
A FRAMEWORK FOR DYNAMIC UPDATING IN COMPONENT-BASED 

SOFTWARE SYSTEMS 

 

 

 

 

BY 

 

SALEH MOHAMMED ALHAZBI 

 

 

 

 

 

 

 

 

 

 

UNIVERSITI SAINS MALAYSIA 

2009

Thesis submitted in fulfillment of 
the requirements for the degree of 

Doctor of Philosophy 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repository@USM

https://core.ac.uk/display/32599816?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 ii

ACKNOWLEDGEMENTS 
 

 
Although this thesis represents an achievement that bears my name, it would not have 

been possible without help of others who I would to thank. First, and for most, I thank 

Allah for all his blessings and guidance.   

 

I would like to express my sincere thanks and deepest gratefulness to my supervisor Dr. 

Aman  Jantan for his supervision, encouragements, guidance, insightful criticism, and 

for all of his help during my research work and preparation this thesis. 

 

I express my special thanks to College of Computer Science for all facilities and 

support to achiever this research.  

  

I am so grateful to my parents for being there for me, for their prayers, for their love 

and care, for teaching me that good things comes with hard work. 

 

I am deeply thankful to my closest friends and my pillars of support, Abdullateef 
Ghallab and Ghassan Habeeb for their help and support during my thesis preparation. 
 
 
I am grateful to my family for their time and support to finish this research. 
 

 

 

 

 

 

 

 

 

 

 



 iii

TABLE OF CONTENTS 

    Page 

AKNOWLEDGEMNETS ii 

TABLE OF CONTENTS iii 

LIST OF TABLES viii 

LIST OF FIGURES ix 

LIST OF ABBREVIATIONS xiii 

LIST OF APPENDICES xv 

ABSTRAK xvi 

ABSTRACT xvii 

CHAPTER 1: INTRODUCTION  

1.1 Problem Overview 1 

1.2 Research Motivation 3 

 1.2.1 The need for Dynamic Updating 3 

 1.2.2 The Advantages of Component-based Paradigm  5 

 1.2.3 Necessity of Safe Dynamic Updating  7 

1.3 Scope, Goal, and Objectives of the Thesis 8 

1.4 Thesis Outline 10 

CHAPTER 2:  LITERATURE REVIEW  

2.0 Introduction  12 

2.1 Software Components and Component-Based Software 
Development 
 

13 

 2.1.1 Component-Based Software Development 14 

 2.1.2 What are Components? 15 

 2.1.3 Differences between OOD and CBD  17 

 2.1.4 Current Industrial Component Models 19 

2.2 Software-Base Dynamic Updating 25 

 
 
 
 



 iv

 2.2.1 Why Software Needs Updating?  
 

25 

 2.2.2 What is Dynamic Updating in Component-based Systems? 
 

26 

 2.2.3 Types of Dynamic Updating in Component-Based Systems 
 

26 

 2.2.4 Problems of Software Dynamic Updating 30 

2.3 Previous Work in Dynamic Updating 32 

 2.3.1 Dynamic Updating in Procedure-Based Systems 32 

 2.3.2  Dynamic Updating in Object-Oriented Systems 35 

 2.3.3 Dynamic updating in Component-Based Systems 42 

2.4 Safety with dynamic Updating 51 

 2.4.1 Why is updating software dynamically risky? 51 

 2.4.2 Components' Interfaces Incompatibility 52 

 2.4.3  Timing of updating and System Consistency 55

 2.4.4 Transferring state between old and new versions  58

 2.4.5 Semantic Errors and system malfunctions  61 

2.5 Summary and Conclusion 64 

CHAPTER 3: A NEW COMPONENT MODEL AND FRAMEWORK 
 

 

