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ALGORITMA PENGOPTIMUMAN KAWANAN ZARAH DIPERTINGKATKAN 

DENGAN STRATEGI PEMBELAJARAN TEGUH UNTUK PENGOPTIMUMAN 

GLOBAL 

 

ABSTRAK 

Pengoptimuman Kawanan Zarah (PSO) merupakan satu algoritma pencarian metaheuristik 

(MS) yang diinspirasi oleh interaksi sosial kumpulan burung atau kawanan ikan semasa 

pencarian sumber makanan. Walaupun PSO asal adalah satu teknik pengoptimuman yang 

berkesan bagi menyelesai masalah pengoptimuman global, algoritma ini mengalami 

beberapa kelemahan dalam penyelesaian masalah yang berdimensi tinggi dan kompleks, 

seperti kadar penumpuan yang lambat, kecenderungan yang tinggi untuk terperangkap dalam 

optima setempat dan kesulitan dalam penyeimbangan penjelajahan/penyusupan. Untuk 

mengatasi kelemahan-kelemahan tersebut, penyelidikan ini telah mencadangkan empat 

variasi PSO yang dipertingkatkan, iaitu, PSO dengan Pengajaran and Pembelajaran Sebaya 

(TPLPSO), PSO Dua Lapis Adaptif dengan Strategi Pembelajaran Elit (ATLPSO-ELS), PSO 

dengan Sambungan Topologi Melalui Perubahan Masa Adaptif (PSO-ATVTC) dan PSO 

dengan Peruntukan Tugas Secara Dua Peringkat (PSO-DLTA). Satu fasa pembelajaran 

alternatif telah dicadangkan dalam TPLPSO dengan menawarkan arah pencarian baharu 

kepada zarah-zarah yang gagal untuk meningkatkan kecergasannya dalam fasa pembelajaran 

sebelumnya. Dua mekanisme penyesuaian untuk peruntukan tugas pula telah dicadangkan 

dalam ATLPSO-ELS bagi meningkatkan keupayaan algoritma dalam penyeimbangan 

penjelajahan/penyusupan semasa proses pengoptimuman. Sebagai satu variasi PSO yang 

dilengkapi dengan pelbagai strategi pembelajaran, PSO-ATVTC mempunyai satu 

mekanisme yang berkesan dan cekap bagi menyesuaikan kekuatan penjelajahan/penyusupan 

bagi zarah-zarah yang berbeza dengan memanipulasikan struktur kejiranan mereka secara 

sistematik. Berbeza dengan kebanyakan variasi-variasi PSO yang sedia ada, PSO-DLTA 

mempunyai kemampuan untuk melaksanakan peruntukan tugas secara peringkat dimensi. 
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Secara khususnya, modul peruntukan tugas peringkat dimensi (DTA) yang dicadangkan 

dalam PSO-DLTA berkeupayaan untuk memperuntukkan tugas-tugas pencarian yang 

berbeza kepada komponen dimensi zarah yang berlainan berdasarkan ciri-ciri jarak yang 

unik di antara sesuatu zarah dan zarah global terbaik dalam setiap dimensi. Prestasi 

keseluruhan bagi keempat-empat variansi PSO yang dicadangkan telah dibandingkan dengan 

variasi-variasi PSO dan algoritma-algoritma MS yang sedia ada. 30 fungsi penanda aras 

yang mempunyai ciri-ciri berbeza dan tiga masalah reka bentuk kejuruteraan dalam dunia 

sebenar telah digunakan. Keputusan eksperimen yang dicapai oleh setiap variasi PSO yang 

dicadangkan juga dinilai secara menyeluruh dan disahkan melalui analisis statistik bukan 

parametrik. Berdasarkan keputusan eksperimen, TPLPSO mempunyai kerumitan pengiraan 

yang paling rendah dan algoritma ini menunjukkan kejituan pencarian, kepercayaan 

pencarian dan kecekapan pencarian yang baik dalam penyelesaian fungsi penanda aras yang 

mudah. ATLPSO-ELS mencapai kemajuan prestasi yang ketara, dari segi kejituan pencarian, 

kepercayaan pencarian dan kecekapan pencarian, dalam penyelesaian fungsi penanda aras 

yang lebih mencabar, namun dengan peningkatan kerumitan pengiraan. Sementara itu, PSO-

ATVTC dan PSO-DLTA berjaya menyelesai fungsi-fungsi penanda aras yang mempunyai 

ciri-ciri berbeza dengan kejituan pencarian, kepercayaan pencarian dan kecekapan pencarian 

yang memuaskan, tanpa menjejaskan kerumitan rangka kerja algoritma. Antara kempat-

empat variansi PSO yang dicadangkan, PSO-ATVTC telah dibuktikan sebagai variasi yang 

berprestasi terbaik, memandangkan algoritma ini menghasilkan kemajuan prestasi yang 

paling baik, dengan kerumitan pengiraan yang kedua terendah.  
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ENHANCED PARTICLE SWARM OPTIMIZATION ALGORITHMS WITH 

ROBUST LEARNING STRATEGY FOR GLOBAL OPTIMIZATION 

 

ABSTRACT 

Particle Swarm Optimization (PSO) is a metaheuristic search (MS) algorithm inspired by the 

social interactions of bird flocking or fish schooling in searching for food sources. Although 

the original PSO is an effective optimization technique to solve the global optimization 

problem, this algorithm suffers with several drawbacks in solving the high dimensional and 

complex problems, such as slow convergence rate, high tendency to be trapped into the local 

optima, and difficulty in balancing the exploration/exploitation. To mitigate these drawbacks, 

this research has proposed four enhanced PSO variants, namely, Teaching and Peer-Learning 

PSO (TPLPSO), Adaptive Two-Layer PSO with Elitist Learning Strategy (ATLPSO-ELS), 

PSO with Adaptive Time-Varying Topology Connectivity (PSO-ATVTC), and PSO with 

Dual-Level Task Allocation (PSO-DLTA). An alternative learning phase is proposed into the 

