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REKABENTUK KOMBINATORIAL BAGI ANALOG MAYA ASID 
SIALIK TERHADAP HEMAGGLUTININ DARIPADA INFLUENZA 
A DENGAN MENGGUNAKAN PENDEKATAN STRUKTUR DAN 

FRAGMEN 
 

Abstrak 
 
 

 Perencatan virus influenza A untuk menghindarkan daripada morbiditi dan 

mortaliti merupakan perkara utama yang diambil kira semasa epidemik dan sangat 

penting semasa pandemik. Terdapat dua jenis glikoprotein permukaan yang 

membentuk permukaan utama penentu antigenik virus influenza A iaitu 

hemagglutinin (HA) dan neuraminidase (NA). HA bertanggungjawab untuk 

perlekatan viral pada sel yang dijangkiti melalui pengikatan dengan moieti asid sialik 

(SA) permukaan. NA pula bertanggungjawab untuk menghidrolisis ikatan glikosidik 

yang menghubungkan SA dengan membran sel dan menyebabkan pemisahan viral. 

Kaedah rekabentuk dadah berasaskan struktur telah berjaya digunakan dalam mereka 

bentuk secara klinikal perencat NA iaitu Zenamivir dan Oseltamivir yang 

menghalang pemutusan virus progeni. Walau bagaimanapun, tiada perencat dengan 

berat molekul rendah yang telah direka berkesan untuk bertindak terhadap HA dan 

seterusnya mencegah pengikatan viral pada sel perumah. 

 

 Dalam kajian ini, kaedah pemodelan molekul telah digunakan untuk mereka 

bentuk pangkalan data analog maya SA dengan penggantian tunggal sama ada pada 

kedudukan C2, C5 atau C6 rangka SA. Molekul fragmen yang terdapat secara 

komersial telah digunakan sebagai calon pengganti. Dengan menggunakan 

pendekatan pendokkan molekul, fragmen molekul telah didok pada kantung ikatan 

HA di tapak pengikatan kristalografi C2, C5 dan C6 kumpulan berfungsi SA natural 

dan analognya yang lain. Kemudian, fragmen yang telah diorientasi digabungkan 
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secara automatik pada rangka SA dengan/atau tanpa bantuan molekul penghubung 

menggunakan algoritma empirikal yang dibangunkan secara dalaman. Oleh itu, tiga 

pangkalan data analog SA dengan penggantian fragmen tunggal pada C2, C5 dan C6 

telah berjaya dihasilkan. Ketiga-tiga pangkalan data kemudiannya didokkan pada 

keseluruhan tapak ikatan SA di kantung pengikat HA menggunakan kaedah 

pendokkan yang disahkan untuk menentukan ketepatan konformasi dan afiniti ikatan. 

Keputusan pendokkan menunjukkan afiniti analog yang dihasilkan adalah lebih 

tinggi (mencecah 30,000 kali ganda) daripada SA natural. Tenaga ikatan yang lebih 

baik menunjukkan tenaga ikatan daripada fragmen dan rangka SA kristal boleh 

digabungkan ke dalam analog yang dihasilkan.  

 

Dengan menggunakan terbitan C5 dan C6 analog SA yang menunjukkan 

afiniti tinggi dan penyimpangan dari kedudukan rangka kristal SA yang kecil, satu 

pangkalan data  analog kombinatorial SA telah dihasilkan  dengan mengesktrak 

kumpulan penukarganti C5 dan C6 dan kemudiannya menggabungkan mereka secara 

sistematik ke dalam rangka tunggal molekul SA. Peraturan Lima Lipinski telah 

diaplikasikan untuk membentuk hanya analog dengan pembolehdapatan oral. 