3.0 Introduction 65 

3.1 Toward the Solution   66 

 3.1.1 Loose Coupling Architecture 66 

 3.1.2 Loose Invocation Model 68 

 3.1.3 Status Exposing 69 

 3.1.4 State Abstraction and Exposing  69 

 3.1.5 Dependencies Management 70 

 3.1.6 Low Overhead Performance 71 

 3.1.7 Rollback Capability   71 

3.2 Message-based Interaction Component Model 72 

 3.2.1 Component Facets 73 

 3.2.2 Component Instances' Status 77 

 3.2.3 Component's State 80 

 3.2.4 MICS Model Properties 82 



 v

3.3 MICS Framework 84 

 3.3.1 Connectors 86 

 3.3.2  Soft Bus 88 

 3.3.3 Interaction Protocol  89 

 3.3.4 Instances Manager 91 

 3.3.5 Components Manager 91 

 3.3.6 Dependency Manager 92 

 3.3.7 Update Manager 92 

3.4 Dependency Management 93 

 3.4.1 Dependency Representation 94 

 3.4.2  Service Level of Dependencies 97 

 3.4.3 Service Level Dependencies Representation 99 

 3.4.4 Dependency Management in MICS Framework 101 

3.5 Component-Based Development in MICS 102 

3.6 Summary 103 

CHAPTER 4: SAFE DYNAMIC UPDATING IN MICS FRAMEWORK 
 

4.1 Online Updating Support in MICS 105 

 4.1.1 Two Levels of Separation between Components  106 

 4.1.2 Interaction-Time Components Binding 106 

 4.1.3 Service-Oriented Communication 108 

 4.1.4 User-based Approach for Transferring State 109 

 4.1.5 System Quiescence 110 

4.2 Rollback Recovery in MICS 111 

 4.2.1 Principles of Rollback Recovery 112 

 4.2.2 Applying Rollback Technique to MICS Framework 115 

  4.2.2.1 Checkpoints in MICS.  115 

  4.2.2.2 Global Recoverable State in MICS 116 

  4.2.2.3 Roll Back Process in MICS. 118 

4.3 Types of Dynamic Updating In MICS 122 

 4.3.1 Implementation Replacement 123 



 vi

 4.3.2 Adding a New Component 128 

 4.3.3 Removing a Component 129 

 4.3.4 Interface Updating 130 

 4.3.5 Adding Dependency 134 

 4.3.6 Removing Dependency 134 

4.4 Safety in MICS 135 

4.5 Summary 137 

Chapter 5: Implementation and Testing 
 

5.1 Java-based Implementation  139 

 5.1.1 Component in Java versus Class 140 

5.2 Model Implementation 140 

5.3 Framework Implementation 144 

5.4 System Implementation in MICS. 149 

5.5 Testing and Performance Evaluation  149 

 5.5.1 Safe Dynamic Updating Test 150 

 5.5.2 Performance Evaluation Test 153 

  5.5.2.1 Test Setup  153 

  5.5.2.2 Experiment Results 156 

  5.5.2.3 Result Discussion 155 

5.6 Chapter Summary  158 

CHAPTER 6: DISCUSSION AND FUTUR WORK   

6.1 Thesis Summary 159 

6.2 Discussion and Contributions 160 

6.3  Future Work 163 

CHAPTER 7:  CONCLUSION   
 

 

REFERENCES 167 

APPENDICES 183 

LIST OF PUBLICATIONS 191 

 



 vii

LIST OF TABLES 

  
  Page
Table 2.1 Comparison of Dynamic Updating Approaches in Component-

Based Systems 
 

50 

Table 4.1 Comparison between OOD and Development in MICS Framework 
 

109 

Table 4.2 Example of Dependencies Table before Replacement Updating 
 

126 

Table 4.3 Dependencies Table after Replacement Updating 
 

127 

Table 5.1 Comparison of Execution Time between an OOP Prototype and a 
MICS Prototype 
 

156 

  



 viii

LIST OF FIGURES 

  Page 

Figure 1.1 Related Areas to this Research 
 

8 

Figure 1.2 Thesis Outline 
 

11 

Figure 2.1 Literature Review of the Research 
 

12 

Figure 2.2 Development Process for CBD 
 

14 

Figure 2.3 Example of a Component based on OOP 
 

18 

Figure 2.4 Types of Updating in Component-based Systems 
 

27 

Figure 2.5 Updating Component-base System by Adding a New 
Component 
 

28 

Figure 2.6 Updating Component-base System by Removing a 
Component 
 

28 

Figure 2.7 Updating Component-base System by Replacing a 
Component 
Component-Based System U 
 

29 

Figure 2.8 Proxy-based Approach to Build Dynamic Class 
 

36 

Figure 2.9 Dynamic Update in Object Oriented Systems 
 
 

38 

Figure 2.10: Multi-level Mediator for Class Hot-swapping in Java 
 

41 

Figure 2.11 SOFA/DCUP Component Structure 
 

43 

Figure 2.12 Relations between Components in DBeanBox Framework 44 
 

Figure 2.13 S-Module Approach 46 
 

Figure 2.14 Using a Wrapper to Keep Compatibility between 
Components 
 

53 

Figure 2.15 Using Adapters to Solve Incompatibility Problem 
 

54 

Figure 2.16 Example of an Adapter to Solve Incompatibility Problem 
 

55 

Figure 2.17 Online Changes between Programs Reachable States 
 

56 

Figure 2.18 Techniques for State Transfer between the Old and the New 
Version 
 

60 

Figure 2.19 RAIC Architecture 
 

62 

Figure 2.20 Reliable Updating with Multiple Versions 63 
 



 ix

   
Figure 3.1 Component Bus Interaction Pattern 

 
67 

Figure 3.2 MICS Component Facets 73 
 

Figure 3.3 Component's Interfaces with Connectors 75 
 

Figure 3.4 MICS Component's Status 79 
 

Figure 3.5 MICS Component's States 81 
 

Figure 3.6 Reachable Component's States 82 

Figure 3.7 MICS Framework 85 
 

Figure 3.8 Dependency Relationship 93 
 

Figure 3.9 Component Direct Dependency Graph 94 

Figure 3.10 Adjacent Matrix Representation for Direct Component 
Dependencies 
 

95 

Figure 3.11 Component Dependency Graph 
 

96 

Figure 3.12 Warshall’s Algorithm to Calculate the Transitive Closure. 
 

96 

Figure 3.13 Adjacent Matrix Direct and Indirect Component Dependencies 
 
 

97 

Figure 3.14 Service Level Dependencies 
 

98 

Figure 3.15 Service Level Indirect Dependency 
 

99 

Figure 3.16 Service Level Dependency Graph 
 

100 

Figure 3.17 Adjacent Matrix Representations for Direct Service-based 
Dependencies 
 

100 

Figure 3.18 Adjacent Matrix Representation for Direct and Indirect Service-
based Dependencies 
 

101 

Figure 4.1 Interaction -Time Binding Between MICS Components 
 

107 

Figure 4.2 Transfer State from Old version to new One 
 

110 

Figure 4.3 Rollback Propagation 
 

112 

Figure 4.4 Consistent Global State 
 

113 

Figure 4.5 Inconsistent Global State 
 

113 

   
   
   



 x

Figure 4.6 Example of Global State in MICS 
 

117 

Figure 4.7 Example of updating that Needs Saving System's Architecture 
to be Correctly Recovered 
 