TPLPSO to offer the new search direction to the particles which fail to improve its fitness 

during the previous learning phase. Two adaptive mechanisms of task allocation are 

proposed into the ATLPSO-ELS to enhance the algorithm’s capability in balancing the 

exploration/exploitation during the optimization process. Being a PSO variant equipped with 

multiple learning strategies, PSO-ATVTC has an effective and efficient mechanism to 

adaptively adjust the exploration and exploitation strengths of different particles, by 

systematically manipulating their respective neighborhood structures. Unlike most existing 

PSO variants, PSO-DLTA has the capability of performing the dimension-level task 

allocation. Specifically, the dimension-level task allocation (DTA) module proposed into the 

PSO-DLTA is able to assign different search tasks to different dimensional components of a 

particle, based on the unique distance characteristics between the particle and the global best 

particle in each dimension. The overall performances of the four proposed PSO variants have 

been compared with a number of existing PSO variants and other MS algorithms on 30 
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benchmark functions with different characteristics and three real-world engineering design 

problems. The experimental results obtained by each proposed PSO variant are also 

thoroughly evaluated and verified via the non-parametric statistical analyses. Based on the 

experiment results, TPLPSO is observed to have the lowest computational complexity and 

this algorithm exhibits excellent search accuracy, search reliability, and search efficiency in 

solving simpler benchmark functions. ATPLSO-ELS achieves significant performance 

improvement, in terms of search accuracy, search reliability, and search efficiency, in 

solving more challenging benchmark functions, with the cost of increasing computational 

complexity. Meanwhile, PSO-ATVTC and PSO-DLTA successfully solve the benchmark 

functions with different characteristics with promising search accuracy, search reliability, 

and search efficiency, without severely compromising the complexities of algorithmic 

frameworks. Among the four proposed PSO variants, PSO-ATVTC is concluded as the best 

performing variant, considering that this algorithm yields the most significant performance 

improvement, by incurring the second lowest computational complexity. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Concept of Global Optimization 

Global optimization is a branch of applied mathematics and numerical analysis that deals 

with the optimization of a function or a set of functions (Li, 2010, Liberti, 2008, van den 

Bergh, 2002). It is a process of finding the best solution of a given problem that would have 

either maximized or minimized the problem objective and to satisfy all criteria associated 

with the problem objective (Lam et al., 2012, Chetty and Adewumi, 2013, van den Bergh, 

2002). This concept is widely used by humankind in solving various problems, ranging from 

the development of cutting-edge technologies to human’s daily life. For instance, geneticists 

are interested in designing the optimal sequences of deoxyribonucleic acid (DNA) to achieve 

the maximum reliability of molecular computation (Shin et al., 2005, Zhang et al., 2007, 

Blum et al., 2008). Meanwhile, economists desire to minimize their prediction error for more 

accurate prediction of the stock market trends (Yu et al., 2009, Majhi et al., 2009, Singh and 

Borah, 2014).    

From the mathematical perspective, the aim of global optimization is to determine 

the optimal (or best) solution x out of a set of solutions
D , where ],...,,[

21 D
xxxx   and 

D

denote a D-dimensional vector and the D-dimensional problem search space, respectively 

(Lam et al., 2012, Chetty and Adewumi, 2013, van den Bergh, 2002). The optimality of the 

solution vector x is assessed through the objective function ObjV of a given problem, where 

ObjV is used to characterize the landscape of search space
D . The outcome of this 

assessment is scalar and it is represented by an objective function value ObjV (x). A global 

optimization can be subjected to M constrains, i.e. C1(x), C2 (x), … , CM (x) to determine if 

the solution vector x is a feasible solution to the search space
D . For an unconstrained 

minimization problem, the global optimum solution 
*x  is defined as (Chetty and Adewumi, 

2013): 
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    } allfor   )()(:{)( ** DD xxObjVxObjVxxObjV               (1.1) 

As shown in Equation (1.1), the global optimum solution 
*x of a given minimization problem 

yields the lowest objective function value in the entire search space
D . On the other hand, 

the global optimum solution
*x of an unconstrained maximization problem produces the 

highest objective function value in the entire search space and it is stated as (Chetty and 

Adewumi, 2013): 

   } allfor   )()(:{)( ** DD xxObjVxObjVxxObjV               (1.2) 

 Global optimization is a fast growing and significant research field, considering that 

it plays important role in various practical application fields such as business, science, 

engineering, finance, and many other fields. Nevertheless, it has become a more challenging 

task, attributed to the escalating complexities of the problem search spaces. A wide variety 

of optimization techniques are developed to find the global optima of these challenging 

problems. In the following section, the global optimization algorithms that are used to solve 

the global optimization problems are presented. Without loss of generality, this thesis will 

focus on the global minimization problems in the following chapters. Specifically, these 

global minimization problems have single objective and without constraints in the search 

space
D , except the constraint of the search domain.  

 

1.2 Global Optimization Algorithm 

Global optimization involves the searching of the best possible solution to a given problem 

within a reasonable time limit. There are numerous global optimization algorithms 

developed to deal with this task. One of the factors that determine the ability of a global 

optimization algorithm in finding the global optimum of a given problem is the complexity 

of the search space. For example, it is more likely for a global optimization algorithm to find 

the global optimum of a simple unimodal function than a hybrid composition benchmarks. In 

general, the global optimization algorithms which are used to tackle the global optimization  
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Figure 1.1: Categorization of global optimization algorithms (Li, 2010, Weise, 2008). 

 

problems can be categorized into two basic classes, namely deterministic and probabilistic 

algorithms (Li, 2010, Chetty and Adewumi, 2013, Weise, 2008), as illustrated in Figure 1.1. 

 

1.2.1 Deterministic Algorithm 

As illustrated in Figure 1.1, deterministic algorithms include the state space search, branch 

and bound, algebraic geometry, gradient search, and others (Weise, 2008). These algorithms 

share a common characteristic, i.e. they employ the exact methods to solve the global 

optimization problems (Chetty and Adewumi, 2013, Li, 2010). These exact methods perform  
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Figure 1.2: Fitness landscape with sufficient gradient information (Liberti, 2008, Li, 2010). 

 

the exhaustive search of solution space to obtain the global optimum of a given problem. 

