant falciparum malaria was discovered 

(Wongsrichanalai et al., 2004; Dassonville-Klimpt et al., 2011). The long half-life of 

mefloquine and robust efficacy against falciparum malaria enables it to be used 

widely in malaria prevention drug regimen (Croft & Herxheimer, 2002). Since then, 

approximately 14.5 million malaria patients especially from Brazil have been 

prescribed with this drug (Santelli et al., 2012). In Southeast Asia, Thailand was the 

first region to administer mefloquine in combination with sulfadoxine and 

pyrimethamine in large scale after successful small scale efficacy trial for non-

complicated falciparum malaria. This combination of mefloquine and other drugs 

was established following reports of mefloquine resistance in non-immune Thai 

marine recruit in the year 1982. In the following years, mefloquine resistance became 

widespread to Thai-Cambodian border which is the point of mefloquine resistance to 

other parts of the region. 
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Figure 2.1: World map showing countries with endemic malaria transmission 

phase, malaria elimination phase and malaria free countries 
(Shetty, 2012) 
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Following the isolation and discovery of artemisinin potential in malaria 

eradication, WHO (2004) introduced combination of artemisinin and other quinine 

known as ACT as the first line therapy for severe and non-complicated falciparum 

malaria (Fairhurst et al., 2012). ACT is a treatment using combination of artemisinin 

or its derivative (artesunate, artemether, dihydroartemisinin) and other quinine-based 

drug (amodiaquine, mefloquine, piperaquine, lumefantrine). This was recommended 

as artemisinin has markedly rapid onset of action followed by short half-life in the 

bloodstream where complete elimination of parasite in blood require one to two 

weeks. Thus, to avoid losing artemisinin’s potency and development of resistance in 

falciparum malaria, monotherapy of artemisinin was prohibited by WHO (Nosten et 

al., 2000). Drug pressure was cited as one the main factor involved in selection of the 

resistant strain when the drug is misused or used alone extensively (Wernsdorfer & 

Payne, 1991). ACT has been adopted as first line treatment by 79 countries and 

territories by 2011 for falciparum malaria (WHO, 2012). However, many malaria 

endemic areas continued to use artemisinin monotherapy for treatment of 

uncomplicated malaria (Dondorp et al., 2009). In 2006, there have been reports of 

declination in efficacy of artemisinin-based combination and artesunate monotherapy 

in western Cambodia followed by resistance of falciparum malaria in Thai-Cambodia 

border (Denis et al., 2006; Alker et al., 2007; Phyo et al., 2012). Till date, four 

countries of Greater Mekong subregions (Cambodia, Myanmar, Thailand and 

Vietnam) have reported parasite resistance to artemisinin and its derivatives (Figure 

2.2) (WHO, 2012).  
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Figure 2.2: Timeline of malaria resistance to commonly administered drug     
(Phyo et al., 2012) 
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2.1.3 Malaria in Malaysia 

In Malaysia, malaria have been under control and WHO (2012) have categorised 

Malaysia under pre-elimination phase. Most of the cases reported were from interior 

parts of Sabah with P. falciparum and P. vivax being the more predominant species 

over recent years. Malaysia reported the first case of chloroquine resistant in 1966 

and combination drugs of sulphodoxine-pyrimethamine (SDX/PYR) was used as first 

line treatment to replace chloroquine in Peninsula Malaysia and Sabah in the 1970s 

(Dondero et al., 1975). As the parasites also began to show resistance against 

SDX/PYR combination, artemisinin-based combination therapy (ACT) was used as 

first line drug in East Malaysia (Cox et al., 2003). However, in East Malaysia, 

chloroquine and SDX/PYR were still used for uncomplicated malaria instead of ACT 

in treatment policy although previous study have shown 63.6% of in vivo study of 

vivax malaria patients unresponsive to chloroquine (Atroosh et al., 2011). High cost, 

low supply and treatment policy of Malaysian government for uncomplicated malaria 

reduces import and usage of artemisinin as drug of choice in Malaysia (Barber et al., 

2011). Malaysian falciparum malaria cases was the highest in 1994 with 33 153 

cases and dropped to 605 cases in 2011. Whereas, vivax malaria cases reported in 

1995 was 15 857 and decreased to 628 cases in 2011 (WHO, 2012). The reduced 

malaria cases was attributed to elimination and control steps carried out by 

Malaysian Health Ministry with the application of rapid diagnosis, appropriate and 

timely treatment, surveillance, residual spraying of indoor and circulation of 

insecticide-treated nets at risk targeted area (Barber et al., 2011). However, the 

suppression of P. falciparum and P. vivax in Malaysia caused an increase in P. 

knowlesi infection especially in Sabah and Sarawak regions.  P. knowlesi caused 



17 

 

malaria constituted only one percent of the reported malaria infections in Malaysia 

but in 2011, it was then suddenly increased to 35 % and this trend hampered the 

elimination of malaria from Malaysia. 