Keputusan pendokkan menunjukkan afiniti analog kombinatorial terhadap kantung 

HA adalah lebih tinggi berbanding analog penggantian tunggal dan affinitinya 

melebihi 100,000 kali ganda daripada SA natural memandangkan kebanyakkan 

analog SA yang direka bentuk boleh mengikat SA pada tapak ikatan HA dengan 

afiniti yang lebih tinggi berbanding SA asal, mereka mempunyai potensi untuk 

merencat virus influenza A daripada terikat kepada membran sel perumah dan 

seterusnya bertindak sebagai agen anti-flu. 
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COMBINATORIAL DESIGN OF VIRTUAL SIALIC ACID 
ANALOGUES AGAINST INFLUENZA A HEMAGGLUTININ 

USING STRUCTURE AND FRAGMENT BASED APPROACHES 
 

Abstract 
 

Inhibition of influenza A virus to avoid morbidity and mortality is of main 

concern during epidemics and of major concern during pandemics. Two types of 

surface glycoprotein form the main surface antigenic determinants of influenza A 

virus i.e. hemagglutinin (HA) and neuraminidase (NA). HA is responsible for viral 

attachment to the infected cell through surface-bound sialic acid (SA) moieties, while 

NA is responsible for hydrolysing the glycosidic bond that connects SA with the cell 

membrane resulting in viral detachment. Structure-based drug design approach has 

been successfully used in designing the clinically available NA inhibitors Zenamivir 

and Oseltamivir which restrict the progeny virus detachment. However, there is 

no effective low molecular weight inhibitor that has been developed to target HA and 

prevent the initial viral attachment to the host cell. 

 

 In this study molecular modeling techniques were used to design databases 

of virtual SA analogues by a single substitution at either of C2, C5 or C6 positions of 

SA scaffold. A commercially available molecular fragment was used for the 

substitution candidate. By using molecular docking approach, the molecular 

fragments were docked against the HA binding pocket at the crystallographic binding 

sites of C2-, C5- and C6-natural functional groups of SA and its analogues. Then, the 

oriented fragments were connected automatically to the SA scaffold with or without 

the incorporation of molecular linkers using in-house developed empirical 

algorithms. Thus, three databases of SA analogues with single substituted fragments 
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at positions C2, C5 or C6 were successfully generated. The three databases were then 

docked against the whole SA binding site using a validated docking tool to estimate 

the accurate binding conformations and affinities. Our docking results showed that 

the affinities of the generated analogues were higher (up to 30,000 fold) than the 

natural SA. The improvement in binding energies indicates that the favourable 

binding energies of the oriented fragments and the crystal SA scaffolds were 

additively merged within the generated analogues.  

 

Using the C5-derived and C6-derived SA analogues that showed higher 

affinities with little deviations from the crystal SA scaffold’s position, a database of 

combinatorial SA analogues was generated by extracting the C5- and C6-designed 

substitutions and combining them systematically on a single SA scaffold molecule. 

The Lipinski’s rule of five was applied to construct only the oral bioavailable 

analogues. The docking results showed that the affinities of combinatorial analogues 

were higher than the analogues of single substitution and exceed 100,000 fold the 

affinity of natural SA. As many of the designed SA analogues could bind the SA 

binding site of HA with higher affinity than the natural SA, they have the potential to 

inhibit influenza A virus from attachment to host cell membrane and consequently 

act as anti-flu agents. 
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CHAPTER ONE 

INTRODUCTION 

 

1.1 Problem statement 

 

Influenza A virus is an enveloped negative strand RNA virus belongs to the 

Orthomyxoviridae family and responsible for the annual influenza epidemics and 

recurrent pandemics. There are many subtypes of influenza A classified by 

antigenicity of their corresponding surface glycoproteins i.e. hemagglutinin (HA) and 

neuraminidase (NA). Currently, 16 serotypes of HA and 9 serotypes of NA are 

available (Fouchier et al., 2005; Baker et al., 1987). HA glycoprotein is responsible 

for sticking the virus to the host cell before being engulfed by endocytosis and this 

attachment is mediated by surface-bound sialic acid (SA) moieties of the cell 

membrane (Skehel & Wiley, 2000), while NA is responsible for releasing the 

progeny viruses from the infected cell by hydrolysing O-glycosidic bond between the 

terminal SA which is bound to HA and the penultimate sugar moiety that connect SA 

to host cell membrane (Air & Laver, 1989). As functions of HA and NA oppose each 

other, a balanced effect is required for effective viral infection (Wagner et al., 2002). 