These exhaustive searches, however, are only feasible when there is sufficient gradient 

information of the objective function (Li, 2010, del Valle et al., 2008). For example, the 

fitness landscape of a unimodal function, as illustrated in Figure 1.2, consists of clear 

relation between the possible solutions and the objective function. This characteristic enables 

the deterministic algorithms to exhaustively explore and evaluate every possible solution in 

the search space of unimodal function, and therefore obtain the global optimum.  

On the other hand, it is impractical to use the deterministic algorithms to find the 

global optimum when the objective function of a given problem is too difficult, or has 

insufficient or no gradient information for the exhaustive search. Generally, an objective 

function is considered difficult to solve if it is not differentiable, not continuous, or has 

excessive amount of local optima in the fitness landscape (Li, 2010). The fitness landscapes 

of some difficult objective functions are presented in Figure 1.3.  For example, the fitness 

landscape in Figure 1.3(a) has too many local optima and the deterministic algorithms do not 

know the right direction during the search process. Meanwhile, the fitness landscape as 

shown in Figure 1.3(b) exhibits deceptiveness and it tends to mislead the deterministic 

algorithms away from the global optimum. Figures 1.3(c) and 1.3(d) show that the global 

optima of objective functions are located on the plateaus and the fitness functions do not 

provide any meaningful gradient information to the deterministic algorithms to guide the 

search. 

 

x 

O
b

jV
(x

)  
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(a) (b) 

  

(c) (d) 

Figure 1.3: Different properties of difficult fitness landscapes: (a) multimodal, (b) deceptive, 

(c) neutral, and (d) needle-in-a-haystack (Blum et al., 2008, Weise, 2008).  

 

1.2.2 Probabilistic Algorithm 

As depicted in Figure 1.3, it can be observed that the objective functions with difficult fitness 

landscapes impose severe challenges to the deterministic algorithms and this inevitably leads 

to the poor optimization results. The inferior performance of these exhaustive approaches 

eventually bring the era of the stochastic-based probabilistic algorithms. Unlike the 

deterministic approach, the probabilistic algorithms are derivative-free and they tend to 

exhibit relatively resilient search performance in various types of optimization problems, 

including those with multimodal, deceptive, or noncontinuous fitness landscapes. Most of 

the probabilistic algorithms are Monte Carlo-based (Krauth, 1996), considering that these 

algorithms employ the randomization in determining the solutions of global optimization 

problems (Chetty and Adewumi, 2013).  
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Metaheuristic (Bianchi et al., 2009, Blum and Roli, 2003) is another important 

element that could be found in the probabilistic algorithms. Specifically, metaheuristic helps 

the probabilistic algorithms to decide which candidate solutions to be processed and how to 

generate the new candidate solutions based on the currently gathered information. This 

process is performed stochastically by employing the statistical information obtained from 

the samples in the search space or based on an abstract model inspired from a natural 

phenomenon or a physical process (Li, 2010, Weise, 2008). For instance, simulated 

annealing (SA) (Kirkpatrick et al., 1983) utilizes the Boltzmann probability factor of atom 

configurations of solidifying metal melts to determine which candidate solutions to be 

processed next. On the other hand, the extremal optimization (EO) (Boettcher and Percus, 

1999) takes the inspiration from the metaphor of thermal equilibria in physics.   

An important class of probabilistic Monte Carlo metaheuristic is the evolutionary 

computation (EC) (De Jong, 2006), which is also a class of soft computing as well as a part 

of the artificial intelligence, as illustrated in Figure 1.1. EC-based probabilistic algorithms 

rely on the concept of a population of individuals to solve a given problem, where each 

individual represents a candidate solution in the problem search space. The probabilistic 

search operators of EC algorithms are used to iteratively refine the multiple candidate 

solutions, in order to ensure these individuals evolve towards the increasingly promising 

solutions. Two of the most important members in EC class are evolutionary algorithm (EA) 

(Back, 1996) and swarm intelligence (SI) (Bonabeau et al., 1999).  

The developments of the EA-based probabilistic algorithms are inspired by the 

natural evolution in the biology world (Back, 1996). The probabilistic search operators of 

EAs that are used to generate the new candidate solutions are mimicked from the nature 

evolution processes such as natural selection and survival of the fittest. Genetic algorithm 

(GA) (Goldberg and Holland, 1988, Weise, 2008) is a subclass of EA and this algorithm 

mimics the metaphor of natural biological evolution via the mechanisms of mutation, 

crossover, and selection. Evolutionary programming (EP) and evolutionary search (ES) are 

another two important members of EA (De Jong, 2006, Back, 1996). Both of these 
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algorithms share many similarities in term of search mechanism, except that EP is not 

equipped with the recombination operator. Another difference that distinguishes these two 

EAs is the characteristic of their respective selection operators (Li, 2010). Specifically, EP 

employs a soft selection mechanism, known as the stochastic-based tournament selection, to 

offer the individuals with inferior solutions a probabilistic opportunity to survive in the next 

generation. On the other hand, ES uses the deterministic selection (Weise, 2008), i.e. a hard 

selection mechanism that inhibits the survival of worst individual in the next generation. 

Meanwhile, both of the genetic programming (GP) (Koza, 1992) and gene expression 

programming (GEP) (Ferreira, 2001, Ferreira, 2004) are used to evolve the computer 

programs. Unlike GP where each individuals are encoded as nonlinear entities of different 

sizes and shapes (parse trees), the individuals in GEP are first expressed as linear strings of 

fixed length (genome), and then translated as nonlinear entities of different sizes and shapes 

(simple diagram representation of expression trees) (Ferreira, 2001, Ferreira, 2004). GEP is 

more versatile than GP, considering that the former successfully creates the separate entities 

of genome (genetype) and expression tree (phenotype) (Ferreira, 2001, Ferreira, 2004).  

SI is another important class of probabilistic Monte Carlo metaheuristic in EC. 