118 

Figure 4.8 System before Updating in MICS 
 

119 

Figure 4.9 System after Updating in MICS 
 

120 

Figure 4.10 System after Rolling Back in MICS 
 

120 

Figure 4.11 Types of Dynamic updating in MICS Framework 
 

122 

Figure 4.12 Implementation Replacement in MICS 
 

124 

Figure 4.13 Architecture of a System before Implementation Update 
 

126 

Figure 4.14 Example of System in MICS before Implementation Update 
 

126 

Figure 4.15 Example of System in MICS after Implementation Update 
 

127 

Figure 4.16 Adding a New Component in MICS 
 

128 

Figure 4.17 Removing a Component in MICS 
 

129 

Figure 4.18 Interface Updating with Preserving Old Component's Interface 
 

131 

Figure 4.19 Interface Updating without Preserving Old Component's 
Interface 
 

133 

Figure 5.1 An Example of XML-based Component Specification 
 

143 

Figure 5.2 Class Diagram of Connectors Implementation 
 

144 

Figure 5.3 The Relationship between InPort Connector and Component 
 

145 

Figure 5.4 The Relationship between OutPort Connector and Component 
 

146 

Figure 5.5 Class Diagram of Managing Components 
 

147 

Figure 5.6 Class Diagram of Dependencies Representation 
 

148 

Figure 5.7 Prototype for Safe Dynamic Updating Test 
 

150 

Figure 5.8  Prototype after Implementation Update  
 

151 

Figure 5.9  Prototype after Interface Update  
 

152 

Figure 5.10 Prototype after Deleting a Component 152 
   
Figure 5.11 MICS Prototype with Two Components 

 
154 

   
   
   



 xi

   
Figure 5.12 OOP Prototype with Two Classes 

 
155 

Figure 5.13 Performance Comparisons between OOP and MICS 
 

157 

 



 xii

LIST OF ABBREVIATIONS 

 

CB Component Builder 

CBD Component-Based Development 

CDDG Component Direct Dependency Graph 

CDG Component Dependency Graph 

CDL Component Description Language 

CE Constraint Evaluator 

CLR Common Language Runtime 

CM Component Manager 

COM Component Object Model 

CORBA Common Object Request Broker Architecture 

COTS Commercial Off-The-Shelf  

DAS Dynamically Alterable System 

DCUP Dynamic Component Update 

DDL Dynamic Link Library 

DYMOS Dynamic Modification System 

EJB Enterprise JavaBeans 

GRS Global Recoverable State 

IDL Interface Description Language 

IL Intermediate Language 

JMS Java Message Service 

JVM Java Virtual Machine 

MDIL Microsoft Description Identifier Language 

MICS Message-based Interaction in Component-based Systems 

MOM Message-Oriented Middleware 

OOD Object-Oriented Development 



 xiii

OOP Object-Oriented Programming 

ORB Object Request Broker 

PC program counter 

PDA  Personal Digital Assistant 

PODUS Procedure-Oriented Dynamic Updating System 

RAIC Redundant Array of Independent Component 

RMI Remote Method Invocation 

RPC Remote Procedure Call 

RQ Request Message 

RS Response Message 

SEESCOA Software Engineering for Embedded Systems using a Component-

Oriented Approach 

SOA Service-Oriented Architecture 

SOC Service-Oriented Communication 

SOFA SOFtware Appliance 

  
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 xiv

LIST OF APPENDICES 

  Page 

Appendix A.1 Soft Bus Code 
 

181 

Appendix A.2: Message Implementation Code 
 

182 

Appendix A.3 Reply Message Implementation Code 
 

183 

Appendix A.4 Request Message Implementation Code 
 

183 

Appendix A.5  Example of Components Integration in MICS 
 

184 

Appendix B.1  GUI for Managing Systems in MICS 
 

185 

Appendix B.2  GUI for Implementation Replacement in MICS 
 

185 

 
  



 xv

RANGKA KERJA BAGI PENGEMASKINIAN DINAMIK  DALAM SISTEM 
PERISIAN BERASASKAN KOMPONEN 

 
ABSTRAK 

 
Setiap sistem perisian (software) perlu dikemas kini setiap masa bagi pelbagai alasan 

seperti penetapan pepijat (fixing bugs), peningkatan komponen, atau memudahkan sistem 

menyesuai terhadap perubahan persekitaran. Secara tradisi, sistem perisian perlu dihentikan 

bagi melaksanakan pengubahsuaian Kaedah ini tidak sesuai bagi sistem yang beroperasi dalam 

masa yang panjang seperti sistem perbankan atau telekomunikasi, atau sistem misi-kritikal 

(mission-critical system) seperti pengawal lalu lintas udara (air-traffic controller). Oleh itu, 

jenis sistem yang sebegini hendaklah dikemas kini secara dinamik. Walau bagaimanapun, 

pemgemaskinian dalam talian (online updating) boleh mendatangkan pelbagai risiko, yang 

boleh merosakkan sistem atau mendatangkan kesan tidak dipercayai.   

 

Tesis ini mengemukakan suatu model dan rangka kerja baru dalam usaha 

membangunkan sistem perisian berasaskan komponen yang boleh dikemas kini secara dinamik 

dan selamat. Rangka kerja ini memudahkan integrasi komponen dengan memperkenalkan 

konsep bas-lembut (soft bus concept). Semua komponen dalam sistem digabungkan pada suatu 

entiti perisian khusus yang fungsinya menyamai bas perkakasan (hardware bus). Bas-lembut 

membawa mesej di antara komponen sistem. Rangka kerja yang dicadangkan mampu 

menerima risiko pengemaskinian dinamik yang mungkin dan membolehkan sistem digulung 

semula  (rolled back) selepas pengemaskinian, sekiranya berlaku kegagalan.   

  

  Bagi menunjukkan kedayamajuan penyelesaian kami, rangka kerja ini dilaksanakan 

menggunakan bahasa pengaturcaraan Java. Eksperimen menunjukkan bahawa penggunaan 

komunikasi secara tidak langsung antara komponen akan meningkatkan prestasi overhed, 

dalam purata 30%.  