HA and NA are highly vulnerable to mutagenic changes by shift and/or drift in 

response to the pressure of host’s immune system (Lewis, 2006), that caused 

vaccination against influenza A virus is ineffective and pandemics are recurrent 

(Kilbourne, 1975).  
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SA (or 5-amino-3,5-dideoxy D-glycero-D-galacto nonurosonic acid) is a 

member of the natural SAs family and is the natural ligand for both of HA and NA 

(Varki & Varki, 2007; Schauer & Kamerling, 1997; Furuhata, 2004). SA is 

connected to the penultimate galactose moiety of the host cell membrane by two 

different modes. In the first mode, SA C2 is connected by α-O-glycosidic linkage to 

C3 of galactose (α(2,3)). This linkage predominates in the avian intestine. While in 

the second mode, the connection of SA to C6 of galactose gives the α(2,6) linkage 

which predominates in human respiratory tract. The binding between SA and HA is a 

simple bimolecular association. SA binds to the conserved amino acids mainly by 

bristling hydrogen bonds. No chemical reactions took place and no apparent 

conformational changes occurred at the binding site upon binding SA.  

 

Pyranose ring forms the scaffold of SA molecule, to which different 

functional groups are connected through carbon atoms C2, C4, C5, and C6. Changes 

in SA functional groups may confer changes in affinity toward HA as well. Several 

studies have been conducted to monitor the effect of modifying natural SA functional 

groups on the affinity toward HA to produce monovalent inhibitors, or incorporate 

several molecules of SA analogues of low affinity on large molecular weight carrier 

to produce polyvalent inhibitors (Matrosovich & Klenk, 2000). 

 

The HA of influenza A H3N2 (X-31) virus is of H3 serotype which is 

preferentially binds human type SA receptor (SA-α2,6-galactose) (Rogers & Paulson, 

1983). There is a theory of periodical recirculation of H3N2 in human population 

(Masurel & Marine, 1973). H3 bound to various SA analogues was exclusively 

studied by X-ray crystallography (Weis et al., 1988; Sauter et al., 1992a; Ha et al., 
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2003), NMR (Sauter et al., 1989, Sauter et al., 1992a; Machytka et al., 1993), 

alongside with inhibitory assays (Pritchett, 1987; Pritchett et al., 1987; Kelm et al., 

1992; Toogood et al., 1991). However, no effective monovalent agents have been 

developed yet which target the HA and inhibit viral attachment, even though HA has 

been long identified as a probable target for inhibitor design (Pritchett et al., 1987; 

Weis et al., 1988; Sauter et al., 1989; Sauter et al., 1992a; Machytka et al., 1993; 

Lentz, 1990).  

 

Molecular modelling techniques are developing fast, with some branches are 

matured enough and effectively participated in designing and screening drug 

candidates. With respect to HA, AutoDock3.05 has been used to reproduce crystal 

conformation of SA within HA primary binding site with estimated binding energy 

close to the observed value (Morris et al., 1998). The scope of this research is to 

design virtual databases of SA analogues of higher affinities toward the HA of 

influenza A H3N2 by substituting the natural SA functional groups with 

commercially available molecular fragments.  
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1.2 Influenza virus 

 
Influenza viruses belong to the Orthomyxoviridae family of RNA viruses 

which include influenza A, influenza B, influenza C, Thogoto (sometimes referred as 

influenza D), and Isa viruses (Cox et al., 2000). Influenza A can infect human, 

mammals, and birds (Webster et al., 1992)., while influenza B infects human and 

seals (Osterhaus et al., 2000) and influenza C infects human and pigs (Yuanji et al., 

1983). 

 

Influenza A is a major cause of morbidity and mortality in humans during 

annual epidemics and the recurrent pandemics. Influenza A mainly infects the 

epithelium of the upper and lower respiratory tracts and typically results in an abrupt 

onset of illness that usually includes high fever, coryza, cough, headache, prostration 

myalgia besides upper respiratory tract congestion and inflammation. These 

symptoms persist for 7 to 10 days while weakness and fatigue may extend for weeks. 