Generally, SI takes inspiration from the natural and artificial systems composed of 

population of simple agents that coordinate using decentralized control and self-organization 

(Bonabeau et al., 1999). Compared to the EA that primarily focuses on the competitive 

behavior in biological evolution, SI studies on the collective behaviors exhibited by the local 

interactions of the individuals with each other and with the environments, which could 

eventually lead to the emergence of intelligent global behavior (Bonabeau et al., 1999). One 

example of SI-based global optimization algorithm is the ant colony optimization (ACO) 

(Dorigo and Blum, 2005, Dorigo et al., 1996) that is inspired by the foraging behavior of 

ants. This algorithm is initially proposed to search for an optimal path in graph with a set of 

software agents called “artificial ant”. Particle swarm optimization (PSO) (Kennedy and 

Eberhart, 1995, Banks et al., 2007, del Valle et al., 2008) is another well-known member of 

SI and it is inspired by the collaborative behavior of a swarm of fishes or birds in searching 
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for foods. Recently, a new form of SI, namely the Teaching and Learning Based 

Optimization (TLBO) (Rao et al., 2011, Rao et al., 2012) is proposed. Unlike the ACO and 

PSO that emulate the collective behaviors of insects and animals, the development of TLBO 

is motivated by the human teaching and learning paradigm in school. Besides these three 

algorithms, more inspiring SI-based algorithms have been proposed in the past decade to 

capitalize the benefits of decentralized and self-organizing behaviors of the SI systems in 

tackling various types of challenging optimization problems. Considering that this thesis 

focuses on developing the new PSO algorithms, the following section in this chapter will 

discuss the basic concept of PSO in detail.  

 

1.3 Particle Swarm Optimization 

As explained in the previous subsection, the development of PSO is motivated by the 

collective and collaborative behaviors of bird flocking and fish schooling in searching for 

foods (Kennedy and Eberhart, 1995, Eberhart and Shi, 2001, Banks et al., 2007, del Valle et 

al., 2008), as illustrated in Figure 1.4. This SI-based algorithm was first proposed by 

Kennedy and Eberhart in 1995. As a population-based probabilistic Monte Carlo 

metaheuristic, PSO employs a set of software agents called particles that fly through the 

multidimensional problem hyperspace with given velocity  to simultaneously evaluate many 

points in the search space. Specifically, the position of each particle in the search space 

represents a potential solution of a given optimization problem. Meanwhile, the location of 

the food source where these particles are searching for is regarded as the global optimum of 

problem. Compared to most of the EC-based algorithm, the PSO particles have more 

effective memory capability, considering that these particles are able to remember their 

previous best positions (self-cognitive experience) as well as the neighborhood best position 

(social experience). These two experiences are the vital components in PSO learning strategy 

and they are used to adjust the flying direction of each PSO particle in the search space 

(Kennedy and Eberhart, 1995, Eberhart and Shi, 2001).  
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(a) (b) 

Figure 1.4: The collective and collaborative behaviors of (a) bird flocking and (b) fish 

schooling in searching for foods. 

 

 During the search process, all particles have a degree of freedom or randomness in 

their movements. This characteristic allows each individual in the particle swarm to scatter 

around and move independently in the problem search space. Besides navigating through the 

problem search space independently and stochastically, these particles also interact with its 

neighborhood members via the information sharing mechanism. Specifically, the best 

performing particle in a particular neighborhood structure will announce its location in the 

search space to its neighborhood members via some simple rules. The social interaction exist 

between the particles in the problem search space enables the PSO population gradually 

moves towards the promising regions from different directions, thereby leads to the swarm 

convergence (Kennedy and Eberhart, 1995, Eberhart and Shi, 2001).  Commonly, swarm 

convergence is attained when the PSO swarm is no longer able to find new solutions or the 

algorithm keeps searching on a small subset region of the search space (Li, 2010).   

 PSO has captured much attention in the research arena of computational intelligence 

since its inception, due to its effectiveness and simple implementation in solving 

optimization problems. For example, a quick browse on IEEE Xplore with a simple query 

“particle swarm optimization” returns more than 12,000 hits for papers published after year 

2000. The current relevance of PSO can also be shown through the visibility of this topic at 

the Science Direct database. Figure 1.5 illustrates an important number of PSO-related 
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research publications per year in Science Direct database. It demonstrates a growing trend 

despite the item related to PSO first appeared in 1995, implying that PSO is still a research 

subject of great interest. To further emphasize the importance of PSO in the research 

community, many scientists and engineers have capitalized this algorithm to solve many 

real-world engineering design problems because PSO has fast convergence speed and 

requires less parameter tunings (del Valle et al., 2008, Banks et al., 2007). Some of these 

engineering design problems involve power system design (del Valle et al., 2008, AlRashidi 

and El-Hawary, 2009, Neyestani et al., 2010, Wang et al., 2011, Wang et al., 2013a, Zhang 

et al., 2012), artificial neural network (ANN) training (Mirjalili et al., 2012, Yaghini et al., 

2013), data clustering (Shih, 2006, Yang et al., 2009, Kiranyaz et al., 2010, Sun et al., 2012), 

data mining (Wang et al., 2007, Özbakır and Delice, 2011, Sarath and Ravi, 2013), 

parameter estimation and identification of systems (Liu et al., 2008, Modares et al., 2010, 

Sakthivel et al., 2010), and many other engineering problems (Huang et al., 2009, Lin et al., 

2009, Sharma et al., 2009, Yan et al., 2013, Sun et al., 2011). 

 

 

Figure 1.5: Number of research publications per year for PSO in Science Direct database. 
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1.4 Challenges of PSO in Global Optimization 

Although PSO is a popular choice of optimization technique in solving the global 

optimization problems, earlier research reveals that this SI-based algorithm suffers with 

some drawbacks. These drawbacks could jeopardize the search performance of PSO and thus 

restrict the application of this algorithm in solving the real-world problems. This section 

aims to cover the challenges faced by PSO in global optimization and how these challenges 

affect the algorithm’s optimization capability.  