 



 xvi

A FRAMEWORK FOR DYNAMIC UPDATING IN COMPONENT-BASED 
SOFTWARE SYSTEMS 

 
ABSTRACT 

 
Every software system needs to be updated over time for different reasons such 

as fixing bugs, upgrading its components, or adapting the system in response to its 

environment's changes. Traditionally, software systems must be shut down in order to 

perform the modifications. This is not suitable for long-time running systems such as 

banking or telecommunications systems, or mission-critical systems such as air-traffic 

controllers. Therefore, this type of systems should be updated dynamically. However, 

there are different risks with online updating which would crash the system or affect its 

reliability  

 

This thesis presents a new model and framework to develop component-based 

software systems that can be updated dynamically and safely.  The framework 

facilitates components integration by introducing soft bus concept. All components in 

the system are attached to a special software entity that works similarly as hardware 

bus. The soft bus routes messages between system's components. The proposed 

framework addresses the possible risks of dynamic updating and allows system to be 

rolled back after updating in case of failure. 

 

To show the viability of our solution, the framework was implemented using 

Java programming language. Experiments show that using indirect communication 

between components adds overhead performance in average of 30%. 

 
  



 1

CHAPTER 1 
INTRODUCTION 

 

1.1 Problem Overview  

Naturally, software needs to be updated over time for various reasons such as 

fixing bugs, upgrading its components, or adapting the system in response to its 

environment's changes. Traditionally, software modifications always require shutting 

down the system, updating, and restarting it. This approach is not suitable for critical 

systems that require 24 hours/7 days availability such as banking or 

telecommunications systems, or mission-critical systems such as air-traffic 

controllers. These systems require dynamic updating so that the system can be 

updated at running time without service interruption. Generally, the process of 

updating software systems includes adding, deleting or replacing one or more of its 

components, which are performed while the whole system is running. Dynamic 

updating has the same meaning as online change (Gupta, 1994), on-the-fly 

replacement (Hauptmann and Wasel, 1996), live updating (Preuveneers et al., 2006), 

runtime reconfiguration (Jasminka et al., 2004), and software hot swapping (Ao, 

2000). 

 

 Building dynamically updateable software systems is not a new area of 

research. In general, there are many approaches that range from redundant 

hardware to software-based ones.   

 

Hardware-based technique, for example, has been used with critical systems 

for a long time. In hardware-based solution, there is a redundant unit that works as a 

backup. When there is a need for upgrading the system, the backup unit handles the 

requests as an alternative to the other one; then the system can be upgraded in the 

 
  



 2

original unit while the backup unit is running. When upgrading is finished, the system 

running is switched back to the original unit (Hicks, 2001). This architecture might 

contain more than only two machines to increase the availability. For example, Visa's 

worldwide processing system (VisaNet) uses 21 machines to handle more than 3000 

transactions per second generated by visa card users. Although the software used on 

these machines to handle transactions is updated in average of 20,000 times per year, 

service availability is about 99.5% of the time. This high availability is the outcome of 

massive backup machines where the whole center's workload can be shifted to another 

backup center in case of any failure (Pescovitz, 2000). The main disadvantage of such 

approach is the cost of the hardware. This is due to special hardware needed to allow 

running the two redundant versions. The two versions always need to be synchronized 

and this adds more complexity to the system (Rivka et al., 1992).  

 

In contrast to hardware-based approaches for system dynamic update, many 

software-based approaches such as (Goullon et al., 1978), (Robert and Insup, 1983) 

(Segal and Frieder, 1993), (Gupta, 1994), (Plasil et al., 1997), (Andersson and 

Ritzau, 2000) (Hicks et al., 2001) (Hjálmtýsson and Gray, 1998), and (Ketfi et al., 

2002) are developed to support updating software system while it is running.  

 

However, for any system to be dynamically updateable, it must be configured 

into a set of updateable modules based on certain criteria so it can be updated in a 

module-by-module fashion. According to Bialek (2006), update units can be first class 

modules, such as procedures in procedural systems, or classes in object-oriented 

ones, or they could be modules that are more complex such as components in 

component-based systems (Bialek, 2006). 

 
 
  



 3

High modularity of component-based systems makes them relatively well 

suited for dynamic updating. The main goal of dynamic updating in component-based 

software systems is conceptually similar to updating the hardware component while 

the system is running. However, according on (Gupta and Jalote, 1993) the difference 

is that the new component may not be the same as the old component in terms of 

function and performance. 

 

1.2 Research Motivation 

This thesis will focus on dynamic updating in component-based software 

systems which are built by integrating pre-existing components. In contrast to several 

previous work in this area such as (Plasil et al., 1997), (Feng, 1999), (Ketfi et al., 

2002), (Vandewoude and Berbers, 2004) which focus solely on dynamic update, the  

work reported in this thesis will emphasize on system safety during and after online 

updating process.  We define system safety in the context of dynamic updating as the 

system's ability to work consistently during and after updating operation. 

 

The significance of this research stems from the importance of the three aspects 

of the problem: dynamic update, component-based system, and safety. Therefore, the 

following subsections will explain the aspects in the context of this research. 

 

1.2.1 The need for Dynamic Updating 

The demand for on-line software updating is increasing for different reasons: 

First, software systems are normally updated by loading a new version and restarting 

the system to reflect the new features. For example, Microsoft Windows requires 

rebooting for some updates. For a common user, it will be fine but that is not 

acceptable 

  



 4

for systems which need high availability to operate such as telephony systems, 

financial transaction systems, and air traffic Control systems.  

 

Shutting down financial systems might cause big losses for the company. For 

example, banks can lose as much as US$2.6 million each hour of downtime (Group, 

2002). Results of a survey conducted by Eagle Rock Alliance (Eagle Rock Alliance, 

2002) show that: 

• 54 % of all participating companies stated that each hour of downtime would cost 

the company more than $50K. 

•  8 % said that each hour would cost over $1M. Of all the companies. 

• 4 % estimated that the survival of the company would be at risk if the downtime 

lasted less than one hour. 

• 39 % suspected that downtime lasting up to one day would put the survival of the 

company at risk.  