Pneumonia is a frequent manifestation of more severe infection. Influenza A 

infection is also a relatively common aetiology of laryngotracheitis (croup) in 

children and bronchiolitis. Myocarditis, encephalitis, and other extra-respiratory tract 

diseases are rarely occurred during the course of influenza infection. Viral infection 

is also associated with an increased incidence of subsequent otitis media, and 

influenza A pneumonia which may be complicated by subsequent infection with 

bacterial pathogens such as Staphylococcus aureus. Finally, influenza A infection is 

an important trigger of reactive airway disease in those with pre-existing asthma, and 

it may also promote allergic sensitization to environmental proteins (Lewis, 2006; 

Taubenberger & Morens, 2008). 
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Influenza A virus is an enveloped negative single-stranded RNA virus. It is a 

spherical to rod particle of 120 nm in diameter. Eight RNA segments are present 

inside the viral capsid and encode several proteins which include; HA and NA 

glycoproteins which are expressed on the viral surface, M2 protein which forms an 

ion channel that cross the viral lipid bilayer, and M1 protein which forms the internal 

matrix of the virus and used to encapsulate the genetic material while budding from 

the host cell membrane in the production of progeny viruses (Figure 1.1) 

(Bourmakina & García-Sastre, 2005; Lewis, 2006). 
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Figure 1.1: Influenza A virus with the external glycoproteins (HA and NA), trans-
membranal proteins (M2), internal protein matrix (M1) and RNA segments. 
 

 

 



7 
 

1.2.1 Hemagglutinin (HA) 

 

 
HA is a major antigenic determinant of influenza A virus, it is kind of lectins 

which are sugar-binding proteins (Lis & Sharon, 1998). Some protozoa, bacteria and 

viruses use SA-recognizing lectins to attach themselves to the cells of the host 

organism to initiate infection (Table 1.1). The influenza virus initiates infection by 

attachment to the host cell membrane followed by endocytosis and fusion with 

endosomal membranes. This attachment is mediated by interaction of terminal cell-

surface SA with viral surface glycoproteins (HA in influenza type A and B or 

hemagglutininesterase in influenza type C) (Paulson, 1985; Herrler et al., 1995).  

 

Each influenza virus contains about 500-1000 HA homotrimer (Ruigrok, et 

al., 1984 cited in Glick et al., 1991). HA monomer is synthesized as a single 

polypeptide (HA0) that is cleaved by host protease into two subunits (HA1 and HA2), 

in which HA1 is more variable antigenically compared to the HA2. Changes in this 

glycoprotein are responsible for uncontrolled recurrence of influenza epidemics 

(Webster & Laver 1975). Each HA monomer has two SA binding sites. The primary 

SA binding site is located at HA1 and responsible for viral sticking to the host cell, 

while the secondary binding site is located at the interface between HA1 and HA2 

(Figure 1.2) (Weis et al., 1988; Sauter et al., 1992a; Sauter et al., 1992b). The two 

binding sites are formed of well conserved amino acid residues through all subtypes 

of influenza A and strains of H3 serotype (Table 1.2) (Ward & Dopheide, 1981; 

Nobusawa et al., 1991). 

 



8 
 

During influenza A infection cycle, HA is first attached to the terminal SA 

residues spreaded on host cell surface. Subsequently, the virus is engulfed by the cell 

to form an endosome. The acidic environment of the endosomal compartment drives 

the necessary HA conformational changes to fuse the viral and the endosomal 

membranes which results in the intracellular release of the virion content (Skehel & 

Wiley, 2000) (Figure 1.3).  

 

Table 1.1: SA recognizing lectins in protozoa, bacteria and viruses (Varki et al., 
2008). 
 

Protozoa 

Parasite lectins: Merozoite erythrocyte-binding antigens (EBAs) (Plasmodium 
falciparum) 

Bacteria 

Bacterial adhesins: S-adhesin (Escherichia coli K99), SabA and SabB (Helicobacter 
pylori) 

Bacterial toxins: Cholera toxin (Vibrio cholerae), tetanus toxin (Clostridium tetani), 
botulinum toxin (Clostridium botulinum), pertussis toxin (Bordetella pertussis) 

Mycoplasma lectins: Mycoplasma pneumoniae hemagglutinin 

Viruses 

Hemagglutinins: Influenza A and B viruses, primate polyomaviruses, rotaviruses 

Hemagglutinin neuraminidases: Newcastle disease virus, Sendai virus, fowl plague 
virus 

Hemagglutinin esterases: Influenza C viruses, human and bovine coronaviruses 
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Figure 1.2: Influenza A HA homotrimer with the primary and secondary SA binding 
sites. 
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Host cell membrane 