 One of the main concerns on PSO is that this algorithm and most of its existing 

variants do not offer the alternative learning phase to the particles when the latter fails to 

improve the quality of their solution (i.e., fitness) during the optimization process. Each PSO 

particle updates its new solutions by referring to its self-cognitive experience and the social 

experience. Considering that some random movements are involved during the search 

process, there is a probabilistic opportunity for the particle to produce a new solution with 

less promising quality (i.e., fitness) as compared to its previous one. Under this scenario, the 

particle’s convergence speed towards the global optimum solution might slow down, 

considering this particle is not on the right trajectory to locate the global optimum.  

 Another challenging issue of PSO is that, although the neighborhood best particle 

(social experience) is crucial in guiding the PSO swarm during the search process, the 

neighborhood best particle has the poorest learning strategy to update itself (Kiranyaz et al., 

2010). For the neighborhood best particle, its personal and neighborhood best positions are 

same and this similarity inevitably nullifies the self-cognitive and social components of 

particle during the velocity update (Kiranyaz et al., 2010). As compared to other population 

members, the neighborhood best particle suffers with higher risk to stagnate at the local 

optimum or any arbitrary point in the search space because of the zero velocity produced by 

the nullified effect. Consequently, the poor optimization results are delivered (Clerc and 

Kennedy, 2002, van den Bergh, 2002, Ozcan and Mohan, 1999).  

   PSO also suffers with the intense conflict between exploration and exploitation 

searches (Shi and Eberhart, 1998). Specifically, exploration encourages the algorithm to 
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wander around the entire search space to cover the unvisited regions, whereas exploitation 

emphasizes on the local refinement of the already found near-optimal solutions. Neither of 

these two contradict strategies should be overemphasized because excessive exploration 

tends to consume more computation resources, whereas excessive exploitation could lead the 

PSO towards the premature convergence. In general, the premature convergence is 

undesirable and it is identified when the PSO converges to a local optimum while there are 

other better locations existing in the fitness landscape than the currently searched area 

(Ozcan and Mohan, 1999, Clerc and Kennedy, 2002, van den Bergh and Engelbrecht, 2004, 

Liang et al., 2006, van den Bergh and Engelbrecht, 2006).  

 The universality and robustness of the PSO and most of its variants in tackling the 

diverse set of global optimization problems with different properties are also questionable. 

The inability of the PSO to best cope with all problems is attributed to the fact that different 

problems have differently shaped fitness landscape. The problem’s difficulty is further 

compounded by the fact that in a certain benchmark, such as the composition function 

(Suganthan et al., 2005), the shape of the local fitness landscape in different subregions may 

be significantly different (Li, 2010, Li et al., 2012). To effectively solve these complex 

problems, different PSO particles should play different roles (i.e., perform different learning 

strategies) in different locations of fitness landscape and different search stages. However, 

most of the PSO variants that have been proposed so far use only one type of learning 

strategy and thus have limited choices of exploration/exploitation strengths to perform the 

search in different subregions of the search space (Wang et al., 2011).  

 Finally, it can also be observed that the original PSO and most of its variants tend to 

restrict the PSO particle to perform one type of learning strategy at the population level or 

the individual level. For population level, all particles in the population need to perform one 

type of learning strategy. Meanwhile, for the individual level, each particle can choose the 

desired learning strategy based on some decision making mechanisms. In these two 

approaches, the particle performs the same learning strategy in all dimensional components, 

without considering the particle’s characteristics in each dimension of the search space. 
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According to the “two step forward, one step back” phenomenon as explained by van den 

Bergh and Engelbrecht (2004), different particles in PSO could have different characteristics 

in different dimension of the search space. These unique characteristics should be capitalized 

to assign the appropriate learning strategy to each dimensional component of particle.   

 

1.5 Research Objectives 

As discussed in the previous subsection, there are several main issues encountered by the 

original PSO and some of its existing variants, which tend to restrict their optimization 

capabilities. This thesis aims to alleviate the aforementioned issues by developing few 

enhanced PSO algorithms with robust learning strategies for global optimization problems. 

The objectives of this research work are presented as follows: 

1. To devise an alternative learning phase to the particle as well as to introduce a 

unique learning strategy to the neighborhood best particle.  

2. To develop two adaptive task allocation mechanisms to the PSO population for 

achieving better regulations of the exploration/exploitation searches of particle 

without significantly compromising the algorithm’s convergence speed. 

3. To propose an innovative mechanism that enables the particles to adaptively choose 

the appropriate learning strategies for the robust searching in various types of 

optimization problems.   

4. To develop a dimension-level task allocation mechanism to the PSO for enabling 

each dimensional component of the PSO particle to select an appropriate learning 

strategy based on its characteristics in each dimension of the search space.  

 

1.6 Research Scopes 

The scope of this research focuses on the design and development of the enhanced PSO 

algorithms with robust learning strategies. Specifically, these enhanced PSO variants are 

confined to solve the single objective and unconstrained global minimization problems with 

static and non-noisy fitness landscapes.  
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In this thesis, all proposed PSOs are tested on a total of 30 benchmarks with 

different types of fitness landscapes to conclusively evaluate the algorithm’s performance. 

Considering that each benchmark problem is specifically designed to evaluate certain 

properties of an algorithm, they are useful to verify the viability of fundamental concepts 

introduced into proposed PSO variants. To investigate the feasibility of the proposed 

algorithms in real-world applications, three engineering design problems are also employed 

for the performance evaluations. 

Finally, the proposed algorithms, alongside with numerous published PSO variants, 

are coded and tested in the MATLAB® R2012b with Intel ® Core ™ i7-2600 CPU @ 

3.40GHz and 4GB RAM environment.   

 

1.7 Thesis Outline 

This chapter briefly introduced the research background and some preliminary knowledge 

regarding the global optimization and the algorithms used to solve this task, particularly on 

the PSO. The problem statements, research objectives, and research scope of this research 

are included in this chapter. The rest of this thesis is structured as follows. 

In Chapter 2, a comprehensive review of the existing PSO variants is presented. The 

mechanism of the recently proposed TLBO is also described, considering that this algorithm 

plays an important role in the next chapter. The advantages and limitations of these PSO 

variants and TLBO are reviewed to gain a deeper understanding on their conceptual 

successes and shortcomings. The 30 benchmarks problems and three engineering design 

problems used in the performance evaluations are also discussed in this section. Finally, the 

details of the performance metrics and the statistical analyses used in the performance 

comparisons are provided.  