 

Second, computing nowadays is no longer limited to computers- PC's and 

Servers as the diversity in hardware architectures grows drastically. We see more 

and more different types of devices, such as personal digital assistants (PDA’s), 

mobile phones, and portable computing devices. These highly dynamic environments 

require frequent updating for software systems. The challenge is how to update such 

systems while allowing those systems to continue providing service during upgrades.  

 

Moreover, future computer systems must be able to react to changes in the 

environment by dynamically adapting themselves to keep functioning with good 

performance. This also includes reacting to variations in resource availability and 

adapting their algorithms by replacing their components without the need to stop and 

  



 5

restart the system. In addition, significant variations in resource availability should 

trigger architectural reconfigurations, component replacements (Kon, 2000), 

(Appavoo et al., 2003). 

 

Third, in distributed environment, a system might be composed of hundreds or 

thousands of machines. It is required that each node in the system is continuously 

available to provide service to the rest of the system. Halting the whole system for 

updating one of its nodes is not acceptable. Therefore, updating such nodes 

dynamically will allow the system to continue to provide service during upgrades. 

 
Lastly, dynamic update is used to increase system reliability.  It can be 

combined with fault tolerant techniques to keep the system running by masking the 

fault, rollback and restart dynamically using another fault free part. According to 

(Deepak and Pankaj, 1997) online change will reduce mean time to repair, which 

outcomes increasing system availability. 

 
1.2.2 The Advantages of Component-based Paradigm  

Rather than addressing the problem of dynamic updating in software systems 

in general, we have chosen to limit this research to the component-based systems 

which are built by assembling and integrating pre-made components or purchased 

Commercial Off-The-Shelf (COTS) software components, according to well-defined 

software architecture. The work in this thesis is limited to component-based systems 

because lately Component-Based Development (CBD) is gaining more popularity as 

a new paradigm for developing complex software systems. It is expected that 

components and component-based services to be broadly used by non-programmers 

in building their applications because software development will be shifted from 

writing 

 
 



 6

 
 

code to just integrating existing components. Allen (Allen, 1998) has predicated by 

the result of his survey that by the year 2003 up to 70% of all new software-intensive 

systems would rely on component-based software. Tools for building such 

applications by component assembly will be developed. In addition, automatic 

updating of components over the Internet, which has already presented in many 

applications today, will be a standard means of application improvement (Crnkovic 

and Larsson, 2002).  

 

Building software systems with reusable components brings many 

advantages, for example  (Meijler and Nierstrasz, 1998)  have summarized the 

advantages as the follows: 

1. Fast time-to-market. Building applications by assembling their components can 

be done more quickly than custom-developed ones, thus brought to market and 

sold more cheaply. 

2. Reliability. Applications that are built by reusable components will have more 

reliability than applications built from scratch. 

3. Division of labor.  Distributing the work of development to software teams can be 

done more easily with the development of well-defined interfaces components. 

4. Adaptability. One of the important properties of components is that they are 

replicable. This supports system flexibility, so it would be highly adaptable for any 

changes in the requirements. 

5. Easy to build distributed systems.  Nowadays, there is a demand on distributed 

systems in order to use hardware resources optimally. Developing systems using 

components will offer natural units for distribution and hides the complexity of 

distributed programming from application developers. 

 
 



 7

 
In general, component-based development overcomes software complexity 

and increases its maintainability. Dynamic updating in component-based systems 

aims to modify at least one of it component during runtime. Next section discusses 

the risk of such updating. 

 

1.2.3 Necessity of Safe Dynamic Updating  

The main goal of dynamic updating is to keep the system running without 

interruption. Therefore, it would not be acceptable that updating a system online 

leads to erroneous situation where the system might stop or malfunction. The threat 

with updating a running system is due to lack of test phase to verify any changes to 

the system. Consequently, online updating process may affect system' correctness.  

 

In general, there are four different sources of risk when updating the system 

dynamically: 

1. Interrupting running process. Updating software online cannot be achieved at 

any arbitrary time because it might interrupt some process that would lead the 

system to inconsistent state. Well-timing point is needed for any approach to 

safely update the system online. 

2. Breaking components' dependencies.  Updating a component of the system 

should preserve other components' dependencies on the replaced one. For 

example, if a component C1 has a method M1 that is used by other components, 

replacing C1 with a new one that does not have M1 will cause a problem and 

might lead the system to crash. This type of errors is identified as interface faults 

which is common source for risk with component interaction (Lutz, 1993), (Cook 

and Dage, 1999). 

 

 



 8

3. Loosing the state of old version. When replacing a component online, the new 

version should start from the point where the old one stopped. Therefore, the 

state of the old component should be transferred to the replacing one. The 

problem is how to represent component state in the old and the new version. 

Also, after loading the new version to the system, the problem is how to map the 

old state to the new one that might be different type.  

4. Semantic Errors.  This kind of problem is related to component's logic. Since 

there is no test phase when updating the system dynamically, the behavior of the 

new component, especially when it works with the others in the system, cannot be 

anticipated. Semantic errors are hard, if not impossible, to be identified 

automatically (Bialek, 2006). 

 

1.3 Scope, Goal, and Objectives of the Thesis 

This research work will focus on three directions: dynamic updating, 

component-based software systems, and software safety as it is related to dynamic 

update. Figure 1.1 depicts these three directions in this thesis. 

 

 

 

 

 

 

 

 

 

 

Figure 1.1: Related Areas to this Research 



 9

The main goal of this thesis is to define a new framework for developing 

component-based software systems that can be updated dynamically without risk of 

crash or malfunction. 

 

To achieve this goal, this thesis particularly will pursue the following 

objectives: 

1. Investigate the problems of dynamic updating in component-based systems with 

particular emphasis on system correctness and safety during and after online 

updating, and address the shortcomings of current approaches.  

2. Develop a new component-oriented model to develop component-based system 

that supports the concept of safe dynamic updating. The new model should 

facilitate exposing component's interface, states and status at runtime. The model 

should describe components' interfaces that include both services provided by the 

component and those required from the other ones during execution. 