 
 

Figure 1.3: The process of fusion between viral and endosomal membranes mediated 
by viral HA. a) Influenza A HA exposed on the viral surface (bottom) and pointed 
toward the host cell membrane (top). b) HA1 subunits displaced aside from locations 
over HA2, c) The loops between shorter and longer helices within each HA2 
subunits are extended. Red asterisk represents the exposed fusion peptides. d) 
Collapse of the extended intermediate loops to generate the post-fusion conformation. 
e) Magnified fusion point showing the N and C terminal for each of the three HA2 
subunits (Harrison, 2008). 
 
 
 
 
 
 
 
 
 
 
 
 

Viral membrane 
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1.2.2 Neuraminidase (NA) 

 

NA is the second major glycoprotein distributed on the influenza A viral 

surface. NA is arranged in tetramers and there are about 100-200 copies in each virus 

(Laver, 1973 cited in Glick et al., 1991; Schulze, 1973 cited in Glick et al., 1991). 

Each tetramer is composed of trans-membranal part, thin stalk, and globular head 

which has the ability to hydrolyse the O-glycosidic linkage that connects SA with the 

penultimate sugar moiety of the host cell membrane (Seto & Rott, 1966). During the 

course of influenza infection, NA could also function as scaventure to destroy the 

epithelial cells to facilitate the viral infection (Air & Laver, 1989). At the end of viral 

replication cycle, NA facilitates the release of the progeny viruses and prevents HA-

mediated viral aggregation (Palese et al., 1974). As the function of HA and NA 

oppose each other, a balanced effect is required for effective viral infection (Wagner 

et al., 2002). 

 

In each virus, NA exhibits specificity for terminal SA linkages similar to its 

relevant HA. Thus NA derived from avian influenza A virus can hydrolyze the α(2,3) 

glycosidic linkage between SA and penultimate galactose molecule, while NA 

derived from human influenza A virus can hydrolyse both  of α(2,3) and α(2,6) 

glycosidic linkages (see Section 1.4.3).  

 

 
 
 
 
 
 
 



13 
 

1.2.3 Influenza A virus subtypes 

 
There are many subtypes of Influenza A virus which can be classified 

according to the antigenicity of their corresponding HA and NA for example H1N1, 

H2N2, H3N2, and H5N1. Up to now there are about 16 serotypes of HA (Ron et al., 

2005) and 9 serotypes of NA (Baker et al., 1987). These numbers are vulnerable to 

increase as a consequence of antigenic shift and drift (Lewis, 2006). All the available 

HA serotypes besides their host ranges are listed in Table 1.3. 

 
 
 
 
 
 
Table 1.3: The available HA serotypes and their host ranges. 
 

HA serotype Host range 
Avian Human Equine Swine 

H1 X X  X 
H2 X X  X 
H3 X X X X 
H4 X    
H5 X    
H6 X    
H7 X  X  
H8 X    
H9 X   X 
H10 X    
H11 X    
H12 X    
H13 X    
H14 X    
H15 X    
H16 X    
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1.3 Sialic Acids (SAs) 

 
SAs is a name given to a group of more than 50 different analogues of the 

parent compound neuraminic acid (Neu) (5-amino-3,5-dideoxy-D-glycero-D-

galacto-non-2-ulopyranosonic acid) (Schauer, 2004). They are electronegatively 

charged acidic monosaccharides which participate in the structural diversity of 

complex carbohydrates that constitute the major part of proteins, cell membranes 

lipids and secreted macromolecules (Varki et al., 2008). 

 

 
 
1.3.1 Chemistry of SAs 

 
SAs are naturally occurring deoxy nononic acids of acetylated, sulphated, 

methylated, and lactylated derivatives comprising a large diverse family of 

compounds. Such diversity characterizes SA among other sugars (Angata & Varki, 

2002). Certain rules are followed in the nomenclature of SA derivatives (Blix et al., 

1957; Reuter & Schauer, 1988). Neu5Ac, Neu5Gc, KDN, and Neu are the four main 

SA molecules (Figure 1.4) from which other analogues are derived by carrying one 

or more additional substitutions at the hydroxyl groups on C-4, C-7, C-8, and C-9 

(Figure 1.5). For more information please see Schauer (1982) or Schauer and 

Kamerling (1997). 
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Neu5Ac: R=NHAc 

Neu5Gc: R=NHCOCH2OH 
KDN: R=OH 

Neu: R=H 
 

Figure 1.4: Different substitutions on C5 give the four main SAs molecules. 
 