 In Chapter 3, the first proposed PSO algorithm, namely the Teaching and Peer-

Learning Particle Swarm Optimization (TPLPSO) is introduced. This chapter starts with the 

research ideas that lead to the development of TPLPSO, followed by the main modifications 
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introduced. Simulation results of TPLPSO in solving the benchmark and engineering design 

problems are obtained and compared with those from the state-of-art algorithms.  

 Chapter 4 proposes the second enhanced PSO algorithms, namely the Adaptive 

Two-Layer Particle Swarm Optimization with Elitist Learning Strategy (ATLPSO-ELS). 

The adaptive task allocation mechanisms of ATLPSO-ELS are described in sufficient detail. 

At the end of Chapter 4, the comparative studies on the performances of ATLPSO-ELS and 

its peer algorithms are conducted based on their simulation results.  

 Chapter 5 presents the technical details of the third enhanced PSO algorithms, 

namely the Particle Swarm Optimization with Adaptive Time-Varying Topology 

Connectivity (PSO-ATVTC). Several design issues of PSO-ATVTC are carefully addressed. 

Finally, the experimental results are presented, analyzed, compared, and discussed.   

   The fourth proposed PSO algorithm, namely the Particle Swarm Optimization with 

Dual-Level Task Allocation (PSO-DLTA), is described in Chapter 6. The research idea that 

inspires the development of PSO-DLTA is first explained, followed by the methodology of 

this algorithm. At the end of this chapter, the effectiveness of the proposed PSO-DLTA is 

investigated through an extensive amount of simulations. The overall performances of the 

four PSO algorithms proposed in this research, i.e., TPLPSO, ATLPSO-ELS, PSO-ATVTC, 

and PSO-DLTA, are also compared and discussed.   

 Finally, Chapter 7 draws the conclusions and highlights the contributions of this 

research. A number of interesting directions to be pursued are detailed as future works.  

  

 

 

 

 

 

 

 



16 

 

CHAPTER 2 

LITERATURE REVIEW 

 

2.1 Introduction 

Particle swarm optimization (PSO) has emerged as a promising optimization tool for solving 

various types of global optimization problems and real-world engineering design problems 

since its inception. A demanding yet stimulating undertaking of PSO-based optimization 

technique is to solve a given optimization problem with the best search accuracy and the 

fastest convergence speed, while incurring the least computational complexity. These 

contradictory goals have led to the advancement of PSO-based optimization techniques 

because various innovative approaches have been proposed in the past decades to improve 

the algorithm’s performance.  

 This chapter starts with a comprehensive review on the basic PSO algorithm and the 

recent proposed PSO variants. Specifically, Section 2.2 offers an in-depth treatment of 

prevalent subject matters popularly discussed in PSO literature. The recently proposed 

Teaching and Learning Optimization (TLBO) is briefly reviewed in Section 2.3 for an 

insight into its theoretical and methodological fundamentals. The 30 benchmark problems 

and the three engineering design problems used for the PSO performance evaluation are 

introduced in Section 2.4. In Section 2.5, the performance metrics and the statistical analyses 

employed in the performance comparison of algorithms are presented. Finally, Section 2.6 

concludes this chapter.  

 

2.2 Particle Swarm Optimization and Its Variants 

This section discusses the mechanism of the basic PSO (BPSO). In what follows, the 

comprehensive reviews of several state-of-arts PSO variants will be provided. The 

advantages and limitations of these proposed PSO variants are also summarized in this 

section to gain a deeper understanding on their conceptual successes and shortcomings.  
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2.2.1 Basic Particle Swarm Optimization 

In PSO, the PSO swarm is modeled as a group of particles with negligible mass and volume 

that navigate through the D dimensional hyperspace. D denotes the dimension of search 

space and it is interpreted as the number of variables being optimized in a given problem.  

In the context of optimization, the location of each particle in the hyperspace 

represents a potential solution of a given problem. Meanwhile, the fitness value of each 

particle determines the solution quality. It must not be confused with the concept of fitness 

value and the objective function value (ObjV) as mentioned in Section 1.1. In the framework 

of evolutionary optimization terminology, “fitness” is a measure of the goodness of each 

solution. All optimization techniques are based on the fitness optimization, which leads to 

problem-dependent objective function minimization/maximization at the end of the 

optimization problems. As one of the scopes of this research work, this thesis considers the 

minimization problems because the benchmark and real-world engineering problems used to 

evaluate the algorithm’s search performance have the global optima at the valleys of the 

fitness landscapes instead of the peaks. Thus, to state that solution A is better or fitter than 

solution B, the ObjV of the former must always be lower than the that of the latter, i.e., 

ObjV(A) < ObjV(B).  

In general, the current state of each particle is associated with two vectors, namely 

the position vector Xi = [Xi1, Xi2, …, XiD] and the velocity vector Vi = [Vi1, Vi2, …, ViD], where i 

denotes the particle’s index in the search space. Unlike the other CI-based algorithms, each 

PSO particle i has the capability of memorizing the personal best experience (i.e., self-

cognitive experience) that it ever attained and this experience is represented by the personal 

best position vector of Pi = [Pi1, Pi2, …, PiD]. Another notable best experience that is tracked by 

particle i is the group best experience (i.e., social experience) obtained by any particle in the 

neighbors of the particle i. This experience is expressed as the neighborhood best position 

vector of Pn = [Pn1, Pn2, … , PnD] and its value depends on the particle’s topological structure. 

For instance, the topology of global version PSO as illustrated in Figure 2.1(a) is fully-

connected, given that each particle takes all the population as its topological neighbors. In  
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(a) (b) 

Figure 2.1: Topological structures of PSO with (a) the fully-connected topology and (b) the 

local ring topology. Each circle represents one particle, while each line represents the 

connection of one particle to others in the population (del Valle et al., 2008).  