P. knowlesi is a zoonotic parasite predominantly found in long tailed 

(Macaca fascicularis) and pig tailed macaques (M. nemestrina) (Bronner et al., 

2009). Eventually through mosquito bites particularly by Anopheles group, this 

simian parasite transmitted to human. Currently, P. knowlesi is identified as the most 

common cause of human malaria in Sabah and Sarawak (Bruce et al., 2000; Cox-

Singh et al., 2008; Daneshvar et al., 2009).  Mosquito vectors in Sabah were 

identified as A. balabacensis and A. donaldi whereas in Sarawak, A. latens was 

discovered to carry this P. knowlesi protozoon (Vythilingam et al. 2005). Several 

factors were attributed to this rise in P. knowlesi cases such as rapid deforestation 

activity in rural area of Sabah and Sarawak which correlated to the reported cases in 

Kudat District Hospital (KDH) where most of the patients were involved in 

timbering. Suppression of P. falciparum and P. vivax was reported to pose less 

competition for P. knowlesi to widespread (Barber et al., 2011; Joveen-Neoh et al., 

2011). 

 

2.2 Asteraceae  

2.2.1 Characteristics of Asteraceae family  

Asteraceae or commonly known as Compositae usually referred to aster, daisy or 

sunflower representing one of the largest family of flowering plants in order 

Asterales, covering more than 1600 genera and 24 000 species of herbs, shrubs and 

http://en.wikipedia.org/wiki/Macaca_nemestrina
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trees that are distributed throughout the world except in Antarctica. Asteraceae is 

economically important for its many garden ornamentals, such as ageratums, asters, 

chrysanthemums, cosmos, dahlias, marigolds, wormwood, sunflower and dandelion 

(Funk et al., 2009). As a monophyletic family, Asteraceae is represented by all its 

members with common morphological characters such as its floral structure which is 

characterized by the aggregation of the flowers into capitula and production of fruits 

typical to this family, the achenes (cypsela), usually present with a pappus 

(Mucciarelli et al., 2002; Funk et al., 2009). Ironically, in spite of their uniform 

characters, Asteraceae can be found on every continent except Antarctica, occupying 

a wide range of habitat types such as open areas, lowland forests and high elevated 

grasslands but they are not commonly found in tropical wet forests. The members of 

this family vary in the habit as some of the members in this family are true epiphytes, 

perennial and annual herbs, shrubs, vines and trees (Cronquist, 1977; Funk et al., 

2005). The pollinations were assisted by bee and fly although some Lepidoptera and 

birds also facilitate the pollinations of the mostly yellow or white flowers. Usually 

the floral heads can consist up to 1000 florets and for species with wind as 

pollination agent, the appearance of the floral heads could be different from most of 

the groups in the family. The chromosome numbers of Asteraceae members range 

from n=2 to n=114 which is a high level of polyploidy (Funk et al., 2005).  

 The Anthemideae is the seventh largest tribe in the Asteraceae. It is 

monophyletic and reported to date to be composed of 109 genera and 1740 species 

(Bremer & Humpries, 1993). The members of this tribe are mostly herbs, sub-shrubs 

or shrubs without latex and with characteristic aromatic leaves. These herbs and 

shrubs are mostly perennial and some are annual with mostly found in Southern 
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Africa, central Asian and the Mediterranean regions (Tutin & Pearson, 1976; Funk et 

al., 2009). The genus Artemisia is one of the largest and reported to be the most 

widely distributed with nearly 100 genera in the tribe Anthemideae of Asteraceae 

(Compositae) (Funk et al., 2009).  

 

2.2.2 Genus Artemisia 

Under the Anthemideae tribe, genus Artemisia is the largest with over 500 species 

that are very diverse in terms of ecology, morphology and chemical constituents 

(Watson et al., 2002; Riggins et al., 2012).  This genus is mainly found in the 

temperate zones of Europe, Asia and North America (Watson et al., 2002; Mehrdad 

et al., 2007; Bora & Sharma, 2011).  Most of the species are perennial and only ten 

species are biennial and annual herbs or small shrubs (Valles et al., 2003; Bora & 

Sharma, 2011). They are at present categorized into five main groups; Artemisia, 

Absinthium (Mill.) Less., Dracunculus (Besser) Rydb., Seriphidium Besser, and 

Tridentatae (Rydb.) McArthur (Tabur et al., 2011). The general morphology of the 

members of the genus Artemisia is described to have strong aroma, alternate leaves, 

small capitula that are usually in racemouse, paniculate or capitates inflorescence, 

obovoid achenes and pappus which is either absent or present as a small scarious ring 

(Mucciarelli & Maffei, 2002). Many species of this genus are important medicinal 

plants and some are important to the locals as food, forage and ornamental plants. 