3. Develop a framework that serves as a basis for components integration with 

support for adding, removing, and updating a component during runtime. 

4. The projected  framework should support safety in the following aspects:  

a) Before updating is performed, compatibility should be checked to ensure no 

dependency among components would be broken.  

b) The operation of updating should be isolated to make the system keeps 

running consistently. 

c) When replacing a component, the new version must start from the point where 

the old one stopped. Thus the framework should allow transferring 

component's state straightforwardly. 

d) After updating, in case of an error with the new components, the framework 

should support roll back mechanism to the old version, therefore the system 

will not crash. 

 



 10

 

Thesis Outline 

The research and work reported by this thesis will be provided in six chapters 

organized as follows:  

In chapter 1, i.e. this chapter, we have presented the basic concepts, scope, 

goal and main objectives of this work. 

 

Chapter 2 will present a literature survey of the related work in the three 

domains of this research: software-based dynamic updating approaches, component-

based development methodology, and safety issues regarding online updating.  The 

chapter will focus on the main challenges in building safe dynamically updatable 

system, how previous research addressed such problems. It will height shortcomings 

of previous research and will derive the need for this work. 

 

Chapter 3 will present a new component model for developing component-

based software systems. The framework, Message-based Interaction in Component-

based Systems (MICS), will be explained in detail.  

 

Chapter 4 will analyze how the new model and framework support updating 

the system dynamically. It will discuss all types of dynamic updating in details and 

present safety features in the proposed framework.  

 

Chapter 5 will be devoted to enlighten implementation of the framework and 

build a simple prototypes to figured out implementation difficulties, prove achievability 

and assess performance overhead of the framework on the system. 

 



 11

Chapter 6 will discuss and summarize the main contributions of this work and 

presents directions for future work and chapter 7 will conclude this thesis.  Figure 1.2 

shows the structure of this thesis.   

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2: Thesis Outline  

Safety Dynamic 
 Updating 

Component-Based 
Systems 

Chapter 1 
Introduction  

Chapter 2 
Literature Review  

Chapter 3 
New Model & Framework 

Shortcomings of 
Previous Research 

Chapter 4 
Safe Dynamic Updating 

Chapter 5 
Implementation & Testing 

Chapter 6 
Discussion & Future work 

Chapter 7 
Conclusion 



 12

CHAPTER 2 
LITERATURE REVIEW 

 
2.0 Introduction. 

This chapter presents a survey of previous works that are related to this 

research. The literature review, presented in this chapter, covers the three directions 

of the work.  First, section 2.1 clarifies the concept of software component as it is 

related to component-based paradigm for developing software systems. It explains 

the relation between objects and components and discusses current technologies 

that support CBD. Section 2.2, presents literature review of the previous software-

based dynamic updating approaches which include approaches for procedure-based, 

object-oriented systems, and recent approaches for updating component-based 

systems. Section 2.3 investigates related work on the safety problem when updating 

component-based system. Figure 2.1 shows the main points of the literature review of 

this research and the overlapping between the three directions of the research.  

 

 Figure 2.1: Literature Review of the Research  



 13

2.1 Software Components and Component-Based Software Development 

 Software reusability has been considered as the key solution for developing 

reliable, adaptable, and easy maintainable software systems. Since early structured 

programming languages in the 1970s, there has always been a stress on reusability 

concept. The program was divided into modules, and the concept of reusability was 

applied by using function libraries to implement the system in order to reduce the cost 

and increase the flexibility of the system.  

 

 Next generation of software reusability has appeared with the introduction of 

object oriented development approach. After its conception in 1980s, the concept of 

object-oriented development has attracted attention from many researchers and 

developers. Although object oriented paradigm has offered a lot of support for 

reusability concept, it could not cope with open systems as it still follows traditional 

models for software development in which the requirements are assumed to be 

stable. 

   

 Widespread use of software in business and embedded systems has lead to 

more software complexity. To overcome the complexity, the third generation of 

reusability in software development was introduced in the late 1990s. Lately, 

component-based development of software is being increasingly used as a 

mainstream approach to software development. The major role of a component 

approach is to manage changes better and make the system more flexible for future 

changes.  

 
 
 
 
 
 
 
 



 14

2.1.1 Component-Based Software Development 
   

According to (Sommerville, 2004), the fundamentals of component-based 

paradigm are:  

• Components: they are independent software unit that can be composed with each 

other. 

• Component Model: it defines the standards for component implementation, and 

deployment so they can interoperate together. 

• Middleware: it supports component integration and low-level issues such as 

resource allocation, security and concurrency. 

  

 The main idea of the component-based paradigm is building systems by 

integrating pre-existing component. In Component-Based Development (CBD), the 

development is shifted from programming to just integrating pre-built components 

(Paul, 2001). The development process of the whole system is separated from the 

process of development of its components and the components should be available 

in advance and might be bought from a third party, which called Commercial off-the-

shelf (COTS). During system development process, much implementation effort is 

focused on locating and selecting the most suitable components, testing  and wiring 

them together (Crnkovic et al., 2005). Figure 2.2 depicts the process of software 

development using component-based paradigm.  

 

 

 
Figure 2.2:  Development Process for CBD 



 15

 Component-based approach provides many benefits, such as reusability, 

reduced cost of development, and reliability. Moreover, component-based systems 

have very high modularity thus such systems are more appropriate for adaptability or 

extensibility.  The challenge is to support those features during runtime, so that 

system can be updated or extended without need to stop the whole system. Such 

feature seems to be more needed with mobile computing and embedded systems. 

 
2.1.2 What are Components? 
 

The idea behind software components is not new. Software engineers have 

dreamed for many years of building software systems, like hardware, by combining 

pre-existing parts. Component software idea  can be traced back to a paper 

published by M.D. McIlroy at the NATO conference at Garmisch in 1968 about the 

idea of mass-produced software components (McIlroy, 1968). 