 

the fully-connected topology, a particle i uses the best experience of the entire swarm as its 

neighborhood best experience. This best value is known as the global best position and it is 

denoted as Pg = [Pg1, Pg2, … , PgD]. On the other hand, Figure 2.1(b) demonstrates a local 

version PSO with the ring topology, where each particle i only considers two of its most 

adjacent particles (i.e., the particles with indexes of i - 1 and i + 1) as its neighborhood 

members. For ring topology, the best neighborhood experience of particle i is selected from 

the personal best experiences among the particles i – 1, i, and i + 1. The selected best value is 

known as the local best position and it is expressed as Pl = [Pl1, Pl2, … , PlD]. 

 During the search process, the velocity vector of each particle i is stochastically 

adjusted according to its self-cognitive experience Pi and the social experience Pn (Kennedy 

and Eberhart, 1995, Eberhart and Shi, 2001). The inclusion of social experience during the 

velocity updating process implies the collective and collaboration behaviors in PSO swarm, 

given that the most successful particle shares its useful information to its neighborhood 

members to guide the search. The new position of particle i in the search space is 

subsequently computed based on the updated velocity vector. Mathematically, at the (t + 1)-

th iteration of the search process, the d-th dimension of particle i's velocity, Vi,d (t + 1), and 

position Xi,d (t + 1) are updated as follows: 

i i 

i + 1 i - 1 



19 

 

 

Figure 2.2: Particle i's trajectory in the two-dimensional fitness landscape (Li, 2010). 

 

    ))()(())()(()()1( ,,,22,,,11,, tXtPrctXtPrctVtV didnddididdidi           (2.1) 

)1()()1( ,,,  tVtXtX dididi                             (2.2) 

where i = 1, 2, …, S; S is the population size of particle swarm; c1 and c2 are the acceleration 

coefficients that control the influences of self-cognitive (i.e., Pi) and social (i.e., Pn) 

components of particle, respectively; r1,d and r2,d are two random numbers in the range of [0, 

1] with uniform distribution; and is the inertia weight used to determine how much the 

previous velocity of a particle is preserved (Shi and Eberhart, 1998). Figure 2.2 demonstrates 

the trajectory of particle i in the two-dimensional fitness landscape.  

As shown in the right of Equation (2.1) and Figure 2.2, the velocity component of 

each particle is decomposed into three components (del Valle et al., 2008, Li, 2010). The 

first component is called the inertia component, given that this component models the 

tendency of the particle i to persist its previous search direction and to enable it searches for 

more unexplored regions. Meanwhile, the second and third components are known as the 

self-cognitive and social components of particle i, respectively. The self-cognitive 

component treats the particle i as an isolated being and adjust the particle’s behavior 

according to its own experience. In contrary, the social component suggests each particle i to 
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ignore its own experience and adjust its trajectory according to the best particle in the 

neighborhood. Both of the inertia and self-cognitive components governs the exploration 

search capability of particle i, while the particle i’s exploitation behavior is influenced by the 

social components. 

 Once the updated position of particle i is obtained, the fitness of this new solution is 

evaluated. Specifically, the objective function value of the updated position is computed as 

ObjV [Xi(t+1)] and then compared with ObjV [Pi(t)], i.e., the objective function value of the 

personal best position of particle i. For minimization problem, the updated Xi(t+1) is 

considered to have better fitness than Pi(t) if the former has lower objective function value 

than the latter, i.e., ObjV [Xi(t+1)] < ObjV [Pi(t)]. In this scenario, the personal best position 

of particle i is replaced by the updated Xi(t+1) at iteration (t + 1), as illustrated in Equation 

(2.3). On the other hand, if ObjV [Xi(t+1)] > ObjV [Pi(t)], it implies that the updated Xi(t+1) 

of particle i has worse fitness than its Pi(t). Thus, the personal best position of particle i is not 

replaced at iteration (t + 1), as shown in Equation (2.3). 
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The neighborhood best position (i.e., Pn) of each particle P, on the other hand, is 

identified from the personal best position vectors of all particles that are located in the same 

neighborhood. At each iteration t, the neighborhood best position of a particle swarm is 

identified as follows: 

))]((min[arg)(
],1[

tPObjVtP i

nsSi
n



                           (2.4) 

where Sns denotes the neighborhood size of the particle swarm and this value depends on the 

topological structure of the PSO. For example, the value of Sns in the fully-connected 

topology [as illustrated in Figure 2.1(a)] is equal to the population size, i.e., Sns = S, 

considering that each particle in this topology takes all the population as its topological 

neighbors. For ring topology [as depicted in Figure 2.1(b)], each particle i only considers two 

of its most adjacent particles as its neighborhood members and therefore Sns = 3.   
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BPSO 

Input:  Population size (S), dimensionality of problem space (D), objective function (F), the 

initialization domain (RG), problem’s accuracy level ( ) 

1:     Generate initial swarm and set up parameters for each particle; 

2:     while the termination criterion is not satisfied do 

3:              for each particle i  do 

4:                     Update the velocity Vi and position Xi using Equations (2.1) and  (2.2),  

                         respectively; 

5:                     Perform fitness evaluation on the updated Xi; 

6:                     if   ObjV(Xi)  ObjV(Pi)   then 

7:                          Pi = Xi,    ObjV(Pi) = ObjV(Xi);    

8:                          if  ObjV(Xi)  ObjV(Pg)   then 

9:                               Pg = Xi,    ObjV(Pg) = ObjV(Xi);    

10:                        end if 

11:                   end if 

12:              end for 

13:    end while 

Output: The best found solution, i.e. the global best particle’s position (Pg) 

 

Figure 2.3: Basic PSO algorithm.  

 

Without loss of generality, the remaining section of this thesis refers the BPSO as the global 

version of PSO, as illustrated in Figure 2.1(a). In other words, the neighborhood best 

position Pn of BPSO refers to the global best position Pg. The implementation of the BPSO is 

illustrated in Figure 2.3. Several stopping criteria had been proposed in literature to terminate 

the BPSO. Specifically, the BPSO can be terminated when (1) the predefined maximum 

number of iteration or the function evaluation is reached, (2) the predefined accuracy of the 

solution has been achieved, (3) the fitness improvement of the swarm becomes insignificant, 

and (4) the normalized radius of swarm is close to zero, implying the sufficient convergence 

of swarm. In this thesis, the maximum number of fitness evaluation (FEmax) is selected as the 

termination criterion because the fitness evaluation process consumes more computational 

resources than other PSO mechanisms during the optimization process (Feng et al., 2013, 

Mezura-Montes and Coello, 2005). It must not be confused with the concept of number of 

iteration and number of fitness evaluation (FE). The former is updated when all particles in 

the population have updated and evaluated the fitness of their respective new positions. 