Although some species are found to be soil stabilizers in arid or semi arid habitats, 

some are found to be toxic or allergic causing whereas some are insidious weeds 
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which affect the yield in crop plantations (Tan et al. 1998; Hayat et al., 2009; Tabur 

et al., 2011).   

WHO (2004) reported that 80% of world population depend on non-

conventional medicine especially on herbal medicine as their first line healthcare. 

Considerable amount of demand for herbal medicines increases the search for 

traditionally used medicinal plants and their use in treating various ailments in 

humans. Following this globally growing trend, genus Artemisia members are also 

researched for its useful medicinal property (Tan et al., 1998; Patil et al., 2011; Abad 

et al., 2012). Phytochemical constituent of genus Artemisia mainly depended on 

various secondary metabolites secretion of the plants. Secondary metabolism in 

plants plays a crucial role as chemical defence against predators, disease and as an 

attractant for pollinators (Tan et al., 1998). Analysis of chemical composition of 

essential oils of genus Artemisia displayed a range of phytochemicals; mainly 

terpenoids, cumarins, acetylenes, flavonoids, sterols, and caffeoylquinic acids (Bora 

& Sharma, 2011).  

A significant variation in terpene constituents of essential oils in intraspecific 

species level indicated involvement of few factors such as environment and genetics 

(Ferreira et al., 1995). Plants growing at different altitudes or plant ontogeny 

influences essential oil compositions, whereas some plant secondary metabolites 

content and quality varies according to fertilizers and pH of soils, location, 

chemotype or subspecies, harvesting season, plant part harvested, methods of drying, 

plant growth stage and extraction method (Gupta et al., 2002). High concentrations 

of volatile terpenes in leaves and flowers of some plants in genus Artemisia gives the 

plants their distinct pungent and aromatic smell. Plants species like A. annua, A. 
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maritime, A. absinthium, A. afra, and A. scoparia (Waldst et Kit) are especially high 

in terpenoids (Hayat et al., 2009; Bora & Sharma, 2011).  

 

2.2.3    Artemisia annua L. 

2.2.3.1 Botany of Artemisia annua L. 

One of the very important members of genus Artemisia known for its biologically 

active compounds is Artemisia annua L. A. annua L. is a highly aromatic annual herb 

found mainly in Vietnam and China in the Asia region. It is native to Asia and is 

commonly known as qinghaousu in China. This annual wormwood, as it is known in 

European region, occurs naturally as part of the steppe vegetation in the northern 

parts of Chahar and Suiyuan provinces (40ºN, 109ºE) in China, at 1000 – 1500 m 

above sea level (Bouwmeester et al., 2006).  The plant naturalizes in many countries 

such as Argentina, Bulgaria, France, Hungary, Romania, Italy, Spain, the United 

States and the former Yugoslavia (Klayman, 1989).  

 Ferreira et al. (1995) stated that A. annua L. is a short day plant with a critical 

photoperiod of 13.5 hour. This vigorous weedy annual shrub is usually single 

stemmed with height reaching about two meter with alternate branches and aromatic 

leaves which are also alternate ranging from 2.5 to 5.0 cm in length. A noticeable 

morphology of  A. annua L. is its tiny yellow nodding flowers (capitula) which is 

only 2 or 3 mm across and are displayed in lose panicles containing numerous, 

greenish or yellowish, bisexual central (disc) florets containing little nectar and 

pistillate marginal (ray) florets.  
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2.2.3.2 Trichomes of Artemisia annua L. 

Trichome in plants is identified as key anatomical feature used in plant taxonomy 

(Duke & Paul, 1993). Plant trichome is defined as protruding plant epidermis or also 

known as plant appendages that varies in height/weight ratio with multitude 

appearance which is distinguishable in plant species of Asteraceae family (Kjaer, 

2012). There are two distinct biotypes of trichome; glandular secreting trichome 

(GST) and non glandular trichome (NGT) (Duke, 1994; Duke et al., 1994). Basically 

both these biotypes of trichomes do not differ from each other except for the absence 

of epicuticular sac in non glandular trichome (Wagner et al., 2004). NGT are non 

secreting and have protuberance stalk that appear as hairs, hooks, umbrellas and 

plates with various roles such as cold/heat insulator, assisting seed dispersal, 

preventing desiccation and deterring from herbivore (Monteiro et al., 2001; Kjaer, 

2012). On the other hand, there are two variation in GST biotype; capitates and 

peltates. The only difference between these two biotypes is the presence of stalked 

protuberance in peltates trichome which lacks in capitates trichome (Carpenter, 1999; 

Hayat et al., 2009). 