 

 
 
R1 = H (on dissociation at physiological pH, gives the negative charge of SA); can form 
lactones with hydroxyl groups on the same molecule or on other glycans; can form lactams 
with a free amino group at C-5; or tauryl group. 
R2 = H; alpha linkage to Gal(3/4/6), GalNAc(6), GlcNAc(4/6), SA (8/9), or 5-O-Neu5Gc; 
oxygen linked to C-7 in 2,7-anhydro molecule; anomeric hydroxyl eliminated in Neu2en5Ac 
(double bond to C-3).  
R4 = -H; -acetyl; anhydro to C-8; Fu; Gal.  
R5 = Amino; N-acetyl; N-glycolyl; hydroxyl; N-acetimidoyl; N-glycolyl-O-acetyl; N-glycolyl-O-
methyl; N-glycolyl-O-2-Neu5Gc.  
R7 = -H; -acetyl; anhydro to C-2; substituted by amino and N-acetyl in Leg.  
R8 = -H, -acetyl, anhydro to C-4, -methyl, -sulfate, SA, Glc. 
R9 = -H, -acetyl, -lactyl, -phosphate, -sulphate, SA, OH substituted by H in Leg. 
 
Figure 1.5: Diversity in the SAs. The nine-carbon backbone common to all known 
SA is shown. The possible variations at the carbon positions are indicated. Glc stands 
for Glucose, Gal; Galactose, GlcNAc; Glucose amine, GalNAc; Galactose amine, Fu; 
Fucose, and Leg for legionaminic acid (Varki et al., 2008). 
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1.3.2 Biological roles of SAs 

 
The cell-surface of both eukaryotic and prokaryotic organisms contains 

glycocongugates which aid in cellular communications and adhesions. SAs have dual 

roles in the human body by masking the recognition sites against autoimmune 

response and in being the binding sites for various pathogens (Kelm & Schauer, 

1997). 

 

1. SAs positioning at the outer surface of the cell membrane shields the cell 

from infective organisms and autoimmune attack. Removing SAs regarded as 

mechanism for infectivity of various pathogens such as Vibrio cholerae 

(Taylor, 1996). In addition, removing surface SAs predispose the cell to the 

humoral immunity, a mechanism used for removing thrombocytes from the 

circulation (Kluge et al., 1992). Therefore, the malignant cells are protected 

from being attacked by the immune system by over expressing surface SA 

(Schauer, 2004). 

2. SAs on host cells act as anchors for adhesion and subsequent infection by 

various pathogens. Plasmodium falciparum use SAs on the erythrocyte 

surface as receptors for invasion (DeLuca et al., 1996). Accordingly, studies 

have been conducted to examine the ability of SAs in blocking the binding 

site on merozoits which could suppress the infectivity of malaria (Vanderberg 

et al., 1985). SAs associated with the host cell contribute to invasion by 

Trypanosoma cruzi (Schenkman et al., 1993). Influenza virus A and B are 

attached to the host cell surface through SA moieties using HA glycoprotein 

while the paramyxoviruses (parainfluenza viruses) have HA-NA 
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glycoproteins system that enables the virus to attach the host cell through SA 

followed by membranes fusion by fusion glycoprotein (Colman et al., 1993). 

 

Due to their electronegativity, SAs also participate in transformation of 

positively charged pharmaceuticals and in mutual repulsion between erythrocytes in 

the blood stream (Kelm & Schauer, 1997; Schauer & Kamerling, 1997). 

 
 
1.3.3 SA is the natural ligand of influenza A HA 

 
The C5-N-acetyl substituted neuraminic acid (Neu5Ac) is the natural ligand 

for HA in all subtypes of influenza A. The molecular structure of SA is composed of 

central pyranose ring from which different functional groups are protruded. The 

functional groups include C2-axial carboxylate, C2-equatorial hydroxyl, C4-

equatorial hydroxyl, C5-equatorial N-acetyl (acetamido) group, and C6-equatorial 

glycerol (Figure 1.6). Methyl-α-Neu5Ac is the simplest SA analogue that has been 

studied crystallographically in complex with HA. 