Meanwhile, FE is updated when a particular particle has updated and evaluated its new 

position in the search space. Intuitively, the FE number consumed in an optimization 
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problem is higher than the iteration number and thus it serves as a better indicator to measure 

the computation cost required by an algorithm to solve a given optimization problem. 

 

2.2.2 Variants of Particle Swarm Optimization  

As mentioned in the previous chapter (Section 1.5), the original PSO suffers with some 

demerits which could degrade its optimization capability and restrict its wider application in 

real-world problems (Eberhart and Shi, 2001, Banks et al., 2007, del Valle et al., 2008). 

Numerous research works have been proposed in the past decades to address the 

aforementioned drawbacks and to improve the performance of PSO.  

In order to provide a comprehensive review and broader sight on the state-of-art 

PSO variants in global optimization, a classification scheme as depicted in Figure 2.4 is used 

to pool the PSO variants that are modified by similar approach into the same category. 

Specifically, the modification and improvement performed on the PSO are categorized into 

four major approaches, namely the (1) parameter adaptation, (2) modified population 

topology, (3) modified learning strategy, and (4) hybridization with orthogonal experiment 

design (OED) technique (Montgomery, 1991, Hedayat, 1999). The diverse ideas of scholar 

who contributed to the improvement of PSO in each major approach are reviewed 

comprehensively in the following subsections.  

 

 

 

Figure 2.4: The classification scheme of state-of-art PSO variants in global optimization. 
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2.2.2(a) Parameter Adaptation 

Parameter adaptation is the one of the earliest research directions attempted by the 

researchers to improve the PSO. This approach studies the effects of PSO parameters on the 

dynamical behaviors of swarm, followed by the tuning of these parameters to alter the 

particle’s movement behavior. The thorough convergence analysis and stability studies of 

PSO also lead to the introduction of new parameter that is useful to achieve the better 

optimization outcomes.  

 Shi and Eberhart (1998) proposed a parameter called inertia weight to balance the 

exploration and exploitation capabilities of PSO swarm. Various strategies have been 

developed to tune the parameter  since then. In their earlier work, Shi and Eberhart (1998) 

suggested that the parameter  with a fixed value lying between 0.8 and 1.2 is able to 

achieve a good convergence behavior of swarm. Later, a time-varying scheme that linearly 

decreases  with the iteration number was introduced by Shi and Eberhart (1999). 

Accordingly, the value of  is initially set to a larger value (i.e.,  = 0.9) to allow the 

particles explore the search spaces in the early stage of optimization. Once the optimal 

region is located,  is gradually decreased to 0.4 to refine the optimal search area in the 

latter stage of optimization. Chatterjee and Siarry (2006), and Cai et al. (2008), on the other 

hand, proposed to vary the  in nonlinear manner. As compared to the linear variation 

approach, the nonlinear variation of  enables the particle swarm to explore the search space 

in more aggressively manner during the early stage of optimization, in order to locate the 

optimal region with faster rates. Clerc and Kennedy (2002) performed thorough theoretical 

studies on the PSO convergence properties and subsequently proposed a similar parameter 

known as the constriction factor  . Accordingly, the parameter  could prevent the swarm 

explosion by providing the damping effect on the particle’s trajectory. Experimental study 

revealed that the parameters  and  are algebraically equivalent when the condition of 

729.0  is fulfilled (Eberhart and Shi 2000).  
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 Acceleration coefficient (c1 and c2) is another subject of great interest in the 

parameter adaptation approach, considering that c1 and c2 govern the exploitation and 

exploration capabilities of PSO swarm, respectively. According to the studies performed by 

Ozcan and Mohan (1999), the PSO particle is observed to oscillate around a sinusoidal path 

when the value of c = c1 + c2 is set between 0 and 4.0. The oscillation frequency and 

complexity of the sinusoidal path increase with the value of c. When c is set larger than 4.0, 

the particle’s trajectory starts to diverge and swarm explosion occurs. Based on their 

experimental studies, Ozcan and Mohan concluded that the maximum value for c should be 

4.0 (Ozcan and Mohan, 1999). However, the values of c1 and c2  need not to be always equal 

to each other, given that the influences of self-cognitive and social components of PSO 

swarm should be different based on the nature of problem. Suganthan (1999) attempted to 

improve the PSO performance by linearly decreasing both c1 and c2 with time. However, 

they observed that the PSO with fixed c1 and c2 (i.e., 2.0) yields better solutions than the 

linearly decreasing scheme. Ratnaweera et al. (2004) continued to investigate the feasibility 

of dynamic c1 and c2 in improving the PSO performance. They revised the swarm behavior 

and found out that the self-cognitive component is more important during the early stage of 

optimization, considering that particles need to wander through the unexplored search region. 

In the latter stage, the influence of social component becomes more significant to encourage 

the PSO swarm converges towards the already found optimal regions. Based on these 

observations, Ratnaweera et al. (2004) proposed a time-varying acceleration coefficient 

(TVAC) strategy to linearly decrease and increase the values of c1 and c2 with time, 

respectively. Two PSO-TVAC variants, namely the PSO-TAVC with mutation (MPSO-

TVAC) and self-organizing hierarchical PSO-TVAC (HPSO-TVAC), are developed in their 

work. Both of these variants employ the mutation and velocity re-initialization strategies, 

respectively, to alleviate the premature convergence issue. 

 Although the aforementioned works improve the PSO, some notable issues could be 

identified from these earlier reported simple rule-based parameter tuning strategies. First, 

most of the simple rule-based parameter tuning strategies are time-varying and they tend to 