 

Nowadays, although component-based development has been widely adopted 

as a main approach for software development, there is still no universal standard 

definition for software component. Different definitions of software components were 

formed. For example, a commonly-used definition is the one stated by   Szyperski 

(2002) who defines a software component from a structural perspective as “a unit of 

composition with contractually specified interfaces and explicitly context 

dependencies only. A software component can be deployed independently and is 

subject to composition by third parties” (Szyperski, 2002). This definition implies the 

separate development of the components and their ability to be composed through 

well-defined interfaces.  

 

Another definition is formed by Brown (1997), who  defines a component as 

“an independently deliverable piece of functionality providing access to the services 



 16

through interfaces” (Brown, 1997).  In this definition, Brown stresses on three aspects 

of the component as follows: 

• Packing:  the component is defined as a reusable part that provides the physical 

packing of model elements. 

• Service: the component is defined as a software package, which offers services 

through its interfaces. 

• Integrity: the component is defined as an independently deliverable package of 

software operations that can be used to build applications or larger components. 

 

Similar to previous definitions, D’Souza and Wills (1997) define a component 

as “coherent package of software that can be independently developed and delivered 

as a unit, and that offers interfaces by which it can be connected, unchanged, with 

other components to compose a larger system" (D'Souza and Wills, 1997).  From this 

definition, components seem to be close to the concept of modules, which have been 

used in programming languages at the 1970s and early 1980s. Furthermore, this 

definition supports concept of separate development and separate compilation of 

source code.  

  

In general, software component has the following properties: 

• A component is independent: A component is not bound to a specific system. It 

is implemented independently from other components and be part of any 

application. 

• A component has a well-defined interface. The interface of a component 

specifies a flow of dependencies from components that implement services to the 

components (consumers) that use these services.   

• A component is replaceable. Since there is a separation between component 

interface and its implementation, a component can be replaced by another 



 17

version as long as it has the same interface without affecting other components. 

However, in this thesis, we allow components to be replaced even if they have 

different interfaces. This affects dependencies with other components and it 

needs special management in order not to crash the system.  

• A component is descriptive. In order to integrate a component with others 

easily, it must come with clear specification about its services and its 

requirements.  

 

2.1.3 Differences between OOD and CBD  

Usually, the concepts of components and objects are overlapped and 

sometimes confused. This is because Component Based Development (CBD) uses 

the same concepts used in Object-Oriented Development (OOD) paradigm. For 

example, both methodologies hide their internal structure and communicate with 

outer entities through well-specified interface.   

 

 In both methodologies (OOD and CBD), the focus is on utilizing software 

reusability to build systems with high reliability and low cost. In OOD, it is done 

through white box reuse where the code is available and inheritance is applied 

instead of rebuilding everything from scratch. The interactions between system parts 

are accomplished by sending and receiving messages between the objects of the 

system. On the other hand, the system in CBD is built by putting pieces of software 

together where the source code is usually unavailable “black box”.  The interaction 

between components is achieved through well-defined interfaces (Meijler and 

Nierstrasz, 1998). Interfaces specify the services that components provide or require. 

Each component can provide or require several interfaces, and each interface can be 

provided or required by several components. A typical example of an interface is a 

set of method specifications. An interface is a specification of (part of) the 

functionality of a component.  



 18

Also in term of block's granularity, component is different from object as 

components exist at different sizes varying from single objects inside a library to 

whole applications. In most cases, however, components are larger entities and 

contain several objects.   

 

 In CBD, a component is normally built on OOP but with more abstract view 

of software systems than object-oriented methods.  Components written in an object 

oriented language are implemented as many related classes. This is true even 

when external access to a component might only be through a single interface. 

Figure 2.3 depicts an example of a component based on an object-oriented 

programming. Interface of Class2 represents the interface of the whole component, 

Class2 is subclass of Class1 and it is associated with Class3. However, that does 

not mean components only include classes. A component could include traditional 

procedures, or it could be built using assembly language or any other approach. 

 

            

 

 

Although the main goal of both OOD and CBD is to utilize reusability, they 

address this goal differently. In object-oriented design, reusability is achieved 

through class inheritance. When developers create subclass, they should be aware 

Figure 2.3:  Example of a Component based on OOP 



 19

of the implementation of the super class (white box reuse). On the other hand, in 

component-oriented development, reusability is promoted through binary form 

(black box reuse). Existing components are used without conscious of its internal 

details.     

 

Aoyama (Aoyama, 1998) summarizes the difference between OOD and CBD 

through the following aspects: 

1. Architecture.  The architecture of a system in OOD is considered to be 

monolithic, whereas it is a modular architecture in CBD. Thus the system can be 

developed partially and incrementally enhanced. 

2. Process.  While the OOD follows the conventional process (analysis, design, 

implement, test), the CBD process consists of two processes: component 

development and component integration.  

3. Organization.  In CBD, there is separation between component development and 

component integration, which created a new role of component broker. 

Component broker can sell and distribute software components. 

 

2.1.4 Current Industrial Component Models 

Practically, technologies implement component concept differently. The most 

common component models in industry are JavaBeans, Enterprise JavaBeans, 

Component Object Model (COM), .Net, and the Common Object Request Broker 

Architecture (CORBA).  Each one of these models has different structures and 

features as well as different requirements on the environment. Therefore, features 

defined for a component in a particular technology are not necessarily present in a 

component specification of another technology. The following subsections present 

more details on each of these industrial component models.  

 

 



 20

a. JavaBeans: 

A JavaBean is a reusable software component that is written in Java 

programming language. It can be visually manipulated in builder tools. Javabean is 

basically a normal java class that follows certain conventions. It extends the Bean 

class and it is a serializable. Typical unifying features that distinguish a JavaBean 

are: 

• Support for introspection: The builder tool can analyze how a bean works  

• Support for customization: User can customize the appearance and behavior of 

a bean in the bean builder during integration. 