 

 

 
 
 

 
Figure 1.6: The molecular structures of natural SA (R=H) and methyl-α-Neu5Ac 
(R=CH3). 

 

1

2
3

4

5
6

7

8

9

N-acetyl 

Hydroxyl 

O-glycosidic group 

Carboxylate 

Glycerol 



18 
 

1.4 HA-SA molecular interaction 

 
 
1.4.1 The binding site of SA at HA1 (primary SA binding site). 

 
The primary SA binding sites are located at HA1 subunits of HA and formed 

from well conserved amino acid residues. The phenolic hydroxyl of Tyr98 and the 

aromatic ring of Trp153 form the bottom of the binding site. There are three 

polypeptide loops forming the boundaries of this binding site; i.e. loop 130 (includes 

Gly135, Ser136, Asn137, and Ala138), loop 220 (includes Arg224, Gly225, Leu226, 

Ser227, and Ser228), and α-helix 190 which form the rear of the site from which the 

side chains of Glu190 and Leu194 are projected down toward the binding site 

(Figure 1.7) 

  

 
1.4.2 The interaction between SA and HA1 binding site. 

 

The interactions between SA and HA1 binding site follow simple bimolecular 

interaction (Sauter et al., 1989). At the binding site, one face of the SA’s pyranose 

ring faces the bottom of the site while the other face is exposed to the solution. The 

axial carboxylate, acetamido nitrogen, and two of glycerol hydroxyls are interacted 

by hydrogen bonds with conserved amino acid residues (Figure 1.7). 

 

C2-carboxylate forms the most stable and important interactions with HA1 

binding site where one of the carboyxlate oxygens accepts hydrogen bond from the 

side-chain of Ser136 while the other oxygen accepts hydrogen bond from Asn137 

main chain amide. The C4-hydroxyl group projects outside the binding site, and 
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appears not to participate in binding due to its equatorial epimerization. With respect 

to C5-acetamido nitrogen, a hydrogen bond is donated to the main chain carbonyl of 

Gly135, while the terminal methyl group is in van der Waals contact with six-

membered ring of Trp153. The C7-hydroxyl group and the C5-acetamido carbonyl 

form intra-molecular hydrogen bond and both are in van der Waals contacts with 

Leu194. The C8-hydroxyl group forms hydrogen bond with the side chain of Tyr98 

while C9-hydroxyl group establishes hydrogen bonds with the side chains of Tyr98, 

His183, Glu190, and Ser228 (Weis et al., 1988; Sauter et al., 1989; Sauter et al., 

1992a). 
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Figure 1.7: Natural SA binding site at HA1 of influenza A virus H3N2 (X-31). 
Dotted lines indicate hydrogen bonds between SA and HA, while dashed lines show 
potential hydrogen bonds within the protein (Sauter et al., 1989). 
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1.4.3 Specificity of the interaction between HA and SA. 

 
 
1.4.3.1 Specificity of HA1 toward SA follows the type of SA-O-glycosidic 

linkage. 

 

The type of glycosidic linkage that connects SA moiety to the penultimate 

galactose residue at terminal cell-membranal carbohydrates determines the affinity 

whether toward human or avian influenza HA, and vice versa (Rogers & Paulson, 

1983).  Accordingly, Neu5Ac-α(2,3)-Gal is recognized by avian viruses while 

Neu5Ac-α(2,6)-Gal is recognized by human  viruses (Figure 1.8). 

 

 

 

 

 
 
Figure 1.8: Different HAs have different specificities in recognizing these linkages. 
The HA derived from wild type A/Hong Kong/68, X-31 H3N2 influenza A virus 
with Leu226 (Human virus) has high affinity to Neu5Ac-α(2,6)-Gal while the 
Leu226Gln mutant (Avian virus) favours Neu5Ac-α(2,3)-Gal linkage. 
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The HA specificity governs the viral host range. The humans viruses 

recognize α(2,6) linkage, and those from avians and equines recognize α(2,3) 

linkages, while swine viruses recognize both types of linkages (Rogers & D’Souza, 

1989; Connor et al., 1994; Matrosovich et al., 1997; Gambaryan et al., 1997; Ito & 

Kawaoka, 2000). Accordingly, the viral inter-species transferences are limited. 