 The presence of trichomes (GST and NGT) and their mechanical and 

morphological features are very influential in determining the plants ecological 

distribution and physiological properties (Wagner et al., 2004; Rusydi et al., 2013). 

Trichome type, size, hair orientation, shape and surface texture are some important 

structural keys in determining the ability of plants to adapt and survive in arid 

habitats and harsh environment (Huang et al., 2008). NGT in A. annua L. is proposed 

to be formed at any stage of plant organ maturation and senescence could occur 

before or after the maturation of plant organ and some are even not shed and remain 
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on the plant until plant senescence (Ascensao et al., 1997; Wagner et al., 2004; 

Kjaer, 2012). The live and dead NGT protect the flower bud from pest, assist water 

absorption and regulate plant temperature (Levin, 1973; Werker et al., 1994).  

The surfaces of leaves, floral buds, florets and receptacles of A. annua L. bear 

abundant 10-celled biseriate glandular trichomes (Arsenault et al., 2010). These 

biseriate glandular trichomes sequester artemisinin as well as other highly aromatic 

volatile oils (Ferreira & Janick, 2009). Three apical cell pairs signifies the secretory 

head or also known as epicuticular sac which consists of a pair of secretory cells with 

non-photosynthetic amoeboid plastids and two pairs of cells with amoeboid 

chloroplasts indicate the presence of photosynthetic thylakoids (Duke & Paul, 1993; 

Duke et al., 1994; Wagner et al., 2004). Whereas, the stalk cell plastids contains 

starch grains and in basal cells, thylakoids are occasionally present (Tellez et al., 

1999). These specialized chloroplasts in GST were assisting in artemisinin 

production. The glandless trichome lacks these specialized chloroplasts hence do not 

produce artemisinin or its derivatives (Duke & Paul, 1993). The GST was found to 

be the hub for synthesis, storage and sequester of unwanted products known as 

secondary metabolites that could be toxic to the plant itself (Levin, 1973).  Although 

NGT lacks secreting sacs, evidence showed the presence of some monoprenoids in 

cells that were able to function as pest deterrent phytochemicals. Comparative study 

of NGT and GST biotypes showed that both were capable of synthesis and sequester 

of secondary metabolites. However, amount and types of secondary metabolites 

accumulated are much less in glandless biotype compared to glanded biotype. This 

indicated that glandless trichome was able to sequester some compounds of 

secondary metabolites which did not include artemisinin and its derivatives (Duke & 
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Paul, 1993; Wagner et al, 2004). Thus, GST (capitates and peltates) of A. annua L. is 

the sole storage, synthesis and sequester site for artemisinin and its derivatives along 

with other secondary metabolites (Duke, 1994). Similar findings were also reported 

and confirmed that glandular trichomes contain necessary biosynthetic enzyme for 

the synthesis of flavonoid, isoprenoid and other terpenes (Tellez et al., 1999). 

 

2.2.3.3 Chemical constituents of Artemisia annua L. 

Ferreira and Janick (2009) reported that traditionally A. annua L. plant was used to 

treat fevers and hemorrhoids. This plant has been used to alleviate high fevers in 

traditional Chinese herbal medicine. It was also used in the crafting of aromatic 

wreaths, as a flavoring for spirits such as vermouth and also as a source of essential 

oils for the perfume industry (Hu et al., 1993).  Woerdenbag et al. (1994) stated that 

the essential oils of A. annua L. contain at least 40 volatile compounds and several 

non-volatile sesquiterpene, of which artemisinin and other derivatives 

(dihydroartemisinic acid, artemisinic acid and dihydroartemisinic aldehyde) are the 

most important due to their antimalarial properties. Artemisinin is an important 

natural sesquiterpene lactone with an internal peroxide moiety which causes 

antimalarial effect against susceptible and multi-drug resistant Plasmodium (Paniego 

& Guilietti, 1996). The produced artemisinin accumulates mainly in leaves and 

flowers buds in concentrations that range from 0.01% to 0.86% dry weight (DW) 

depending on the variety (Paniego & Guilietti, 1996).  

A comparative study of essential oil content in glanded and glandless biotype 

of trichome showed that there were 78 compounds identified in glanded biotype 
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