• Support for events: Beans interact with each other through events/ listeners 

model. A bean should register itself with other bean as a listener in order to be 

notified when an even happens. 

• Support for properties:  Developers can customize and program the bean. 

• Support for persistence:  When a bean is customized, it can save its new state 

for future use.  

 

 Access to all properties is provided by methods, which begin with get and set. 

Beans are usually packaged in JAR Files and are identified by their class names. 

Developers use visual tools, such as bean box, to compose the components and 

make applications or applets. The applications are distributed to the client as a whole, 

together with all their constituent beans (Amaratunga, 2000). Because JavaBeans 

model is based on Java programming language and components in this model are 

java-based classes, thus it does not support dynamic updating of beans dynamically.  

 

 

 

 



 21

 

b. Enterprise JavaBeans 

Enterprise JavaBeans (EJB) is a component architecture from Sun 

Microsystems for building server side component in Java. EJB technology enables 

rapid and simplified development of distributed, transactional, secure and portable 

applications based on Java technology. An enterprise bean is hosted and managed 

by an EJB container provided by a J2EE server. There are three types of enterprise 

beans:   session beans, entity beans, and Message-driven beans. 

1. Session beans:  They implement the business logic of an application. They live 

only as long as the lifetime of the calling client. Sessions beans can be stateful. In 

the case that the implemented business process spans multiple requests, the 

bean needs to retain the state on behalf of the client. In other cases, session 

beans are stateless. 

2.  Entity beans: They model permanent data. They are long lasting and can serve 

multiple clients at one time, unlike session beans for which an instance can only 

be used by one client. 

3. Message-Driven beans:  They model message-related business processes. 

They are java objects that act as Java Message Service(JMS) listeners that allow 

J2EE application to process messages asynchronously (Shirah, 2003).  

 

 In spite of the rich features of EJB, however, the complexity of its architecture 

has limited its wide adoption. Moreover, EJB Model also does not support dynamic 

updating. 

 

c. Component Object Model (COM) 

 The Component Object model (COM), formerly known as OLE, is introduced 

by Microsoft in 1993. COM component is a language-independent based on 

Windows operating system. Therefore a component can be developed by different 



 22

programming languages and tools like Visual C++, Visual J++, Visual Basic, etc. 

Each component implements specific interface. While the component can be 

implemented by different programming language, the interface is described by 

Microsoft Description Identifier Language (MDIL), which is independent of any 

programming languages. COM objects can be run in the same address space of its 

client, this type of objects called Dynamic Link Library (DLL), or it may run on a 

separate address space as an executable (EXE). In this model, the information 

about a component is saved in the registry of Windows thus it could be available to 

other application.   

  

 The problem happens when a new application installed and has different 

version of a component already registered in the system. Installing new version 

breaks dependencies with applications use the old version, this problem is known as 

"DLL hell" (Alexander, 2005). Furthermore, although linking COM components is 

postponed until runtime, COM model does not support replacing a component while 

system is running because as soon as the component is linked to the application it 

can not be modified.  

 

d. Microsoft .NET 

Microsoft .NET is a development environment for creating distributed 

enterprise applications. The main component of .NET is the .NET Framework, which 

consists of two main parts: the Common Language Runtime (CLR) and the .NET 

Framework class library. The CLR provides common services for the .NET 

Framework applications. Programs can be written for the CLR in almost every 

programming language including C, C++, Microsoft C#™.NET, and Microsoft Visual 

Basic® as well as some older languages such as Fortran. This is because it 

translates them into Intermediate Language (IL) like java technique with Java Virtual 

machine (JVM). 



 23

The .NET Framework class library consists of prepackaged sets of functionality that 

developers can use to extend the capabilities of their software more rapidly. The 

library includes the following key components(Microsoft, 2005):  

• ASP.NET to help build Web applications and Web services.  

• Windows Forms to facilitate development of smart client user interface. 

• ADO.NET to help connect applications to databases. 

• Interoperability support for existing COM applications. 

• Improved component versioning and deployment  

The .net framework does not support dynamic updating by itself but some frameworks 

(Rasche and Polze, 2005; Rasche and Schult, 2007) extend .net model to support 

online reconfiguration.  

 

e. Common Object Request Broker Architecture (CORBA) 

Common Object Request Broker Architecture (CORBA) is a standard 

architecture for distributed object systems. It allows a distributed, heterogeneous 

collection of objects to interoperate. CORBA defines architecture for distributed 

objects. The fundamental of CORBA paradigm is requesting services between 

distributed objects. The services that an object provides are given by its interface. 

Interfaces are defined in the Object Management Group (OMG) Interface Definition 

Language (IDL). Distributed objects are identified by object references, which are 

typed by IDL interfaces. The invocation of the service goes to the local Object 

Request Broker (ORB) via the IDL stub. The local ORB will route the invocation to the 

remote ORB, which will pass it on to the object implementation via the skeleton. The 

location of the object and the details of the routing are completely transparent to the 

client (SunMicorsystems, 1994).  Essentially, CORBA is a component model that can 

be implemented in different programming languages. Therefore, supporting dynamic 

updating in CORBA depends on the programming language that is used in 

implementing the objects (Stiller, 1998).  



 24

 In summary, none of the above industrial component models support dynamic 

updating. This is due to the nature of programming languages used to build 

components in those models. Languages such as java, C++, C# are not sufficient 

toward runtime class updating because of the following two reasons: 

1. Class loading: after the class is loaded to the memory, no changes are allowed 

therefore any new object is instantiated from one already in the memory (Ebraert 

et al., 2005). 

2. Static safety:  such languages ensure program safety by verified compatibility 

among objects during compile time (Ebraert and Vandewoude, 2005).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

 
 
 
 