Humans pandemics occur when the HA specificity of virus from other species 

change specificity from α(2,3) to α(2,6) for which humans have no immunity. The 

worldwide pandemics in 1918, 1957, and 1968 (WHO, 1980) are caused by H1, H2, 

and H3 viruses, respectively, when the HA specificity have been changed (Ha et al., 

2001; Rogers & D’Souza, 1989; Matrosovich et al., 1997). Accordingly, the reason 

why H5 avian influenza outbreak in 1997 failed to develop pandemic was due to the 

inappropriate α(2,3) specificity. 

 

H5N1 virus could infect cells in the human’s lower respiratory tract where 

α(2,3) terminal SA dominates, this limitation is responsible for inefficient human to 

human transmission in 1997 (Shinya et al., 2006). Therefore, for the virus to be 

disseminated it must infect the upper respiratory tracts where it can be shed out by 

sneezing and coughing. To infect the cells of upper respiratory tracts, the virus 

should have the ability to bind α(2,6) terminal SAs (Baum & Paulson, 1990; 

Couceiro et al., 1993). Because both of α(2,3) and α(2,6) linkages are present in the 

human respiratory tracts  (Shinya et al., 2006; Couceiro et al., 1993), while α(2,3) 

linkages are present in the avian intestine (Naeve et al., 1984), the influenza A 

infection in human, equines, and swines is respiratory, while it is enteric in avians. 

Interestingly, pigs acquire both types of linkages in their respiratory tract thus can be 

infected by both of avian and human viruses (Hinshaw et al., 1981; (Kida et al., 
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1994). Accordingly, pigs serve as “mixing –vessels” providing the molecular basis of 

developing human-avian influenza A virus reassortants, similar to those responsible 

for 1957 and 1968 pandemics (Ito et al., 1998) (Figure 1.9).  

 

 
 

Figure 1.9: Avian influenza A virus is reassorted in pigs to become human infective 
(Alberto Cuadra, 200?)  

 
 

 

In Europe during 1979 H1N1 avian and H3N2 human viruses co-circulated in 

pigs and eventually reassorted to this host (Castrucci et al., 1993) generating a new 

type of viruses with HA and NA harbor both avian and human genotypic 

characteristics capable of infecting humans (Claas et al., 1994). Viruses isolated 

between 1979 and 1984 were capable of recognizing α(2,3) and α(2,6) linkages, 

while those isolated after 1985 can recognize only α(2,6) (i.e. human specific). 

Although humans and nonhuman primates can be experimentally infected with avian 

viruses, the limited viral replication in these hosts has led to the conclusion that avian 

influenza viruses are not directly transmitted to humans in nature (Horimoto & 

Kawaoka, 2001). 
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1.4.3.2 Determinants of HA1 specificity 

 

Sequence analysis of HA isolated from various avian and human strains 

revealed that some amino acid substitutions at locations close and far away from the 

HA1 binding site can affect HA specificity toward the type of SA linkage. Similar to 

H2 serotypes, H3 serotypes viruses undergo Gln226Leu and Gly228Ser mutations 

converting the avian specific HA to human specific one (preferring α(2,6) linkages) 

(Rogers & Paulson, 1983; Rogers et al., 1983; Sauter et al., 1989; Pritchett et al., 

1987; Nobusawa et al., 1991; Naeve et al., 1994;; Connor et al., 1994; Vines et al., 

1998). These mutations make the SA binding site at HA1 little opened and allow the 

residues within it to rearrange (Ha et al., 2003). Narrower binding site is observed for 

H5 serotype of 1997 H5N1 avian virus which has Gln226 and Gly228 and has high 

affinity for α(2,3) linkages and low affinity for α(2,6) linkages (Figure 1.10). The 

low affinity to α(2,6) linkages was responsible for H5N1 infectivity to humans in 

1997 (Ha et al., 2001). In H1 serotype the Gln226 and Gly228 were maintained 

while Glu190Asp mutation converts the virus from avian to human specific 

(Matrosovich et al., 2000).  
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